Group Communication

Phuong Hoai Ha & Yi Zhang

Introduction to Lab. assignments
March 24th, 2004

Today’s schedule
• Introduction to group communication
• Desired group communication
• Multicast communication
• Group membership service

Coordination in distributed systems
• Coordination is needed by distributed systems but hard to achieve:
 – Events happen concurrently
 – Communication links are not reliable
 – Computers can crash
 – New nodes can join the systems
 – Asynchronous environments
 ⇒ respect an efficient way to coordinate a group of processes

Group communication
• What is a group?
 – A number of processes which cooperate to provide a service.
 – An abstract identity to name a collection of processes.
• Group Communication
 – For coordination among processes of a group.

Who Needs Group Communication?
• Highly available servers (client-server)
• Database Replication
• Multimedia Conferencing
• Online Game
• Cluster management
• …

Distributed Web Server
• High availability
Online Game

• Fault-tolerance, Order

Different Comm. Methods

• Unicast
 – Point-to-Point Communication
 – Multiple copies are sent.

• Broadcast
 – One-to-All Communication
 – Abuse of Network Bandwidth

• Multicast
 – One-to-multiple Communication

Today’s schedule

• Introduction to group communication

Group Comm. Properties

• Name Abstraction

• Efficiency ⇒ Multicast

• Delivery Guarantee
 – Ordering
 – Failure behavior
 – Reliability
 – ...

• Dynamic Membership ⇒ Group membership service

Properties of Communication

• Ordering
 – Total order, causal order

• Failure behavior
 – Failure atomicity

• Reliability
 – Validity, integrity, agreement

Group Properties

• Name of group

• Addresses of group members

• Dynamic group membership

• Options:
 – Peer group or client-server group
 – Closed or Open Group
Peer Group

- All the members are equal.
- All the members send messages to the group.
- All the members receive all the messages.

Client-Server Group

- Replicated servers.
- Clients do not care which server answers.

Desired Group Communication

- Name Abstraction
- Efficiency \(\Rightarrow\) Multicast
- Delivery Guarantees \(\Rightarrow\) Reliability, Ordering
- Dynamic Membership \(\Rightarrow\) Group membership service

Today's schedule

- Introduction to group communication
- Desired group communication
- Multicast communication
- Group membership service

Multicast communication

- Send message over a distribution tree.
- Use network hardware support for broadcast or multicast when it is available.
- Minimize the time and bandwidth utilization

Reliability

Correct processes: those that never fail.

- Integrity
 A correct process delivers a message at most once.
- Validity
 A message from a correct process will be delivered by the process Eventually.
- Agreement
 A message delivered by a correct process will be delivered by all other correct processes in the group.

\(\Rightarrow\) Validity + Agreement = Liveness
Ordering
Assumptions: a process belongs to at most one group.
- FIFO
 - If \(m \rightarrow m' \), all correct processes that deliver \(m' \) will deliver \(m \) before \(m' \).
- Causal
 - If \(m \rightarrow m' \), all correct processes that deliver \(m' \) will deliver \(m \) before \(m' \).
- Total
 - If a correct process delivers \(m \) before \(m' \), all other correct processes that deliver \(m' \) will deliver \(m \) before \(m' \).

Examples
- Assumption:
 - Reliable one-to-one send operation (e.g. TCP)
- Basic multicast
 - Requirement:
 - All correct processes will eventually deliver the message from the correct multicaster.
 - Implementation:
 - \(B\text{-multicast}(g, m) \): \(\forall p \in g: \text{send}(p, m) \);
 - On receive(\(m \)) at \(p \): \(B\text{-deliver}(m) \) at \(p \).
 - Properties: integrity, validity.

Examples (cont.)
- Reliable multicast
 - Requirements: integrity, validity, agreement
 - Implementation:
 - \(R\text{-multicast}(g, m) \):
 - \(B\text{-multicast}(g, m) \);
 - On B-deliver(\(m \)) at process \(q \):
 - received := \{m\};
 - if(\(m \notin \text{received} \))
 - \(\text{received} := \text{received} \cup \{ m \} \);
 - if(\(q \neq p \)) \(B\text{-multicast}(g, m) \);
 - \(R\text{-deliver}(m) \);
 - Properties: integrity, validity.
 - Encourage to implement in more efficient ways (e.g. IP-multicast, etc.)

Examples (cont.)
- FIFO-ordered multicast:
 - Assumption:
 - A process belongs to at most one group.
 - Implementation:
 - \(\text{local variables at } p \):
 - \(S_p = 1, R_p[g] = 0 \);
 - \(F\text{-multicast}(g, m) \): B-multicast(g, m);
 - On B-deliver(\(m \)) at process \(q \):
 - \(m \rightarrow \text{received} \)
 - if(\(S_q < R_p[g] + 1 \))
 - \(\text{F-deliver}(m) \);
 - \(R_p[g] := S_q \);
 - \(\text{Encourage to implement causally ordered, totally ordered multicasts.} \)

Today's schedule
- Introduction to group communication
- Desired group communication
- Multicast communication
- Group membership service

Group membership service
- Four tasks:
 - Interface for group membership changes
 - Failure detector
 - Group address expansion
 - Membership change notification
- Group partition:
 - Primary-partition
 - Partitionable
Group views

- Group views:
 - Lists of the current ordered group members
 - A new one is generated when processes join or leave/fail.
- View delivery
 - when the membership changes & a member is notified of it.
 - Requirements
 - Order
 - If process p delivers $v(g) \rightarrow v'(g)$, no other process delivers $v'(g) \rightarrow v(g)$.
 - Integrity
 - If process p delivers $v(g) \rightarrow v'(g)$, $p \in v'(g)$.
 - Non-triviality
 - If q joins a group and becomes indefinitely reachable from p, eventually q is always in the view p delivers.
- View-synchronous group communication
 - Extend the reliable multicast semantics with group views.

Examples

- Ensemble: reliable group communication toolkit
 - Next talk

IP-multicast

- Multicast:
 - Yes:
 - efficiency
 - No:
 - Reliability
 - Ordering

- Group membership service:
 - Yes:
 - Interface for group membership change
 - Group address expansion
 - No:
 - Failure detector
 - Membership change notification

References

 - Section 4.5 Group Communication
 - Section 11.4 Multicast Communication
 - Section 14.2.2 Group Communication
 - ...