
An Interpretation of Kleene’s Slash in

Type Theory

Jan M. Smith

Department of Computer Science, University of Göteborg/Chalmers

S-412 96 Göteborg, Sweden

Abstract

Kleene introduced the notion of slash to investigate the disjunction and
existence properties under implication for intuitionistic arithmetic. In this
paper Kleene’s slash is translated to type theory. Besides translations of
Kleene’s results, the main application of the slash in type theory is that
conditions are given for a typable term, containing free variables, to have
a normal form beginning with a constructor.

1 Introduction

The disjunction and existence properties, that is, ⊢ A∨B implies ⊢ A or ⊢ B

and ⊢ ∃xA(x) implies ⊢ A(t) for some term t , respectively, were first proved
for intuitionistic arithmetic by Kleene [9] using a modification of recursive re-
alizability. Harrop [8] extended Kleene’s result by also considering derivations
depending on assumptions. Harrop proved

C ⊢ A ∨B implies C ⊢ A or C ⊢ B (ED)

C ⊢ ∃xA(x) implies C ⊢ A(t) for some term t (EE)

where C is a closed formula not containing any strictly positive occurrences of
∨ and ∃ ; such a formula is called a Harrop formula.

In [10] Kleene gives much simplified proofs of the disjunction and existence
properties as well as (ED) and (EE) for a more extensive class of formulas than
the Harrop formulas. I will in this paper translate Kleene’s method to type
theory and thereby obtain conditions on a typable term to have a canonical
value also when it may contain free variables.

Tait [17] introduced a powerful method for proving normalization of typed
terms, which was adopted by Martin-Löf [11] to prove normalization of deriva-
tions in natural deduction. These ideas are behind Prawitz’ [15, 16] suggestion
of a general notion of validity for derivations. In Hallnäs [7] there is an extension
of Prawitz’ notion of validity which is closely related to slash in type theory.

1

In fact, Tait’s computability method, when applied to type theory for proving
normalization of closed terms, can be seen as a special case of the translation
below of slash.

I will use Martin-Löf’s type theory [13, 14], formulated so that a = b ∈ A is
understood as definitional equality; the rules are those of the intensional theory
in [14]. In order not to obscure the ideas, I will not treat universes; to define
slash for a universe is straightforward, but to prove the main result, theorem 2,
involve the same additional complications as when proving normalization, using
Tait’s method, for Martin-Löf’s type theory with universes, see Coquand [2].

Friedman [4] defined slash for higher order logic and I expect no problems
in translating that notion of slash to impredicative type theories like Girard’s
system F [5] and Coquand and Huet’s Calculus of Constructions [3].

2 Kleene’s slash

The modification of recursive realizability in Kleene [9], used for the proofs of the
disjunction and existence properties, consists in adding derivability conditions
to the definition of realizability. The crucial observation in Kleene [10] is that
the proofs of the disjunction and existence properties in [9] do not rely on any
recursion theoretic elements, which, hence, can be left out, thereby giving very
simple proofs of these properties.

Let Γ be a list of closed formulas and C a closed formula. The relation
Γ | C , “Γ slashes C ”, is defined by induction on the number of logical constants
in C by the clauses

1. If A is an atomic formula, Γ | A if Γ ⊢ A .

2. Γ | A ∨B , if Γ | A or Γ | B .

3. Γ | A&B , if Γ | A and Γ | B .

4. Γ | A ⊃ B , if Γ ⊢ A ⊃ B , and Γ | A implies Γ | B .

5. Γ | ∀xA(x) , if Γ ⊢ ∀xA(x) and Γ | A(n) for each numeral n .

6. Γ | ∃xA(x) , if Γ | A(n) for some numeral n .

This definition of slash is a simplification, due to Aczel [1], of Kleene’s original
definition. The main result in [10] for the slash is the following theorem.

Theorem 1. Let Γ be a list of closed formulas and A a closed formula.

Assume that Γ | C for each C in Γ . Then Γ ⊢ A implies Γ | A .

The proof is by induction on the length of the derivation Γ ⊢ A . From this
theorem it easy to obtain (ED) and (EE) for a closed formula C such that
C | C , using the observation that Γ | A implies Γ ⊢ A ; since C | C holds if C

is a Harrop formula, this implies Harrop’s result for (ED) and (EE).

