
Martin-Löf’s Type Theory
B. Nordström, K. Petersson and J. M. Smith

Contents

1 Introduction . 1
1.1 Different formulations of type theory 3
1.2 Implementations . 4

2 Propositions as sets . 4
3 Semantics and formal rules . 7

3.1 Types . 7
3.2 Hypothetical judgements . 9
3.3 Function types . 12
3.4 The type Set . 14
3.5 Definitions . 15

4 Propositional logic . 16
5 Set theory . 20

5.1 The set of Boolean values 20
5.2 The empty set . 21
5.3 The set of natural numbers 22
5.4 The set of functions (Cartesian product of a family of sets) 24
5.5 Propositional equality . 27
5.6 The set of lists . 29
5.7 Disjoint union of two sets 29
5.8 Disjoint union of a family of sets 30
5.9 The set of small sets . 31

6 The ALF series of interactive editors for type theory 33

1 Introduction

The type theory described in this chapter has been developed by Martin-Löf
with the original aim of being a clarification of constructive mathematics.
Unlike most other formalizations of mathematics, type theory is not based
on predicate logic. Instead, the logical constants are interpreted within type
theory through the Curry-Howard correspondence between propositions
and sets [11, 23]: a proposition is interpreted as a set whose elements
represent the proofs of the proposition.

1

2 B. Nordström, K. Petersson and J. M. Smith

It is also possible to view a set as a problem description in a way simi-
lar to Kolmogorov’s explanation of the intuitionistic propositional calculus
[26]. In particular, a set can be seen as a specification of a programming
problem; the elements of the set are then the programs that satisfy the
specification.

An advantage of using type theory for program construction is that it
is possible to express both specifications and programs within the same
formalism. Furthermore, the proof rules can be used to derive a correct
program from a specification as well as to verify that a given program has
a certain property. As a programming language, type theory is similar
to typed functional languages such as ML [20, 33] and Haskell [24], but
a major difference is that the evaluation of a well-typed program always
terminates.

The notion of constructive proof is closely related to the notion of com-
puter program. To prove a proposition (∀x∈A)(∃y ∈B)P (x, y) construc-
tively means to give a function f which when applied to an element a
in A gives an element b in B such that P (a, b) holds. So if the proposi-
tion (∀x∈A)(∃y∈B)P (x, y) expresses a specification, then the function f
obtained from the proof is a program satisfying the specification. A con-
structive proof could therefore itself be seen as a computer program and
the process of computing the value of a program corresponds to the process
of normalizing a proof. It is by this computational content of a constructive
proof that type theory can be used as a programming language; and since
the program is obtained from a proof of its specification, type theory can be
used as a programming logic. The relevance of constructive mathematics
for computer science was pointed out already by Bishop [4].

Several implementations of type theory have been made which can serve
as logical frameworks, that is, different theories can be directly expressed
in the implementations. The formulation of type theory we will describe
in this chapter form the basis for such a framework, which we will briefly
present in the last section.

The chapter is structured as follows. First we will give a short overview
of different formulations and implementations of type theory. Section 2 will
explain the fundamental idea of propositions as sets by Heyting’s explana-
tion of the intuitionistic meaning of the logical constants. The following
section will give a rather detailed description of the basic rules and their
semantics; on a first reading some of this material may just be glanced at,
in particular the subsection on hypothetical judgements. In section 4 we
illustrate type theory as a logical framework by expressing propositional
logic in it. Section 5 introduces a number of different sets and the final sec-
tion give a short description of ALF, an implementation of the type theory
of this chapter.

Although self-contained, this chapter can be seen as complement to
our book, Programming in Type Theory. An Introduction [34], in that

Martin-Löf ’s Type Theory 3

we here give a presentation of Martin-Löf’s monomorphic type theory in
which there are two basic levels, that of types and that of sets. The book is
mainly concerned with a polymorphic formulation where instead of a level
of types there is a theory of expressions. One major difference between
these two formulations is that in the monomorphic formulation there is
more type information in the terms, which makes it possible to implement
a type checker [28]; this is important when type theory is used as a logical
framework where type checking is the same as proof checking.

1.1 Different formulations of type theory

One of the basic ideas behind Martin-Löf’s type theory is the Curry-Howard
interpretation of propositions as types, that is, in our terminology, propo-
sitions as sets. This view of propositions is closely related to Heyting’s
explanation of intuitionistic logic [22] and will be explained in detail be-
low.

Another source for type theory is proof theory. Using the identification
of propositions and sets, normalizing a derivation corresponds to computing
the value of the proof term expressing the derivation. One of Martin-Löf’s
original aims with type theory was that it could serve as a framework
in which other theories could be interpreted. And a normalization proof
for type theory would then immediately give normalization for a theory
expressed in type theory.

