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Embedded systems 
A/D- and D/A-converters 

In this paper we will discuss analog-to-digital converters (a2d-converter,A/D-converters 
ADC) and digital-to-analog converters (d2a-converter, D/A-converter, DAC). Let us start by 
defining what we mean by an analog signal and a digital signal. 

What is the difference between an 
analog and a digital signal? 
The devices we will be discussing normally handle voltages although these voltages may rep-
resent, be converted from, some other unit for example fluid level or temperature. Let us use 
voltages from now on. 
An analog signal can have any value meaning that the precision of the values are infinite. The 
presition is only limited by the number of digits we use in our representation and of our abil-
ity to measure the value detailed enough. Of course a value, a voltage, can not take on an infi-
nitely high value so the values are normally restricted to a definition span, for example zero 
(0) to +10 Volts or a symmetrical span, for example from -10 Volts to +10 Volts. As we shall 
se later on the first example is called an unipolar signal while the other signal is bipolar. 
A digital (discrete) signal on the other hand can only be represented by a limited, finite num-
ber of values. These values are normally evenly distributed so the step from one value to the 
next is always of equal height no matter what the values are. 
If we now compare these two representations and have a value of say 1.5678 Volts this value 
can be exactly represented by a analog value although the value could have even more preci-
sion that got lost when we used only four decimals in our description but that is not a limita-
tion in the value as such but in our representation of it. If we would like to represent the same 
value with a digital representation where the step between to values are 0.1 Volts this value 
would be described as 1.5 Volts or 1.6 Volts. There are two possibilities here depending on 
how the transformation from analog to digital value is performed. We will get 1.5 Volts if the 
analog value is truncated to the digital level, the extra decimals are chopped of, and we will 
get 1.6 Volts if the value is rounded to the nearest level. In the A/D-converters we will study 
later on we normally deal with truncation. 



 
Embedded systems 

A/D- and D/A-converters 
sida 2 

 

Why convert between analog and 
digital values? 
Now why do we have to convert between analog and digital values? Most of the things we 
measure and describe in our world are in some sense represented by analog values even if we 
often choose to limit the resolution and thereby restrict the number of values and thereby 
make it digital. For example we might measure a distance in meters although we could choose 
to go all the way down to micrometers or even further. 
In the world of computers, which we are dealing with in this course, the situation is an other. 
Here we are restricted to digital values not by choice but by the properties of the system. Even 
if the signal span could be large and the number of steps big the resolution is always limited. 
This means that we have to convert a value from analog to digital if we want to move it from 
the analog world to our world of computers. In the same way we will often convert our values 
back to analog when we move the values out of the computer again and into the real world. 
We do this to get a smooth transition between signal levels. 
Before we turn our attention to the converters as such we will have a look at how values could 
be represented in a computer. We will have a look at number representation. 

Number representation 
In a computer numbers can be represented in a number of ways but we will always have the 
limitation that the registers and memory positions we have in the computer consist of a lim-
ited number of digits. We have a given word length. The numbers we use in the computer can 
be described using different number bases. We shall look at the most common ones. 

Number bases 
Let us have a look at a normal integer value, for example the value 2346. This way do de-
scribe the number is a short form of the longer complete version 
 

0123 1061041031022346 ⋅+⋅+⋅+⋅=  
 
That is the position in the number marks what power of ten the digit should be multiplied 
by. The same holds true for a number with decimals, for example 
 

210 107102103273 −− ⋅+⋅+⋅=.  
 
This means that each digit can take on ten different values (zero to nine). We call the digit 
with the highest power of 10 (the left most digit) the most significant digit (MSD). In the 
same way we call the digit with the lowest power of 10 (the right most digit) the least sig-
nificant digit (LSD). 
In a computer each position in our registers and memory cells could be thought of as an 
electronic switch that can have the position ON or OFF or alternatively described as 1 and 
0. We call each position a bit. This means that we can not place our decimal numbers in 
these cells as they are. They have to be converted to numbers that can be described by 1:s 
and 0:s. We have to use a binary number base, the base is often called the radix. The bi-
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nary radix is formed in a similar way to our decimal number base and we describe our 
numbers using powers of 2 instead of powers of ten and each binary digit can only take on 
the values one (1) and zero (0). Here we call the bit with the highest power of 2 (the left 
most bit) the most significant bit (MSB) and the bit with the lowest power of 2 (the right 
most bit) the least significant bit (LSB)  Let´s have a look at an integer binary number and 
convert it to a decimal one. 
 
( ) ( ) ( ) ( )1010

012345
2 45212021212021101101101101 =⋅+⋅+⋅+⋅+⋅+⋅==binary  

 
Thankfully we can use decimal numbers when we program our computers using a high 
level language like C. Actually C doesn´t support using binary numbers at all but it does 
support using hexadecimal numbers and, as we shall soon see, the relationship between bi-
nary and hexadecimal numbers is close. 
Hexadecimal numbers use the number base 16 and because of that each hexadecimal digit 
can take on 16 different values. There are only ten decimal digits so we have to come up 
with six extra digits to complete our hexadecimal representation. These digits would in 
decimal be 10 to 15 but we prefer to use only one symbol per digit and we replace these 
numbers with the letters A to F. 
We said that hexadecimal digits are closely related to binary bits and the reason for this is 
that 4216 = . This means that each groups of four binary digits can be replaced with one 
hexadecimal digit. For example 
 
( ) ( ) ( ) === 1622 61101011001101101 D  
 
( ) ( ) ( )1010

01
10

01234567 10916131662120212120212120 =⋅+⋅=⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅=  
 
The separation into groups of four bits in the middle representation is only for conven-
ience. 
We will look at converting numbers with decimals to binary numbers later on. 

Conversion from decimal to 
hexadecimal value 
To convert a decimal value to hexadecimal representation we repeatedly do integer divi-
sion of our decimal value with the new base 16 and keep the reminder from each divi-
sion as the new digit. As we shall see in a couple of other examples this work with 
every base. 
We will illustrate the process with an example and convert the decimal value 2346 to 
hexadecimal base 
 

( ) ( )161010
16
10146

16
2346 A=⇒=  

 

1610 22
16
29

16
146

=⇒=  
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1610 99
16
90

16
9

=⇒=  

 
We get the result 
 
( ) ( )1610 922346 A=  
 

Conversion from decimal to octal value 
The princip is the same as when we converted from decimal to hexadecimal value. We 
repeatedly do integer division of our decimal value with the new base 8 and keep the 
reminder from each division as the new digit. We will illustrate with an example using 
the same value as above and convert the value 2346 to octal base 
 

2
8
2293

8
2346

⇒=  

 

5
8
536

8
293

⇒=  

 

4
8
44

8
36

⇒=  

 

4
8
40

8
4

⇒=  

 
We get the result 
 
( ) ( )810 44522346 =  
 

Conversion from decimal to binary 
value 
Once again we use the same method and repeatedly do integer division of our decimal 
value with the new base 2 and keep the reminder from each division as the new digit. 
We continue to convert the decimal value 2346 in our example 
 