2

3 Translation of Kleene’s slash to type theory

In arithmetic, slash is a relation between a list of closed formulas and a closed
formula; this will in type theory be translated to a relation between a context
Γ and a judgement t ∈ A in the context Γ .

The definition of Γ | t ∈ A is made by induction on the derivation Γ ⊢ A set

by the clauses

1. Γ | t ∈ A+B , if Γ ⊢ t ∈ A+B , Γ ⊢ t = inl(a) ∈ A+B for some term
a such that Γ | a ∈ A , or Γ ⊢ t = inr(b) ∈ A+B for some term b such
that Γ | b ∈ B .

2. Γ | t ∈ Π(A,B) , if Γ ⊢ t ∈ Π(A,B) , there exists a term b(x) such that
Γ, x ∈ A ⊢ b(x) ∈ B(x) , for all terms a , Γ | a ∈ A implies Γ | b(a) ∈
B(a) , and Γ ⊢ t = λx.b(x) ∈ Π(A,B) .

3. Γ | t ∈ Σ(A,B) , if Γ ⊢ t ∈ Σ(A,B) , there exist terms a and b such
that Γ | a ∈ A , Γ | b ∈ B(a) , and Γ ⊢ t = 〈a, b〉 ∈ Σ(A,B) .

4. Γ | t ∈ Id(A, a, b) , if Γ ⊢ t ∈ Id(A, a, b) , Γ | a ∈ A , Γ | b ∈ A ,
Γ ⊢ a = b ∈ A , and Γ ⊢ t = id(a) ∈ Id(A, a, b) .

5. Γ | t ∈ N , if Γ ⊢ t ∈ N and Γ ⊢ t = n ∈ N for some numeral n .

6. Γ | t ∈ Nk , if Γ ⊢ t ∈ Nk and Γ ⊢ t = nk ∈ Nk for some n , 0 ≤ n < k ,
k = 0, 1,

It follows directly from the definition that Γ | t ∈ A implies Γ ⊢ t ∈ A . Note
that, since ⊥ is defined to be the empty set N0 , the second condition in the
definition of Γ | t ∈ N0 gives that there is no term t such that Γ | t ∈ ⊥
holds. This is different from formulation of arithmetic used by Kleene where ⊥
is defined to be 0 = 1 and, hence, Γ | ⊥ for any inconsistent Γ . If we consider
the absurdity ⊥M of minimal logic, we can extend the definition of slash by

7. Γ | t ∈ ⊥M , if Γ ⊢ t ∈ ⊥M .

The rules for ⊥M differs from the rules for ⊥ in that there is no elimination
rule for ⊥M .

Kleene [10] also defined slash for predicate calculus and propositional calcu-
lus. Translations of slash to type theory can also be made for these logics, and
I will indicate the translation in the case of propositional calculus; this is a real
simplification compared with arithmetic since no dependent types are needed.

In order to express propositional calculus in type theory, using the Curry-
Howard interpretation, we have to add set variables X1, X2, . . . and build
up sets from these variables and N0 , using the disjoint union + , the function
arrow → and cartesian product × of two sets. To obtain a translation of slash
in this case we leave out clauses 4, 5, and 6, except for N0 , and define slash for
set variables by

3

8. Γ | t ∈ Xi , if Γ ⊢ t ∈ Xi , i = 1, 2,

In clause 2, Π is then replaced by → and, in clause 3, Σ is replaced by × .
All results below also holds for this restricted calculus.

In fact, we could define slash already for a calculus with only set variables
and the function arrow, corresponding to simply typed λ -calculus. But to
obtain anything substantially new from the results below, compared with an
ordinary normalization proof, we need a set with more than one constructor,
like the disjoint union of two sets, interpreting disjunction.

From the definition of slash, we get the following corollary, in which we
assume that the set A is neither ⊥M nor a set variable; this restriction has to
be made simply because there are no canonical element in these sets.

Corollary 1. If Γ | t ∈ A then there exists a canonical value can of the set

A such that Γ ⊢ t = can ∈ A .