In Martin-Löf’s first formulation of type theory from 1971 [29], theories
like first order arithmetic, Gödel’s T [19], second order logic and simple type
theory [6] could easily be interpreted. However, this formulation contained
a reflection principle expressed by a universe V and including the axiom
V∈V, which was shown by Girard to be inconsistent. Coquand and Huet’s
Calculus of Constructions [9] is closely related to the type theory in [29]:
instead of having a universe V, they have the two types Prop and Type and
the axiom Prop ∈ Type, thereby avoiding Girard’s paradox.

Martin-Löf’s later formulations of type theory have all been predica-
tive; in particular second order logic and simple type theory cannot be
interpreted in them. The strength of the theory considered in this chapter
instead comes from the possibility of defining sets by induction.

The formulation of type theory from 1979 in Constructive Mathematics
and Computer Programming [31] is polymorphic and extensional. One im-
portant difference with the earlier treatments of type theory is that normal-
ization is not obtained by metamathematical reasoning; instead, a direct
semantics is given, based on Tait’s computability method. A consequence
of the semantics is that a term, which is an element in a set, can be com-
puted to normal form. For the semantics of this theory, lazy evaluation is
essential. Because of a strong elimination rule for the set expressing the

4 B. Nordström, K. Petersson and J. M. Smith

propositional equality, judgemental equality is not decidable. This theory
is also the one in Intuitionistic Type Theory [32]. It is also the theory used
in the Nuprl system [7] and by the group in Groningen [3].

The type theory presented in this chapter was put forward by Martin-Löf
in 1986 with the specific intention that it should serve as a logical frame-
work.

1.2 Implementations

One major application of type theory is to use it as a programming logic
in which you derive programs from specifications. Such derivations easily
become long and tedious and, hence, error prone; so, it is essential to
formalize the proofs and to have computerized tools to check them.

There are several examples of computer implementations of proof check-
ers for formal logics. An early example is the AUTOMATH system [12, 13]
which was designed by de Bruijn to check proofs of mathematical theorems.
Quite large proofs were checked by the system, for example the proofs in
Landau’s book Grundlagen der Analysis [25]. Another system, which is
more intended as a proof assistant, is the Edinburgh (Cambridge) LCF
system [20, 35]. The proofs are constructed in a goal directed fashion,
starting from the proposition the user wants to prove and then using tac-
tics to divide it into simpler propositions. The LCF system also introduced
the notion of metalanguage (ML) in which the user could implement her
own proof strategies. Based on the LCF system, a system for Martin-Löf’s
type theory was implemented in Göteborg 1982 [37]. Another, more ad-
vanced, system for type theory was developed by Constable et al at Cornell
University [7].

During the last years, several logical frameworks based on type theory
have been implemented: the Edinburgh LF [21], Coq from INRIA [14],
LEGO from Edinburgh [27], and ALF from Göteborg [1, 28]. Coq and
LEGO are both based on Coquand and Huet’s calculus of constructions,
while ALF is an implementation of the theory we describe in this chapter.
A brief overview of the ALF system is given in section 6.

2 Propositions as sets

The basic idea of type theory to identify propositions with sets goes back to
Curry [11], who noticed that the axioms for positive implicational calculus,
formulated in the Hilbert style,

A ⊃ B ⊃ A

(A ⊃ B ⊃ C) ⊃ (A ⊃ B) ⊃ A ⊃ C

Martin-Löf ’s Type Theory 5

correspond to the types of the basic combinators K and S

K ∈ A → B → A

S ∈ (A → B → C) → (A → B) → A → C

Modus ponens then corresponds to functional application. Tait [41] no-
ticed the further analogy that removing a cut in a derivation corresponds
to a reduction step of the combinator representing the proof. Howard [23]
extended these ideas to first-order intuitionistic arithmetic. Another way
to see that propositions can be seen as sets is through Heyting’s [22] ex-
planations of the logical constants. The constructive explanation of logic
is in terms of proofs: a proposition is true if we know how to prove it. For
implication we have

A proof of A ⊃ B is a function (method, program) which to
each proof of A gives a proof of B.

The notion of function or method is primitive in constructive mathematics
and a function from a set A to a set B can be viewed as a program which
when applied to an element in A gives an element in B as output. The
idea of propositions as sets is now to identify a proposition with the set of
its proofs. In case of implication we get

A ⊃ B is identified with A → B, the set of functions from A
to B.

