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Introduction

The completeness theorem for first-order logic is one of the basic result of classical
model theory. It states that a first-order sentence is provable if and only if it holds in
any possible models, or, in a relativised form, that a first-order sentence is derivable
in a theory if and only if it holds in any model of this theory. This expresses a strong
relation between syntax and semantics and can be used to give elegant semantical
proofs of purely syntactical properties. One typical use is for proving conservativity
results. To prove for instance that a first-order theory T2 is a conservative extension
of a theory T1, it is enough to show that any model of T1 can be extended to a model
of T2. It follows then directly that a formula derivable in T2 holds in any model of
T1, and hence, by the completeness theorem, is also derivable in T1.

The usual proofs of the completeness theorem are non-constructive. In this
paper, we explore one possible effective version of this theorem, that uses topological
models in a point-free setting, following Sambin [6]. The truth-values, instead of
being simply booleans, can be arbitrary open of a given topological space. There are
two advantages with considering this more abstract notion of models. The first is
that, by using point-free topology, we get a remarkably simple completeness proof;
it seems indeed simpler than the usual classical completeness proof by Henkin. The
second is that this completeness proof is now constructive, and can be done in
intuitionistic type theory.

In view of the extreme simplicity of this proof, it might be feared that this
version is essentially weaker than its classical counterpart. It can be thought that
the strength, and elegance, of the classical completeness theorem is connected to
its non-effective character. We show that this is perhaps not the case, by analysing
a conservativity theorem due to Dragalin [3]. We can transpose directly the usual
model theoretic conservativity argument, that we sketched above, in our framework.
It seems likely that a direct syntactical proof of this result would have to be more
involved.
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The first part of this paper presents a definition of topological models, and a
completeness proof, based on Sambin [6]. The second part shows how to use this in
order to give a proof of Dragalin’s conservativity result; our proof is different from
his and, we believe, simpler.

1 Intuitionistic Model Theory

A topology T = 〈S, ·, 1,✁〉 is a commutative idempotent monoid 〈S, ·, 1〉 with a
covering relation ✁ which satisfies the following rules.

Reflexivity
a ∈ U

a ✁ U

Transitivity
a ✁ U U ✁ V

a ✁ V

Right
a ✁ U

a · b ✁ U

Stability
a ✁ U b ✁ V

a · b ✁ U · V

where U ✁ V means that every element of U is covered by V . Intuitively, the
elements of S are the basic opens and the multiplication · corresponds to the inter-
section of basic open. An open is represented by the set of basic open it contains. For
the details of point-free topology in a type theoretic setting, we refer to Sambin [5].

1.1 Topological interpretations

A point-free topological interpretation of a first order language consists of the follow-
ing.

• A topology T = 〈S, ·, 1,✁〉.

• A set D, the domain of the interpretation.

• To each individual constant a an element a in D and to each function constant
fn of arity n a function f

n
in Dn → D.

• To each relation Rn of arity n a function R
n
that gives an open set to each

element in Dn.
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Given an assignment σ of an element in D to each variable, we associate an element
tσ in D to each term t by

xσ = σ(x)

aσ = a

fn(t1, . . . , tn)
σ = f

n
(t1

σ, . . . , tn
σ)

We can now associate an open set [[A]]σ to each formula A by induction as follows.

1. [[R(t1, . . . , tn)]]σ = R
n
(t1

σ, . . . , tn
σ)

2. [[⊤]]σ = 1

3. [[⊥]]σ = ∅

4. [[A&B]]σ = [[A]]σ · [[B]]σ

5. [[A ∨ B]]σ = [[A]]σ ∪ [[B]]σ

6. [[A ⊃ B]]σ = {s ∈ S : {s} · [[A]]σ ✁ [[B]]σ}

7. [[∃xB(x)]]σ =
⋃

d∈D[[B(d)]]σ

8. [[∀xB(x)]]σ = {s ∈ S : (∀d ∈ D)(s ✁ [[B(d)]]σ)}

In this definition, [[B(d)]]σ is an abbreviation of [[B(x)]]σ[x:=d], where the assignment
σ[x := d] is obtained from σ by giving the variable x the value d.

We say that a formula A is valid in an interpretation if 1 ✁ [[A]]σ holds for
every assignment σ. A model of a set Γ of formulas is an interpretation in which all
formulas of Γ are valid.

A topological interpretation can be seen as a generalization of the ordinary clas-
sical notion of interpretation in the sense that the the two truth values true and false

are replaced by the much richer structure of an arbitrary topological space. Topo-
logical interpretations of intuitionistic propositional logic were considered already in
the thirties by Tarski [7].

Gödel and Kreisel [4] have showed that a constructive completeness proof for
predicate logic is impossible with the usual intuitive definition of validity in all
structures, which, in fact, turns out to be the same as validity in all Beth models;
see Troelstra [8]. But by weakening the interpretation of absurdity by allowing it to
possibly hold in some nodes of a Beth model, it is possible to prove completeness [10,
2]. Models where k ‖− ⊥ is not ruled out are called exploding; and the reason why
Gödel and Kreisel’s argument is not applicable on exploding models is the fact that
k ‖− ⊥ is in general not decidable.