0
2
01173

2
2346

⇒=  1
2
1586

2
1173

⇒=  

 

0
2
0293

2
586

⇒=  1
2
1146

2
293

⇒=  
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0
2
073

2
146

⇒=  1
2
136

2
73

⇒=  

 

0
2
018

2
36

⇒=  0
2
09

2
18

⇒=  

 

1
2
14

2
9

⇒=  0
2
02

2
4

⇒=  

 

0
2
01

2
2

⇒=  1
2
10

2
1

⇒=  

 
We get the result 
 
( ) ( )210 1010001010012346 =  
 

Word length 
We said that our computers internally use binary representation to store numbers. In most 
cases the number of positions in these registers, the register length, the word length, is 8, 
16, 32 or 64 bits. We use to refer to 8 bits as one byte, 16 bits as one (short) word, 32 bits 
as one long word or double word and 64 bits as one long long word. 
So far we have presented a number of ways to describe numbers and the basic structure of 
the registers in a computer but we need more information to find out how the numbers are 
placed in the registers. For example if we want to place an integers value in a register of 
byte size in what position do we place the digit with the lowest power of two if we don´t 
fill all bits of the register? The answer is that it could depend on the application but in most 
cases we use right alignment which means that this digit is placed in the right most position 
in the byte and the empty digits in the left most part of the word will be filled with zeros 
(0). A trickier question is when we have numbers with decimals, or binals as they are 
called when we use binary representation, between which bits do we place the binary 
point? And what about negative numbers? 
We need to look a little closer at how can we represent a number. 

Representation of numbers 
We can use a number of different criteria to divide our numbers into groups and these cri-
teria does at some points overlap so the description is not all that clear. 
To start with we can look at our representations as divided into two main groups, numbers 
represented in floating point form and numbers represented in fixed point form. 

Floating point 
A floating point number is described in the form onentexpmantrissa 2⋅  (or 

onentexpmantrissa 10⋅ ) and this means that the number of bits that we can use to represent 
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the numbers in the computer are divided into two parts, the mantissa and the exponent. 
With this representation we can describe a large span of values, observe that both the 
mantissa and the exponent in most cases can be both positive and negative and that both 
numbers as such have fixed point representation. The mantissa is normally a number in 
the interval 0.5 to 1.0 while the exponent is a positive or negative integer. Observe that 
the resolution of the value described by the mantissa is dependent of the exponent. 
As an example of this representation we will give the standard for 32 bit floating point 
values as given by the US American organization IEEE (The Institute of Electrical and 
Electronic Engineers) in their standard IEEE754. 
Here the 32 bits are divided into one sign bit (S), 8 bit exponent (E) and 23 bit mantissa 
(M). 
 
 
 
 
 
 
The actual value given by the representation is 
 

( ) ( )M.N ES 121 127 ⋅⋅−= −  
 
We can se that we have a positive value if the sign bit S is zero and a negative value if it 
is one. 
E is a positive integer restricted by 2550 << E , observe the inequalities and the 
subtraction of 127 to get the true exponent. This means that our actual exponent is in the 
interval -126 to 127. 
The value M represents the binals in our mantissa while we have a hidden integer one in 
front of this number. A number describing only binals is called a fractional number. We 
will get back to this in a while. 
This means that the smallest value we can describe with IEEE754 is 38126 10812 −− ⋅≈ ,  
while the biggest value is ( ) 3823127 1043222 ⋅≈−⋅ − . . Observe that the span of values is 
very big and that the smallest value is very small so the resolution is quit good. 
Floating point representation is not really suited for our A/D- and D/A-converters so we 
leave them for now. 

Fixed point 
In fixed point representation we only have a value (mantissa) but no exponent (or the 
exponent is zero if you like). This means that our numbers have a value span limited by 
the smallest and the largest number that can be represented with the given number of 
bits, we have no exponent that can slide the value on the value axis. 

Integer numbers 
As the name implies the binal point is in a fixed position somewhere between two 
bits in our number. One frequent placement is to the right of the right most bit, which 
means that we have no binals and the value is an integer. 

 
Figur 1 IEE754 
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Fractional numbers 
We get an other popular representation if we place the binal point to the left of the 
left most digit in our number which means that all bits are binals and we have a so 
called fractional number described as 0.N where N  are the number of bits in the 
word. It is worth noticing that with this representation we can never reach the value 
one (1), our valus are always smaller than one (1) even if we are very close to one (1) 
if all bits are ones. We can realize that this representation can only give positive val-
ues. 
With a slight modification we can also represent negative values. We introduce a 
sign bit and let our number with N  bits is divided into one sign bit (the left most bit) 
and 1−N  binals. 
The fractional representation, both with and without sign bit, is very well suited for 
the converters we will discuss later on. 
Of course there are also a number of other fixed point formats where the binal point 
is somewhere in the middle of the word but these representations are quit rare. 
Now what about negative numbers? 

Negative numbers 
We said earlier that with fractional numbers we 
could describe negative numbers as well as positive 
numbers if we introduced a sign bit in our represen-
tation. We didn´t mention it but this holds true for 
integer values as well, that is our binary word with N 
bits could consist of one sign bit and N-1 bits de-
scribing an integer or a fractional value. 
In most cases we don´t use a simple sign bit but we transform our negative values to 
what is called two-complement representation (2-complement). One might ask why? 
One of the reasons is that we can simplify our electronic circuits some what. In most of 
our microprocessor applications we need to add and subtract numbers and this is done 
with the help of electronic circuits that perform the arithmetic operations. To do both 
addition and subtraction we need two electronic circuits or one circuit that can perform 
both operations. If we represent our negative value in two complement form we can do 
away with the subtracter. Instead of subtracting the two numbers we start by converting 
the second value in the subtraction to a negative one by changing it to its two comple-
ment, which is a very simple operation, and then add the two values. That is 
 

( )2121 valuevaluevaluevalue −+=−   
 
This is not as easily done if we only use a simple sign bit. 
Now how do we take the two complement of a word, that is how do we make it nega-
tive. First we invert all the bits, that is if the bit is a zero (0) we make it a one (1) and if 
the bit is a one (1) we change it to a zero (0). Then we add one (1) to the LSB and we 
are done. An example let us take the two complement of the decimal number 26 and 
let´s treat the binary number as a byte, that is the word length is eight bits 
 
( ) ( ) ( ) →→→→= LSBtooneaddbitsallinvert 2210 111001010001101026  

 
Figure 2 Number with sign bit 
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11100110
1

11100101
+

→
 

 
Observe that if the value is negative then the MSB is always one. 
Let us make sure that we can use this for subtraction. Let us subtract 26 from 38 
 
( ) ( ) ( ) ( ) ( ) ( ) =−=−+=− 2210101010 000110100010011026382638  
 
( ) ( )

( )10

22

1200001100
11100110
001001101110011000100110

=
+

=+
 

 
We get the expected result if we ignore the memory bit we get out of the addition. 
Now let us move on to our main subject ADC:s and DAC:s. 

