

Department of Computer Science and Engineering
2006-11-07

CHALMERS
Campus Lindholmen Sida 1
Department of Computer Science and Enginnering
Sven Knutsson
Visiting address: Hörselgången 11
P.O.Box 8873
SE-402 72 Göteborg

Embedded systems
A/D- and D/A-converters

In this paper we will discuss analog-to-digital converters (a2d-converter,A/D-converters
ADC) and digital-to-analog converters (d2a-converter, D/A-converter, DAC). Let us start by
defining what we mean by an analog signal and a digital signal.

What is the difference between an
analog and a digital signal?
The devices we will be discussing normally handle voltages although these voltages may rep-
resent, be converted from, some other unit for example fluid level or temperature. Let us use
voltages from now on.
An analog signal can have any value meaning that the precision of the values are infinite. The
presition is only limited by the number of digits we use in our representation and of our abil-
ity to measure the value detailed enough. Of course a value, a voltage, can not take on an infi-
nitely high value so the values are normally restricted to a definition span, for example zero
(0) to +10 Volts or a symmetrical span, for example from -10 Volts to +10 Volts. As we shall
se later on the first example is called an unipolar signal while the other signal is bipolar.
A digital (discrete) signal on the other hand can only be represented by a limited, finite num-
ber of values. These values are normally evenly distributed so the step from one value to the
next is always of equal height no matter what the values are.
If we now compare these two representations and have a value of say 1.5678 Volts this value
can be exactly represented by a analog value although the value could have even more preci-
sion that got lost when we used only four decimals in our description but that is not a limita-
tion in the value as such but in our representation of it. If we would like to represent the same
value with a digital representation where the step between to values are 0.1 Volts this value
would be described as 1.5 Volts or 1.6 Volts. There are two possibilities here depending on
how the transformation from analog to digital value is performed. We will get 1.5 Volts if the
analog value is truncated to the digital level, the extra decimals are chopped of, and we will
get 1.6 Volts if the value is rounded to the nearest level. In the A/D-converters we will study
later on we normally deal with truncation.

Embedded systems

A/D- and D/A-converters
sida 2

Why convert between analog and
digital values?
Now why do we have to convert between analog and digital values? Most of the things we
measure and describe in our world are in some sense represented by analog values even if we
often choose to limit the resolution and thereby restrict the number of values and thereby
make it digital. For example we might measure a distance in meters although we could choose
to go all the way down to micrometers or even further.
In the world of computers, which we are dealing with in this course, the situation is an other.
Here we are restricted to digital values not by choice but by the properties of the system. Even
if the signal span could be large and the number of steps big the resolution is always limited.
This means that we have to convert a value from analog to digital if we want to move it from
the analog world to our world of computers. In the same way we will often convert our values
back to analog when we move the values out of the computer again and into the real world.
We do this to get a smooth transition between signal levels.
Before we turn our attention to the converters as such we will have a look at how values could
be represented in a computer. We will have a look at number representation.

Number representation
In a computer numbers can be represented in a number of ways but we will always have the
limitation that the registers and memory positions we have in the computer consist of a lim-
ited number of digits. We have a given word length. The numbers we use in the computer can
be described using different number bases. We shall look at the most common ones.

Number bases
Let us have a look at a normal integer value, for example the value 2346. This way do de-
scribe the number is a short form of the longer complete version

0123 1061041031022346 ⋅+⋅+⋅+⋅=

That is the position in the number marks what power of ten the digit should be multiplied
by. The same holds true for a number with decimals, for example

210 107102103273 −− ⋅+⋅+⋅=.

This means that each digit can take on ten different values (zero to nine). We call the digit
with the highest power of 10 (the left most digit) the most significant digit (MSD). In the
same way we call the digit with the lowest power of 10 (the right most digit) the least sig-
nificant digit (LSD).
In a computer each position in our registers and memory cells could be thought of as an
electronic switch that can have the position ON or OFF or alternatively described as 1 and
0. We call each position a bit. This means that we can not place our decimal numbers in
these cells as they are. They have to be converted to numbers that can be described by 1:s
and 0:s. We have to use a binary number base, the base is often called the radix. The bi-

Embedded systems

A/D- and D/A-converters
sida 3

nary radix is formed in a similar way to our decimal number base and we describe our
numbers using powers of 2 instead of powers of ten and each binary digit can only take on
the values one (1) and zero (0). Here we call the bit with the highest power of 2 (the left
most bit) the most significant bit (MSB) and the bit with the lowest power of 2 (the right
most bit) the least significant bit (LSB) Let´s have a look at an integer binary number and
convert it to a decimal one.

() () () ()1010

012345
2 45212021212021101101101101 =⋅+⋅+⋅+⋅+⋅+⋅==binary

Thankfully we can use decimal numbers when we program our computers using a high
level language like C. Actually C doesn´t support using binary numbers at all but it does
support using hexadecimal numbers and, as we shall soon see, the relationship between bi-
nary and hexadecimal numbers is close.
Hexadecimal numbers use the number base 16 and because of that each hexadecimal digit
can take on 16 different values. There are only ten decimal digits so we have to come up
with six extra digits to complete our hexadecimal representation. These digits would in
decimal be 10 to 15 but we prefer to use only one symbol per digit and we replace these
numbers with the letters A to F.
We said that hexadecimal digits are closely related to binary bits and the reason for this is
that 4216 = . This means that each groups of four binary digits can be replaced with one
hexadecimal digit. For example

() () () === 1622 61101011001101101 D

() () ()1010

01
10

01234567 10916131662120212120212120 =⋅+⋅=⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅=

The separation into groups of four bits in the middle representation is only for conven-
ience.
We will look at converting numbers with decimals to binary numbers later on.

Conversion from decimal to
hexadecimal value
To convert a decimal value to hexadecimal representation we repeatedly do integer divi-
sion of our decimal value with the new base 16 and keep the reminder from each divi-
sion as the new digit. As we shall see in a couple of other examples this work with
every base.
We will illustrate the process with an example and convert the decimal value 2346 to
hexadecimal base

() ()161010
16
10146

16
2346 A=⇒=

1610 22
16
29

16
146

=⇒=

Embedded systems

A/D- and D/A-converters
sida 4

1610 99
16
90

16
9

=⇒=

We get the result

() ()1610 922346 A=

Conversion from decimal to octal value
The princip is the same as when we converted from decimal to hexadecimal value. We
repeatedly do integer division of our decimal value with the new base 8 and keep the
reminder from each division as the new digit. We will illustrate with an example using
the same value as above and convert the value 2346 to octal base

2
8
2293

8
2346

⇒=

5
8
536

8
293

⇒=

4
8
44

8
36

⇒=

4
8
40

8
4

⇒=

We get the result

() ()810 44522346 =

Conversion from decimal to binary
value
Once again we use the same method and repeatedly do integer division of our decimal
value with the new base 2 and keep the reminder from each division as the new digit.
We continue to convert the decimal value 2346 in our example

