

Department of Computer Science and Engineering
2006-12-11

CHALMERS
Campus Lindholmen Sida 1
Department of Computer Science and Enginnering
Sven Knutsson
Visiting address: Hörselgången 11
P.O.Box 8873
SE-402 72 Göteborg

Embedded systems
Communication interfaces with
the empasis on serial protocols

Introduction
With communication we mean the transport of information from a transmitter to at least one
receiver.
The transport might be in only one direction or in both, it might be uni- or bidirectional. If we
have communication in only one direction we talk about a simplex channel. If the communi-
cation is in both directions but not at the same time we have half duplex and if the communi-
cation can take place in both directions at the same time we have (full) duplex.
The communication might be between only two units, one transmitter and one receiver, or if
the communication is bidirectional two tranceivers (short for transmitter/receiver). In this case
we talk about peer to peer communication. If the transmission is from one transmitter to sev-
eral receivers we talk about multicast. In this case the communication is in most cases only in
one direction.
Another situation arises if we have a number of units connected together trough a common
network, we talk about a bus topology. In this case in its basic form we have one unit trans-
mitting a message containing some kind of address and the other units are listening and if the
listening unit is having the same address as the one transmitted it will receive the message
while the other units ignore it. We can have a number of variations to this. The address does
not have to be the address of a specific unit but can instead be a header telling what kind of
data that will be transmitted and then all units that have interest in this kind of data will listen.
Obviously all units can not talk at the same time on a bus network so the access to the bus
neads to be controlled in some way. In some protocols we have a master unit which will al-
ways initiate the communication by sending the start message that might be a command or a
request for an answer from some unit. In this case the other units are called slaves. In other
protocols more than one unit can initialize a conversation and in that case we talk about a
multi master protocol.

Embedded systems

Communication interfaces with the emphasis on serial communication
sida 2

In all types of bus communication we need a way to deside which unit that is allowed to talk
at any given time. This can be done in several ways. One way is to let all units talk in turn, we
pass a token around and when a unit has the token it may speak on the bus. We have a token
ring. This is quit simple but it is inefficient if the needed transmission rate differs for the dif-
ferent units on the bus. In this case we would vaste a lot of time slots passing the token to
units that have nothing to transmit.
In other bus topologies we don´t allocate separate time slots to the different units but we let
them talk when they have something to say. This calls for some way to deside which unit that
will be allowed to speak while the other unit(s) back off. We have what is called an arbitra-
tion process. This is for example typical for CAN-networks (Controller area network) that are
quit common in automotive applications. We will have a brief look at this later.
Another distinction we need to do when we talk about
communication is how the physical transportation
layer looks. If we base or communication on data of
byte length we could transmit all the bits at the same
time through different, parallel wires or bit by bit on
one single wire. In the first case we talk about parallel
communication, Figure 1, while we in the other case
have serial communication, Figure 2. It might seem
like the parallel choice would always be better since
we have all bits at the same time and it would be faster
than serial communication. This might be true but we
have some problems with parallel protocols.
Modern equipment become more and more compli-
cated and it gets harder and harder to find room in the
integrated circuits and on the printed circuit boards for
the parallel lines. Things are being even more compli-
cated by our constant efford to increase
the speed of the data transfer. We have
now reached speeds where we have to
take in account the time it will take for
the information to pass though a wire
from one unit to another and if the paral-
lel wires are not of exactly the same
length the bits in the byte will reach the
receiver at different times and we have a
great risk of reading false data, Figure 3.
If we use serial communication the rout-
ing of wires will be simpler and we don´t
have any skew between bits. For this rea-
son almost all modern fast communicaton protocols are serial.
In the serial case we still have a risk of missreading the received data if we read it at the
wrong time. We need a way to synchronize the transmitter and the receiver. One way to do
this is to send a synchronization signal, a clock, on a separate wire, but then we need this extra
wire. An other way is to code the information bits in a way that will give a pulse edge in every
bit that the receiver can trigger on. This would be a somewhat more complicated protocol. In
both cases we talk about syncronious communication where both transmitter and receiver use
the same synchronization signal. Later we will have a look at the SPI protocol (Serial periph-