General A/D- and D/A-qualities 
Resolution 
If we look at an analog-to-digital converter it is supposed to convert a analog value that can 
take on any value within it´s definition span into its corresponding digital value. Since the 
digital value have a limited number of bits, n , then the number of digital values we can 
represent is also limited 
 

nN 2=  
 
For example if we have the word length byte (8 bits) then the number of possible digital 
values is 25628 =  and in most cases these values are evenly distributed within the defini-
tion range of the A/D-converter. This means that if the A/D-converter can handle voltages 
in the range zero (0) to maxU+  then the step in Volts between two consecutive digital val-
ues is 
 

n
maxmax U

N
U

2
==∆  

 
We call ∆  the resolution of our converter. In some cases we talk about the resolution as a 
fraction of the maximal value no matter what this is, that is we express the resolution as 
 

nN 2
11

=  

 
Which is a number without unit. 
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Unipolar and bipolar converters 
In the discussion above the converter only handled 
positive voltages. We call such a converter a uni-
polar converter. These converters are suitable when 
the property we want to convert from analog to 
digital always is positive. For example we might 
want to convert the measurement of the level in a 
tank and that level can hardly be negative. 
In other cases we would like to handle both positive 
and negative voltages, in most cases with a equal 
span, that is we would like to handle voltages from 

maxU−  to maxU+  We call such a converter a bipolar 
converter. This is for example normaly the situation 
when we convert a sound signal to digital. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Conversion error, SQNR 
Since our digital value has a limited number of 
values while the analog voltage can take on any 
value the conversion from analog to digital value 
will in most cases give an error. The analog value 
is not exactly at any of the discrete digital levels. 
We can realize that the largest error will be half 
the resolution, 2

∆ . 

This error is often given as the SQNR, the Signal to Quantization Noise Ratio where we 
compare the maximal level of the converter with the error and describe this using loga-
rithmic values in decibel. For the unipolar converter we have 
 

1

2n-1

In

Out

0
(1-2-n)·Umax

0 2-n·Umax  
Figure 3 Unipolar converter 

2n/2-1

In

Out

-Umax (1-2-(n-1))·Umax

-2n/2

 
Figure 4 Bipolar converter 

 
Figure 5 Rounded error signal 
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=

⋅

⋅=
∆

⋅=⋅=

N
U
U

log
U

log
levelerrorimalmax

levelimalmaxlogSQNR
max

maxmax
unipolar

2

20

2

2020 101010  

 

( ) ( ) ( ) ( ) ( )1610262120220

22

20 1011010 +⋅≈+⋅=⋅+⋅=⋅=

⋅

⋅= + nn.lognlog
U
U

log n

n
max

max  

 
For the bipolar converter we don´t compare the error with the maximum span of the con-
verter but with the maximal amplitude, that is half the maximal span. Many converters can 
use an offset voltage to change the converter from unipolar to bipolar. In both cases the 
maximal span is the same meaning that we either have the span zero (0) to maxU+  for the 

unipolar converter or 
2
maxU

−  to 
2
maxU

+  for the bipolar converter 

For the bipolar converter we get the SQNR 
 

=

⋅

⋅=
∆

⋅=⋅=

N
U

U

log

U

log
levelerrorimalmax

amplitudeimalmaxlogSQNR
max

maxmax

bipolar

2

220

2

22020 101010  

 

( ) ( ) nn.lognlog
U

U

log n

n
max

max

⋅≈⋅=⋅⋅=⋅=

⋅

⋅= 6026220220

22

220 101010  

 
We can see that the unipo-
lar converter has a 6 dB 
higher SQNR than the bi-
polar ADC but this is fic-
tive. The two calculations 
are not done in the same 
way. 
If we compare the SQNR for some commonly used 
bipolar ADC:s we get Table 1. 
The assumptions used above are in most cases not 
really true. We assumed that the maximal error was 
half the resolution but for this to be true the analog 
value will have to be rounded to the nearest digital 
level in the conversion but in most cases the value is 
rounded to the nearest digital value lower than the analog value, that is it is truncated. 
This means that the maximal error is actually the same as the resolution of the converter 
and as a result our SQNR calculations will give 6 dB lower values. 
 
 

Number of bits 8 12 16 20 24 

SQNR [dB] 48 72 96 120 144 

Table 1 SQNR for some commonly used ADC:s 

In

Error
-Umax (1-2-n)·Umax

-Umax/2n
 

Figure 6 Truncated error signal 
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Logarithmic converters, companding 
The converters we have seen so far have a linear conversion span, that is the resolution is 
the same for all levels. This means that the conversion gives better relative resolution for 
large values than it does for small values. This can sometimes be a problem and we would 
like to have a converter with a more constant relative resolution. With this we mean a con-
verter where the resolution compared to 
the present input value is constant and not 
the resolution compared to the total volt-
age span of the converter. Such a con-
verter must have a logarithmic transfer 
function and if we want to make calcula-
tions on the converted digital values we 
have to start by expanding the values back 
to linear ones. We call the converter with 
logarithmic transfer function a compand-
ing ADC. Companding is a abbreviation of 
compression- expansion. 
Now let us turn our attention to how to 
conctruct a converter. Since many ADC:s 
contain a DAC we will start with DAC:s. 

Operational amplifiers 
To understand how D/A- and A/D-converters work we need to use amplifiers as building 
blocks. We will use integrated amplifiers, so called operational amplifiers (OP) or at least see 
our amplifiers as blocks and not concern ourselves with their internal construction. 
The OP, Figure 7, is an integrated circuit that amplifies 
the differential signal supplied between the positive and 
the negative input terminal and delivers this signal to an 
output. The input impedance of the OP is very big 
(megaohms) which means that only a negligible current 
will flow in and out of the input terminals. The output 
impedance is at the same time very low (ohms or lower) 
and this means that most of the output voltage will be 
supplied to the following circuit. There will be no volt-
age division at the output. 
The amplification is very big (1 million times or more). These specifications make the OP 
very close to an ideal amplifier. The one specification that in many cases is not ideal is the 
demand for a unlimited bandwidth, meaning that it should give the same amplification no 
matter the frequency of the amplified signal. In reality there is a upper frequency limit that is 
far from infinite. In most cases the upper frequency limit gf  is inversingly proportional to the 
amplification A  of the OP circuit 
 

ttanconsAf g =⋅  
 

 
Figure 8 Operational amplifier 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

µ-law, µ=255

A-law, A=87.56

A- and µ-law companding

 
Figure 7 A- and µ-law companding 
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In our following studies we need to understand how a number of amplifier configurations 
work so we will describe these. The amplifier is in most cases an integrated circuit that we 
adopt to our needs using external components, in these cases these are resistors and in one 
case complemented by a capacitor. In the circuit diagrams we have hidden the fact that the 
circuits need to be supplied by a voltage from a power supply. 