0
2
01173

2
2346

⇒= 1
2
1586

2
1173

⇒=

0
2
0293

2
586

⇒= 1
2
1146

2
293

⇒=

Embedded systems

A/D- and D/A-converters
sida 5

0
2
073

2
146

⇒= 1
2
136

2
73

⇒=

0
2
018

2
36

⇒= 0
2
09

2
18

⇒=

1
2
14

2
9

⇒= 0
2
02

2
4

⇒=

0
2
01

2
2

⇒= 1
2
10

2
1

⇒=

We get the result

() ()210 1010001010012346 =

Word length
We said that our computers internally use binary representation to store numbers. In most
cases the number of positions in these registers, the register length, the word length, is 8,
16, 32 or 64 bits. We use to refer to 8 bits as one byte, 16 bits as one (short) word, 32 bits
as one long word or double word and 64 bits as one long long word.
So far we have presented a number of ways to describe numbers and the basic structure of
the registers in a computer but we need more information to find out how the numbers are
placed in the registers. For example if we want to place an integers value in a register of
byte size in what position do we place the digit with the lowest power of two if we don´t
fill all bits of the register? The answer is that it could depend on the application but in most
cases we use right alignment which means that this digit is placed in the right most position
in the byte and the empty digits in the left most part of the word will be filled with zeros
(0). A trickier question is when we have numbers with decimals, or binals as they are
called when we use binary representation, between which bits do we place the binary
point? And what about negative numbers?
We need to look a little closer at how can we represent a number.

Representation of numbers
We can use a number of different criteria to divide our numbers into groups and these cri-
teria does at some points overlap so the description is not all that clear.
To start with we can look at our representations as divided into two main groups, numbers
represented in floating point form and numbers represented in fixed point form.

Floating point
A floating point number is described in the form onentexpmantrissa 2⋅ (or

onentexpmantrissa 10⋅) and this means that the number of bits that we can use to represent

Embedded systems

A/D- and D/A-converters
sida 6

the numbers in the computer are divided into two parts, the mantissa and the exponent.
With this representation we can describe a large span of values, observe that both the
mantissa and the exponent in most cases can be both positive and negative and that both
numbers as such have fixed point representation. The mantissa is normally a number in
the interval 0.5 to 1.0 while the exponent is a positive or negative integer. Observe that
the resolution of the value described by the mantissa is dependent of the exponent.
As an example of this representation we will give the standard for 32 bit floating point
values as given by the US American organization IEEE (The Institute of Electrical and
Electronic Engineers) in their standard IEEE754.
Here the 32 bits are divided into one sign bit (S), 8 bit exponent (E) and 23 bit mantissa
(M).

The actual value given by the representation is

() ()M.N ES 121 127 ⋅⋅−= −

We can se that we have a positive value if the sign bit S is zero and a negative value if it
is one.
E is a positive integer restricted by 2550 << E , observe the inequalities and the
subtraction of 127 to get the true exponent. This means that our actual exponent is in the
interval -126 to 127.
The value M represents the binals in our mantissa while we have a hidden integer one in
front of this number. A number describing only binals is called a fractional number. We
will get back to this in a while.
This means that the smallest value we can describe with IEEE754 is 38126 10812 −− ⋅≈ ,
while the biggest value is () 3823127 1043222 ⋅≈−⋅ − . . Observe that the span of values is
very big and that the smallest value is very small so the resolution is quit good.
Floating point representation is not really suited for our A/D- and D/A-converters so we
leave them for now.

Fixed point
In fixed point representation we only have a value (mantissa) but no exponent (or the
exponent is zero if you like). This means that our numbers have a value span limited by
the smallest and the largest number that can be represented with the given number of
bits, we have no exponent that can slide the value on the value axis.

Integer numbers
As the name implies the binal point is in a fixed position somewhere between two
bits in our number. One frequent placement is to the right of the right most bit, which
means that we have no binals and the value is an integer.

Figur 1 IEE754

Embedded systems

A/D- and D/A-converters
sida 7

Fractional numbers
We get an other popular representation if we place the binal point to the left of the
left most digit in our number which means that all bits are binals and we have a so
called fractional number described as 0.N where N are the number of bits in the
word. It is worth noticing that with this representation we can never reach the value
one (1), our valus are always smaller than one (1) even if we are very close to one (1)
if all bits are ones. We can realize that this representation can only give positive val-
ues.
With a slight modification we can also represent negative values. We introduce a
sign bit and let our number with N bits is divided into one sign bit (the left most bit)
and 1−N binals.
The fractional representation, both with and without sign bit, is very well suited for
the converters we will discuss later on.
Of course there are also a number of other fixed point formats where the binal point
is somewhere in the middle of the word but these representations are quit rare.
Now what about negative numbers?

Negative numbers
We said earlier that with fractional numbers we
could describe negative numbers as well as positive
numbers if we introduced a sign bit in our represen-
tation. We didn´t mention it but this holds true for
integer values as well, that is our binary word with N
bits could consist of one sign bit and N-1 bits de-
scribing an integer or a fractional value.
In most cases we don´t use a simple sign bit but we transform our negative values to
what is called two-complement representation (2-complement). One might ask why?
One of the reasons is that we can simplify our electronic circuits some what. In most of
our microprocessor applications we need to add and subtract numbers and this is done
with the help of electronic circuits that perform the arithmetic operations. To do both
addition and subtraction we need two electronic circuits or one circuit that can perform
both operations. If we represent our negative value in two complement form we can do
away with the subtracter. Instead of subtracting the two numbers we start by converting
the second value in the subtraction to a negative one by changing it to its two comple-
ment, which is a very simple operation, and then add the two values. That is

()2121 valuevaluevaluevalue −+=−

This is not as easily done if we only use a simple sign bit.
Now how do we take the two complement of a word, that is how do we make it nega-
tive. First we invert all the bits, that is if the bit is a zero (0) we make it a one (1) and if
the bit is a one (1) we change it to a zero (0). Then we add one (1) to the LSB and we
are done. An example let us take the two complement of the decimal number 26 and
let´s treat the binary number as a byte, that is the word length is eight bits

() () () →→→→= LSBtooneaddbitsallinvert 2210 111001010001101026

Figure 2 Number with sign bit

Embedded systems

A/D- and D/A-converters
sida 8

11100110
1

11100101
+

→

Observe that if the value is negative then the MSB is always one.
Let us make sure that we can use this for subtraction. Let us subtract 26 from 38

() () () () () () =−=−+=− 2210101010 000110100010011026382638

() ()

()10

22

1200001100
11100110
001001101110011000100110

=
+

=+

We get the expected result if we ignore the memory bit we get out of the addition.
Now let us move on to our main subject ADC:s and DAC:s.