A canonical value of a set is a term beginning with a constructor of the set. Using
the fact that every typable term, which in general may be open, has a normal
form, we may also require that a canonical value should be on normal form.
In the formulation of Martin-Löf’s type theory we are considering, a = b ∈ A

means definitional equality; so Γ ⊢ t = can ∈ A implies that t can be computed
to the value can . When we in the sequel talk about canonical elements of a set
we will tacitly assume that this set is not ⊥M or a set variable.

The main result for the interpretation of slash in type theory is the following
theorem.

Theorem 2. Let ∆ be a context x1 ∈ D1, . . . , xm ∈ Dm(x1, . . . , xm−1)
and d1, . . . , dm terms such that Γ | di ∈ Di(d1, . . . , di−1) , 0 < i ≤ m . Then

∆ ⊢ a(x1, . . . , xm) ∈ A(x1, . . . , xm) implies Γ | a(d1, . . . , dm) ∈ A(d1, . . . , dm) .

In the proof we need the following lemma.

Lemma 1. Let Γ | a ∈ A , Γ ⊢ b ∈ A and Γ ⊢ B set . Then (i) Γ ⊢ a =
b ∈ A implies Γ | b ∈ A and (ii) Γ ⊢ A = B implies Γ | a ∈ B .

Proof. (i) follows easily from the definition of slash. Since we do not
include universes, Γ ⊢ A = B holds only if A and B have the same outermost
set constructor and equal parts; hence we can use induction on the length of A

to prove (ii); the proof is then straightforward.
Proof of theorem 2. By induction on the length of the derivation ∆ ⊢

a(x1, . . . , xm) ∈ A(x1, . . . , xm) . As an illustration, we treat the rules for disjoint
union. For the introduction rule

∆ ⊢ a(x1, . . . , xm) ∈ A(x1, . . . , xm)

∆ ⊢ inl(a(x1, . . . , xm)) ∈ A(x1, . . . , xm) +B(x1, . . . , xm)

4

we have, by induction hypothesis, Γ | a(d1, . . . , dm) ∈ A(d1, . . . , dm) , which
gives, by the definition of slash for disjoint unions, Γ | inl(a(d1, . . . , dm)) ∈
A(d1, . . . , dm) + B(d1, . . . , dm) . The other introduction rule is treated in the
same way. For the elimination rule

∆ ⊢ c(x1, . . . , xm) ∈ A(x1, . . . , xm) +B(x1, . . . , xm)
∆, x ∈ A(x1, . . . , xm) ⊢ d(x1, . . . , xm, x) ∈ C(x1, . . . , xm, inl(x))
∆, y ∈ B(x1, . . . , xm) ⊢ e(x1, . . . , xm, y) ∈ C(x1, . . . , xm, inr(y))
∆ ⊢ when(c(x1, . . . , xm), d(x1, . . . , xm), e(x1, . . . , xm)) ∈

C(x1, . . . , xm, c(x1, . . . , xm))

we have, by induction hypothesis,

Γ | c(d1, . . . , dm) ∈ A(d1, . . . , dm) +B(d1, . . . , dm) , (1)

Γ | d(d1, . . . , dm, a) ∈ C(d1, . . . , dm, inl(a))
for all a such that Γ | a ∈ A(d1, . . . , dm) , (2)

Γ | e(d1, . . . , dm, b) ∈ C(d1, . . . , dm, inl(b))
for all b such that Γ | b ∈ B(d1, . . . , dm) . (3)

From (1) we get, by the definition of slash for disjoint unions, that one of

Γ ⊢ c(d1, . . . , dm) = inl(a) ∈ A(d1, . . . , dm) +B(d1, . . . , dm)
for some a such that Γ | a ∈ A(d1, . . . , dm) , (4)

Γ ⊢ c(d1, . . . , dm) = inr(b) ∈ A(d1, . . . , dm) +B(d1, . . . , dm)
for some b such that Γ | b ∈ B(d1, . . . , dm) . (5)

holds. Let us assume that it is (4) that holds, the case of (5) is handled in the
same way. By the definition of when , we have

Γ ⊢ when(inl(a), d(d1, . . . , dm), e(d1, . . . , dm)) = d(d1, . . . , dm, a) ∈
C(d1, . . . , dm, inl(a)) (6)

and from (2) and (4) we get

Γ | d(d1, . . . , dm, a) ∈ C(d1, . . . , dm, inl(a)) . (7)

The lemma, (4), (6), and (7) finally give

Γ | when(c(d1, . . . , dm), d(d1, . . . , dm), e(d1, . . . , dm)) ∈
C(d1, . . . , dm, c(d1, . . . , dm)) .