Comparator 
The most simple configuration is the comparator 
where we compare the voltage supplied to the posi-
tive input terminal, +inU , with the voltage supplied 
to the negative input terminal, −inU , Figure 9. 
If the input signal to the amplifier, the difference 

−+ −= ininin UUU  is positive then the output signal 
will be positive but since the amplification of the 
OP is very big the amplifier will saturate and the 
output voltage will not be the amplification times 
the input signal but it will saturate the positive sup-
ply voltage to the circuit. If the differential input 
signal is negative then the amplifier will saturate at 
the negative supply voltage. This means that a input 
signal inU  larger than the reference voltage refU  
will give positive saturation while a smaller input 
voltage will give negative saturation. 
This circuit can of couse also be used not to com-
pare an input voltage to a given reference voltage 
but to compare two input voltages, Figure 10. 

Inverting amplifier 
The next circuit is what is called an in-
verting amplifier. Inverting means that a 
positive input signal will give a negative 
output signal and a negative input signal 
will give a positive output signal. We can 
see a typical schematic in Figure 11. 
For a simplified analys we can assume that 
the amplifier has infinite input resistans, 
that is no current will flow through the in-
put terminals and this means that the volt-
age difference between the two input ter-
minals is zero and since one of the terminals is grounded both terminals will have a poten-
tial of zero, 0 Volts. As a result the currents through the two resistors 1R  and 2R  are the 
same. We get 
 

 
Figure 11 Inverting amplifier 

 
Figure 9 Comparator with reference 

 
Figure 10 Comparator with two inputs 
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inout
outin U

R
RU

R
U

R
U

II ⋅−=⇒
−

=
−

⇒=
1

2

21
21

00
 

 

Summing amplifier 
For our applications we will need to 
add more inputs to the inverting 
amplifier to get a summing ampli-
fier. Let´s add a second input, Fig-
ure 12. 
 
 
 
This time we get 
 

2
2

3
1

1

3

32

2

1

1
321

000
,in,inout

out,in,in U
R
R

U
R
R

U
R
U

R
U

R
U

III ⋅−⋅−=⇒
−

=
−

+
−

⇒=+  

And we can draw the conclusion that we can sum the contributions from the inputs with 

their weighting factors 
x,in

out
R

R  and don´t forget the negative signs, the inversion. 

Non-inverting amplifier 
In the non-inverting amplifier a positive input 
signal will give a positive output signal, Figure 
13. 
Once again, since no current will flow through the 
input terminals then the two terminals  
will be at the same potential, that is 

ininin UUU == +− . Through voltage division we 
get 
 

outin U
RR

RU ⋅
+

=−
21

1  

 
And if we rewrite the expression we will get 
 

inout U
R
R

R
RR

U ⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

+
=

1

2

1

21 1  

 
We can see that the amplification is always larger than one (1). 
 
 

 
Figure 12  Summing amplifier 

 
Figure 13 Non-inverting amplifier 
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Buffer 
As a special case of the non-inverting ampli-
fier we get a buffer, Figure 14. We get this 
from the non-inverting amplifier by letting 
the value of 1R  go towards infinity, that is be 
a break, and by letting the value of 2R  be 
zero (0), that is a short circuit. From the 
equation above we see that the buffer will 
have a amplification of one (1) and might 
seem meaningless but we do have a circuit 
with a very high input resistance and a very 
low output resistance which means that the 
circuit connected to the output of the buffer 
will not draw any current from the circuit 
connected to the input of the buffer and the 
high input recistance and the low output re-
cistance also means that there will be no 
voltage division at neither the input nor the 
output, Figure 15. 
The symbol for the buffer is often simplified 
according to Figure 16. 
 
 
 

Integrating amplifier 
An integrating amplifier will integrate the 
input voltage over time, Figure 17. 
If the input voltage inU  is constant then 
 

t
CR

U
U in

out ⋅
⋅

−=  

 
where t  is the time, that is the output volt-
age is a negative going ramp, Figure 18. 
Of couse the output voltage will after some 
time reach the negative supply voltage and 
stop there. 
We can see that the slope of the ramp is 
proportional to the input voltage inU  which 
is something we will use later on. 
 
 
 
 

Uin

Uout

+

-

 
Figure 14 Buffer 

 
Figure 13 Simplified buffer 
symbol 

 
Figure 17 Integrating OP-circuit 

 
Figure 18 Output ramp 

 
Figure 15 Buffer circuit 

 
Figure 16 Simplified buffer 
symbol 
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D/A-converters 
Since some of the commonly used A/D-converters use a D/A-converter as a building block 
we will start by looking at D/A-converters. 

Resistance ladder converter 
The most direct way to create a digital-to-analog converter would be to use a set of resis-
tors in a voltage divider configuration to create the voltages we need and a set of digitally 
controlled switches to select the voltage we want. Since the D/A-converter should have a 
fixed resolution, ∆ , that is each voltage step should have the same height, then all the 
resistors in the ladder should be of equal value. The reference voltage, refU , will determine 
the voltage span of the converter. The digitally controlled switches form a net that will 
connect one out of N  possible inputs to 
the output, this is called a multiplexer 
(MUX). Which of the inputs that is con-
nected to the output is governed by the 
digital control word of the MUX. The 
number of bits in this word, n , depends on 
the number of inputs since nN 2= . For 
the voltage divider to function properly the 
circuit connected to it should not draw any 
current from the net so we need to insert a 
buffer. In Figure 19 we see a converter 
with a two bit control word (D1 D0), that 
is we can have four inputs and need four 
different, equally spaced voltage levels. 
Since the number of resistors and buffers 
will increase exponentially with the num-
ber of bits and the multiplexer will be 
more and more complex this type of con-
verter is rarely used. 

Current summing D/A-converter 
Now let us have a look at the dominant type of D/A-converter. 
We will use an inverting amplifier to build a DAC. Let us limit ourself to a unipolar con-
verter and only use four bits in the digital word to simplify things. 
If we consider the digital word we are about to convert into an analog voltage we can real-
ize that a one (1) in LSB should give a output voltage of the same magnitude as the resolu-
tion, ∆ , of the converter. A one (1) in the next bit should give twice the voltage, that is 
∆⋅2 . The next (third) bit should double this, that is give a voltage of ∆⋅4 . And so on. 

Let´s build the converter step by step and start with the LSB. We need to be able to supply 
a input voltage to the amplifier when LSB is one and take it away when LSB is zero. We 
do this by using an electronically controlled switch. Let´s use a input voltage inU  of the 
same magnitude as the maximal output voltage of the converter maxU  with the difference 

M
U

X

 
Figure 19 Two bit D/A-converter using a 
resistance ladder circuit 
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that the input voltage need to have a negative sign 
to give a positive output voltage since we use an 
inverting summation amplifier. We call this volt-
age refU− . For a one bit converter the LSB, the 
only bit, should generate an output voltage of 
 

221
maxmax

LSB,out
UU

U ==   

 
That is the amplification of our circuit should be 

2
1

−  and if we refer back to Figure 11 this means 

that 21 2 RR ⋅=  and we get Figure 20. 
 
