How are vehicle functions implemented today?

- Each function has its own system although they may communicate through a bus
- Each function has its own microcontroller
- The number of ECU’s (Electronic Control Unit) are growing fast
- Hardware and software are tightly connected
- The same vendor supplies both the hardware and the software
- There are no alternative software suppliers
What will Autosar give?

- A standard platform for vehicle software
- An OS with basic functions and interface to software
- The same interface for all basic software
- No applications of its own
- Functionality is supplied as software components
- These components are hardware independent
- The software is exchangable
- The software can be reused
- More than one supplier can compete with their software

What will Autosar give cont?

- Autosar has a layered architecture that frees the applications from the hardware
- This layered architecture is implemented in every ECU
- You do not have to think in terms of ECU’s when you design the system
- The designer picks software components without knowing in what ECU they will be implemented
The story of Autosar

• It all started when the semiconductor vendors needed a driver layer for their microprocessors

• The work started in 2002 in Tyskland within BMW, VW, Daimler Chrysler, Bosch and Continental

• Autosar was founded in 2003 and the work started in 2004

The story of Autosar cont.

• Autosar has four types of members

• Only leading vehicle vendors and subcontractors can be Core partners. These are in charge of organisation and management

 Within this group are Peugeot Citroën, Toyota, VW, BMW Daimler, Ford, Opel (GM), Bosch, Continental, Siemens and Volvo
 Ford has been represented by Volvo
 Saab has had a key role in the engagement from GM
The story of Autosar cont.

- The other forms of membership are
 - Premium member
 - Associate member
 - Development member

Autoliv is a premium member

The members work in work groups

The first test

After the first specification 31 software components were ordered from 15 vendors and these components were realised in 56 implementations.

The components were installed into two different systems. One 16 bit system and one 32 bit system.

The test led to 260 suggestions for changes in the specification.

Since then there has been few new suggestions for changes but the standard has developed and grewed.
Structure

Frees the software from the processor

Frees the software from the node

Operative system

The Autosar OS is a derivative of OSEK

Offene Systeme und deren Schnittstellen für die Elektronik in Kraftfahrzeugen

Open Systems and their Interfaces for the Electronics in Motor Vehicles

The OS is responsible for real time functions, priority based scheduling and different protective functions

Some systems will continue to use their own OS but these must have an interface to Autosar that follows the specifications from Autosar
Virtual Function Bus, VFB

The application components are linked and communicate through an virtual bus, Virtual Function Bus, VFB

VFB is a visualization of all hardware and the system services that the vehicle system supplies

Through VFB a software component doesn’t need to know which components it is communicating with and on which ECU these components are implemented

The VFB is implemented through Autosar Runtime Environment (RTE) and the layer of Basic Software
Autosar Runtime Environment, RTE

Through Autosar Real-time Environment, RTE, the software components can communicate without being mapped to specific hardware or ECU.

RTE frees the software components from the hardware and from each other.

Every ECU in a Autosar system must implement a RTE.

RTE uses the hardware abstraction layer, Microcontroller Abstraction Layer, MCAL.

The application layer, the software layer

The functionality of the applications reside in the application layer.

This is the only part of an Autosar system that doesn’t consist of standardized software.

A Software Component, SWC, is the smallest part of a software application that has a specific functionality.

A software application can be built out of a number of software components.

Within Autosar there are standard interfaces so that the components can be used to build the applications.
Communication between software components

A SWC can communicate in two different ways

• Client/server
 The client initiates the communication and requests a service from the server
 The client could be locked while it is waiting for an answer from the server
 The Client/server roles are defined by who is initiating the communication and could be switched
 A SWC can at the same time act as both client and server in different communications

Communication between software components cont.

• Sender/receiver
 The sender expects no answer from the receiver and there will be no answer
 The sender is not blocked
 The receiver decides on its own how and when to act on the information
 The interface structure is responsible for the communication and the sender doesn’t know who the receiver is or if there are more than one receiver
 The sender doesn’t know in what ECU the receiver is situated
Basic Software Layer

Basic software layer is standardized software without any own functionality that offer both hardware dependent and hardware independent services to higher layers.

This takes place through *Application Programming Interfaces*.

This layer makes the higher layers hardware independent.

Here we have for example memory interfaces and interfaces to communication busses like LIN, CAN and FlexRay.

Microcontrol Abstraction Layer

MCAL

Microcontrol Abstraction Layer, **MCAL** consists of standardized functions that frees the hardware from the software and gives a standardized interface to Basic Software.

MCAL handles the microcontrollers peripheral units and supplies processorindependent values to the Basic Software.

Through this layer the software is prevented from directly accessing the registers in the microcontroller.

In this way the microcontroller is abstracted from higher layers and they become processor independent.
Development process

The model descriptions within Autosar are standardized to become tool independent.

Autosar has given a method for creating the system architecture that starts in the design model.

The descriptions have UML syntax (Unified Modeling Language).

The basic system descriptions are independent of how they are to be implemented.

Necessary data are among others interface and hardware demands.

Standard interfaces are described in XML (eXtendable Mark-up Language).