The elements in the set A → B are of the form λx.b, where b ∈ B and b
may depend on x ∈ A.

Heyting’s explanation of conjunction is that a proof of A ∧ B is a pair
whose first component is a proof of A and whose second component is a
proof of B. Hence, we get the following interpretation of a conjunction as
a set.

A∧B is identified with A×B, the cartesian product of A and B.

The elements in the set A×B are of the form 〈a, b〉 where a ∈ A and b ∈ B.
A disjunction is constructively true if and only if we can prove one of

the disjuncts. So a proof of A ∨ B is either a proof of A or a proof of B
together with the information of which of A or B we have a proof. Hence,

A ∨B is identified with A+B, the disjoint union of A and B.

6 B. Nordström, K. Petersson and J. M. Smith

The elements in the set A+B are of the form inl(a) and inr(b), where a ∈ A
and b ∈ B.

The negation of a proposition A can be defined by:

¬A ≡ A ⊃ ⊥

where ⊥ stands for absurdity, that is a proposition which has no proof. If
we let ∅ denote the empty set, we have

¬A is identified with the set A → ∅

using the interpretation of implication.
In order to interpret propositions defined using quantifiers, we need

operations defined on families of sets, i.e. sets B depending on elements x in
some set A. We let B [x←a] denote the expression obtained by substituting
a for all free occurrences of x in B. Heyting’s explanation of the existential
quantifier is the following.

A proof of (∃x∈A)B consists of a construction of an element a
in the set A together with a proof of B [x←a].

So, a proof of (∃x ∈A)B is a pair whose first component a is an element
in the set A and whose second component is a proof of B [x←a]. The
set corresponding to this is the disjoint union of a family of sets, denoted
by (Σx ∈ A)B. The elements in this set are pairs 〈a, b〉 where a ∈ A
and b ∈ B [x←a]. We get the following interpretation of the existential
quantifier.

(∃x∈A)B is identified with the set (Σx∈A)B.

Finally, we have the universal quantifier.

A proof of (∀x∈A)B is a function (method, program) which to
each element a in the set A gives a proof of B [x←a].

The set corresponding to the universal quantifier is the cartesian product
of a family of sets, denoted by (Πx ∈ A)B. The elements in this set are
functions which, when applied to an element a in the set A gives an element
in the set B [x←a]. Hence,

(∀x∈A)B is identified with the set (Πx∈A)B.

The elements in the set (Πx∈A)B are of the form λx.b where b ∈ B and
both b and B may depend on x ∈ A. Note that if B does not depend on x
then (Πx∈A)B is the same as A → B, so → is not needed as a primitive

Martin-Löf ’s Type Theory 7

when we have cartesian products over families of sets. In the same way,
(Σx∈A)B is nothing but A×B when B does not depend on x.

Except the empty set, we have not yet introduced any sets that cor-
respond to atomic propositions. One such set is the equality set a =A b,
which expresses that a and b are equal elements in the set A. Recalling
that a proposition is identified with the set of its proofs, we see that this set
is nonempty if and only if a and b are equal. If a and b are equal elements
in the set A, we postulate that the constant id(a) is an element in the set
a =A b.

When explaining the sets interpreting propositions we have used an
informal notation to express elements of the sets. This notation differs from
the one we will use in type theory in that that notation will be monomorphic
in the sense that the constructors of a set will depend on the set. For
instance, an element of A → B will be of the form λ(A,B, b) and an
element of A×B will be of the form 〈A,B, a, b〉.

3 Semantics and formal rules

We will in this section first introduce the notion of type and the judgement
forms this explanation give rise to. We then explain what a family of
types is and introduce the notions of variable, assumption and substitution
together with the rules that follow from the semantic explanations. Next,
the function types are introduced with their semantic explanation and the
formal rules which the explanation justifies. The rules are formulated in
the style of natural deduction [38].

3.1 Types

The basic notion in Martin-Löf’s type theory is the notion of type. A type
is explained by saying what an object of the type is and what it means for
two objects of the type to be identical. This means that we can make the
judgement

A is a type,

which we in the formal system write as

A type,

when we know the conditions for asserting that something is an object of
type A and when we know the conditions for asserting that two objects
of type A are identical. We require that the conditions for identifying two
objects must define an equivalence relation.

When we have a type, we know from the semantic explanation of what
it means to be a type what the conditions are to be an object of that type.

8 B. Nordström, K. Petersson and J. M. Smith

So, if A is a type and we have an object a that satisfies these conditions
then

a is an object of type A,

which we formally write
a ∈ A.