In the same way we add another link for 
the next bit and get a two bit converter. 
Here the LSB should give a output volt-
age of 
 

422
maxmax

LSB,out
UU

U ==  

 
And the next bit twice that voltage. That 
is the amplification for the LSB should 

be 
4
1

−  and 
2
1

−  for the 

next bit. As a result we get 
Figure 21. 
If we expand the circuit up 
to four bits we get the 
complete schematic in Fig-
ure 22. 
We can realize that we 
could change the output 
span of the converter by 
changing the value of the 
feedback resistor or by 
changing refU  but the latter 
is not as common. 
This is a basic schematic that won´t work that well if we increase the number of bits. If we 
have 16 bits the largest input resistor would have to have a resistance that is 32768 times 
the smallest resistor value. In most cases the converter is not a discrete schematic but it is 
made as an integrated circuit and it is quit hard to integrate resistors with so big differences 
in values and the way the values of the resistors change with temperature will not be the 
same for different values. We will therefore reconstruct our schematic with resistors of 
similar values. 

 
Figure 22 Four bit DAC 

 
Figure 20 One bit DAC 

 
Figure 21 Two bit DAC 
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R-2R ladder DAC 
Let´s go back to the one bit converter 
and study Figure 23. 
Let us calculate the current floating into 
the feedback resistor fR . The current 
comes from the reference voltage 
source and are split into to resistors of 
equal value. Observe that the other end 
of the resistors are connected either to 
ground or to the negative input of the 
operational amplifier and this input is at 
the same potential as the positive input 
that is at ground level. We call the zero 
level at the negative input a virtual 
ground. The same current flows in both 
resistors and the total current is 
 

R
U

R
U

R
U

I refrefref =
⋅

+
⋅

=
22

 

 but only one of the two currents is passed on to fR  to give 
 

R
UII ref

f ⋅
==

22
 

 
 This is as expected for a one bit converter. A one (1) in the input word (of one bit) 
should give a output voltage equal to the resolution 
 

221
maxmax

ff
UU

RI ==⋅=∆

 
So far we can not see the 
meaning of the second re-
sistor but let us add an-
other bit to the digital 
word and add to the sche-
matic to get Figure 24. 
If we do some calculations 
to simplify the resistor net 
we shall see that the total 
current from refU  still is 
 

R
U

I ref=  
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-
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Figure 23 One bit R-2R ladder DAC 
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Figure 24 Two bit R-2R ladder DAC 
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and a one (1) in MSB will give a output voltage of 
2
maxU

 which is as expected. 

We can see that the path leading from refU  to MSB and the path leading to LSB carry 

the same current, 
2
I , which is half the total current. The path leading to LSB is then 

split into two paths carrying the same current, 
4
I . This means that the current through 

the MSB switch is twice as big as the current flowing through the LSB switch and the 
result is that the MSB path will give twice the output voltage of LSB as expected. 
Now let us upscale the schematic to four bits and leave the analysis to private studies, 
Figure 25. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As a conclusion we can see that the schematic only uses two different resistance values 
in the input net and this makes the circuit much easier to integrate while the changes 
with temperature will me more even. The resistance net is called a R-2R ladder net. 

Smothing filter 
If we look back we might remember that an analog voltage should be able to take any 
value within it´s definition span. This is not quit true for the output voltage from our 
DAC:s. It can only take on a number of discrete values since the digital word we are con-
verting into an analog one only can give a discrete number of possible values nN 2=  gov-
erned by the number of bits in the word. This means that if we update the output from the 
DAC on a regular basis we will get a series of values that jump between discrete voltage 
levels, Figure 26. To smooth this out we insert a low pass filter after the DAC. 

 
Figure 25 Four bit R-2R ladder DAC 
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A low pass filter (LP) is a filter that 
stops the higher frequency contents in 
the signal but lets the lower frequencies 
pass. The continuous update of the out-
put voltage will generate a signal with 
the same frequency as the frequency of 
the update and overtones to this, that is 
signals of frequencies that are integer 
multipliers of the update frequency. The 
low pass filter is supposed to remove 
these signals of higher frequencies. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 27 DAC and LP filter 
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Figure 28 Unfiltered and filtered output from DAC 
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Figure 26 Output from DAC 
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A/D-converters 
Flash converter 
The A/D-converter should con-
vert an analog voltage to it´s 
corresponding digital value. The 
most direct approach here is to 
compare the analog input volt-
age with voltages corresponding 
to the discrete levels of the 
digital signal, Figure 29. We 
will use the same type of resis-
tor ladder that we used in the 
resistor ladder D/A-converter 
and use comparators to do the 
comparison with the analog in-
put signal. 
The resulting output signal will 
not be the digital signal we are 
looking for. It will be a kind of 
thermometer scale where all 
comparators with a lower refer-
ence voltage than the analog in-
put voltage will be positively 
saturated while the comparators 
with reference voltages higher 
than the input signal voltage 
will be negatively saturated. 
We can use a logical decoding 
net to convert this set of bits 
into the wanted digital word, 
Table 2. 
This converter will use a num-
ber of parallel comparisons to 
do the conversion and the op-
eration is very fast and this is 
the fastest type of ADC. We 
call it a flash converter. The 
circuit have the same draw 
backs as the resistance ladder DAC, the number of resistors and comparators will be big if 
we want many bits in the digital word. We get a complicated circuit and the number of 
elements to trim to get a precise result are large. 
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Figure 29 ADC with resistance ladder 

Interval Bits from 
comparators 

Binary word 

4
0 refU
−  

000 00 

24
refref UU

−  
001 01 

4
3

2
refref UU ⋅

−  
011 10 

ref
ref U

U
−

⋅

4
3

 
111 11 

Table 2 Bits from comparators and binary words 
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Counting ADC 
We can get a simplier circuit if we use a D/A-converter as the center block of our A/D-
converter. In the simpliest form this ADC use a binary counter, a counter that counts 
through all our binary values from zero to the highest value, to form the binary values that 
we use as the input words that the DAC converts into analog values. The counter is 
controlled by a clock that generates the 
counting pulse. 
We compare the voltage generated by 
the DAC with the analog input voltage 
and stop the count when the output 
voltage from the DAC have reached 
the same level as the analog input 
voltage. This way we have found the 
digital value corresponding to our 
analog input voltage. We call the con-
verter an up-counting ADC, Figure 30 
and Figure 31. 
The draw back of this circuit is that the time 
to find the digital output value is highly de-
pendent of the level of the input voltage. If 
the voltage is low then the counter doesn´t 
have to generate many pulses to reach the 
correct digital value but if the input voltage 
is high then we will need many pulses. This 
have two negative effects. First of all the 
conversion time will be long (many clock 
pulses) for a high input voltage. Secondly 
the conversion time is very dependent on the 
voltage level and we have no way of know-
ing how long time each conversion will take, 
something that it often is an advantage to 
know. 