Figure 1 parallel communication

Figure 2 Serial communication

Figure 3 Missreading caused by skew

Embedded systems

Communication interfaces with the emphasis on serial communication
sida 3

eral interface) and the Inter-integrated circuit protocol I2C. Both protocols use a separate
clock line.
An other way is to let transmitter and receiver use their own internal clocks to decide the
transmission speed and there by decide when to transmit a bit and when to read the received
bit respectively. We have an asyncronious protocol. Since we can not be sure that the two
clocks run at exactly the same speed we have to keep the transmission rate lower than in the
syncronious case so the two clocks don´t drift that far apart and we have to have some syn-
cronisation between the transmitter and the receiver to set the timing of the transfer. One
common way to do this is to add extra bits to the transmission for syncronisation. In the SCI
protocol (Serial communications interface), that we
will look at later, the synchronization is done by
adding a start bit at the beginning of every byte that
is transmitted.
When we talk about serial communication we need
to seperate unbalanced and balanced wire links. In
the unbalanced case we use only one wire and the
transmitted bit, ‘1’ or ‘0’ is a voltage referenced to
ground, Figure 4.
In the balanced case we use two wires and the bits
are represented by the voltage difference between
these two wires and we have no reference to ground,
Figure 5.
In noisy environments or when the distance between
the transmitter and the receiver is long the balanced,
differential approach is to prefer. Let´s explain why.
If a unbalanced signal is disturbed by interference,
noise, this will be an extra voltage that will be added
to the transmitted voltage that represents the bit and
we have the risk of missreading the received bit,
Figure 6. On the other hand if we use balanced
transmission the disturbance will most likely affect
both wires in the same way, if they are placed close
together, and the voltage difference between the
wires are only slightly affected by the disturbance
and the received bit will still be correct, Figure 7.
One thing that is used here and there in communi-
cation are modems. Modem is short for modula-
tor/demodulator and is a device that is used to trans-
form our binary bits into a suitable form for the
transmission channel and then back again. An example is the telephone modem. These are
used for digital communication over telephone lines. An ordinary telephone line can transfer
signals with frequencies in the band 200 Hz to 3.3 kHz and in the simpliest form of telephone
modem the ‘1’:s and ‘0’:s are converted into two different tones that fit into this frequency
range. To make duplex communication possible we use a total of four frequencies, two for the
communication in one direction and the other two for the communication in the other direc-
tion. Table 1 shows the frequencies used in the modem standard V.21.

Figure 4 Unbalanced link

Figure 5 Balanced link

Figure 6 Unbalansed link with
disturbance

Transmitter Reciver

Disturbance

Figure 7 Balanced link with disturbance

Embedded systems

Communication interfaces with the emphasis on serial communication
sida 4

So far we have mostly talked about wires but there is
nothing stopping us from using other transmission media
like light (optical fibre) or radio waves. In these medias
we normally modulate our information on a carrier wave
and this will give a serial channel even if we can use
methods to embed more than one bit of information into
each transmitted character. If we use so called spread
spectrum for the transfer we can use a whole set of carrier waves and there by transmit more
than one bit at the same time, we send one bit per carrier wave. This is for example used in
digital radio (DAB, Digital Audio Broadcast).
We will no move in to some examples of communication protocols starting with a parallel
protocol and then moving on to serial solutions.

Example of parallel communication
protocols
We will have a look at two examples of parallel interfaces. The first one is an example of a
parallel interface between a microcontroller and external memory chip while the other de-
scribes the GPIB bus, a bus widely used to interconnect intelligent measuring instruments in
a network together with a controller.

Parallel memory interface
A memory interface on a microcontroller is used to expand the available amount of mem-
ory by adding external memory devices. This could be done through a parallel or a serial
interface. In the serial case we will in most cases use a synchronious serial interface (SPI)
or a I2C interface. We will get back to these interfaces later on.
For the moment we will have a look at the parallel case. As the description implies we use
a parallel approach, that is the data is presented at the same time, at separate wires on a
data bus. This is not enough though because we need to select the address in the external
memory to read from or write to, that is we need a parallel address bus too and finaly we
will need some control wires.
Let´s use the way HC12 addresses external memory as an our example. The HC12 has a
number of different addressing methods when it comes to addressing external memory, we
will just mention two of these. Both of these methods can be used when the processor is in
emulation mode where some of the internal operations of the processor is emulated exter-
nally. In this mode the external bus is configured out of reset with the bus control signals
enabled. We have two different emulation modes

• Emulation expanded wide where we have a 16 bit wide address bus and a 16 bit wide

data bus
• Emulation expanded narrow where we have 16 bit wide address bus and a 8 bit wide

data bus

We will use the latter in our example. In both cases he 16 address lines come out of
PORTB (A0-A7) and PORTA (A8-A15) in the processor while the data bus comes out of
the same two ports in wide mode and out of PORTA in narrow mode. As we can see the