General A/D- and D/A-qualities
Resolution
If we look at an analog-to-digital converter it is supposed to convert a analog value that can
take on any value within it´s definition span into its corresponding digital value. Since the
digital value have a limited number of bits, n , then the number of digital values we can
represent is also limited

nN 2=

For example if we have the word length byte (8 bits) then the number of possible digital
values is 25628 = and in most cases these values are evenly distributed within the defini-
tion range of the A/D-converter. This means that if the A/D-converter can handle voltages
in the range zero (0) to maxU+ then the step in Volts between two consecutive digital val-
ues is

n
maxmax U

N
U

2
==∆

We call ∆ the resolution of our converter. In some cases we talk about the resolution as a
fraction of the maximal value no matter what this is, that is we express the resolution as

nN 2
11

=

Which is a number without unit.

Embedded systems

A/D- and D/A-converters
sida 9

Unipolar and bipolar converters
In the discussion above the converter only handled
positive voltages. We call such a converter a uni-
polar converter. These converters are suitable when
the property we want to convert from analog to
digital always is positive. For example we might
want to convert the measurement of the level in a
tank and that level can hardly be negative.
In other cases we would like to handle both positive
and negative voltages, in most cases with a equal
span, that is we would like to handle voltages from

maxU− to maxU+ We call such a converter a bipolar
converter. This is for example normaly the situation
when we convert a sound signal to digital.

Conversion error, SQNR
Since our digital value has a limited number of
values while the analog voltage can take on any
value the conversion from analog to digital value
will in most cases give an error. The analog value
is not exactly at any of the discrete digital levels.
We can realize that the largest error will be half
the resolution, 2

∆ .

This error is often given as the SQNR, the Signal to Quantization Noise Ratio where we
compare the maximal level of the converter with the error and describe this using loga-
rithmic values in decibel. For the unipolar converter we have

1

2n-1

In

Out

0
(1-2-n)·Umax

0 2-n·Umax
Figure 3 Unipolar converter

2n/2-1

In

Out

-Umax (1-2-(n-1))·Umax

-2n/2

Figure 4 Bipolar converter

Figure 5 Rounded error signal

Embedded systems

A/D- and D/A-converters
sida 10

=

⋅

⋅=
∆

⋅=⋅=

N
U
U

log
U

log
levelerrorimalmax

levelimalmaxlogSQNR
max

maxmax
unipolar

2

20

2

2020 101010

() () () () ()1610262120220

22

20 1011010 +⋅≈+⋅=⋅+⋅=⋅=

⋅

⋅= + nn.lognlog
U
U

log n

n
max

max

For the bipolar converter we don´t compare the error with the maximum span of the con-
verter but with the maximal amplitude, that is half the maximal span. Many converters can
use an offset voltage to change the converter from unipolar to bipolar. In both cases the
maximal span is the same meaning that we either have the span zero (0) to maxU+ for the

unipolar converter or
2
maxU

− to
2
maxU

+ for the bipolar converter

For the bipolar converter we get the SQNR

=

⋅

⋅=
∆

⋅=⋅=

N
U

U

log

U

log
levelerrorimalmax

amplitudeimalmaxlogSQNR
max

maxmax

bipolar

2

220

2

22020 101010

() () nn.lognlog
U

U

log n

n
max

max

⋅≈⋅=⋅⋅=⋅=

⋅

⋅= 6026220220

22

220 101010

We can see that the unipo-
lar converter has a 6 dB
higher SQNR than the bi-
polar ADC but this is fic-
tive. The two calculations
are not done in the same
way.
If we compare the SQNR for some commonly used
bipolar ADC:s we get Table 1.
The assumptions used above are in most cases not
really true. We assumed that the maximal error was
half the resolution but for this to be true the analog
value will have to be rounded to the nearest digital
level in the conversion but in most cases the value is
rounded to the nearest digital value lower than the analog value, that is it is truncated.
This means that the maximal error is actually the same as the resolution of the converter
and as a result our SQNR calculations will give 6 dB lower values.

Number of bits 8 12 16 20 24

SQNR [dB] 48 72 96 120 144

Table 1 SQNR for some commonly used ADC:s

In

Error
-Umax (1-2-n)·Umax

-Umax/2n

Figure 6 Truncated error signal

Embedded systems

A/D- and D/A-converters
sida 11

Logarithmic converters, companding
The converters we have seen so far have a linear conversion span, that is the resolution is
the same for all levels. This means that the conversion gives better relative resolution for
large values than it does for small values. This can sometimes be a problem and we would
like to have a converter with a more constant relative resolution. With this we mean a con-
verter where the resolution compared to
the present input value is constant and not
the resolution compared to the total volt-
age span of the converter. Such a con-
verter must have a logarithmic transfer
function and if we want to make calcula-
tions on the converted digital values we
have to start by expanding the values back
to linear ones. We call the converter with
logarithmic transfer function a compand-
ing ADC. Companding is a abbreviation of
compression- expansion.
Now let us turn our attention to how to
conctruct a converter. Since many ADC:s
contain a DAC we will start with DAC:s.

Operational amplifiers
To understand how D/A- and A/D-converters work we need to use amplifiers as building
blocks. We will use integrated amplifiers, so called operational amplifiers (OP) or at least see
our amplifiers as blocks and not concern ourselves with their internal construction.
The OP, Figure 7, is an integrated circuit that amplifies
the differential signal supplied between the positive and
the negative input terminal and delivers this signal to an
output. The input impedance of the OP is very big
(megaohms) which means that only a negligible current
will flow in and out of the input terminals. The output
impedance is at the same time very low (ohms or lower)
and this means that most of the output voltage will be
supplied to the following circuit. There will be no volt-
age division at the output.
The amplification is very big (1 million times or more). These specifications make the OP
very close to an ideal amplifier. The one specification that in many cases is not ideal is the
demand for a unlimited bandwidth, meaning that it should give the same amplification no
matter the frequency of the amplified signal. In reality there is a upper frequency limit that is
far from infinite. In most cases the upper frequency limit gf is inversingly proportional to the
amplification A of the OP circuit

ttanconsAf g =⋅

Figure 8 Operational amplifier

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

µ-law, µ=255

A-law, A=87.56

A- and µ-law companding

Figure 7 A- and µ-law companding

Embedded systems

A/D- and D/A-converters
sida 12

In our following studies we need to understand how a number of amplifier configurations
work so we will describe these. The amplifier is in most cases an integrated circuit that we
adopt to our needs using external components, in these cases these are resistors and in one
case complemented by a capacitor. In the circuit diagrams we have hidden the fact that the
circuits need to be supplied by a voltage from a power supply.

Comparator
The most simple configuration is the comparator
where we compare the voltage supplied to the posi-
tive input terminal, +inU , with the voltage supplied
to the negative input terminal, −inU , Figure 9.
If the input signal to the amplifier, the difference

−+ −= ininin UUU is positive then the output signal
will be positive but since the amplification of the
OP is very big the amplifier will saturate and the
output voltage will not be the amplification times
the input signal but it will saturate the positive sup-
ply voltage to the circuit. If the differential input
signal is negative then the amplifier will saturate at
the negative supply voltage. This means that a input
signal inU larger than the reference voltage refU
will give positive saturation while a smaller input
voltage will give negative saturation.
This circuit can of couse also be used not to com-
pare an input voltage to a given reference voltage
but to compare two input voltages, Figure 10.