The point-free formulation of topological models automatically includes the ex-
ploding ones: there might be basic opens which are covered by the empty set, that
is, the interpretation of absurdity; and in general it is not decidable whether a ✁ ∅
holds. We will describe in more detail below how an exploding Beth model can
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easily be formulated in a point-free setting. This is in contrast to the traditional
approach to topological models where it seems difficult to directly introduce explod-
ing models: in order to represent the forcing relation, a covering relation must be
introduced [9].

We can now prove the following soundness theorem, where A1, . . . , An ⊢ A means
that A is derivable from A1, . . . , An in intuitionistic predicate logic, formulated in
natural deduction.

Theorem 1 If A1, . . . , An ⊢ A, then [[A1]]σ · . . . · [[An]]σ ✁ [[A]]σ holds for every

topological interpretation and for every assignment σ.

Proof. Straightforward by induction on the length of the derivation.

When n = 0, [[A1]]σ · . . . · [[An]]σ should be understood as the full space S; hence
we get as a corollary that if A is a logical truth, then [[A]]σ covers the whole space,
or equivalently, 1 ✁ [[A]]σ.

1.2 The completeness proof

In this section we let ⊢ denote the derivability relation in some arbitrary first-order
theory. The next theorem expresses completeness.

Theorem 2 If [[A1]]σ · . . . · [[An]]σ ✁ [[A]]σ holds for every topological interpretation

and every assignment σ, then A1, . . . , An ⊢ A.

The proof of the completeness is by constructing a topology that is universal in the
sense that [[A1]]σ · . . . · [[An]]σ ✁ [[A]]σ holds for the topology and every assignment σ
if and only if A1, . . . , An ⊢ A.

The universal model is a term model, that is, the domain is the set of terms of
the language and a term is interpreted as itself. The topology of the interpretation is
obtained from the monoid 〈L, ·, 1〉 of formulas with provable equivalence as equality

A = B if and only if ⊢ A ↔ B,

and the operation · defined by

A · B = A&B.

The unit of the monoid is defined by 1 = ⊤. Clearly, the operation · is well defined,
that is, if A = A′ and B = B′ then A ·B = A′ ·B′.

A is covered by a set U if and only if every proposition C that can be proved
from each of the formulas in U can also be proved from A:

A ✁ U = (∀C)((∀D ∈ U)(D ⊢ C) ⇒ A ⊢ C).

Note that this definition respects equality: if A ✁ U and A = B then B ✁ U .
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The open set associated with an atomic proposition is defined to be the set of
formulas which proves it:

R
n
(t1, . . . , tn) = {A : A ⊢ Rn(t1, . . . , tn)}.

We call the topology L = 〈L, ·, 1,✁〉, the Tarski-Lindenbaum topology. We will write
[[A]] for [[A]]σ when σ is the identity assignment.

From the definition of covering and that [[⊥]] = ∅ we get that A ✁ ∅ if and only
if A ⊢ ⊥; hence, A ✁ ∅ is in general not decidable.

The open set [[A]] associated to a formula A is the set of all formulas which prove
it:

Proposition 1 For the Tarski-Lindenbaum topology,

B ✁ [[A]] if and only if B ⊢ A.

Proof: By a straightforward induction on the length of the formula A.

Note that completeness follows: if for every topology [[A1]]σ · . . . · [[An]]σ ✁ [[A]]σ
holds for all assignments σ, then, in particular, it holds for the Tarski-Lindenbaum
topology and the identity assignment; hence, by the proposition 1, A1, . . . , An ⊢ A.
This remarkably simple proof should be compared with Henkin’s proof for first
order classical logic; but, of course, the notion of model used here is weaker than
the usual one. Tarski’s completeness proof for ordinary topological interpretations
of intuitionistic logic is based on similar ideas as Henkin’s proof.

1.3 Connection with Beth models

There are two versions of exploding models, one for Kripke models [10] and one
for Beth models [2]. We shall explain how exploding Beth models can be seen as
particular cases of topological models.

First we reformulate the notion of spread in the context of formal topology. We
use variables u, v, . . . for finite sequences of integers. We write concatenation by
juxtaposition, and v ≤ u means that v is of the form un1 . . . np, where possibly p

may be 0 (in which case u = v.) We say that u, v are incompatible if and only
if neither of the relation u ≤ v nor v ≤ u hold. A spread S is then a decidable
inhabited set of sequences of integers such that

1. if v ≤ u and u ∈ S, then v ∈ S,

2. if u ∈ S, then there exists n such that un ∈ S.

To each spread S we associate a formal space X(S) defined as follows. As a
semi-lattice, X(S) is formed by the disjoint union of S and an extra element ∆. The
product operation is defined such that

• u · v = v if v ≤ u,
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• u · v = ∆ if u, v are incompatible,

• x · y = ∆ if x or y is ∆.

The covering relation u ✁ U is inductively defined by the clauses

• ∆ ✁ ∅,

• v ✁ U if v ≤ u and u ∈ U,

• u ✁ U if un ✁ U for all n.