Channel One [Hz] Zero [Hz]
1 980 1180
2 1650 1850

Table 1 Frequencies in the modem
standard V.21

Embedded systems

Communication interfaces with the emphasis on serial communication
sida 5

data and address bus shares the same port(s) and the address respectively data lines are ac-
tive during separate parts of a cycle of reading data from or writing data to external mem-
ory. During the first part of a read/write cycle the address bus is active and during the latter
part the data bus is active. We say that the bus is multiplexed. Now the selected address in
the memory chip will be addressed during the first phase but when we get to the read/write
phase this address still needs to be active so we need to use some external logic to remem-
ber the address during this second phase.
Let us as an example see how we can use the emulation expanded narrow mode to address
a 8K big static RAM memory called 6264. The memory has a 13 bit wide address bus a 8
bit wide data bus. There are four more control signals to the memory
• One active low output enable signal /OE that we use when we want to read from the

memory
• One active low write enable sinal /WE that we use when we want to write to the mem-

ory
• Two active high chip select signals CS1 and CS2.

From the processor we will use two signals besides the data and the address bus

• The read/write signal R/W. High level indicates read phase
• The E clock ECLK which is low during the address phase and high during the data

phase

From these two signals we will use some logic to create the necessary control signals for
the memory. In the emulation mode we use the lower 16K of the address space to address
internal memory while we have 48K left for external memory. The address lines A15-A14
will split the total address space into four slots (value 00 for internal). Since our 8K mem-
ory will only fill half of one of these external slots we will use A15-A13 and a 3/8 decoder
to place the memory in the address space. Let´s place
it at the start address 0xC000. If we like we can use
the decoder to place other memories in other slots.
Now let us create the control signals. Let us thart with
the /WE signal. We can realize that this signal should
be active (low) under the data phase (ECLK high) if
the R/W signal is low. We will get the truth table in
Table 3 and the logical expression

()[]W/RNOTANDECLKNOTWE/ =

The output enable signal /OE should be active (low)
under the data phase and when the R/W signal is
high. We will get the truth table in Table 2.
We are now ready to draw a full schematic of the
memory interface, Figure 8.

[]W/RANDECLKNOTOE/ =

ECLK R/W /WE
0 0 1
0 1 1
1 0 0
1 1 1

Table 2 Truth table for the
/WE signal

ECLK R/W /OE
0 0 1
0 1 1
1 0 1
1 1 0

Table 3 Truth table for the
/OE signal

Embedded systems

Communication interfaces with the emphasis on serial communication
sida 6

GPIB or IEEE-488
GPIB (General Purpose Instrumentation Bus) is a 8 bit parallel communication bus devel-
oped for the connection of programmable measurement instruments. It was developed by
Hewlett-Packard who named it HP-IB (Hewlett-Packard Instrument bus) but when it got
standarilized it got it´s present name. The bus has been standardized by the US organisa-
tion IEEE (Institute of Electrical and Electronics Engineers) as standard IEEE-488. The
standard has later evolved to standard ANSI/IEEE488.1. In Europe it has been standard-
ized by IEC (International Electrotechnical Commission) as standard IEC-625. Later on
standard ANSI/IEEE488.2 defined how controllers and interfaces communicate. SCPI
(Standard Commands for Programmable Instruments) took the command structure from
ANSI/IEEE488.2 to create a comprehensive programming command set that is used by
any SCPI instrument.
Three types of devices can be connected to the bus: controllers, talkers and listners. Some
devices may have more than one of these functions. Up to 15 devices can be connected to
the bus. Each device is assigned a unique primary address ranging from 0-30. A secondary
address may also be specified in the same range.
A control system can in it´s minimum configuration consist of one controller and one
talker or listener. The controller controls the traffic on the bus. There may be more than
one controller connected to the bus but only one of them can be active at any one time.
One of the controllers have the head role of system, controller. A listener is a device that
receives data from the bus when instructed by the controller. A talker transmits data one
bus when so instructed by the controller.
The data transfer rate in standard GPIB can be up to 1.8 MbByte/second. There is a new
high speed standard, HS488, that can use data transfers up to 8 MByte/second.