Furthermore, from the semantics of what it means to be a type and the
knowledge that A is a type we also know the conditions for two objects of
type A to be identical. Hence, if A is a type and a and b are objects of
type A and these objects satisfies the equality conditions in the semantic
explanation of A then

a and b are identical objects of type A,

which we write
a = b ∈ A.

Two types are equal when an arbitrary object of one type is also an
object of the other and when two identical objects of one type are identical
objects of the other. If A and B are types we know the conditions for being
an object and the conditions for being identical objects of these types. Then
we can investigate if all objects of type A are also objects of type B and if
all identical objects of type A are also objects of type B and vice versa. If
these conditions are satisfied then

A and B are identical types,

which we formally write
A = B.

The requirement that the equality between objects of a type must be
an equivalence relation is formalized by the rules:

Reflexivity of objects

a ∈ A

a = a ∈ A

Symmetry of objects

a = b ∈ A

b = a ∈ A

Transitivity of objects

a = b ∈ A b = c ∈ A

a = c ∈ A

Martin-Löf ’s Type Theory 9

The corresponding rules for types are easily justified from the meaning
of what it means to be a type.

Reflexivity of types
A type

A = A

Symmetry of types
A = B

B = A

Transitivity of types

A = B B = C

A = C

The meaning of the judgement forms a ∈ A, a = b ∈ A and A = B
immediately justifies the rules

Type equality rules

a ∈ A A = B

a ∈ B

a = b ∈ A A = B

a = b ∈ B

3.2 Hypothetical judgements

The judgements we have introduced so far do not depend on any assump-
tions. In general, a hypothetical judgement is made in a context of the
form

x1 ∈ A1, x2 ∈ A2, . . . , xn ∈ An

where we already know that A1 is a type, A2 is a type in the context
x1 ∈ A1, . . . , and An is a type in the context x1 ∈ A1, x2 ∈ A2, . . . ,
xn−1 ∈ An. The explanations of hypothetical judgements are made by
induction on the length of a context. We have already given the meaning
of the judgement forms in the empty context; hence we could now directly
explain the judgement forms in a context of length n. However, in order not
to hide the explanations by heavy notation, we will give them for hypothet-
ical judgements only depending on one assumption and then illustrate the
general case with the judgement that A is a type in a context of length n.

Let C be a type which does not depend on any assumptions. That A
is a type when x ∈ C, which we write

A type [x ∈ C],

means that, for an arbitrary object c of type C, A [x←c] is a type, that is,
A is a type when c is substituted for x. Furthermore we must also know

10 B. Nordström, K. Petersson and J. M. Smith

that if c and d are identical objects of type C then A [x←c] and A [x←d]
are the same types. When A is a type depending on x ∈ C we say that A
is a family of types over the type C.

That A and B are identical families of types over the type C,

A = B [x ∈ C],

means that A [x←c] and A [x←c] are equal types for an arbitrary object
c of type C.

That a is an object of type A when x ∈ C,

a ∈ A [x ∈ C],

means that we know that a [x←c] is an object of type A [x←c] for an
arbitrary object c of type C. We must also know that a [x←c] and a [x←d]
are identical objects of type A [x←c] whenever c and d are identical objects
of type C.

That a and b are identical objects of type A depending on x ∈ C,

a = b ∈ A [x ∈ C],

means that a [x←c] and b [x←c] are the same objects of type A [x←c] for
an arbitrary object c of type C.

We will illustrate the general case by giving the meaning of the judge-
ment that A is a type in a context of length n; the other hypothetical
judgements are explained in a similar way. We assume that we already
know the explanations of the judgement forms in a context of length n− 1.
Let

x1 ∈ A1, x2 ∈ A2, . . . , xn ∈ An

be a context of length n. We then know that

A1 type

A2 type [x1 ∈ A1]
...

An type [x1 ∈ A1, x2 ∈ A2, . . . , xn−1 ∈ An−1]

To know the hypothetical judgement

A type [x1 ∈ A1, x2 ∈ A2, . . . , xn ∈ An]

means that we know that the judgement

A [x1←a] type
[x2 ∈ A2 [x1←a], . . . , xn ∈ An [x1←a]]

Martin-Löf ’s Type Theory 11

holds for an arbitrary object a of type A1 in the empty context. We must
also require that if a and b are arbitrary identical objects of type A1 then
the judgement

A [x1←a] = A [x1←b]
[x2 ∈ A2 [x1←a], . . . , xn ∈ An [x1←a]]

holds. This explanation justifies two rules for substitution of objects in
types. We can formulate these rules in different ways, simultaneously sub-
stituting objects for one or several of the variables in the context. For-
mulating the rules so they follow the semantical explanation as closely as
possible gives us:

Substitution in types

A type [x1 ∈ A1, x2 ∈ A2, . . . , xn ∈ An] a ∈ A1

A [x1←a] type [x2 ∈ A2 [x1←a], . . . , xn ∈ An [x1←a]]

A type [x1 ∈ A1, x2 ∈ A2, . . . , xn ∈ An] a = b ∈ A1

A [x1←a] = A [x1←b] [x2 ∈ A2 [x1←a], . . . , xn ∈ An [x1←a]]

The explanations of the other hypothetical judgement forms give the
following substitution rules. Let A and B be types in the context x1 ∈ A1,
x2 ∈ A2, . . . , xn ∈ An.

