Oscillators

Waveforms

We have four basic waveforms for oscillators

Sinodial

Triangle

Squarewave

Sawtooth

Flip-flops

Lets's start with squarewave generators

We talk about flip-flops

Flip-flops

There are three basic types of flip-flops

- Monostable flip-flop Stable in one position
- Bistable flip-flop Stable in both positions
- Astable flip-flop Unstable

Monostable flip-flop

Each trigging pulse gives an output pulse of length T

Trigger

Output

Depending on the construction of the flip-flop different things can happen if the trigging pulses comes to close and retriggering occures before the time T has passed.
It can

- Do nothing
- Retrigger immediately
- Retrigger when time T has passed

Bistable flip-flop

The flip-flop toggles on each trigging pulse

Retriggering can not occure

Astable flip-flop

In many cases no trigging pulse is required, turning on the power is sufficient to start the oscillation.
The pulse and the pulse space could be of different length

Monostable NE555 flip-flop

Pulse time $T_{P}=1.1 \cdot R_{A} \cdot C$

Monostable NE555 flip-flop cont.

Wait state Input high Comp 2 low

Transistor active
C discharged
Comp 1 low
Output low

Monostable NE555 flip-flop cont.

At trigger
Input low
Comp 2 high
Transistor cut off
C charging
Comp 1 low

Output high

Monostable NE555 flip-flop cont.

When charging
Input high
Comp 2 low
Transistor cut off
C charging
Comp 1 low

Output high

Astable NE555 flip-flop cont.

Discharged

Start

C discharged
Comp1 low
Comp2 high
Transistor cut off
Output high

\square

Astable NE555 flip-flop cont.

At $1 / 3 V_{D D}$
Comp1 low
Comp2 low
Transistor cut off
Output high
C charging

Charging

Astable NE555 flip-flop cont.

We are back at $1 / 3 \mathrm{~V}_{\underline{D D}}$

Comp1 low
Comp2 low
Transistor cut off
Output high
C charging

Charging

Sawtooth generator

We can also turn it into a sawtooth generator

General sinodial oscillator

Condition for oscillation

This can only be true for one frequency if the oscillator is to function properly

General oscillator cont.

Let's redraw using a small signal model of the amplifier

General oscillator cont.

General oscillator cont.

$1=\frac{X_{1}}{X_{1}+X_{3}} \cdot \frac{\frac{j \cdot X_{2} \cdot\left(X_{1}+X_{3}\right)}{X_{1}+X_{2}+X_{3}}}{R_{u t}+\frac{j \cdot X_{2} \cdot\left(X_{1}+X_{3}\right)}{X_{1}+X_{2}+X_{3}}} \cdot A_{v} \quad 1=\frac{j \cdot X_{1} \cdot X_{2}}{R_{u t} \cdot\left(X_{1}+X_{2}+X_{3}\right)+j \cdot X_{2} \cdot\left(X_{1}+X_{3}\right)} \cdot A_{v}$
Condition for oscillation
$X_{1}+X_{2}+X_{3}=0 \quad$ Must be both inductive and capacitive elements
$1=\frac{j \cdot X_{1} \cdot X_{2}}{j \cdot X_{2} \cdot\left(X_{1}+X_{3}\right)} \cdot A_{v} \Rightarrow 1=\frac{X_{1}}{X_{1}+X_{3}} \cdot A_{v} \Rightarrow X_{3}=\left(1-A_{v}\right) \cdot X_{1} \Rightarrow A_{v}=1-\frac{X_{3}}{X_{1}}$

Hartley oscillator

$$
\begin{aligned}
X_{1} & =\omega \cdot L_{1} \\
X_{1} & =\omega \cdot L_{2} \\
X_{3} & =-\frac{1}{\omega \cdot C}
\end{aligned}
$$

$$
X_{1}+X_{2}+X_{3}=\omega \cdot L_{1}+w \cdot L_{2}-\frac{1}{w \cdot C}=0 \Rightarrow f=\frac{1}{2 \cdot \pi \cdot \sqrt{C \cdot\left(L_{1}+L_{2}\right)}}
$$

$$
A_{v}=1-\frac{-\frac{1}{\omega \cdot C}}{\omega \cdot L_{1}}=1+\frac{1}{\omega^{2} \cdot C \cdot L_{1}}
$$