Inverting amplifier
The next circuit is what is called an in-
verting amplifier. Inverting means that a
positive input signal will give a negative
output signal and a negative input signal
will give a positive output signal. We can
see a typical schematic in Figure 11.
For a simplified analys we can assume that
the amplifier has infinite input resistans,
that is no current will flow through the in-
put terminals and this means that the volt-
age difference between the two input ter-
minals is zero and since one of the terminals is grounded both terminals will have a poten-
tial of zero, 0 Volts. As a result the currents through the two resistors 1R and 2R are the
same. We get

Figure 11 Inverting amplifier

Figure 9 Comparator with reference

Figure 10 Comparator with two inputs

Embedded systems

A/D- and D/A-converters
sida 13

inout
outin U

R
RU

R
U

R
U

II ⋅−=⇒
−

=
−

⇒=
1

2

21
21

00

Summing amplifier
For our applications we will need to
add more inputs to the inverting
amplifier to get a summing ampli-
fier. Let´s add a second input, Fig-
ure 12.

This time we get

2
2

3
1

1

3

32

2

1

1
321

000
,in,inout

out,in,in U
R
R

U
R
R

U
R
U

R
U

R
U

III ⋅−⋅−=⇒
−

=
−

+
−

⇒=+

And we can draw the conclusion that we can sum the contributions from the inputs with

their weighting factors
x,in

out
R

R and don´t forget the negative signs, the inversion.

Non-inverting amplifier
In the non-inverting amplifier a positive input
signal will give a positive output signal, Figure
13.
Once again, since no current will flow through the
input terminals then the two terminals
will be at the same potential, that is

ininin UUU == +− . Through voltage division we
get

outin U
RR

RU ⋅
+

=−
21

1

And if we rewrite the expression we will get

inout U
R
R

R
RR

U ⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

+
=

1

2

1

21 1

We can see that the amplification is always larger than one (1).

Figure 12 Summing amplifier

Figure 13 Non-inverting amplifier

Embedded systems

A/D- and D/A-converters
sida 14

Buffer
As a special case of the non-inverting ampli-
fier we get a buffer, Figure 14. We get this
from the non-inverting amplifier by letting
the value of 1R go towards infinity, that is be
a break, and by letting the value of 2R be
zero (0), that is a short circuit. From the
equation above we see that the buffer will
have a amplification of one (1) and might
seem meaningless but we do have a circuit
with a very high input resistance and a very
low output resistance which means that the
circuit connected to the output of the buffer
will not draw any current from the circuit
connected to the input of the buffer and the
high input recistance and the low output re-
cistance also means that there will be no
voltage division at neither the input nor the
output, Figure 15.
The symbol for the buffer is often simplified
according to Figure 16.

Integrating amplifier
An integrating amplifier will integrate the
input voltage over time, Figure 17.
If the input voltage inU is constant then

t
CR

U
U in

out ⋅
⋅

−=

where t is the time, that is the output volt-
age is a negative going ramp, Figure 18.
Of couse the output voltage will after some
time reach the negative supply voltage and
stop there.
We can see that the slope of the ramp is
proportional to the input voltage inU which
is something we will use later on.

Uin

Uout

+

-

Figure 14 Buffer

Figure 13 Simplified buffer
symbol

Figure 17 Integrating OP-circuit

Figure 18 Output ramp

Figure 15 Buffer circuit

Figure 16 Simplified buffer
symbol

Embedded systems

A/D- and D/A-converters
sida 15

D/A-converters
Since some of the commonly used A/D-converters use a D/A-converter as a building block
we will start by looking at D/A-converters.

Resistance ladder converter
The most direct way to create a digital-to-analog converter would be to use a set of resis-
tors in a voltage divider configuration to create the voltages we need and a set of digitally
controlled switches to select the voltage we want. Since the D/A-converter should have a
fixed resolution, ∆ , that is each voltage step should have the same height, then all the
resistors in the ladder should be of equal value. The reference voltage, refU , will determine
the voltage span of the converter. The digitally controlled switches form a net that will
connect one out of N possible inputs to
the output, this is called a multiplexer
(MUX). Which of the inputs that is con-
nected to the output is governed by the
digital control word of the MUX. The
number of bits in this word, n , depends on
the number of inputs since nN 2= . For
the voltage divider to function properly the
circuit connected to it should not draw any
current from the net so we need to insert a
buffer. In Figure 19 we see a converter
with a two bit control word (D1 D0), that
is we can have four inputs and need four
different, equally spaced voltage levels.
Since the number of resistors and buffers
will increase exponentially with the num-
ber of bits and the multiplexer will be
more and more complex this type of con-
verter is rarely used.

Current summing D/A-converter
Now let us have a look at the dominant type of D/A-converter.
We will use an inverting amplifier to build a DAC. Let us limit ourself to a unipolar con-
verter and only use four bits in the digital word to simplify things.
If we consider the digital word we are about to convert into an analog voltage we can real-
ize that a one (1) in LSB should give a output voltage of the same magnitude as the resolu-
tion, ∆ , of the converter. A one (1) in the next bit should give twice the voltage, that is
∆⋅2 . The next (third) bit should double this, that is give a voltage of ∆⋅4 . And so on.

Let´s build the converter step by step and start with the LSB. We need to be able to supply
a input voltage to the amplifier when LSB is one and take it away when LSB is zero. We
do this by using an electronically controlled switch. Let´s use a input voltage inU of the
same magnitude as the maximal output voltage of the converter maxU with the difference

M
U

X

Figure 19 Two bit D/A-converter using a
resistance ladder circuit

Embedded systems

A/D- and D/A-converters
sida 16

that the input voltage need to have a negative sign
to give a positive output voltage since we use an
inverting summation amplifier. We call this volt-
age refU− . For a one bit converter the LSB, the
only bit, should generate an output voltage of

221
maxmax

LSB,out
UU

U ==

That is the amplification of our circuit should be

2
1

− and if we refer back to Figure 11 this means

that 21 2 RR ⋅= and we get Figure 20.

In the same way we add another link for
the next bit and get a two bit converter.
Here the LSB should give a output volt-
age of

422
maxmax

LSB,out
UU

U ==

And the next bit twice that voltage. That
is the amplification for the LSB should

be
4
1

− and
2
1

− for the

next bit. As a result we get
Figure 21.
If we expand the circuit up
to four bits we get the
complete schematic in Fig-
ure 22.
We can realize that we
could change the output
span of the converter by
changing the value of the
feedback resistor or by
changing refU but the latter
is not as common.
This is a basic schematic that won´t work that well if we increase the number of bits. If we
have 16 bits the largest input resistor would have to have a resistance that is 32768 times
the smallest resistor value. In most cases the converter is not a discrete schematic but it is
made as an integrated circuit and it is quit hard to integrate resistors with so big differences
in values and the way the values of the resistors change with temperature will not be the
same for different values. We will therefore reconstruct our schematic with resistors of
similar values.