ADC using successive approximation 
We need to improve on the up-
counting ADC in two ways. We need 
to shorten the longest conversion 
time and we need to make the con-
version time independent of the level 
of the analog input voltage. To do 
this we will replace the counter that 
controls the DAC with another digi-
tal net that tests bit by bit of the 
digital word, Figure 32. 
We start by testing MSB in the digi-
tal world. That is we apply a digital 

 
Figure 30 Up-counting ADC 
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Figure 32 ADC using successive approximation 

 
Figure 31 Up-counting ADC, time diagram 
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word to the DAC with a one (1) in MSB while the rest of the bits are zero (0) and compare 
the resulting voltage to the analog input voltage. This means that we test if the analog input 
voltage lies in the upper or lower half of the DAC:s voltage span. If we are in the upper 
half we keep the one (1) in MSB when we move on to the next bit while we reset MSB to 
zero (0) if we are in the lower half, Figure 33. 
After this we continue with the next bit and test this bit with a one (1) while setting MSB 
to the level decided in the first step, Figure 34. 
This way we continue bit by bit till we have passed LSB and are finished. This means that 
our conversion will always consist of n  comparisons, where n  are the number of bits in 
the digital word, and the conversion time is not dependent on the level of the analog input 
voltage. We call the conversion process successive approximation. 
Figures 33 - 37 illustrate the flow for a three bit word where the resulting binary word is 
1011. 
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Time
 

Figure 33 MSB of conversion 
 

Figure 34 Bit 2 in conversion 

 
Figure 36 LSB in conversion 

 
Figure 35 Bit 3 in conversion 
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Integrating ADC:s 
An integrating ADC is in a way similar to a counting ADC but here we don´t use the 
counter value to control a ADC but we use it to count time. The time we count is the time 
taken for a capacitor to charge to the same potential as the analog input value. The higher 
the value, the longer the time. We use the integrating OP-circuit that we presented earlier 
in Figure 17. 

Single-slope integrating ADC 
If we use a negative input voltage refU−  to the in-
tegrator we can let the integrator ramp up to the 
same voltage as the analog input voltage while we 
let a counter count the number of clock pulses 
generated during the measurement time. 
 

( )
t

CR
U

t
CR

U
U refref

out ⋅
⋅

−=⋅
⋅

−
−=  

 
When we reach the same level as the analog input 
voltage we stop the count, Figure 38. We can see 
that the higher the input voltage the longer it will 
take to reach the end level so the count is directly 
proportional to the value of the input voltage. 
The switch across the capacitor is there to make sure the capacitor is uncharged when 
the integration starts, that is it will open when the measurement period starts. We call 
the circuit a single-slope integrating ADC, Figure 39. 
If we want some accuracy in the measurement we need the count to be pretty long so 
the converter is slow. We assume that the input voltage is constant under the integration 
time which means that we can only deal with slowly varying signals. But one positive 
thing here is that if we have noise on the input signal, that is small random fluctuations 
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Figure 37 Result of conversion 

t
CR

Uref ⋅
⋅

 
Figure 38 Up-counting ADC, time 
diagram 
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in the analog voltage over time, then these variations could cancel out during the inte-
gration period. This converter is sensitive to variations in the resistor and capacitor 
value and to fluctuations in the frequency of the clock used to control the counter so the 
circuit is seldom used. But it has developed into another ADC that is very common spe-
cially in multimeters. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Dual-slope integrating ADC 
The basic circuit of the dual-slope integrating ADC is very similar to the single-slope 
converter but with some added features, Figure 40. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In this circuit we start by letting the integrator integrate the input voltage inU  over a 
fixed time reft . This means that the output voltage after this period xU  is directly 
proportional to the input voltage inU  
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Figure 39 Single-slope integrating ADC 

 

Figure 40 Dual-slope integrating ADC 
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Then we replace the input voltage 
with a reference voltage refU . This 
voltage should have an opposite 
sign to the input voltage. This 
means that the output voltage will 
now start to ramp down 
 

t
CR

U
UU ref

PhasePhase ⋅
⋅

−= 12  

 
During this second time we let a 
counter count the time and we stop the count when the output voltage reaches zero (0) at 
the time xt . 
The higher the input voltage inU , the higher the output voltage after the first integration 

xU  and the longer the second integration time xt . We get the relationship 
 

ref

x

ref

x

t
t

U
U

=  

 
We can see that if refU  equals the maximal voltage of the converter, that is the voltage 
that gives the maximal value of our digital value, then this relationship will give time 
relative this maximal time. 
This converter is more immune to fluctuations in the component values and the clock 
frequency than the single slope converter since we use the same components and clock 
in both integrations. Since we have two integrations here this converter is even slower 
than the single-slope converter. We call it a dual-slope ADC. This converter can cancel 
noise in the input signal the same way that the single-slope converter can. 

Sampling 
To introduce the concept of sigma-delta modulators we need to start by introducing the 
concepts of introduce continous A/D-conversion and sampling. 
In most cases when we are about to convert a analog signal to it´s digital equivalent we 
need to take into consideration that the signal is changing with time and to get a true repre-
sentation of the signal we need to do several conversions of the signal. In most cases we do 
this on a regular basis that is we have a fixed time interval, T , between each conversion. 

We say that we sample the signal with a sampling frequency of 
T

f s
1

= . 

The so called sampling theorem or the Nyquist theorem tell us that to get a true representa-
tion of the signal we need to sample the signal at least twice during each period of the sig-
nal. This means that our sampling frequency needs to be more than twice as high as the 
highest frequency content in the signal. 
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Figure 41 Ramps of dual-slope integrating ADC 
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Aliasing 
If we don´t obey this rule the high fre-
quency content of our signal will disturb 
the low frequency part of the signal. The 
high frequency signals will give so called 
aliasing of the signal and show up as sig-
nals with frequencies lower than half the 
sampling frequency, Figure 42. 
In a practical situation we can never 
guarantee that the signal we sample does 
not contain this higher frequency compo-
nents, there might be disturbances or 
what ever, so we need to remove these 
frequency components before the sam-
pling. To do this we let the signal pass a 
low pass filter (LP) that only lets signals 
with frequencies lower than half the 
sampling frequency pass. We introduce 
an anti-aliazing filter, Figure 43. In real-
ity there are no filters that block out the 
high frequencies totally but we can at 
least attenuate them so much that they disappear in the resolution of the ADC. A well 
know example of this process is that CD-records are sampled with the sampling fre-
quency 44,1 kHz to pass the signal frequencies we can hear, that is up to 20 kHz. This 
means that we need a sharp filter that can pass all signals with frequencies up to 20 kHz 
and attenuate all signals with frequencies higher than half the sampling frequency, that 
is higher than 22,05 kHz. The filter has to be placed before the sampling and the AD-
conversion, that is while the signal still is analog and it is quit hard to synthesize so 
sharp an analog filter. This is one of the problems we are about to address with the 
sigma-delta converter. 