Substitution in equal types

A = B [x1 ∈ A1, x2 ∈ A2, . . . , xn ∈ An] a ∈ A1

A [xj←a] = B [xj←a] [x2 ∈ A2 [x1←a], . . . , xn ∈ An [x1←a]]

Let A be a type in the context x1 ∈ A1, x2 ∈ A2, . . . , xn ∈ An.

Substitution in objects

a ∈ A [x1 ∈ A1, x2 ∈ A2, . . . , xn ∈ An] a ∈ A1

a [x1←a] ∈ A [x1←a] [x2 ∈ A2 [x1←a], . . . , xn ∈ An [x1←a]]

Let A be a type and c and d be objects of type A in the context x1 ∈ A1,
x2 ∈ A2, . . . , xn ∈ An.

Substitution in equal objects

c = d ∈ A [x1 ∈ A1, x2 ∈ A2, . . . , xn ∈ An] a ∈ A1

c [x1←a] = d [x1←a] ∈ A [x1←a] [x2 ∈ A2 [x1←a], . . . , xn ∈ An [x1←a]]

The explanations of the hypothetical judgement forms justifies the fol-
lowing rule for introducing assumptions.

12 B. Nordström, K. Petersson and J. M. Smith

Assumption

A1 type

A2 type [x1 ∈ A1]
...

An type [x1 ∈ A1, . . . , xn−1 ∈ An−1]
A type [x1 ∈ A1, . . . , xn−1 ∈ An−1, xn ∈ An]

x ∈ A [x1 ∈ A1, . . . xn ∈ An, x ∈ A]

In this rule all premises are explicit. In order to make the rules shorter and
more comprehensible we will often leave out that part of the context which
is the same in the conclusion and each premise.

The rules given in the previous section without assumptions could be
justified also for hypothetical judgements.

3.3 Function types

One of the basic ways to form a new type from old ones is to form a function
type. So, if we we have a type A and a family B of types over A, we want
to form the dependent function type (x ∈ A)B of functions from A to B.
In order to do this, we must explain what it means to be an object of
type (x ∈ A)B and what it means for two objects of type (x ∈ A)B to be
identical. The function type is explained in terms of application.

To know that an object c is of type (x ∈ A)B means that we know that
when we apply it to an arbitrary object a of type A we get an object c(a)
in B [x←a] and that we get identical objects in B [x←a] when we apply
it to identical objects a and b of A.

That two objects c and d of (x ∈ A)B are identical means that when
we apply them on an arbitrary object a of type A we get identical objects
of type B [x←a].

Since we now have explained what it means to be an object of a function
type and the conditions for two objects of a function type to be equal, we
can justify the rule for forming the function type.

Function type

A type B type [x ∈ A]
(x ∈ A)B type

We also obtain the rule for forming equal function types.

Equal function types

A = A′ B = B′ [x ∈ A]
(x ∈ A)B = (x ∈ A′)B′

Martin-Löf ’s Type Theory 13

We will use the abbreviation (A)B for (x ∈ A)B when B does not depend
on x. We will also write (x ∈ A; y ∈ B)C instead of (x ∈ A)(y ∈ B)C and
(x, y ∈ A)B instead of (x ∈ A; y ∈ A)C.

We can also justify the following two rules for application

Application

c ∈ (x ∈ A)B a ∈ B

c(a) ∈ B [x←a]
c ∈ (x ∈ A)B a = b ∈ A

c(a) = c(b) ∈ B [x←a]

We also have the following rules for showing that two functions are equal.

Application

c = d ∈ (x ∈ A)B a ∈ A

c(a) = d(a) ∈ B [x←a]

Extensionality

c ∈ (x ∈ A)B d ∈ (x ∈ A)B c(x) = d(x) ∈ B [x ∈ A]
c = d ∈ (x ∈ A)B

x must occur free neither in c nor in d

Instead of writing repeated applications as c(a1)(a2) · · · (an) we will use the
simpler form c(a1, a2, . . . , an).