Figure 22 Four bit DAC

Figure 20 One bit DAC

Figure 21 Two bit DAC

Embedded systems

A/D- and D/A-converters
sida 17

R-2R ladder DAC
Let´s go back to the one bit converter
and study Figure 23.
Let us calculate the current floating into
the feedback resistor fR . The current
comes from the reference voltage
source and are split into to resistors of
equal value. Observe that the other end
of the resistors are connected either to
ground or to the negative input of the
operational amplifier and this input is at
the same potential as the positive input
that is at ground level. We call the zero
level at the negative input a virtual
ground. The same current flows in both
resistors and the total current is

R
U

R
U

R
U

I refrefref =
⋅

+
⋅

=
22

 but only one of the two currents is passed on to fR to give

R
UII ref

f ⋅
==

22

 This is as expected for a one bit converter. A one (1) in the input word (of one bit)
should give a output voltage equal to the resolution

221
maxmax

ff
UU

RI ==⋅=∆

So far we can not see the
meaning of the second re-
sistor but let us add an-
other bit to the digital
word and add to the sche-
matic to get Figure 24.
If we do some calculations
to simplify the resistor net
we shall see that the total
current from refU still is

R
U

I ref=

Uout+

-

Rf
D0

2R

-Uref
I/2 I/2

2R

I

If

Figure 23 One bit R-2R ladder DAC

Uout+

-

Rf
D0

2R

-Uref

2R2R

I/2

RI/2I I/4

I/4

D1

Figure 24 Two bit R-2R ladder DAC

Embedded systems

A/D- and D/A-converters
sida 18

and a one (1) in MSB will give a output voltage of
2
maxU

 which is as expected.

We can see that the path leading from refU to MSB and the path leading to LSB carry

the same current,
2
I , which is half the total current. The path leading to LSB is then

split into two paths carrying the same current,
4
I . This means that the current through

the MSB switch is twice as big as the current flowing through the LSB switch and the
result is that the MSB path will give twice the output voltage of LSB as expected.
Now let us upscale the schematic to four bits and leave the analysis to private studies,
Figure 25.

As a conclusion we can see that the schematic only uses two different resistance values
in the input net and this makes the circuit much easier to integrate while the changes
with temperature will me more even. The resistance net is called a R-2R ladder net.

Smothing filter
If we look back we might remember that an analog voltage should be able to take any
value within it´s definition span. This is not quit true for the output voltage from our
DAC:s. It can only take on a number of discrete values since the digital word we are con-
verting into an analog one only can give a discrete number of possible values nN 2= gov-
erned by the number of bits in the word. This means that if we update the output from the
DAC on a regular basis we will get a series of values that jump between discrete voltage
levels, Figure 26. To smooth this out we insert a low pass filter after the DAC.

Figure 25 Four bit R-2R ladder DAC

Embedded systems

A/D- and D/A-converters
sida 19

A low pass filter (LP) is a filter that
stops the higher frequency contents in
the signal but lets the lower frequencies
pass. The continuous update of the out-
put voltage will generate a signal with
the same frequency as the frequency of
the update and overtones to this, that is
signals of frequencies that are integer
multipliers of the update frequency. The
low pass filter is supposed to remove
these signals of higher frequencies.

Figure 27 DAC and LP filter

0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Smoothed DAC signal

Time

A
m

pl
itu

de

Figure 28 Unfiltered and filtered output from DAC

0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

D/A-converted signal

Time

A
m

pl
itu

de

Figure 26 Output from DAC

Embedded systems

A/D- and D/A-converters
sida 20

A/D-converters
Flash converter
The A/D-converter should con-
vert an analog voltage to it´s
corresponding digital value. The
most direct approach here is to
compare the analog input volt-
age with voltages corresponding
to the discrete levels of the
digital signal, Figure 29. We
will use the same type of resis-
tor ladder that we used in the
resistor ladder D/A-converter
and use comparators to do the
comparison with the analog in-
put signal.
The resulting output signal will
not be the digital signal we are
looking for. It will be a kind of
thermometer scale where all
comparators with a lower refer-
ence voltage than the analog in-
put voltage will be positively
saturated while the comparators
with reference voltages higher
than the input signal voltage
will be negatively saturated.
We can use a logical decoding
net to convert this set of bits
into the wanted digital word,
Table 2.
This converter will use a num-
ber of parallel comparisons to
do the conversion and the op-
eration is very fast and this is
the fastest type of ADC. We
call it a flash converter. The
circuit have the same draw
backs as the resistance ladder DAC, the number of resistors and comparators will be big if
we want many bits in the digital word. We get a complicated circuit and the number of
elements to trim to get a precise result are large.

Uin

D1

+

-

R

+

-

+

-

R

R

R

D
ecoding net

D0

Uref

B2

B1

B0

Figure 29 ADC with resistance ladder

Interval Bits from
comparators

Binary word

4
0 refU
−

000 00

24
refref UU

−
001 01

4
3

2
refref UU ⋅

−
011 10

ref
ref U

U
−

⋅

4
3

111 11

Table 2 Bits from comparators and binary words

Embedded systems

A/D- and D/A-converters
sida 21

Counting ADC
We can get a simplier circuit if we use a D/A-converter as the center block of our A/D-
converter. In the simpliest form this ADC use a binary counter, a counter that counts
through all our binary values from zero to the highest value, to form the binary values that
we use as the input words that the DAC converts into analog values. The counter is
controlled by a clock that generates the
counting pulse.
We compare the voltage generated by
the DAC with the analog input voltage
and stop the count when the output
voltage from the DAC have reached
the same level as the analog input
voltage. This way we have found the
digital value corresponding to our
analog input voltage. We call the con-
verter an up-counting ADC, Figure 30
and Figure 31.
The draw back of this circuit is that the time
to find the digital output value is highly de-
pendent of the level of the input voltage. If
the voltage is low then the counter doesn´t
have to generate many pulses to reach the
correct digital value but if the input voltage
is high then we will need many pulses. This
have two negative effects. First of all the
conversion time will be long (many clock
pulses) for a high input voltage. Secondly
the conversion time is very dependent on the
voltage level and we have no way of know-
ing how long time each conversion will take,
something that it often is an advantage to
know.

ADC using successive approximation
We need to improve on the up-
counting ADC in two ways. We need
to shorten the longest conversion
time and we need to make the con-
version time independent of the level
of the analog input voltage. To do
this we will replace the counter that
controls the DAC with another digi-
tal net that tests bit by bit of the
digital word, Figure 32.
We start by testing MSB in the digi-
tal world. That is we apply a digital

Figure 30 Up-counting ADC

Analog input Uin

+

-

D/A
converter

Control
logic

Start conversion

Conversion ready

n bits

Digital output

Comparator

Figure 32 ADC using successive approximation

Figure 31 Up-counting ADC, time diagram

Embedded systems

A/D- and D/A-converters
sida 22

word to the DAC with a one (1) in MSB while the rest of the bits are zero (0) and compare
the resulting voltage to the analog input voltage. This means that we test if the analog input
voltage lies in the upper or lower half of the DAC:s voltage span. If we are in the upper
half we keep the one (1) in MSB when we move on to the next bit while we reset MSB to
zero (0) if we are in the lower half, Figure 33.
After this we continue with the next bit and test this bit with a one (1) while setting MSB
to the level decided in the first step, Figure 34.
This way we continue bit by bit till we have passed LSB and are finished. This means that
our conversion will always consist of n comparisons, where n are the number of bits in
the digital word, and the conversion time is not dependent on the level of the analog input
voltage. We call the conversion process successive approximation.
Figures 33 - 37 illustrate the flow for a three bit word where the resulting binary word is
1011.