Over-sampling 
Over-sampling means that we use a sampling frequency that is much higher than what 
is needed to obey the sampling rule. The high sampling frequency is in most cases an 
integer multiple of the needed sampling frequency, sfN ⋅ . By doing this we can ease 
the demands on our anti-aliazing filter. Now the analog filter will only have to attenuate 

signals with frequencies above 
2

s
s

f
fN −⋅ , Figure 44. 
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Figure 43 Anti-aliasing filter 
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Figure 42 Aliasing 
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After the sampling we use a process called down-sampling where we decimate the sam-
pling frequency to sf . Before we do this we still need to introduce a filter that removes 

all signals with frequencies above 
2

sf
  but this time we use a digital filter, since we are 

still in the digital domain, and it is much easier to create a sharp digital filter than the 
corresponding analog filter, Figure 45. 
 
 
 
 
 
 
 
 
 
 
 

Sample and hold 
Most A/D-converters, ex-
cept the integrating ones, 
expect the input voltage to 
be constant during the con-
version time. To make sure 
that this is true we can take 
a short sample of the signal 
and then use a capacitor to 
keep it constant under the 
conversion time, Figure 46. 
We call the circuit a sample and hold circuit (S&H), Figure 47. 
In the figure we have added two buffers. The circuit connected before the sample and 
hold circuit will always have a finite output impedance and this will form a RC-circuit 
together with the capacitor in the S&H and this RC-net will have a time constant that 
prevents the capacitor from instantly reaching the input voltage. This time constant is 

CR ⋅=τ  and we shorten the time by inserting the buffer which has a low output resis-
tance. 

 
Figure 44 Anti-aliasing filter at 2 times oversampling 

 

Figure 46 Sample and hold circuit 

 
Figure 45 Anti-aliasing filter at 2 times oversampling complemented by digital filter 
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On the other hand we find that the 
circuit connected after the S&H will 
discharge the capacitor through its 
input resistance and we make this 
discharge small by inserting the other 
buffer with its high input resistance. 
In reality we can not make the time 
during which we sample the input 
signal infinitly short so we will track 
the input signal during a short period. 
We call this a track and hold circuit, 
Figure 48. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The sigma-delta modulator 
Now let us move on to the 
sigma-delta converter (∑-∆ 
modulator), Figure 49. 
As we can see from Figure 
41 we compare the input 
signal with a signal that is 
feed back from the output 
of the circuit, we subtract 
the latter from the former. 
The signal from the sub-
traction is feed to a inte-
grator that integrates this 
difference over time. The 
output from the integrator 
is connected to a one-bit 
ADC, which in practice is a 
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Figure 49 Sigma-delta modulator 
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Figure 47 Sample and hold diagram 
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Figure 48 Track and hold diagram 
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comparator that generates a high output signal, a one (1), when the input signal to the 
comparator is higher than zero and a negative signal, a zero (0), when the signal is nega-
tive. The comparator will do this comparison with a over-sampled sampling frequency 

sfN ⋅  governed by the latch controlled by the sampling clock.  This means that this output 
signal is a series of ones and zeroes, a one-bit signal or a serial signal. This signal is then 
feed back through a one-bit DAC which in reality only is an interface that changes the 
level of the signal from one (1) and zero (0) to positive and negative supply voltage re-
spectively. 
The one-bit output signal is then down-sampled to the lower sampling frequency sf  and 
this process means that we take an average over 
the N  samples during N sampling periods, N  
is the oversampling factor. We use this average 
to form a new word with more bits than one. 
The number of bits can be ( )Nlog2 . 
Now why do we do all this? We can remember 
from earlier that our conversion from analog to 
digital signal had a limited resolution governed 
by the number of bits used. If we study the fre-
quency spectra of this signal we will find that 
the in addition to the signal we have a noise 
floor that is spread over the whole frequency 

band up to 
2

sf
, Figure 50. 

 When the signal is oversampled we 
spread the same noise over the larger fre-

quency band 
2

sfN ⋅
 which means that the 

noise at each frequency gets lower, Figure 
51. 
When we down-sample the signal we use a 
low pass filter to remove the high fre-

quency content above 
2

sf
 and that means 

that we filter of a large portion of the 
noise. For every time we increase the sam-
pling frequency by a factor of four (4) the 
SQNR will increase by a factor of 6 dB 
which is the same as adding one bit to the 
word length. At the same time one can 
show that the sigma-delta modulation 
shapes the noise so that a large portion of 
noise will be pushed to higher frequencies. 
That is more of the noise will be moved to 
the frequency band that is filtered off in 
the down-sampling process and the gain in 
SQNR will be greater than stated above, 
Figure 52. 
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Figure 50 Signal with noise floor in the 
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Figure 51 Signal with noise floor in the span up to  
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Figure 52 Noise shaping 
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ADC:s with multiplexer 
In many cases we need to convert 
more than one analog signal to its 
digital counterpart. In this cases we 
can save money and circuitry my using 
only one ADC and connect the analog 
signals one by one to the ADC and do 
the conversions in sequence. To do 
this we connect an analog multiplexer 
(MUX) in front of the ADC to take 
care of the switching and in many 
cases we integrate the MUX into the 
ADC circuit, Figure 53. 
This savings have some draw backs. 
Later on we will talk about the conver-
sion time, that is the time it takes for 
the ADC to perform one analog to 
digital conversion, and in that context we will see that the time between consecutive con-
versios on a single channel in the sequence will increase proportionally with the number of 
channels. 
The we do the set of conversions in a sequence means that we can not sample and convert 
two signals at exactly the same time. This could be a disadvantage for example when we 
would like to compare the phase relation between two signals. 

Angle decoders 
We will now move to a little odd group of devices that don´t deal with voltages as input 
signals but still can be categorized as A/D-converters. These are angle detectors that give a 
digital reading decoding the rotation, the angle of an axis. We can use the same princip to 
detect linear movement instead of rotating movement. 
We can divide this into to groups, incremental decoders and absolute decoders. 

Incremental angle decoder 
In the incremental decoder we do not detect 
the angle as such but the number of steps we 
have moved where the steps are the angular 
resolution of the detector, that is we don´t 
detect the absolute angle but the movement. 
To do this we attach a disc with slots to the 
axis. The slots are evenly distributed around 
the circumference of the disc and we use 
some kind of detector to detect when a slot 
passes and we count the pulses that are gen-
erated during the rotation, Figure 54. The de-
tector is in many cases an optical device con-
sisting of a LED and a photo transistor or a 

 
Figure 54 Incremental angle detector 

 
Figure 53 ADC with multiplexer 
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magnetic device consisting of some kind 
of reed relay. 
We can understand that to transform the 
count to a absolute angle we need to reset 
the device, that is place it at the angle 0º 
before we start the detection. 
The counting of the number of resolution 
steps and not the absolute angle makes it 
possible to detect angles of more than 
360º. 
With just one circle of slots we can not 
detect the direction of the rotation. To do 
this we need two circles of slots that are 
slightly out of phase which means that we 
can detect the direction of the rotation by 
detecting which of the slots that passes 
the detector first, Figure 55. 