As a special case of theorem 2 we get the translated version of theorem 1:

Corollary 2. Let Γ be a context x1 ∈ C1, . . . , xn ∈ Cn(x1, . . . , xn−1)
and c1, . . . , cn terms such that Γ | ci ∈ Ci(c1, . . . , ci−1) , 0 < i ≤ n . Then

Γ ⊢ a(x1, . . . , xn) ∈ A(x1, . . . , xn) implies Γ | a(c1, . . . , cn) ∈ A(c1, . . . , cn) .

Corollaries 1 and 2 give that if t ∈ A can be derived in the the empty
context, then t can be computed to a canonical value of A. This result can
also be obtained by a normalization proof, using Tait’s computability method;

5

actually, if Γ is empty then the definition of Γ | t ∈ A is the same as the def-
inition of Tait’s computability predicate CompA(t) , provided we only consider
normalization of closed terms as in Martin-Löf [12].

Because of the strong rules for Σ in Martin-Löf’s type theory, the exis-
tence property is trivially satisfied in any context Γ since, by Σ -elimination,
Γ ⊢ t ∈ Σ(A,B) implies Γ ⊢ fst(t) ∈ A and Γ ⊢ snd(t) ∈ B(fst(t)) . Note,
however, that the term fst(t) cannot in general be computed to a canonical
value. The disjunction property cannot be proved under such general condi-
tions. Corresponding to Kleene’s result for disjunction in arithmetic we have
the following consequence of corollary 2.

Corollary 3. Let C be a set for which there exists a term c(x) such that

x ∈ C | c(x) ∈ C . Then x ∈ C ⊢ t(x) ∈ A+B implies x ∈ C ⊢ a(x) ∈ A for

some term a(x) or x ∈ C ⊢ b(x) ∈ B for some term b(x) .

In arithmetic, disjunction can be expressed by using the existential quantifier;
in Martin-Löf’s type theory + can in a similar way be expressed by Σ . But it
is easy to see that the existence property obtained by the strong Σ -elimination
does not imply the disjunction property.

4 Harrop sets

The interest of corollary 2 depends on for what sets we have x ∈ C | c(x) ∈ C

and on the complexity of the term c(x) . In arithmetic the main examples
of formulas C such that C | C are the Harrop formulas. A Harrop formula
is defined to be a formula not containing any strictly positive occurrences of
∨ and ∃ . Alternatively, the Harrop formulas can be inductively defined by
(i) atomic formulas are Harrop formulas, (ii) if A and B are Harrop formulas
then A&B is a Harrop formula, (iii) if B is a Harrop formula and A an
arbitrary formula then A ⊃ B is a Harrop formula, and (iv) if A is a Harrop
formula then ∀xA is a Harrop formula.

In type theory, we define the notion corresponding to Harrop formulas in an
arbitrary context. The Harrop sets HΓ in the context Γ are inductively defined
by

(i) N1 , the one element set, is in HΓ ,

(ii) if Γ | a ∈ A , Γ | b ∈ A , and Γ ⊢ a = b ∈ A then Id(A, a, b) is in HΓ ,

(iii) if A is in HΓ and B(x) in HΓ, x∈A then Σ(A,B) is in HΓ ,

(iv) if A is a set in Γ and B(x) in HΓ, x∈A then Π(A,B) is in HΓ .

Note that the sets in (i)-(iv) are those with exactly one constructor. By clause
(iii), A × B is a Harrop set if A and B are Harrop sets and, by clause (iv),
A → B is Harrop set if B is a Harrop set. Because of clause (iii) it is possible

6

for a Harrop set to contain a strictly positive occurrence of a set of the form
Σ(A,B) , but that requires A to be a Harrop set; so there cannot be any strictly
positive occurrences of sets of the form Σ(N,B) , corresponding to an existen-
tially quantified proposition on the natural numbers. If we consider minimal
logic and set variables, we can extend the Harrop sets by

(v) ⊥M is in HΓ ,

(vi) Xi is in HΓ , i = 1, 2,

We cannot, however, include ⊥ in the definition of Harrop sets since we would
then not have the following theorem, corresponding to that, in arithmetic, C | C
when C is a Harrop formula.