Notice that all elements of S are positive for this notion of covering: if u ✁ U and
u ∈ S, then U is inhabited. This follows from the second clause of the definition of
a spread.

A non-exploding Beth model over the spread S corresponds then exactly to a
topological model over the space X(S) and we have u ∈ [[A]] if and only if u ‖− A.

An exploding Beth model is a model where we allow u ‖− ⊥ for some u ∈ S. The
corresponding notion of space is obtained as follows. Given a subset E ⊆ S, we
defined a new space Y (S) by adding to the inductive definition of u ✁ U the clause
that u ✁ ∅ if u ∈ E. The semilattice structure of Y (S) is the same as the one of
X(S). We can then verify that the equivalence u ∈ [[A]] if and only if u ‖− A still
holds. The result of Gödel on the impossibility of getting a completeness theorem
with non-exploding Beth models can then be formulated as the fact that in order
to get a completeness theorem, it is essential to consider non-decidable subsets E.

2 Application to a Conservativity Result

The conservativity result we present is due to Dragalin [3].

2.1 Non-standard arithmetic

We first extend the language of HA with a new constant ∞ and for each numeral n
add the axiom

1. n < ∞

Clearly, this extension is conservative over HA: only a finite number of the new
axioms can appear in a derivation; so if we just replace ∞ with a sufficiently big
numeral in the derivation, we obtain a derivation in HA. We denote this extension
by HA

∞.
We next extend HA

∞ with a new predicate F(x), expressing that x is a standard,
or feasible, number. For the new predicate we add the axiom

2. F(0)

6



3. ¬F(∞)

4. x = y ∧ F(x) ⊃ F(y)

5. y < x ∧ F(x) ⊃ F(y)

6. Let f be an arbitrary function constant of HA. Then

F(x1) ∧ · · · ∧ F(xn) ⊃ F(f(x1, . . . , xn))

7. Induction scheme for standard numbers:

A(0) ∧ ∀x(F(x) ∧ A(x) ⊃ A(s(x))) ⊃ ∀x(F(x) ⊃ A(x))

where A(x) is an arbitrary formula of the extended language.

From now on we let ✁ denote the covering relation of an arbitrary model for HA∞.
We define an interpretation of F by

[[F(t)]]σ =
⋃

n∈N

[[tσ = n]]

In this interpretation the above axioms are all validated:

Lemma 1 Let P be any of the above axioms about F. Then 1 ✁ [[P ]] in any model

of HA∞.

Proof. The proof is straightforward and almost the same as the corresponding part
of the proof by Dragalin [3].

We let HA
∞
F denote HA extended with these axioms. Our main result is the

following.

Theorem 3 HA
∞
F is conservative over HA.

Proof. It is enough to prove that HA
∞
F is conservative over HA

∞. So let A be
formula of HA which is derivable in HA

∞
F, that is, there is a finite conjunction Γ

of axioms about F such that HA
∞ + Γ ⊢ A. By theorem 1 we have that Γ ✁ [[A]]

holds in every model of HA∞. By lemma 1 we then obtain 1 ✁ [[A]] in every model
of HA∞; hence, by theorem 1, HA∞ ⊢ A.

Let PA∞
F denote PA extended by the above axioms. We then have

Corollary 1 PA
∞
F is conservative over PA.

The proof of the corollary is by Gödel’s double negation interpretation. Let A∗

denote the double negation interpretation of the formula A and P the set of axioms
above about∞ and F. Let A be a formula in the language of PA such that PA+P ⊢
A. Since Γ ⊢ B implies Γ∗ ⊢ B∗ for all sets Γ of formulas and formulas B, we get
HA+ P ∗ ⊢ A∗. Hence, by the lemma below, HA∞

F ⊢ A∗. By the theorem, we then
get HA ⊢ A∗. Since PA ⊢ A∗ ⊃ A we obtain PA ⊢ A.
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Lemma 2 Let P be any of the axioms in PA
∞
F. Then HA

∞
F ⊢ P ∗.

The only non-trivial case is when F is an instance of the induction scheme in HA
∞
F.

So F ∗ is

A∗(0) ∧ ∀x(¬¬F(x) ∧ A∗(x) ⊃ A∗(s(x))) ⊃ ∀x(¬¬F(x) ⊃ A∗(x))

for some formula A(x). Since all double negated interpreted formulas are stable, we
have ⊢ ¬¬A∗(x) ⊃ A∗(x) which implies ⊢ (F(x) ⊃ A∗(x)) ⊃ (¬¬F(x) ⊃ A∗(x)).
Hence, F ∗ follows from F .

Since the arguments of the paper are effective, the proof of this corollary can be
seen directly as an algorithm that, given a proof of a sentence in PA

∞
F, transforms

this into a proof of the same sentence in PA. Cederquist [1] has developed point-
free topology in the computer system ALF and, based on this, Henrik Persson has
expressed the above completeness proof in ALF; a proof in ALF of the conservativity
result will then give a computer implementation of the transformation algorithm.
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