Absolute angle decoder 
In an absolute angle decoder we detect the 
absolute angle which means that we need a 
way to tell different angles apart. We do 
this by placing a number of detection cir-
cles around the shaft. The direct way is to 
use as many circles as we have bits in the 
digital word that gives the angle. Let us 
look at the normal binary coding, for sim-
plicities sake we use only three bits, Figure 
56. 
Now when we rotate the shaft we will go 
from code to code. Let us look at the tran-
sition from 3 to 4 that is from 011 to 100. 
In this transition we can see that all three bits 
will change their state but the reading of the code 
will have some resolution and we can be pretty 
sure that the transition of the three bits will not 
be detected at exactly the same angle. This 
means that the transition will give a number of 
false codes for example the series in Table 4. 
This is clearly not the wanted behaviour. To get 
a correct function we need to change the coding 
from the ordinary binary coding to a coding that 
only changes the state of one bit in each transi-
tion. On such code is the Gray code, Table 5. 
If we then want to translate this to the ordinary decimal code we only need a look up ta-
ble to match the two codes. 
 

 
Figure 55 Incremental angle detector with 
direction detector 

Decimal Bit 2 Bit 1 Bit 0 
0 0 0 0 
1 0 0 1 
2 0 1 0 
3 0 1 1 
4 1 0 0 
5 1 0 1 
6 1 1 0 
7 1 1 1 

Table 3 Binary coding, three bits 

 
Figure 56 Absolute angle detector 
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Voltage to frequency converter 
The last type of ADC we will mention briefly is the voltage to frequency converter. This 
circuit consist of a oscillator whose frequency is linearily proportional to a control voltage. 
The output is still analog since the frequency can take on any value but it is quit easy to use 
a digital counter to measure the period of the generated pulse signal and from this generate 
a digital reading that is proportional to the analog input signal to the voltage to frequency 
converte, Figure 57. 
 
 
 
 
 
 
 
 

A/D- and D/A-specifications 
When we studie the data for a given converter or are about to decide which converter to use 
we need to studie the converter specifications in the datasheets. We will study the most im-
portant data. Some of the specifications are the same for the A/D-converter and the D/A-con-
verter while some of them differ. 

Voltage span 
The voltage span is for the A/D-converter the analog input voltage that the converter can 
accept while it is the possible output voltages for the D/A-converter. The span is in most 
cases unipolar or bipolar meaning that it either spans from 0 Volts to som maximal voltage 

maxU  or have a symmetrical span maxU± . In some cases we can use a offset voltage to 
change the span of the converter from unipolar to bipolar. Observe that the output voltage 
from a DAC will never reach maxU . It will always be one resolution step lower, that is 

∆−maxU . 

Bit 2 Bit 1 Bit 0 Decimal Correct/false
0 1 1 3 Correct 
0 1 0 2 False 
1 1 0 6 False 
1 0 0 4 Correct 

Table 4 Fake codes in the transition from 011 to 
100 

Decimal Bit 2 Bit 1 Bit 0 
0 0 0 0 
1 0 0 1 
2 0 1 1 
3 0 1 0 
4 1 1 0 
5 1 1 1 
6 1 0 1 
7 1 0 0 

Table 5 Gray coding, three bits 
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Digital
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train Period time

 

Figure 57 Voltage to frequency converter 
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Resolution 
We have talked about the resolution earlier but if we look in the datasheet this will nor-
mally not be specified av a fraction of full scale deflection (FSD) but only be given as the 
number of bits used by the converter. 

Accuracy 
Earlier we didn´t see any difference between the resolution and the accuracy, that is we 
meant in both cases the smallest voltage difference we could detect or generate. If we look 
in the datasheets they usually mean something else with accuracy. Every conversion gener-
ates some error due to the design of the converter and this is given as a maximal error in 
number of resolution steps and it is normally given as LSBx±  and typical values might be 

LSB4
1± , LSB2

1±  or LSB1± . 

Conversion time 
This only applies to A/D-converters and is the necessary time to convert the analog input 
value to the digital output value. In some cases the datasheet give more than one time with 
different levels of accuracy. Of course a shorter time will give a lower accuracy. 
The conversion time, ct , will limit the maximal sampling frequency in our system. We 
have to be able to carry out the conversion before a new sample arrives and this means that 
the maximal sampling frequency will be 
 

c
max,s t

f 1
=  

 
If we have a system where the ADC contains a multiplexer to connect a sequence of N  
analog inputs to the converter then we have to carry out N  conversions before we can 
make the next conversion on the same channel and this means that the maximal sampling 
frequency on each channel will be 
 

c
MUXmax,,s tN

f
⋅

=
1  

 

Settling time 
This is the equivalent to conversion time when we talk about D/A-converters. It is the time 
it takes before the analog output signal converted from the digital word have settled to a 
stable value. The output voltage stability is given as being within some error range, for ex-
ample LSB2

1± . 

 



 
Embedded systems 

A/D- and D/A-converters 
sida 34 

 

Offset error 
An offset error is a shifting of the signal up-
ward or downward meaning that the A/D- or 
D/A-conversion will always generate an error 
of the same amount no matter the signal value, 
Figure 58. 
 
 
 
 
 
 
 
 
 
 

Amplification error, scale factor error 
The amplification error is an error in the slope 
of the transfer curve, Figure 59. In contrast to 
the offset error the amplification error will in-
crease with the magnitude of the signal. An-
other name for this error is scale factor error. 
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Figure 58 Offset error 

 
Figure 59 Amplification error 
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Linearity error 
The linearity error is an error in the linearity 
of the transfer function meaning that the error 
at different levels in the transfer function dif-
fer but it will not necesserily increase with the 
magnitude of the signal, Figure 60. 
 
 
 
 
 
 
 
 
 
 

Parallel or serial interface 
So far we have hardy mentioned the digital interface from the ADC and to the DAC. These 
interfaces could be either parallel or serial. In the parallel case all the bits in the digital word 
are present att the same time at parallel wires. In the serial case we clock the bits in and out of 
the interface bit by bit, that is we shift the bits in to or out of the registers one bit at a time. 
It would seem to be a faster and simplier way to use the parallel interface but in spite of this 
modern equipment tend to use serial interfaces. The reason for this is that we are constantly 
moving towards faster and faster data transfers and it gets harder to be certain that all the par-
allel bits are precent at exactly the same time so that we don´t reed some bit to late or to early. 
We have reached the stage when the tracing and length of the copper paths on the printed cir-
cuit board affect the result. Are the paths 
for different bits of different lengths then 
the timing might get wrong, Figure 61. At 
the same time it can be quit hard to route 
all this parallel copper paths. 
When we use a serial interface then the 
number of paths are smaller and we only 
need to clock one bit at a time which is 
simplier. 
We will get back to this when we talk 
about communication interfaces. 
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Figure 60 Linearity error 

 
Figure 61 Skew in a parallell signal 