Umax

Uin

Voltage

Time

Figure 33 MSB of conversion

Figure 34 Bit 2 in conversion

Figure 36 LSB in conversion

Figure 35 Bit 3 in conversion

Embedded systems

A/D- and D/A-converters
sida 23

Integrating ADC:s
An integrating ADC is in a way similar to a counting ADC but here we don´t use the
counter value to control a ADC but we use it to count time. The time we count is the time
taken for a capacitor to charge to the same potential as the analog input value. The higher
the value, the longer the time. We use the integrating OP-circuit that we presented earlier
in Figure 17.

Single-slope integrating ADC
If we use a negative input voltage refU− to the in-
tegrator we can let the integrator ramp up to the
same voltage as the analog input voltage while we
let a counter count the number of clock pulses
generated during the measurement time.

()
t

CR
U

t
CR

U
U refref

out ⋅
⋅

−=⋅
⋅

−
−=

When we reach the same level as the analog input
voltage we stop the count, Figure 38. We can see
that the higher the input voltage the longer it will
take to reach the end level so the count is directly
proportional to the value of the input voltage.
The switch across the capacitor is there to make sure the capacitor is uncharged when
the integration starts, that is it will open when the measurement period starts. We call
the circuit a single-slope integrating ADC, Figure 39.
If we want some accuracy in the measurement we need the count to be pretty long so
the converter is slow. We assume that the input voltage is constant under the integration
time which means that we can only deal with slowly varying signals. But one positive
thing here is that if we have noise on the input signal, that is small random fluctuations

Umax

Uin

Voltage

Time

Figure 37 Result of conversion

t
CR

Uref ⋅
⋅

Figure 38 Up-counting ADC, time
diagram

Embedded systems

A/D- and D/A-converters
sida 24

in the analog voltage over time, then these variations could cancel out during the inte-
gration period. This converter is sensitive to variations in the resistor and capacitor
value and to fluctuations in the frequency of the clock used to control the counter so the
circuit is seldom used. But it has developed into another ADC that is very common spe-
cially in multimeters.

Dual-slope integrating ADC
The basic circuit of the dual-slope integrating ADC is very similar to the single-slope
converter but with some added features, Figure 40.

In this circuit we start by letting the integrator integrate the input voltage inU over a
fixed time reft . This means that the output voltage after this period xU is directly
proportional to the input voltage inU

+

-Analog input Uin

+

-
R

C

Comparator

Integrator

Control logic

-Uref

Counter
Start/stop

count

Stop
conversion

n bits

Digital output
Clock

S

Figure 39 Single-slope integrating ADC

Figure 40 Dual-slope integrating ADC

Embedded systems

A/D- and D/A-converters
sida 25

ref
in

Phase t
CR

U
U ⋅

⋅
−=1

Then we replace the input voltage
with a reference voltage refU . This
voltage should have an opposite
sign to the input voltage. This
means that the output voltage will
now start to ramp down

t
CR

U
UU ref

PhasePhase ⋅
⋅

−= 12

During this second time we let a
counter count the time and we stop the count when the output voltage reaches zero (0) at
the time xt .
The higher the input voltage inU , the higher the output voltage after the first integration

xU and the longer the second integration time xt . We get the relationship

ref

x

ref

x

t
t

U
U

=

We can see that if refU equals the maximal voltage of the converter, that is the voltage
that gives the maximal value of our digital value, then this relationship will give time
relative this maximal time.
This converter is more immune to fluctuations in the component values and the clock
frequency than the single slope converter since we use the same components and clock
in both integrations. Since we have two integrations here this converter is even slower
than the single-slope converter. We call it a dual-slope ADC. This converter can cancel
noise in the input signal the same way that the single-slope converter can.

Sampling
To introduce the concept of sigma-delta modulators we need to start by introducing the
concepts of introduce continous A/D-conversion and sampling.
In most cases when we are about to convert a analog signal to it´s digital equivalent we
need to take into consideration that the signal is changing with time and to get a true repre-
sentation of the signal we need to do several conversions of the signal. In most cases we do
this on a regular basis that is we have a fixed time interval, T , between each conversion.

We say that we sample the signal with a sampling frequency of
T

f s
1

= .

The so called sampling theorem or the Nyquist theorem tell us that to get a true representa-
tion of the signal we need to sample the signal at least twice during each period of the sig-
nal. This means that our sampling frequency needs to be more than twice as high as the
highest frequency content in the signal.

Variable slope Fixed slope

Phase 1
Fixed interval tref

Phase 2
Variable interval tx

Uin
RC

Uref
RC

Time

Voltage

Figure 41 Ramps of dual-slope integrating ADC

Embedded systems

A/D- and D/A-converters
sida 26

Aliasing
If we don´t obey this rule the high fre-
quency content of our signal will disturb
the low frequency part of the signal. The
high frequency signals will give so called
aliasing of the signal and show up as sig-
nals with frequencies lower than half the
sampling frequency, Figure 42.
In a practical situation we can never
guarantee that the signal we sample does
not contain this higher frequency compo-
nents, there might be disturbances or
what ever, so we need to remove these
frequency components before the sam-
pling. To do this we let the signal pass a
low pass filter (LP) that only lets signals
with frequencies lower than half the
sampling frequency pass. We introduce
an anti-aliazing filter, Figure 43. In real-
ity there are no filters that block out the
high frequencies totally but we can at
least attenuate them so much that they disappear in the resolution of the ADC. A well
know example of this process is that CD-records are sampled with the sampling fre-
quency 44,1 kHz to pass the signal frequencies we can hear, that is up to 20 kHz. This
means that we need a sharp filter that can pass all signals with frequencies up to 20 kHz
and attenuate all signals with frequencies higher than half the sampling frequency, that
is higher than 22,05 kHz. The filter has to be placed before the sampling and the AD-
conversion, that is while the signal still is analog and it is quit hard to synthesize so
sharp an analog filter. This is one of the problems we are about to address with the
sigma-delta converter.

Over-sampling
Over-sampling means that we use a sampling frequency that is much higher than what
is needed to obey the sampling rule. The high sampling frequency is in most cases an
integer multiple of the needed sampling frequency, sfN ⋅ . By doing this we can ease
the demands on our anti-aliazing filter. Now the analog filter will only have to attenuate

signals with frequencies above
2

s
s

f
fN −⋅ , Figure 44.