Q1
Q2

Q5
Q4
Q3

Q0

Q7
Q6

D1
D2

D5
D4
D3

D0

D7
D6

OE

LE

74HC374

6264

A1
A2

A5
A4
A3

A0

A9
A8
A7
A6

A11
A10

CS1
CS2

A12

D1
D2

D5
D4
D3

D0

D7
D6

OE
WE

&

&

&

A15-A8/D7-D0

A12-A8

A15-A13

A7-A0

B
C

A

G1

74HC138

Y0
Y1
Y2
Y3
Y4
Y5
Y6
Y7

G2A
G2B

+VDD

PO
R

TA
PO

R
TB

ECLK

R/W

Figure 8 Parallel external memory interface

Embedded systems

Communication interfaces with the emphasis on serial communication
sida 7

The physical interface consists of 16
signal lines and 8 ground lines, Table
4. The signal lines are divided into
three groups: 8 data lines (each of
these can be shielded by one ground
line), three handshake lines and five
interface management lines.
The data lines DIO1 – DIO8 can trans-
fer addresses, data and control infor-
mation. DIO1 is the least significant
bit.
The three handshake lines control the
transfer over the bus and are used to
acknowledge the transfer of data.

• The NRFD (Not Ready for Data)

line is asserted by a listener to indi-
cate that it is not yet ready for the
next data or control byte

• The NDAC (Not Data Accepted)
line is asserted by a listener to indi-
cat that it has not yet accepted the
data or control byte on the data
lines

• The DAV (Data Valid) line is as-
serted by the talker to indicate that a
data or contol byte has been placed
on the data lines and can now safely
be accepted by other devices

The five interface management lines manage the flow of data and control bytes across the
interface.

• The ATN (Attention) sinal is asserted by the controller to indicate that it is placing a ad-

dress or control byte on the data bus
• The EOI (End or Idertify) signal has two uses. A talker may assert the line simultane-

ously with the last data byte to indicate end of data. The controller may assert EOI
along with ATN to indicate a parallel poll

• The IFC (Interface Clear) signal is asserted by the system controller to initialize all de-
vice interfaces to a known state. After releasing IFC the system controller is the active
controller

• The REN (Remote Enable) signal is asserted by the system controller. REN enables a
device to go into remote mode when addressed to listen. In remote mode the device
should ignore its local front panel controls

• The SRQ (Service Request) signal is an interrupt signal. It may be asserted by any de-
vice to request the controller to take some kind of action

Pin Abbriviation Name
1 DIO1 Data input/output bit 1
2 DIO2 Data input/output bit 2
3 DIO3 Data input/output bit 3
4 DIO4 Data input/output bit 4
5 EIO End or Identify
6 DAV Data Valid
7 NRFD Not Ready for Data
8 NDAC Not Data Accepted
9 IFC Interface Clear

10 SRQ Service Request
11 ATN Attention
12 Shield
13 DIO5 Data input/output bit 5
14 DIO6 Data input/output bit 6
15 DIO7 Data input/output bit 7
16 DIO8 Data input/output bit 8
17 REN Remote Enable
18 Shield
19 Shield
20 Shield
21 Shield
22 Shield
23 Shield
24 Single GND

Table 4 24 pin connector used by GPIB

Embedded systems

Communication interfaces with the emphasis on serial communication
sida 8

The devices are connected in either a linear or a star configuration or a combination of the
two using a shielded 24 conductor cable, Figure 9, Figure 10 and Figure 11 respectively.
The maximal separation between two devices is 4 meters while the maximal total cable
length is 20 meters.

The interconnection use a chuncy
connector with both a male and a
female side which means that con-
nectors can be stacked on top of each
other, Figure 12.
The bus uses standard TTL logic
levels with a negative logic meaning
that a ‘1’ is a low TTL level while a
‘0’ is a high TTL level.

Examples of serial communication
protocols
RS-232
One of the most common interface standards for data communication is EIA´s Recom-
mended Standard 232C (RS-232-C). EIA is a abbreviation of Electric Industries Associa-
tion representing many manufacturers in the U.S electronics industry. RS-232-C is a stan-
dard that defines how ‘1’:s and ‘0’:s should be electrically transmitted, including the volt-
age levels needed as well as the other signals necessary for computer communication.