Theorem 3. If C is a Harrop set in the context Γ then there exists a term

c(x) such that

Γ, x ∈ C | c(x) ∈ C

The term c(x) can be recursively constructed by

(i) Γ, x ∈ N1 | 01 ∈ N1 ,

(ii) if Γ, x ∈ A | a ∈ A , Γ, y ∈ A | b ∈ A , and Γ ⊢ a = b ∈ A then

Γ, z ∈ Id(A, a, b) | id(a) ∈ Id(A, a, b) ,

(iii) if Γ, x ∈ A | a(x) ∈ A and Γ, x ∈ A, y ∈ B(x) | b(x, y) ∈ B(x) then

Γ, z ∈ Σ(A,B) | 〈a(fst(z)), b(fst(z), snd(z))〉 ∈ Σ(A,B) ,

(iv) if Γ, x ∈ A, y ∈ B(x) | b(x, y) ∈ B(x) then

Γ, z ∈ Π(A,B) | λx.b(x, apply(z, x)) ∈ Π(A,B) ,

(v) Γ, x ∈ ⊥M | x ∈ ⊥M ,

(vi) Γ, x ∈ Xi | x ∈ Xi , i = 1, 2,

A Harrop set has at most one constructor, which intuitively explains why, in
cases (i) - (iv), it is possible to construct a term c(x) beginning with a con-
structor of the set C by only using the assumption x ∈ C .

In the proof of theorem 3 we need the following lemma.

Lemma 2. Let Γ be a context x1 ∈ C1, . . . , xn ∈ Cn(x1, . . . , xn−1) , let
C(x1, . . . , xn) be a Harrop set in Γ , and let the term c(x1, . . . , xn−1, x) be con-

structed according to (i) - (vi) in theorem 3. Let ∆ be a context for which there

exist terms a1, . . . , an and a such that ∆ ⊢ ai ∈ Ci(a1, . . . , ai−1) , 0 < i ≤ n ,

and ∆ ⊢ a ∈ C(a1, . . . , an) . Then Γ, x ∈ C(x1, . . . , xn) | c(x1, . . . , xn, x) ∈
C(x1, . . . , xn) implies ∆ | c(a1, . . . , an, a) ∈ C(a1, . . . , an) .

Proof. The proof of the lemma is by induction on the definition of C in
HΓ . We illustrate the proof by the case when C is of the form Π(A,B) . By
the recursive definition of c we know that c is λx.b(x, apply(z, x)) for some
term b such that Γ, x ∈ A, y ∈ B(x) | b(x, y) ∈ B(x) (1). Assume that

7

∆ ⊢ d ∈ Π(A,B) and ∆ | a ∈ A . We then obtain ∆ ⊢ a ∈ A (2) and,
hence, ∆ ⊢ apply(d, a) ∈ B(a) (3). From (1), (2), (3), and the induction
hypothesis, we get ∆ | b(a, apply(d, a)) ∈ B(a) . Hence, by the definition of
slash, ∆ | λx.b(x, apply(d, x)) ∈ Π(A,B) .

Proof of theorem 3. The proof is by induction on the definition of C in
HΓ . We again look at the case when C is of the form Π(A,B) . By induction
hypothesis we have Γ, x ∈ A, y ∈ B(x) | b(x, y) ∈ B(x) (1). Assume Γ, z ∈
Π(A,B) | a ∈ A , which gives Γ, z ∈ Π(A,B) ⊢ a ∈ A (2) and Γ, z ∈
Π(A,B) ⊢ apply(z, a) ∈ B(a) (3). The lemma applied on (1), (2), and (3) gives
Γ, z ∈ Π(A,B) | b(a, apply(z, a)) ∈ B(a) . Hence, by the definition of slash,
Γ, z ∈ Π(A,B) | λx.b(x, apply(z, x)) ∈ Π(A,B) .

Goad [6] considers derivations, as well as proof terms, depending on Harrop
formulas and shows that such a derivation can be normalized so that it ends
with an introduction rule. For type theory we have a corresponding result as a
corollary to theorem 3 and corollary 1.