Necessary
damping

fs/2fg

|H|

ffs

Figure 43 Anti-aliasing filter

The sampling theorem
For faithful reproduction of the sampled signal the sampling
frequency has to be more than twice the highest signal fre-
quency

True
signals

fs/2

|H|

ffs

Aliased
signals

Figure 42 Aliasing

Embedded systems

A/D- and D/A-converters
sida 27

After the sampling we use a process called down-sampling where we decimate the sam-
pling frequency to sf . Before we do this we still need to introduce a filter that removes

all signals with frequencies above
2

sf
 but this time we use a digital filter, since we are

still in the digital domain, and it is much easier to create a sharp digital filter than the
corresponding analog filter, Figure 45.

Sample and hold
Most A/D-converters, ex-
cept the integrating ones,
expect the input voltage to
be constant during the con-
version time. To make sure
that this is true we can take
a short sample of the signal
and then use a capacitor to
keep it constant under the
conversion time, Figure 46.
We call the circuit a sample and hold circuit (S&H), Figure 47.
In the figure we have added two buffers. The circuit connected before the sample and
hold circuit will always have a finite output impedance and this will form a RC-circuit
together with the capacitor in the S&H and this RC-net will have a time constant that
prevents the capacitor from instantly reaching the input voltage. This time constant is

CR ⋅=τ and we shorten the time by inserting the buffer which has a low output resis-
tance.

Figure 44 Anti-aliasing filter at 2 times oversampling

Figure 46 Sample and hold circuit

Figure 45 Anti-aliasing filter at 2 times oversampling complemented by digital filter

Embedded systems

A/D- and D/A-converters
sida 28

On the other hand we find that the
circuit connected after the S&H will
discharge the capacitor through its
input resistance and we make this
discharge small by inserting the other
buffer with its high input resistance.
In reality we can not make the time
during which we sample the input
signal infinitly short so we will track
the input signal during a short period.
We call this a track and hold circuit,
Figure 48.

The sigma-delta modulator
Now let us move on to the
sigma-delta converter (∑-∆
modulator), Figure 49.
As we can see from Figure
41 we compare the input
signal with a signal that is
feed back from the output
of the circuit, we subtract
the latter from the former.
The signal from the sub-
traction is feed to a inte-
grator that integrates this
difference over time. The
output from the integrator
is connected to a one-bit
ADC, which in practice is a

To digital down-
sampling filter

+U

-U

Integrator

1-bit DAC

Analog input
+

-

Difference
amplifier +

-

Comparator
(1-bit ADC)

Sampling
clock

D Q

Figure 49 Sigma-delta modulator

0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Sampled signal with hold circuits

Time

A
m

pl
itu

de

Figure 47 Sample and hold diagram

0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Sampled signal with track and hold circuit

Time

A
m

pl
itu

de

Figure 48 Track and hold diagram

Embedded systems

A/D- and D/A-converters
sida 29

comparator that generates a high output signal, a one (1), when the input signal to the
comparator is higher than zero and a negative signal, a zero (0), when the signal is nega-
tive. The comparator will do this comparison with a over-sampled sampling frequency

sfN ⋅ governed by the latch controlled by the sampling clock. This means that this output
signal is a series of ones and zeroes, a one-bit signal or a serial signal. This signal is then
feed back through a one-bit DAC which in reality only is an interface that changes the
level of the signal from one (1) and zero (0) to positive and negative supply voltage re-
spectively.
The one-bit output signal is then down-sampled to the lower sampling frequency sf and
this process means that we take an average over
the N samples during N sampling periods, N
is the oversampling factor. We use this average
to form a new word with more bits than one.
The number of bits can be ()Nlog2 .
Now why do we do all this? We can remember
from earlier that our conversion from analog to
digital signal had a limited resolution governed
by the number of bits used. If we study the fre-
quency spectra of this signal we will find that
the in addition to the signal we have a noise
floor that is spread over the whole frequency

band up to
2

sf
, Figure 50.

 When the signal is oversampled we
spread the same noise over the larger fre-

quency band
2

sfN ⋅
 which means that the

noise at each frequency gets lower, Figure
51.
When we down-sample the signal we use a
low pass filter to remove the high fre-

quency content above
2

sf
 and that means

that we filter of a large portion of the
noise. For every time we increase the sam-
pling frequency by a factor of four (4) the
SQNR will increase by a factor of 6 dB
which is the same as adding one bit to the
word length. At the same time one can
show that the sigma-delta modulation
shapes the noise so that a large portion of
noise will be pushed to higher frequencies.
That is more of the noise will be moved to
the frequency band that is filtered off in
the down-sampling process and the gain in
SQNR will be greater than stated above,
Figure 52.

Frequency

fs/2

Power

Signal

Noise

Figure 50 Signal with noise floor in the

span up to
2

sf

Frequency

3fs/2

Power

Signal

Noise

Figure 51 Signal with noise floor in the span up to

2
sfN ⋅

Frequency

3fs/2

Power

Signal

Noise

Figure 52 Noise shaping

Embedded systems

A/D- and D/A-converters
sida 30

ADC:s with multiplexer
In many cases we need to convert
more than one analog signal to its
digital counterpart. In this cases we
can save money and circuitry my using
only one ADC and connect the analog
signals one by one to the ADC and do
the conversions in sequence. To do
this we connect an analog multiplexer
(MUX) in front of the ADC to take
care of the switching and in many
cases we integrate the MUX into the
ADC circuit, Figure 53.
This savings have some draw backs.
Later on we will talk about the conver-
sion time, that is the time it takes for
the ADC to perform one analog to
digital conversion, and in that context we will see that the time between consecutive con-
versios on a single channel in the sequence will increase proportionally with the number of
channels.
The we do the set of conversions in a sequence means that we can not sample and convert
two signals at exactly the same time. This could be a disadvantage for example when we
would like to compare the phase relation between two signals.

Angle decoders
We will now move to a little odd group of devices that don´t deal with voltages as input
signals but still can be categorized as A/D-converters. These are angle detectors that give a
digital reading decoding the rotation, the angle of an axis. We can use the same princip to
detect linear movement instead of rotating movement.
We can divide this into to groups, incremental decoders and absolute decoders.

Incremental angle decoder
In the incremental decoder we do not detect
the angle as such but the number of steps we
have moved where the steps are the angular
resolution of the detector, that is we don´t
detect the absolute angle but the movement.
To do this we attach a disc with slots to the
axis. The slots are evenly distributed around
the circumference of the disc and we use
some kind of detector to detect when a slot
passes and we count the pulses that are gen-
erated during the rotation, Figure 54. The de-
tector is in many cases an optical device con-
sisting of a LED and a photo transistor or a

Figure 54 Incremental angle detector

Figure 53 ADC with multiplexer

Embedded systems

A/D- and D/A-converters
sida 31

magnetic device consisting of some kind
of reed relay.
We can understand that to transform the
count to a absolute angle we need to reset
the device, that is place it at the angle 0º
before we start the detection.
The counting of the number of resolution
steps and not the absolute angle makes it
possible to detect angles of more than
360º.
With just one circle of slots we can not
detect the direction of the rotation. To do
this we need two circles of slots that are
slightly out of phase which means that we
can detect the direction of the rotation by
detecting which of the slots that passes
the detector first, Figure 55.