Device 1

Device 4 Device 3

Device 2

Figure 9 Linear GPIB configuration

Device 1

Device 4 Device 3

Device 2

Figure 10 Star GPIB configuration

Figure 11 Combination of linear and star GPIB configuration

1
13

2
14

3
15

4
16

5
17

6
18

7
19

8
20

9
21

10
22

11
23

12
24

Figure 12 GPIB connector

Embedded systems

Communication interfaces with the emphasis on serial communication
sida 9

Since it only
gives the elec-
trical character-
istics it can be
used for differ-
ent protocols,
both synchroni-
ous and asyn-
chronius, even if
we mostly as-
sociate it with
asynchronious
communication.
RS-232-C is an
unbalanced
protocol where
ones and zeros
are transmitted
using negative
and positive
voltages. A one,
a mark, is repre-
sented by an
electrical signal
between -3 and -
15 Volts (often -
12 Volts). A
zero, a space, is
represented by
an electrical
signal between
+3 and +15
Volts (often +12
Volts). Signals
outside these
ranges are con-
sidered unde-
fined and are
ignored. Since
these voltages
differ from the
usual 0 and +5
Volts levels
seen inside com-
puters the com-munication in-terface must contain means to convert from 0 and +5 Volts
to the RS-232-C levels and back again. The maximal distance between transmitter and re-
ceiver is 15 meter. The protocol could use half or full duplex.

Pin Abbriviation Name Direction
1 GND Protective ground Both ways
2 TD Transmitted data TDE to DCE
3 RD Received data TCE to DTE
4 RTS Request to send TDE to DCE
5 CTS Clear to send TCE to DTE
6 DSR Data set ready TCE to DTE
7 SG Signal ground Both ways
8 DCD Data carrier detect TCE to DTE
9 Positive test voltage TCE to DTE

10 Negative test voltage TCE to DTE
11 Unassigned
12 SDCD Secondary data carrier detect TCE to DTE
13 SCTS Secondary clear to send TCE to DTE
14 STD Secondary transmitted data TDE to DCE
15 TC Transmit clock TCE to DTE
16 SRD Secondary received data TCE to DTE
17 RC Receive clock TCE to DTE
18 Unassigned
19 SRTS Secondary request to send TDE to DCE
20 DTR Data terminal ready TDE to DCE
21 SQ Signal quality detect TCE to DTE
22 RI Ring indicator TCE to DTE
23 DRS Data rate select Either way
24 XTC External transmit clock TDE to DCE
25 Unassigned

Table 5 25 pin DSUB connector for RS-232-C

Pin Abbriviation Name Direction
1 DCD Data carrier detect TCE to DTE
2 RD Received data TCE to DTE
3 TD Transmitted data TDE to DCE
4 DTR Data terminal ready TDE to DCE
5 SG Signal ground Both ways
6 DSR Data set ready TCE to DTE
7 RTS Request to send TDE to DCE
8 CTS Clear to send TCE to DTE
9 RI Ring indicator TCE to DTE

Table 6 9 pin DSUB connector for RS-232-C

Embedded systems

Communication interfaces with the emphasis on serial communication
sida 10

In RS-232-C we define two types of interfaces, the data terminal equipment (DTE) which
uses the transmission pin (TD) as output and the data communication equipment (DCE)
which uses this pin for input. The DTE should have male connectors while the TCE should
have female connecors. The RS-232-C definition does not specify the type of connector to
be used but in many cases 25 pin DSUB connectors are used for the full implementation
(Table 5) while 9 pin DSUB connectors could be used if we leave out some of the rarely
used signals (Table 6).
We are not going to go through all of the signals but we can see from Table 1 that the full
implementation includes pins for clock transfer (pin 15, 17 and 24) which means that it can
be used for synchronious communication. These signals are missing in Table 2 which
means that this implementation can only be used for asynchronious transfer.
If we are to connect two interfaces of the same kind (two DTE units) some of the signals
has to be twisted. The most important of these are the TD and RD signals.
Let us look at the most common use of RS-232-C, asynchronious communication, often
called SCI communication.

