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1 Introduction

For most typed languages, a closed object of a type can be computed to a value,
that is, to a term beginning with a constructor. An object depending on free
variables, however, cannot in general be computed to a value: the normal form
of such an object may begin with a selector or a variable.

In this paper we will give a necessary and sufficient condition on the type of
a free variable for an open object containing that variable to be computable to a
value. The condition is formulated in terms of the type theoretic interpretation
of Kleene’s slash [8] given in Smith [13], and corresponds to the condition in [8]
satisfied by formulas which slashes themselves, that is, to formulas satisfying
C | C. The existence of values of open objects is of interest, for instance, in
partial evaluation [7] and pattern matching [2, 4].

When optimizing programs extracted from proofs, an important role is played
by sets corresponding to Harrop formulas [6] since they are “without computa-
tional content” [12, 16]. We will define what it means for a set to be without
computational content and then show that a set is without computational con-
tent if and only if it slashes itself; the sets satisfying this condition strictly
contain the Harrop sets introduced in [13].

In the formulation of Martin-Löf’s type theory that we are considering, the
judgemental equality a = b ∈ A is understood as definitional equality; it is
by having an intensional equality that it becomes possible to obtain results
concerning computations when interpreting Kleene’s slash. Lambek and Scott [9]
used Kleene’s slash in a type theory, formulated within category theory and with
an extensional equality; in that approach, results of the kind we have in this
paper cannot be obtained.

In the interpretation in [13] of Kleene’s slash for arithmetic, Martin-Löf’s type
theory without universes was used. Since the only way to obtain dependent sets
when not having a universe is by the propositional equality, no really, from the
computational point of view, interesting dependent sets can be constructed in the
type theory considered in [13]. In this paper, which is focused on computations,
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we leave out the propositional equality but add a universe and extend the results
in [13] to this theory. The main point of a universe is, in this context, that it
can be used to define dependent sets by recursion. However, the definitions and
results below are of interest already in the case of no dependent sets. Besides
the universe, the only basic sets we consider are the natural numbers N , the
one element set ⊤ and the empty set ⊥, but the definitions and results below
can easily be extended to a theory which include other sets defined by strictly
positive inductive definitions.

We follow the notation in [11] and, by the terminology of Martin-Löf’s type
theory, I will use the word “set” instead of “type,” which commonly is used in
connection with programming languages.

2 Definition of slash in type theory

In arithmetic, slash is a relation Γ | A between a list Γ of closed formulas and a
closed formula A; this is in type theory translated to a relation Γ | t ∈ A where
Γ is a context and t ∈ A a judgement in the context Γ.

Γ | t ∈ A is defined by an inductive definition of the same kind as the defi-
nition of the computability predicate CompA(t) when using Tait’s method [15]
to prove that closed typable terms are normalizable. In fact, the computability
predicate can be obtained from the slash by letting Γ be the empty context, that
is, CompA(t) = | t ∈ A. The possibility of introducing a parameter similar
to the context Γ in the definition of the computability predicate has also been
realized by Hallnäs [5]. For a more detailed discussion of the type theoretic in-
terpretation of slash, see [13], and for normalization proofs of Martin-Löf’s type
theory, I refer to [10, 14, 3].

The definition of Γ | t ∈ A is by the following clauses.

1. Γ | t ∈ A+B if Γ ⊢ t ∈ A+B, Γ ⊢ t = inl(a) ∈ A+B for some term a

such that Γ | a ∈ A, or Γ ⊢ t = inr(b) ∈ A+B for some term b such that
Γ | b ∈ B.

2. Γ | t ∈ Π(A,B) if Γ ⊢ t ∈ Π(A,B), there exists a term b(x) such that
Γ, x ∈ A ⊢ b(x) ∈ B(x), for all terms a, Γ | a ∈ A implies Γ | b(a) ∈ B(a),
and Γ ⊢ t = λx.b(x) ∈ Π(A,B).

3. Γ | t ∈ Σ(A,B) if Γ ⊢ t ∈ Σ(A,B), there exist terms a and b such that
Γ | a ∈ A, Γ | b ∈ B(a), and Γ ⊢ t = 〈a, b〉 ∈ Σ(A,B).

4. Γ | t ∈ N if Γ ⊢ t ∈ N and Γ ⊢ t = n ∈ N for some numeral n.