Sinodial to squarewave

The sinodial wave can be turned into a squarewave by adding a comparator

Crystals

Symbol

Equivalent schematic

Impedance
$Z=\frac{1}{j \cdot \omega \cdot\left(C_{p}+C_{s}\right)} \cdot \frac{1-\omega^{2} \cdot L \cdot C_{s}+j \cdot \omega \cdot R \cdot C_{s}}{1-\omega^{2} \cdot L \cdot \frac{C_{p} \cdot C_{s}}{C_{p}+C_{s}}+j \cdot \omega \cdot R \cdot \frac{C_{p} \cdot C_{s}}{C_{p}+C_{s}}}$
The device has one serial resonance frequency and one parallel resonance frequency Finding these is a bit complicated

Crystals cont.

If we ignore the resistance R we will get

$$
Z=\frac{1}{j \cdot \omega \cdot\left(C_{p}+C_{s}\right)} \cdot \frac{1-\omega^{2} \cdot L \cdot C_{s}}{1-\omega^{2} \cdot L \cdot \frac{C_{p} \cdot C_{s}}{C_{p}+C_{s}}}
$$

The expression will have a serial resonance where the impedance is zero at

$$
f_{s}=\frac{1}{2 \cdot \pi \cdot \sqrt{L \cdot C_{s}}}
$$

and a parallell resonance where the impedance goes towards infinity at

$$
f_{p}=\frac{1}{2 \cdot \pi \cdot \sqrt{L \cdot \frac{C_{p} \cdot C_{s}}{C_{p}+C_{s}}}}=\sqrt{\frac{C_{p}+C_{s}}{C_{p}}} \cdot f_{s}
$$

Crystals cont.

Some sample data for a crystal could be

$$
\begin{array}{ll}
\mathrm{R}=400 \Omega & \mathrm{~L}=3.3 \mathrm{H} \\
\mathrm{C}_{\mathrm{s}}=0.042 \mathrm{pF} & \mathrm{C}_{\mathrm{p}}=5.8 \mathrm{pF}
\end{array}
$$

Calculations will give the resonance frequencies
$\mathrm{f}_{\mathrm{s}}=13.519 \mathrm{kHz}$
$\mathrm{f}_{\mathrm{p}}=13.567 \mathrm{kHz}$
that is the two resonance frequencies are quit close.
Let's draw the impedance curve as an absolute value

Crystals cont.

Let's zoom in

Crystals cont.

Crystal oscillator

By placing the crystal in the feedback loop we can use the serial resonance to get a very stable oscillator

The capacitors will make the oscillator start oscillating

Crystal oscillator cont.

We can also use the parallel resonance to make a crystal oscillator although this is less common

High impedance only at the parallel resonance frequency

Pierce oscillator

The most common type of crystal oscillator is the Pierce oscillator, a serial resonance oscillator

The PI-network C_{1} -$\mathrm{X}-\mathrm{C}_{2}$ has a phase shift of 180° at approximately the resonance frequency of the

The resistor R biases the amplifier (inverter) in the active region

The amplification will have to be negative to compensate for the phase shift in the PInetwork crystal

Pierce oscillator cont.

Transfer function of the pi-network

Phase locked loop (PLL)

A phase locked loop is a device that compares the frequences of two signals and produces an error signal proportional to the difference between the two frequencies. The error signal is low pass filtered and used to control a voltage controlled oscillator (VCO) that produces the output signal.

If one of the signals we compare is the output signal but with it's frequency divided down to a lower frequency we can produce an output signal with a higher frequency than the frequency of the input signal which is the other signal in the comparation

Phase locked loop (PLL)

The output frequency can be higher than the input frequency