One fundamental way to introduce a function is to abstract a variable
from an expression:

Abstraction
b ∈ B [x ∈ A]

([x]b) ∈ (x ∈ A)B

We will write repeated abstractions as [x1, x2, . . . , xn]b and also exclude
the outermost parentheses when there is no risk of confusion.

How do we know that this rule is correct, i.e. how do we know that [x]b
is a function of the type (x ∈ A)B? By the semantics of function types,
we must know that when we apply [x]b of type (x ∈ A)B on an object a
of type A, then we get an object of type B[x ← a]; the explanation is by
β-conversion:

β-conversion

a ∈ A b ∈ B [x ∈ A]
([x]b)(a) = b [x←a] ∈ B [x←a]

We must also know that when we apply an abstraction [x]b, where b ∈
B [x ∈ A], on two identical objects a1 and a2 of type A, then we get

14 B. Nordström, K. Petersson and J. M. Smith

identical results of type B [x←a] as results. We can see this in the following
way. By β-conversion we know that ([x]b)(a1) = b [x←a1] ∈ B [x←a1]
and ([x]b)(a2) = b [x←a2] ∈ B [x←a2]. By the meaning of the judgements
B type [x ∈ A] and b ∈ B [x ∈ A] we know that B[x ← a1] = B[x ← a2]
and that b [x←a1] = b [x←a2] ∈ B [x←a1]. Hence, by symmetry and
transitivity, we get ([x]b)(a1) = ([x]b(a2) ∈ B [x←a1] from a1 = a2 ∈ A.

To summarize: to be an object f in a functional type (x ∈ A)B means
that it is possible to make an application f(a) if a ∈ A. Then by looking
at β-conversion as the definition of what it means to apply an abstracted
expression to an object it is possible to give a meaning to an abstracted
expression. Hence, application is more primitive then abstraction on this
type level. Later we will see that for the set of functions, the situation is
different.

By the rules we have introduced, we can derive the rules

η-conversion

c ∈ (x ∈ A)B
([x]c(x)) = c ∈ (x ∈ A)B

x must not occur free in c

ξ-rule
b = d ∈ B [x ∈ A]

[x]b = [x]d ∈ (x ∈ A)B

3.4 The type Set

The objects in the type Set consist of inductively defined sets. In order
to explain a type we have to explain what it means to be an object in it
and what it means for two such objects to be the same. So, to know that
Set is a type we must explain what a set is and what it means for two
sets to be the same: to know that A is an object in Set (or equivalently
that A is a set) is to know how to form canonical elements in A and when
two canonical elements are equal. A canonical element is an element on
constructor form; examples are zero and the successor function for natural
numbers.

Two sets are the same if an element of one of the sets is also an element
of the other and if two equal elements of one of the sets are also equal
elements of the other.

This explanation justifies the following rule

Set-formation
Set type

If we have a set A we may form a type El(A) whose objects are the
elements of the set A:

Martin-Löf ’s Type Theory 15

El-formation
A : Set

El(A) type

Notice that it is required that the sets are built up inductively: we
know exactly in what ways we can build up the elements in the set and
different ways corresponding to different constructors. As an example, for
the ordinary definition of natural numbers, there are precisely two ways of
building up elements, one using zero and the other one using the successor
function. This is in contrast with types which in general are not built
up inductively. For instance, the type Set can obviously not be defined
inductively. It is always possible to introduce new sets (i.e. objects in
Set). The concept of type is open; it is possible to add more types to the
language, for instance by adding a new object A to Set gives the new type
El(A)).

In the sequel, we will often write A instead of El(A) since it will always
be clear from the context if A stands for the set A or the type of elements
of A.

3.5 Definitions

Most of the generality and usefulness of the language comes from the possi-
bilities of introducing new constants. It is in this way that we can introduce
the usual mathematical objects like natural numbers, integers, functions,
tuples etc. It is also possible to introduce more complicated inductive sets
like sets for proof objects: it is in this way rules and axioms of a theory is
represented in the framework.

A distinction is made between primitive and defined constants. The
value of a primitive constant is the constant itself. So, the constant has only
a type and not a definition; instead it gets its meaning by the semantics
of the theory. Such a constant is also called a constructor. Examples
of primitive constants are N, succ and 0; they can be introduced by the
following declarations:

N ∈ Set

succ ∈ N → N

0 ∈ N

A defined constant is defined in terms of other objects. When we apply
a defined constant to all its arguments in an empty context, for instance,
c(e1, . . . , en), then we get an expression which is a definiendum, that is, an
expression which computes in one step to its definiens (which is a well-typed
object).