5. Γ | t ∈ ⊤ if Γ ⊢ t ∈ ⊤ and Γ ⊢ t = tt ∈ ⊤.

6. Γ | t ∈ ⊥ does not hold for any t.

When including a universe U in type theory, the definition of slash must be
extended to the set U and the decoding set Set(a) of an element a in U . The



definition of slash for these sets is made simultaneously, reflecting that the defi-
nitions of U and Set(a) depend on each other.

7. Γ | t ∈ U and Γ | s ∈ Set(t) if Γ ⊢ t ∈ U , Γ ⊢ s ∈ Set(t) and one of
the following clauses holds.

(a) Γ ⊢ t = a+̂b ∈ U for some terms a and b, Γ ⊢ a ∈ U and Γ ⊢ b ∈ U ,
such that Γ | a ∈ U and Γ | b ∈ U . Γ | s ∈ Set(t) then means that
Γ | s ∈ Set(a) + Set(b).

(b) Γ ⊢ t = Π̂(a, b) ∈ U for some terms a and b, Γ ⊢ a ∈ U and Γ, x ∈
Set(a) ⊢ b(x) ∈ U , such that Γ | a ∈ U and, for all terms u, Γ | u ∈
Set(a) implies Γ | b(u) ∈ U . Γ | s ∈ Set(t) then means that Γ | s ∈
Π(Set(a), (x)Set(b(x))).

(c) Γ ⊢ t = Σ̂(a, b) ∈ U for some terms a and b, Γ ⊢ a ∈ U and Γ, x ∈
Set(a) ⊢ b(x) ∈ U , such that Γ | a ∈ U and, for all terms u, Γ | u ∈
Set(a) implies Γ | b(u) ∈ U . Γ | s ∈ Set(t) then means that Γ | s ∈
Σ(Set(a), (x)Set(b(x))).

(d) Γ ⊢ t = N̂ ∈ U . Γ | s ∈ Set(t) means that Γ | s ∈ N .

(e) Γ ⊢ t = ⊤̂ ∈ U . Γ | s ∈ Set(t) means that Γ | s ∈ ⊤.

(f) Γ ⊢ t = ⊥̂ ∈ U . Γ | s ∈ Set(t) means that Γ | s ∈ ⊥.

Note that when not having a universe, there are no dependent sets and the
definition of Γ | t ∈ A is then an inductive definition on the structure of the set
A, which simply is built up from the basic sets by +, → and ×.

The main result for the interpretation of slash in type theory is the following
theorem.

Theorem 1. Let ∆ be a context x1 ∈ D1, . . . , xm ∈ Dm(x1, . . . , xm−1)
and d1, . . . , dm terms such that Γ | di ∈ Di(d1, . . . , di−1), 0 < i ≤ m. Then

∆ ⊢ a(x1, . . . , xm) ∈ A(x1, . . . , xm) implies Γ | a(d1, . . . , dm) ∈ A(d1, . . . , dm).

The proof is by induction on the length of the derivation of ∆ ⊢ a(x1, . . . , xm) ∈
A(x1, . . . , xm) and follows closely a normalization proof for type theory based
on Tait’s method; in fact, the context Γ will act just as a parameter in the proof
and the usual normalization proof is obtained when Γ is the empty context.
The proof for type theory without a universe is given in [13]; the proof with a
universe is a straightforward extension of that, given the following lemma.

Lemma 1. Let ∆ be a context and d1, . . . , dm terms as in theorem 1. Then

∆ ⊢ A(x1, . . . , xm) = B(x1, . . . , xm), ∆ ⊢ a(x1, . . . , xm) ∈ A(x1, . . . , xm) and

Γ | a(d1, . . . , dm) ∈ A(d1, . . . , dm) implies Γ | a(d1, . . . , dm) ∈ B(d1, . . . , dm).

This lemma is needed for the induction step in the proof concerning the rule

a ∈ A A = B

a ∈ B



For the theory without a universe, this lemma is easy to prove by structural
induction on the set A. When including a universe, the lemma is no longer
trivial, but a proof of it can be obtained from the proof of proposition 1 in
Coquand [3], which is a corresponding result for the computability predicate.
Coquand’s proof is by a computability argument and, again, Γ can be introduced
as a parameter in that proof without any changes in the proof.