Corollary 4. Let C be a Harrop set and let c(x) be constructed according

to (i)-(vi) in theorem 3. If x ∈ C ⊢ a(x) ∈ A then there exists a canonical value

can(x) of the set A such that x ∈ C ⊢ a(c(x)) = can(x) ∈ A .

If we use the negation of minimal logic, that is, ¬MC is defined to be C → ⊥M ,
then, by theorem 3, x ∈ ¬MC | λy.apply(x, y) ∈ ¬MC ; hence we have the
following corollary.

Corollary 5. Let C be an arbitrary set. If x ∈ ¬MC ⊢ a(x) ∈ A then

there exists a canonical value can(x) of the set A such that x ∈ ¬MC ⊢
a(λy.apply(x, y)) = can(x) ∈ A .

So, a term containing a variable x ∈ ¬MC can be computed to a canonical value
if the variable x is simply η -expanded.

Acknowledgements. I would like to thank Thierry Coquand and Lars
Hallnäs for many long and stimulating discussions on the topic of this paper.
Thanks also to Per Martin-Löf, in particular for pointing out to me that Tait’s
method can be seen as a special case of the above translation of slash to type
theory.

References

[1] Peter Aczel. Saturated intuitionistic theories. In H. A. Schmidt, K. Schütte,
and H.-J. Thiele, editors, Contributions to Mathematical Logic, pages 1–11.
North-Holland, 1968.

8

[2] Thierry Coquand. An algorithm for testing conversion in type theory. In
Logical Frameworks. Cambridge University Press, 1991.

[3] Thierry Coquand and Gérard Huet. The Calculus of Constructions. Infor-
mation and Computation, 76(2/3):95–120, 1988.

[4] Harvey Friedman. Some applications of Kleene’s Methods for Intuitionistic
Systems. In A. R. D. Mathias and H. Rogers, editors, Cambridge Summer

School in Mathematical Logic. Springer-Verlag, 1973.

[5] J.Y. Girard. Une extension de l’interprétation de Gödel à l’analyse, et son
application à l’elimination des coupures dans l’analyse et la théorie des
types. In J. E. Fenstad, editor, Proceedings of the Second Scandinavian

Logic Symposium, pages 63–92. North-Holland Publishing Company, 1971.

[6] C. Goad. Computational Uses of the Manipulation of Formal Proofs. PhD
thesis, Computer Science Department, Stanford University, August 1980.

[7] Lars Hallnäs. Partial Inductive Definitions. Theoretical Computer Science,
(87), 1991.

[8] R. Harrop. Concerning formulas of the types A → B∨C, A → (∃x)B(x)
in intuitionistic formal systems. Journal of Symbolic Logic, 25:27–32, 1960.

[9] S. C. Kleene. On the interpretation of intuitionistic number theory. Journal
of Symbolic Logic, 10:109–124, 1945.

[10] S. C. Kleene. Disjunction and existence under implication in elementary
intuitionistic formalisms. Journal of Symbolic Logic, 27:11–18, 1962.

[11] Per Martin-Löf. Hauptsatz for the Intuitionistic Theory of Iterated In-
ductive Definitions. In J. E. Fenstad, editor, Proceedings of the Second

Scandinavian Logic Symposium, pages 179–216. North-Holland Publishing
Company, 1971.

[12] Per Martin-Löf. An Intuitionistic Theory of Types: Predicative Part. In
H. E. Rose and J. C. Shepherdson, editors, Logic Colloquium 1973, pages
73–118, Amsterdam, 1975. North-Holland Publishing Company.

[13] Per Martin-Löf. Intuitionistic Type Theory. Bibliopolis, Napoli, 1984.

[14] Bengt Nordström, Kent Petersson, and Jan M. Smith. Programming in

Martin-Löf ’s Type Theory. An Introduction. Oxford University Press, 1990.

[15] Dag Prawitz. Towards a Foundation of a General Proof Theory. In P. Sup-
pes et al., editor, Logic, Methodology and Philosophy of Science IV, pages
225–250. North-Holland, 1973.

9

[16] Dag Prawitz. On the Idea of a General Proof Theory. Synthese, 27:63–77,
1974.

[17] W. W. Tait. Intensional interpretation of functionals of finite type I. Jour-
nal of Symbolic Logic, 32(2):198–212, 1967.

10