16 B. Nordström, K. Petersson and J. M. Smith

A defined constant can either be explicitly or implicitly defined. We
declare an explicitly defined constant c by giving it as an abbreviation of
an object a in a type A:

c = a ∈ A

For instance, we can make the following explicit definitions:

1 = succ(0) ∈ N

IN = [x]x ∈ N → N

I = [A, x]x ∈ (A∈Set;A)A

The last example is the monomorphic identity function which when applied
to an arbitrary set A yields the identity function on A. It is easy to see
if an explicit definition is correct: you just check that the definiens is an
object in the correct type.

We declare an implicitly defined constant by showing what definiens it
has when we apply it to its arguments. This is done by pattern-matching
and the definition may be recursive. Since it is not decidable if an expres-
sion defined by pattern-matching on a set really defines a value for each
element of the set, the correctness of an implicit definition is in general
a semantical issue. We must be sure that all well-typed expressions of
the form c(e1, . . . , en) is a definiendum with a unique well-typed definiens.
Here are two examples, addition and the operator for primitive recursion
in arithmetic:

+ ∈ N → N → N

+(0, y) = y

+(succ(x), y) = succ(+(x, y))

natrec ∈ N → (N → N → N) → N → N

natrec(d, e, 0) = d

natrec(d, e, succ(a)) = e(a, natrec(d, e, a))

4 Propositional logic

Type theory can be used as a logical framework, that is, it can be used to
represent different theories. In general, a theory is presented by a list of
typings

c1 ∈ A1, . . . , cn ∈ An

where c1, . . . , cn are new primitive constants, and a list of definitions

d1 = e1 ∈ B1, . . . , dm = em ∈ Am

Martin-Löf ’s Type Theory 17

where d1, . . . , dm are new defined constants.
The basic types of Martin-Löf’s type theory are Set and the types of

elements of the particular sets we introduce. In the next section we will give
a number of examples of sets, but first we use the idea of propositions as sets
to express that propositional logic with conjunction and implication; the
other connectives can be introduced in the same way. When viewed as the
type of propositions, the semantics of Set can be seen as the constructive
explanation of propositions: a proposition is defined by laying down what
counts as a direct (or canonical) proof of it; or differently expressed: a
proposition is defined by its introduction rules. Given a proposition A,
that is, an object of the type Set, then El(A) is the type of proofs of A.
From the semantics of sets we get that two proofs are the same if they have
the same form and identical parts; we also get that two propositions are
the same if a proof of one of the propositions is also a proof of the other
and if identical proofs of one of the propositions are also identical proofs
of the other.

The primitive constant & for conjunction is introduced by the following
declaration

& ∈ (Set; Set)Set

From this declaration we obtain, by repeated function application, the
clause for conjunction in the usual inductive definition of formulas in the
propositional calculus:

& -formation
A ∈ Set B ∈ Set

A&B ∈ Set

where we have used infix notation, that is, we have written A&B instead
of &(A,B).

We must now define what counts as a proof of a conjunction, and that
is done by the following declaration of the primitive constant &I .

&I ∈ (A,B ∈ Set;A;B)A&B

This declaration is the inductive definition of the set &(A,B), that is, all
elements in the set is equal to an element of the form &I(A,B, a, b), where
A and B are sets and a ∈ A and b ∈ B. A proof of the syntactical form
&I(A,B, a, b) is called a canonical proof of A&B.

By function application, we obtain the introduction rule for conjunction
from the declaration of &I .

& -introduction

A ∈ Set B ∈ Set a ∈ A b ∈ B

&I(A,B, a, b) ∈ A&B

18 B. Nordström, K. Petersson and J. M. Smith

To obtain the two elimination rules for conjunction, we introduce the
two defined constants

&E1 ∈ (A,B∈Set;A&B)A

and
&E2 ∈ (A,B∈Set;A&B)B

by the defining equations

&E1(A,B,&I(A,B, a, b)) = a ∈ A

and
&E2(A,B,&I(A,B, a, b)) = b ∈ B

respectively. Notice that it is the definition of the constants which justifies
their typings. To see that the typing of &E1 is correct, assume that A and
B are sets, and that p ∈ A&B. We must then show that &E1(A,B, p)
is an element in A. But since p ∈ A&B, we know that p is equal to an
element of the form &I(A,B, a, b), where a ∈ A and b ∈ B. But then we
have that &E1(A,B, p) = &E1(A,B,&I(A,B, a, b)) which is equal to a by
the defining equation of &E1.