Asynchronious serial communication,
SCI
The transfer will have to have a clock. The clock frequency will give the period for each
digit in the transfer. This rate is measured in digits per second or Baud. Since we can
use clever coding to transmit more than one bit of information in each digit the actual
number of bits transferred each second may be greater than the Baud rate. Typical Baud
rates are 9600, 38400 and 115200 Baud although the RS-232-C standard sets the speed
limit to 20 kbps.
In asynchronious communication no common clock is transfered between the two inter-
faces which means that each interface has to have its own clock. Since these two clocks
are not absolutely stable but may drift somewhat in frequency and may have different
phases we need some way to synchronize the two clocks. We do this by starting each
transmitted word with a start bit that will retrigger the receivers clock.
In rest when there is no transmission the level on the transmission line is high (‘1’ typi-
cally -12 Volts) so the start bit consist of one clock interval of low level (‘0’ typically
+12 Volts). After that we send the data bits starting with the least significant bit (LSB).
The number of bits may be from five to eigth bits.
After the data bits there might come a parity bit which we will get back to soon.
Finally we transmit stop bits which in reality is a return to the high, idle level. We can
specify the number of stop bit to be 1, 1.5 or 2 bits. this means that we have to wait this
number of clock cycles before we start sending the next word my sending a new start
bit.
There is always a risk of errors in the transfer so there would be a good idea to have a
system to detect, or even better correct errors. The simpliest way to detect errors is to
use a parity bit. We can have four different types of parity bits. With odd parity we use
this bit to make sure that the number of ones (1) in the data word, including the parity
bit, is odd. That is if the number of ones (1) in the data word is odd we set the parity bit
to zero (0) and if the number of ones in the data word is even we set the parity bit to one
(1). In Figure 13 we see the transfer of the ASCII code 65 (0x41), which is the letter
‘A’ using an eight bit word with odd parity. ASCII stands for American Standard Code
for Information Interchange.

Embedded systems

Communication interfaces with the emphasis on serial communication
sida 11

Even parity works the same way but we use the parity bit to make sure that the number
of ones (1) in the data word, including the parity bit, is even. In Figure 14 we see the
same example as in Figure 13 but using even parity.
With odd or even parity we can detect, but not correct an odd number of errors in the
transfer.
Sometimes a parity bit is used but it is always set to zero. We call this space parity,
Figure 15. In this case an error, a one in this bit would indicate an error in the transmis-
sion.
In the same way we sometimes use a parity bit that is always set to one. We call this
mark parity, Figure 16.

If we are not using any parity bit and this
bit is omitted from the transfer we say
that we have no parity, Figure 17.
There are more elaborate ways to detect
and even correct errors in data transfer
but these are not part of RS-232-C. One
well known is called Hamming coding,
see below.
In the asynchronious transfer we can use
the other signals in the protocol, besides
the data pins, to control the transfer. A re-
ceiving device could for example use

Figure 13 Coding of the letter ’A with odd
parity’ in computer and on RS-232 link

Figure 14 Coding of the letter ’A’ with even
parity

Figure 16 Coding of the leter ’A’ with mark
parity

Figure 17 Coding of the letter ’A’ with no
parity

Figure 15 Coding of the letter ’A’ with space
parity

Embedded systems

Communication interfaces with the emphasis on serial communication
sida 12

DTR (Data Terminal Ready) to signal that it is ready to receive data and later to signal
that it wants to suspend the transfer. We use what is called hardware handshaking.
There is also software handshaking using XON and XOFF signals. The receiver sends
the XOFF code (decimal 19, hexadecimal 0x13) to tell the transmitter to stop the trans-
fer and then it uses XON (decimal 17, hexadecimal 0x11) to tell the transmitter to re-
sume the transfer.

Typical transmission sequence
A typical asynchronous
transmitter might look like
Figure 18. The processor
writes data to a data register.
When the serial interface is
ready to transmit this data it
reads the data register and
loads the data into the trans-
mission shift register. At the
same time it sets the signal
Transmission Data
Register Empty so the
processor can write new data to the data register whenever it wants. When the data is
transferred to the shift register it is completed with start, stop and parity bits so we
generate the complete word that shall be transmitted and then the data is shifted out
through the TX pin.

Typical reception sequence
A typical asynchronous re-
ceiver might look like Figure
19. The data is shifted in to the
shift register through the RX
pin. When the register is full it
will be loaded into the data
register. At the same time the
interface will set the signal
Reception Data Register
Full. The interface will also do
a check of the received parity
bit if it is used and signal if the
parity bit is wrong.