An alternative way of proving the lemma is to use a crucial result in [3] on the
uniqueness of values together with the predicativity of Martin-Löf’s set theory.
Predicativity means here that if a set is introduced then its parts must already
have been defined; for instance, if at a certain stage the set Π(A,B) is introduced
then we must at earlier stages know that A is a set and that B(a) is a set for all
a ∈ A. The predicativity can be seen directly from the rules of forming sets, but
there is also a metamathematical proof of this in Aczel [1] for set theory with
one universe, that is, the theory we are considering. Predicativity gives that we
obtain a well-ordering from the transitive closure of the relation < defined by

(i) D < D + E,

(ii) E < D + E,

(iii) D < Π(D,E),

(iv) E(d) < Π(D,E) for all d ∈ D,

(v) D < Σ(D,E) and

(vi) E(d) < Σ(D,E) for all d ∈ D.

In [3] it is shown that if two sets on constructor form are definitionally equal then
the constructors are the same and the parts are definitionally equal; for instance,
if Π(A,B) = C(D,E) then C is Π, A = D and x ∈ A ⊢ B(x) = E(x). Using this
result and the fact that Γ | a ∈ A implies that A is definitionally equal to a set
on constructor form, we can use the above well-ordering and straightforwardly
prove the lemma by transfinite induction.

From theorem 1 we get

Corollary 1 Let z ∈ C | c ∈ C. Then z ∈ C ⊢ a(z) ∈ A implies

z ∈ C | a(c) ∈ A.

3 Sets without computational content

Kleene [8] showed that if a formula C satisfies the extended disjunction and
existence properties, that is, for all formulas A, B and A(x),

C ⊢ A ∨B implies C ⊢ A or C ⊢ B (ED)

C ⊢ ∃xA(x) implies C ⊢ A(t) for some term t (EE)

then C | C. We will show a corresponding result for type theory; the extended
disjunction and existence properties for a formula will then correspond to that



a set is without computational content. Intuitively, a set C is without computa-
tional content if z ∈ C ⊢ t ∈ A implies that t has a value even if A is a set with
several constructors.

For the remaining of this section we will assume that every element of a set
with only one constructor can be expanded to constructor form; for function sets
this corresponds η-conversion.

η-rule for ⊤
c ∈ ⊤

c = tt ∈ ⊤

η-rule for Π
c ∈ Π(A,B)

c = λx.apply(c, x) ∈ Π(A,B)

η-rule for Σ
c ∈ Σ(A,B)

c = 〈fst(c), snd(c)〉 ∈ Σ(A,B)

In the theory we are considering, the sets with more than one constructor
are disjoint unions, the set of natural numbers and the universe. Hence, we say
that a set C is without computational content if it satisfies following clauses.

1. If z ∈ C ⊢ t ∈ A + B then z ∈ C ⊢ t = inl(a) ∈ A+B for some term a

such that z ∈ C ⊢ a ∈ A, or z ∈ C ⊢ t = inr(b) ∈ A+B for some term b

such that z ∈ C ⊢ b ∈ B.

2. If z ∈ C ⊢ t ∈ N then z ∈ C ⊢ t = n ∈ N for some numeral n.

3. If z ∈ C ⊢ t ∈ U then one of the following holds.

(a) z ∈ C ⊢ t = a+̂b ∈ U for some terms a and b such that z ∈ C ⊢ a ∈ U

and z ∈ C ⊢ b ∈ U .

(b) z ∈ C ⊢ t = Π̂(a, b) ∈ U for some terms a and b such that z ∈ C ⊢
a ∈ U and z ∈ C, x ∈ Set(a) ⊢ b(x) ∈ U .

(c) z ∈ C ⊢ t = Σ̂(a, b) ∈ U for some terms a and b such that z ∈ C ⊢
a ∈ U and z ∈ C, x ∈ Set(a) ⊢ b(x) ∈ U .

(d) z ∈ C ⊢ t = N̂ ∈ U .

(e) z ∈ C ⊢ t = ⊤̂ ∈ U .

(f) z ∈ C ⊢ t = ⊥̂ ∈ U .

The definition of slash and corollary 1 give

Corollary 2 If z ∈ C | z ∈ C then C is without computational content.



