Coordination in distributed systems

- Coordination is needed by distributed systems but hard to achieve:
 - Events happen concurrently
 - Communication links are not reliable
 - Computers can crash
 - New nodes can join the systems
 - Asynchronous environments

⇒ expect an efficient way to coordinate a group of processes

A Distributed System in WAR: Synchronous Example

A Distributed System in WAR: Reality

Group communication

- What is a group?
 - A number of processes which cooperate to provide a service.
 - An abstract identity to name a collection of processes.

- Group Communication
 - For coordination among processes of a group.
Who Needs Group Communication?

- Highly available servers (client-server)
- Database Replication
- Multimedia Conferencing
- Online Game
- Cluster management
- ...

Distributed Web Server

- High availability

Online Game

- Fault-tolerance, Order

Different Comm. Methods

- Unicast
 - Point-to-Point Communication
 - Multiple copies are sent.
- Broadcast
 - One-to-All Communication
 - Abuse of Network Bandwidth
- Multicast
 - One-to-multiple Communication

Today’s schedule

- Introduction to group communication
- Desired group communication
- Multicast communication
- Group membership service

Group Comm. Properties

- Name Abstraction
- Efficiency
- Delivery Guarantee
 - Ordering
 - Failure behavior
 - Reliability
 - ...
- Dynamic Membership
 - Group membership service
Properties of Communication

- Ordering
 - Total ordering, causal ordering
- Failure behavior
- Reliability
 - Validity, integrity, agreement

Properties of Group

- Name of group
- Addresses of group members
- Dynamic group membership
- Options:
 - Peer group or client-server group
 - Closed or Open Group

Peer Group

- All the members are equal.
- All the members send messages to the group.
- All the members receive all the messages.

Client-Server Group

- Replicated servers.
- Clients do not care which server answers.

Desired Group Communication

- Name Abstraction
- Efficiency ⇒ Multicast
- Delivery Guarantees ⇒ Reliability, Ordering
- Dynamic Membership ⇒ Group membership service

Today’s schedule

- Introduction to group communication
- Desired group communication
- Multicast communication
- Group membership service
Multicast communication
- Use network hardware support for broadcast or multicast when it is available.
- Send message over a distribution tree.
- Minimize the time and bandwidth utilization

Reliability
Correct processes: those that never fail.
- Integrity
 A correct process delivers a message at most once.
- Validity
 A message from a correct process will be delivered by the process eventually.
- Agreement
 A message delivered by a correct process will be delivered by all other correct processes in the group.
⇒ Validity + Agreement = Liveness

Ordering
Assumptions: a process belongs to at most one group.
- FIFO
 - if \(m_0 \rightarrow m_1 \), all correct processes that deliver \(m_1 \) will deliver \(m_0 \) before \(m_1 \).
- Causal
 - if \(m_0 \rightarrow m_1 \), all correct processes that deliver \(m_1 \) will deliver \(m_0 \) before \(m_1 \).
- Total
 - if a correct process delivers \(m_0 \) before \(m_1 \), all other correct processes that deliver \(m_1 \) will deliver \(m_0 \) before \(m_1 \).

Examples
- Assumption:
 – Reliable one-to-one send operation (e.g. TCP)
- Basic multicast
 – Requirement:
 - All correct processes will eventually deliver the message from a correct sender.
 – Implementation:
 - \(\text{Received} := \emptyset \)
 - \(\text{R-multicast}(g, m) \) at process \(p \): \(\text{B-multicast}(g, m) \);
 - On \text{B-deliver}(m) at process \(q \)
 \(\text{if} (m \in \text{Received}) \)
 \(\text{Received} := \text{Received} \cup \{m\}; \)
 \(\text{if} (q \neq p) \text{B-multicast}(g, m); \)
 - \(\text{R-deliver}(m) \);
⇒ Properties: integrity, validity

Basic multicast: Agreement?
- Reliable multicast
 – Requirements: integrity, validity, agreement
 – Implementation:
 - \(\text{Received} := \emptyset \)
 - \(\text{R-multicast}(g, m) \) at process \(p \): \(\text{B-multicast}(g, m) \);
 - On \text{B-deliver}(m) at process \(q \)
 \(\text{if} (m \in \text{Received}) \)
 - \(\text{Received} := \text{Received} \cup \{m\}; \)
 - \(\text{if} (q \neq p) \text{B-multicast}(g, m); \)
 - \(\text{R-deliver}(m) \);
⇒ Inefficient: each message is sent \(|g| \) times to each process
 – Encourage to implement in more efficient ways (e.g. IP-multicast)
Examples (cont.)

- FIFO-ordered multicast:
 - Assumption:
 - A process belongs to at most one group.
 - Implementation:
 - Local variables at \(p \): \(S_0, R_0 \)
 - \(S_0 \) multicast at \(p \):
 - \(S_0 = 1 \)
 - \(S_0 \) multicast at \(q \):
 - \(S_0 = 0 \)
 - On \(B-deliver \) at \(p \):
 - \(S = R_0 + 1 \)
 - \(S_0 = 0 \)
 - \(S_0 = S \)
 - \(S_0 \) in the queue until \(S = R_0 + 1 \)
 - \(S_0 \) deliver
 - \(R_0 \) deliver

- Encourage to implement causally ordered, totally ordered multicasts.

Today's schedule

- Introduction to group communication
- Desired group communication
- Multicast communication
- Group membership service

Group membership service

- Four tasks:
 - Interface for group membership changes
 - Failure detector
 - Membership change notification
 - Group address expansion

- Group partition:
 - Primary-partition
 - Partitionable

Group views

- Group views:
 - Lists of the current ordered group members
 - A new one is generated when processes join or leave fail.
- View delivery
 - When the membership changes & a member is notified of it.
- Requirements
 - Order
 - \(p \) delivers \(v \) if \(v \) is sent before \(p \).
 - Integrity
 - \(p \) delivers \(v \) if \(p \) is in the view.
 - Non-triviality
 - If \(q \) joins a group and becomes indefinitely reachable from \(p \), eventually \(q \) is always in the view \(p \) delivers.

View-synchronous group comm.

- Extend the reliable multicast semantics with group views.
 - Agreement
 - Correct processes deliver the same set of messages in any given view.
 - Validity (closed group)
 - Correct processes always deliver the messages they send.
 - \(p \) delivers \(m \) in \(v \) if \(p \) delivers \(m \) in \(v \).
 - Integrity
 - \(p \) delivers \(v \) if \(p \) is in the view.

Examples

- Ensemble: reliable group communication toolkit
 - Previous talk
IP-multicast

- IP: 224.0.0.1 - 224.0.0.255 (permanent)
- Multicast:
 - Yes: efficiency
 - No: Reliability, Ordering
- Group membership service:
 - Yes: Interface for group membership change, Group address expansion
 - No: Failure detector, Membership change notification

References

 - Section 4.5 Group Communication
 - Section 11.4 Multicast Communication
 - Section 14.2.2 Group Communication
 - ...