

- We might use preprogrammed modules for this
- We have full control of the channel and can use the interface for our own communication protocols if we like

Memory interface cont.

External 8K static RAM, 6264

- 13 Address lines \rightarrow 8K addresses
- 8 Data lines \rightarrow byte oriented
- Output enable /OE active low Open for reading
- Write enable /WE active low Open for writing
- Two chip select signals CS1 and CS2 Activate chip

GPIB cont. Speed Standard GPIB up to 1.8 Mbyte/second High speed GPIB HS488 up to 8 Mbyte/second

GPIB cont.

The handshake lines

NRFD Not Ready for Data

NDAC Not Data Accepted

DAV Data Valid

GPIB cont.

The interface management lines

ATN Attention

EOI End or Identify

IFC Interface Clear

REN Remote Enable

SRQ Service Request

	GPI	B cont.
Pin	Abbriviation	Name
1	DIO1	Data input/output bit 1
2	DIO2	Data input/output bit 2
3	DIO3	Data input/output bit 3
4	DIO4	Data input/output bit 4
5	EIO	End or Identify
6	DAV	Data Valid
7	NRFD	Not Ready for Data
8	NDAC	Not Data Accepted
9	IFC	Interface Clear
10	SRQ	Service Request
11	ATN	Attention
12		Shield
13	DIO5	Data input/output bit 5
14	DIO6	Data input/output bit 6
15	DIO7	Data input/output bit 7
16	DIO8	Data input/output bit 8
17	REN	Remote Enable
18		Shield
19		Shield
20		Shield
21		Shield
22		Shield
23		Shield
24		Single GND

RS-232	-C s	ignals 25	5 pin	DSUE
Pin	Abbriviation	Name	Direction	1
1	GND	Protective ground	Both ways	
2	TD	Transmitted data	TDE to DCE	
3	RD	Received data	TCE to DTE	
4	RTS	Request to send	TDE to DCE	
5	CTS	Clear to send	TCE to DTE	
6	DSR	Data set ready	TCE to DTE	
7	SG	Signal ground	Both ways	
8	DCD	Data carrier detect	TCE to DTE	
9		Positive test voltage	TCE to DTE	
10		Negative test voltage	TCE to DTE	
11		Unassigned		
12	SDCD	Secondary data carrier detect	TCE to DTE	1
13	SCTS	Secondary clear to send	TCE to DTE	
14	STD	Secondary transmitted data	TDE to DCE	
15	TC	Transmit clock	TCE to DTE	
16	SRD	Secondary received data	TCE to DTE	
17	RC	Receive clock	TCE to DTE	
18		Unassigned		
19	SRTS	Secondary request to send	TDE to DCE	
20	DTR	Data terminal ready	TDE to DCE	
21	SQ	Signal quality detect	TCE to DTE	
22	RI	Ring indicator	TCE to DTE	
23	DRS	Data rate select	Either way	
24	XTC	External transmit clock	TDE to DCE	
25		Unassigned		

RS-232-C signals 9 pin DSUB

Pin	Abbriviation	Name	Direction
1	DCD	Data carrier detect	TCE to DTE
2	RD	Received data	TCE to DTE
3	TD	Transmitted data	TDE to DCE
4	DTR	Data terminal ready	TDE to DCE
5	SG	Signal ground	Both ways
6	DSR	Data set ready	TCE to DTE
- 7	RTS	Request to send	TDE to DCE
8	CTS	Clear to send	TCE to DTE
9	RI	Ring indicator	TCE to DTE

SCI – Asynchronous Communication Interface

Hamming coding CONT.

Generation of status bits

 $\begin{cases} S_2 = D_3 \oplus D_2 \oplus D_1 \oplus P_2 \\ S_1 = D_3 \oplus D_2 \oplus D_0 \oplus P_1 \\ S_0 = D_2 \oplus D_1 \oplus D_0 \oplus P_0 \end{cases}$ $S_2 S_1 S_0 \text{ give error position}$ Position 7 MSB (to the left) Position 1 LSB (to the right)

Ser	ial periph	neral interface	e, SPI
	Symbol	Name	
	MOSI	Master out, slave in	
	MISO	Master in, slave out	
	SCLK	Serial clock	
	SS	Slave select	

1-wire bus

Signaling

Bus high when idle

Reset (from master)

Bus low more than 480 µseconds

1-wire bus

Bit transfer

Start of bit transfer

Master pulls bus low for a short while

Sending node (master or slave)

'1' keeps the bus low for more than 60 $\mu seconds$

'0' keeps the bus low for less than 15 µseconds

Bits are transmitted LSB first