Examples of sets without computational content are sets corresponding to
Harrop formulas. The Harrop sets HΓ in a context Γ are inductively defined by

(i) ⊤ is in HΓ,

(ii) if A is in HΓ and B(x) in HΓ, x∈A, then Σ(A,B) is in HΓ,

(iii) if A is a set in Γ and B(x) in HΓ, x∈A, then Π(A,B) is in HΓ.

If H is a Harrop set in the empty context we simply say that H is a Harrop set.

Theorem 2 If H is a Harrop set then z ∈ H | z ∈ H.

Proof. By induction on the definition of a Harrop set in a context Γ it is straight-
forward to show that ifH is a Harrop set in the context Γ then Γ, z ∈ H | z ∈ H.
Alternatively, the theorem can be obtained from theorem 3 in [13], which is a
corresponding result in the more general situation of no η-rules.

Corollary 2 and theorem 2 give

Corollary 3 Harrop sets are without computational content.

There are more sets than the Harrop sets which satisfy z ∈ C | z ∈ C and, hence,
are without computational content; two examples are⊥ → N and Π(N, (n)F (n))
where {

F (0) = ⊤
F (succ(n)) = N → F (n).

Formally, we have to use the universe to introduce the family F :

F (n) = Set(natrec(n, ⊤̂, (x, y)N̂→̂y)).

The next theorem gives, as a special case, the converse of corollary 2.

Theorem 3 Let C be without computational content. Then z ∈ C ⊢ a ∈ A

implies that z ∈ C | a ∈ A.

Proof. We first discuss the simpler case of type theory without a uni-
verse; we can in this case use structural induction on the formation of the set
A(x1, . . . , xm−1) in the context x1 ∈ G1, . . . , xm ∈ Gm(x1, . . . , xm−1) to prove
that

if z ∈ C, x1 ∈ G1, . . . , xm ∈ Gm(x1, . . . , xm−1) ⊢ a(x1, . . . , xm−1) ∈
A(x1, . . . , xm−1) and g1, . . . , gm are terms such that z ∈ C | gi ∈
Gi(g1, . . . , gi−1), 0 < i ≤ m, then z ∈ C | a(g1, . . . , gm) ∈ A(g1, . . . , gm).

I exemplify the proof for A equal to Π(D,E) and D + E and, to simplify no-
tation, we leave out the context x1 ∈ G1, . . . , xm ∈ Gm(x1, . . . , xm−1) and the
corresponding substitutions of slashable terms g1, . . . , gm.

Let z ∈ C ⊢ a ∈ Π(D,E). By the η-rule for Π, z ∈ C ⊢ a = λx.apply(a, x) ∈
Π(D,E). Since z ∈ C, x ∈ D ⊢ apply(a, x) ∈ E(x), the induction hypothesis
gives that z ∈ C | d ∈ D implies z ∈ C | apply(a, d) ∈ E(d). Hence, by the
definition of slash, z ∈ C | a ∈ Π(D,E).



For the +-case, let z ∈ C ⊢ a ∈ D + E. Since C is without computational
content, z ∈ C ⊢ a = inl(d) ∈ D + E for some term d such that z ∈ C ⊢ d ∈ D

or z ∈ C ⊢ a = inl(e) ∈ D + E for some term e such that z ∈ C ⊢ e ∈ E.
Assume that the first case holds. By the induction hypothesis, z ∈ C | d ∈ D.
Hence, by the definition of slash, z ∈ C | a ∈ D+E. The second case is handled
in the same way.

For type theory with a universe, structural induction cannot be used since
sets may then also be of the form Set(a) where a ∈ U . Since C is without
computational content, z ∈ C ⊢ A set implies that A is definitionally equal to
a basic set, a set on +-form, a set on Π-form, or a set on Σ-form; hence, we
can use the well-ordering introduced in the proof of lemma 1. The proof of the
theorem for set theory with a universe can now proceed as above for the case
without a universe, using transfinite induction instead of structural induction.

Since z ∈ C ⊢ z ∈ C, we obtain from theorem 3

Corollary 4 If C is without computational content then z ∈ C | z ∈ C.

Corollaries 2 and 4 give a characterization of sets without computational con-
tent in terms of slash: a set C is without computational content if and only if
z ∈ C | z ∈ C.
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