Hamming Coding
Hamming Coding is a set of algorithms that can be used to detect errors in a transfer
and even correct these errors. The code can have different levels of complexity han-
deling different word lengths and different number of errors. The simpliest form is
called Hamming (7:4) Code and consists of four data bits (D3, D2, D1 and D0) and
three parity bits (P2, P1 and P0). The total word that we send has the structure
D3D2D1P2D0P1P0. The parity bits are calculated using the following equations

Figure 18 Asynchronous transmitter

SCI Data Register

Reception shift
register

Parity
check

Parity type

Number of bits

New data Load data

RX

Data in
Reception data

register full

Parity error

Figure 19 Asynchronous receiver

Embedded systems

Communication interfaces with the emphasis on serial communication
sida 13

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

⊕⊕=

⊕⊕=

⊕⊕=

0120

0231

1232

DDDP

DDDP

DDDP

Where ⊕ represents exclusive-OR which is the same as addition mololo-2.
At the receiver we calculate the equations

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

⊕⊕⊕=

⊕⊕⊕=

⊕⊕⊕=

00120

10231

21232

PDDDS

PDDDS

PDDDS

And the binary 3 bit word S2S1S0 tells us in which position in the word, if any, the er-
ror is. 000 indicates no error. 101 indicates error in bit 5 counting from the end of the
word, that is error in bit D1. 001 indicates error in bit one that is the last bit in the
word, that is in P0. As we can see the coding can detect one error, no matter if it is in
a data bit or in a parity bit and we can also indicate in which bit the error is so we can
correct it. More than one error in the transmission will give us problem though.

RS422, RS423 and RS485
In some more modern equipment RS-232-C has been replaced by other standards that
could be used at longer distances and at higher speed. We will briefly mention three of
these. All three can only use half duplex and can work up to 1200 meter.
RS-423 is an unbalanced standard that allows one transmitter and ten receivers at a maxi-
mal speed of 100 Kbps at a distance of 12 meter while the maximal speed is 1 Kbps at a
distance of 1200 meter . The voltage levels are compatable with RS-232-C.
RS-422 is a balanced variation of RS-423 with the same number of transmitters and re-
ceivers. The maximal speed is 10 Mbps at a distance of 12 meter and 100 Kbps at a dis-
tance of 1200 meter.
RS-485 is a balanced bus protocol that allows 32 transmitters and 32 receivers. The maxi-
mal speed is 35 Mbps at a distance of 12 meter and 100 Kbps at a distance of 1200 meter.
In most cases we use one unit as master and the others as slaves but there are also imple-
mentations where all units can act as masters and initialize a data session. RS-485 is used
as the electrical layer for a number os well known interface standards, including DMX,
Profibus and Modbus.

Synchronious serial communication
In synchronious serial communication the transmitter and the receiver use the same syn-
chronization source, the same clock. The clock could be embedded in the data stream or be

Embedded systems

Communication interfaces with the emphasis on serial communication
sida 14

distributed over a separate line. In the latter case the clock is in most cases generated by a
master unit in the system.
We will briefly mention how a protocol with the clock embedded in the data stream might
look and then we will move on to synchronious protocols. We will have a look at two
common synchronious protocols, SPI and I2C. These are both intended for short distance
communication between a central unit, a processor, and peripheral units like memories and
A/D converters.

Return to zero protocols
In a return to zero protocol the transmitted sig-
nal will always return to zero (0) level in every
bit period. We will give two examples. In Fig-
ure 20 a bit period always starts with the signal
going high (1) and ends with the signal going
low (0) but depending on if the signal is a zero
(0) or a one (1) we will change the duty cycle
of the signal.
In Figure 21 we use three levels positive,
negative and zero. A bit period always starts
with the signal leaving the zero state and going
positive for a logic one (1) while it goes nega-
tive for a logic zero (0). After half the bit pe-
riod the signal will in both cases return to zero
level.
In both these examples a bit period start with a
positive or negative flank and we can use this
flank to synchronize the receiver on every
transfered bit, that is we have a clock embed-
ded into the data stream.

Serial peripheral interface, SPI
The serial peripheral interface, SPI, was developed by Motorola and have received a
broad acceptance in the industri and we can find a lot of units using this interface. Ex-
amples of units using this interface are A/D and D/A converters, memories (mostly
EEPROM and flach memories), real time clocks and sensors.
Since it is a synchronious protocol for short distances the transfer rate can be high, up to
tens on Mbps.
The system consists of one master unit while the other units are slaves. Although we
can connect more than one slave unit only one of these can be active at any one time.
The physical connection consists of four
wires, Table 7 and Figure 22.
We can see from Figure 22 that the master
generates the communication clock and we
have separate lines for communication
from the master to the slave, MOSI
(Master Out, Slave In) and for communi-
cation from the slave to the master, MISO

Symbol Name
MOSI Master out, slave in
MISO Master in, slave out
SCLK Serial clock
/SS Slave select
Table 7 Signal lines in the SPI protocol