Absolute angle decoder
In an absolute angle decoder we detect the
absolute angle which means that we need a
way to tell different angles apart. We do
this by placing a number of detection cir-
cles around the shaft. The direct way is to
use as many circles as we have bits in the
digital word that gives the angle. Let us
look at the normal binary coding, for sim-
plicities sake we use only three bits, Figure
56.
Now when we rotate the shaft we will go
from code to code. Let us look at the tran-
sition from 3 to 4 that is from 011 to 100.
In this transition we can see that all three bits
will change their state but the reading of the code
will have some resolution and we can be pretty
sure that the transition of the three bits will not
be detected at exactly the same angle. This
means that the transition will give a number of
false codes for example the series in Table 4.
This is clearly not the wanted behaviour. To get
a correct function we need to change the coding
from the ordinary binary coding to a coding that
only changes the state of one bit in each transi-
tion. On such code is the Gray code, Table 5.
If we then want to translate this to the ordinary decimal code we only need a look up ta-
ble to match the two codes.

Figure 55 Incremental angle detector with
direction detector

Decimal Bit 2 Bit 1 Bit 0
0 0 0 0
1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1
6 1 1 0
7 1 1 1

Table 3 Binary coding, three bits

Figure 56 Absolute angle detector

Embedded systems

A/D- and D/A-converters
sida 32

Voltage to frequency converter
The last type of ADC we will mention briefly is the voltage to frequency converter. This
circuit consist of a oscillator whose frequency is linearily proportional to a control voltage.
The output is still analog since the frequency can take on any value but it is quit easy to use
a digital counter to measure the period of the generated pulse signal and from this generate
a digital reading that is proportional to the analog input signal to the voltage to frequency
converte, Figure 57.

A/D- and D/A-specifications
When we studie the data for a given converter or are about to decide which converter to use
we need to studie the converter specifications in the datasheets. We will study the most im-
portant data. Some of the specifications are the same for the A/D-converter and the D/A-con-
verter while some of them differ.

Voltage span
The voltage span is for the A/D-converter the analog input voltage that the converter can
accept while it is the possible output voltages for the D/A-converter. The span is in most
cases unipolar or bipolar meaning that it either spans from 0 Volts to som maximal voltage

maxU or have a symmetrical span maxU± . In some cases we can use a offset voltage to
change the span of the converter from unipolar to bipolar. Observe that the output voltage
from a DAC will never reach maxU . It will always be one resolution step lower, that is

∆−maxU .

Bit 2 Bit 1 Bit 0 Decimal Correct/false
0 1 1 3 Correct
0 1 0 2 False
1 1 0 6 False
1 0 0 4 Correct

Table 4 Fake codes in the transition from 011 to
100

Decimal Bit 2 Bit 1 Bit 0
0 0 0 0
1 0 0 1
2 0 1 1
3 0 1 0
4 1 1 0
5 1 1 1
6 1 0 1
7 1 0 0

Table 5 Gray coding, three bits

V/F
converter

Digital
counter

Analog voltage
Pulse
train Period time

Figure 57 Voltage to frequency converter

Embedded systems

A/D- and D/A-converters
sida 33

Resolution
We have talked about the resolution earlier but if we look in the datasheet this will nor-
mally not be specified av a fraction of full scale deflection (FSD) but only be given as the
number of bits used by the converter.

Accuracy
Earlier we didn´t see any difference between the resolution and the accuracy, that is we
meant in both cases the smallest voltage difference we could detect or generate. If we look
in the datasheets they usually mean something else with accuracy. Every conversion gener-
ates some error due to the design of the converter and this is given as a maximal error in
number of resolution steps and it is normally given as LSBx± and typical values might be

LSB4
1± , LSB2

1± or LSB1± .

Conversion time
This only applies to A/D-converters and is the necessary time to convert the analog input
value to the digital output value. In some cases the datasheet give more than one time with
different levels of accuracy. Of course a shorter time will give a lower accuracy.
The conversion time, ct , will limit the maximal sampling frequency in our system. We
have to be able to carry out the conversion before a new sample arrives and this means that
the maximal sampling frequency will be

c
max,s t

f 1
=

If we have a system where the ADC contains a multiplexer to connect a sequence of N
analog inputs to the converter then we have to carry out N conversions before we can
make the next conversion on the same channel and this means that the maximal sampling
frequency on each channel will be

c
MUXmax,,s tN

f
⋅

=
1

Settling time
This is the equivalent to conversion time when we talk about D/A-converters. It is the time
it takes before the analog output signal converted from the digital word have settled to a
stable value. The output voltage stability is given as being within some error range, for ex-
ample LSB2

1± .

Embedded systems

A/D- and D/A-converters
sida 34

Offset error
An offset error is a shifting of the signal up-
ward or downward meaning that the A/D- or
D/A-conversion will always generate an error
of the same amount no matter the signal value,
Figure 58.

Amplification error, scale factor error
The amplification error is an error in the slope
of the transfer curve, Figure 59. In contrast to
the offset error the amplification error will in-
crease with the magnitude of the signal. An-
other name for this error is scale factor error.

1

2n-1

In

Out

0
(1-2-n)·Umax

0 2-n·Umax
Figure 58 Offset error

Figure 59 Amplification error

Embedded systems

A/D- and D/A-converters
sida 35

Linearity error
The linearity error is an error in the linearity
of the transfer function meaning that the error
at different levels in the transfer function dif-
fer but it will not necesserily increase with the
magnitude of the signal, Figure 60.

Parallel or serial interface
So far we have hardy mentioned the digital interface from the ADC and to the DAC. These
interfaces could be either parallel or serial. In the parallel case all the bits in the digital word
are present att the same time at parallel wires. In the serial case we clock the bits in and out of
the interface bit by bit, that is we shift the bits in to or out of the registers one bit at a time.
It would seem to be a faster and simplier way to use the parallel interface but in spite of this
modern equipment tend to use serial interfaces. The reason for this is that we are constantly
moving towards faster and faster data transfers and it gets harder to be certain that all the par-
allel bits are precent at exactly the same time so that we don´t reed some bit to late or to early.
We have reached the stage when the tracing and length of the copper paths on the printed cir-
cuit board affect the result. Are the paths
for different bits of different lengths then
the timing might get wrong, Figure 61. At
the same time it can be quit hard to route
all this parallel copper paths.
When we use a serial interface then the
number of paths are smaller and we only
need to clock one bit at a time which is
simplier.
We will get back to this when we talk
about communication interfaces.

1

2n-1

In

Out

0
(1-2-n)·Umax

0 2-n·Umax
Figure 60 Linearity error

Figure 61 Skew in a parallell signal