Figure 21 Return to zero protocol with
positive and negative signal level

1 0 01

Data
+5V

1
Figure 20 Return to zero protocol

Embedded systems

Communication interfaces with the emphasis on serial communication
sida 15

(Master In, Slave Out). This means that we
have communication in both directions at the
same time, we have full duplex. The two lines
are actually always sending and it is up to the
receiver to deside if it wants to read the data or
not. The slave select signal, SS, is generated
by the master and is used to activate the slave
that it wants to speak to. Since the signal is
active low it will often be named /SS. If we
have more than one slave in the system
the master must be able to generate one
/SS signal for each slave, Figure 23.
A SPI interface could be working in
four different modes controlling when
the data is read relative to the phase of
the serial clock, Table 8.
When CPHA=0 data is latched at the
rising edge of the serial clock if
CPOL=0 and on the falling edge if
CPOL=1. If CPHA=1 the polarities are
reversed. Some units can be configured
for different modes while others only
can work in one mode.

Inter-integrated circuit, I2C
The inter-integrated circuit bus, I2C, I2C or I2 was developed by Philips to control the
separate units in their stereo and TV equipment but have since moved into the same
type of short distance applications as the SPI interface.
The I2C has three speed grades, slow (under 100 Kbps), fast (400 Kbps) and high-speed
(3.4 Mbps). To furfil the specifications the distance between the units should be no
more than 3 meters.

SPI mode CPOL CPHA Active edge
0 0 0 Rising
1 0 1 Falling
2 1 0 Falling
3 1 1 Rising

Table 8 Clocking modes in SPI

Figure 22 SPI communication with one
slave

MOSI

MISO

SCLK

MOSI

MISO

SCLK

SS

MOSI

MISO

SCLK

M
aster SS1

SS2

SS3

MOSI

MISO

SCLK

SS

S
lave 3

MOSI

MISO

SCLK

SS

S
lave 2

MOSI

MISO

SCLK

SS

S
lave 1

SS1

SS2

SS3

Figure 23 SPI communication with three slaves

Embedded systems

Communication interfaces with the emphasis on serial communication
sida 16

The I2C bus is a two wire bus with one
line, SDA, for the serial data and one
line, SCL, for the serial clock. The bus
can use half duplex and are a multi-
master bus. No chip select signals or ar-
bitration logic is required, Figure 24.
Electrically the bus connection looks
like Figure 25.
In a communication the sequence
would be as follows

1. The master sends a start con-

dition signal (S) and controls
the clock signal

2. The master sends a unique 7-
bit address addressing the slave
that the master wants to talk to

3. The master sends a read/write
bit. If the master wants to send
(write) data to the slave the bit
is ‘0’ and if the master wants
ro receive (read) data from the
slave the bit is set to ‘1’

4. The receiver sends
acknowledge bit (ACK) confirming that it has received the address and the
read/write bit

5. The transmitter (master or slave) transmits one byte of data
6. The receiver sends an ACK bit to acknowledge that it has received the data byte
7. If more data are to be sent phase 5 and 6 are repeated
8. For a write transaction (master transmitting) the master issues a stop condition (P) af-

ter the last byte of data
For a read transaction (master receiving) the master does not acknowledge the final
byte but just issues a stop condition (P)

Figure 24 The I2C bus

VCC

RPU RPU

SDA
SCL

CLK1
OUT

CLK1
IN

Data1
OUT

Data1
IN

Device1 Device2

Data2
OUT

Data2
IN

CLK2
OUT

CLK2
IN

Figure 25 The I2C bus electrical connection

Figure 26 I2C a master addressing a slave receiver and transfering two bytes of data to the slave

Embedded systems

Communication interfaces with the emphasis on serial communication
sida 17

The start condition (S) is a high-to-low transaction on
the SDA line while the SCL line is high, Figure 28.
The stop condition (P) is a low-to-high transaction on
the SDA line while the SCL line is high, Figure 29.
The ACK signal is generated when the receiver pulls
SDA low, Figure 30 while the transmitter allows it to
float high (NACK), Figure 31.
A data bit transaction takes place while SCL is low and
the data gets valid when the SCL goes high, Figure 30.

SDA

SCL

Figure 28 I2C start condition

Figure 29 I2C stop condition

Figure 30 I2C ACK condition

Figure 31 I2C NACK condition

Figure 32 I2C data transaction

Figure 27 I2C a master addressing a slave receiver and receiving two bytes of data from the
slave