From the typings of &E1 and &E2 we obtain, by function application,
the elimination rules for conjunction:

& -elimination 1

A ∈ Set B ∈ Set c ∈ A&B

&E1(A,B, c) ∈ A

and

& -elimination 2

A ∈ Set B ∈ Set c ∈ A&B

&E2(A,B, c) ∈ B

The defining equations for &E1 and &E2 correspond to Prawitz’ reduction
rules in natural deduction:

...
A

A&B
A

=
...
A

and

Martin-Löf ’s Type Theory 19

...
B

A&B
B

=
...
B

respectively. Notice the role which these rules play here. They are used
to justify the correctness, that is, the well typings of the elimination rules.
The elimination rules are looked upon as methods which can be executed,
and it is the reduction rules which defines the execution of the elimination
rules.

The primitive constant ⊃ for implication is introduced by the declara-
tion

⊃∈ (Set; Set)Set

As for conjunction, we obtain from this declaration the clause for implica-
tion in the inductive definition of formulas in the propositional calculus:

⊃ -formation
A ∈ Set B ∈ Set

A ⊃ B ∈ Set

A canonical proof of an implication is formed by the primitive constant
⊃I , declared by

⊃I ∈ (A,B∈Set; (A)B)A ⊃ B

By function application, the introduction rule for implication is obtained
from the declaration of ⊃I :

⊃ -introduction

A ∈ Set B ∈ Set b(x) ∈ B [x ∈ A]
⊃I (A,B, b) ∈ A ⊃ B

So, to get a canonical proof of A ⊃ B we must have a function b which
when applied on a proof of A gives a proof of B, and the proof then obtained
is ⊃I (A,B, b).

To obtain modus ponens, the elimination rule for ⊃, we introduce the
defined constant

⊃E ∈ (A,B ∈ Set;A ⊃ B;A)B

which is defined by the equation

⊃E (A,B,⊃I (A,B, b, a)) = b(a) ∈ B

In the same way as for conjunction, we can use this definition to show that
⊃E is well-typed.

20 B. Nordström, K. Petersson and J. M. Smith

The defining equation corresponds to the reduction rule

A
...
B

A ⊃ B

...
A

B

=

...
A
...
B

By function application, we obtain from the typing of ⊃E

⊃ -elimination

A ∈ Set B ∈ Set b ∈ A ⊃ B a ∈ A

⊃E (A,B, b, a) ∈ B

5 Set theory

We will in this section introduce a theory of sets with natural numbers,
lists, functions, etc. which could be used when specifying and implementing
computer programs. We will also show how this theory is represented in
the type theory framework.

When defining a set, we first introduce a primitive constant for the set
and then give the primitive constants for the constructors, which express
the different ways elements of the set can be constructed. The typing rule
for constant denoting the set is called the formation rule of the set and the
typing rules for the constructors are called the introduction rules . Finally,
we introduce a selector as an implicitly defined constant to express the
induction principle of the set; the selector is defined by pattern-matching
and may be recursive. The type rule for the selector is called the elimination
rule and the defining equations are called equality rules .

Given the introduction rules, it is possible to mechanically derive the
elimination rule and the equality rules for a set; how this can be done have
been investigated by Martin-Löf [30], Backhouse [2], Coquand and Paulin
[10], and Dybjer[15].

5.1 The set of Boolean values

The set of Boolean values is an example of an enumeration set. The values
of an enumeration set are exactly the same as the constructors of the set
and all constructors yield different elements. For the Booleans this means
that there are two ways of forming an element and therefore also two con-
structors; true and false. Since we have given the elements of the set and

Martin-Löf ’s Type Theory 21

their equality, we can introduce a constant for the set and make the type
declaration

Bool ∈ Set

We can also declare the types of the constructor constants

true ∈ Bool
false ∈ Bool

The principal selector constant of an enumeration set is a function that
performs case analysis on Boolean values. For the Booleans we introduce
the if constant with the type

if ∈ (C ∈ (Bool)Set; b ∈ Bool;C(true);C(false))C(b)

and the defining equations

if(C, true, a, b) = a

if(C, false, a, b) = b

In these two definitional equalities we have omitted the types since they
can be obtained immediately from the typing of if. In the sequel, we will
often write just a = b instead of a = b ∈ A when the type A is clear from
the context.

5.2 The empty set

To introduce the empty set, {}, we just define a set with no constructors
at all. First we make a type declaration for the set

{} ∈ Set

Since there are no constructors we immediately define the selector case and
its type by the declaration

case ∈ (C ∈ ({})Set; a ∈ {})C(a)

The empty set corresponds to the absurd proposition and the selector cor-
responds to the natural deduction rule for absurdity

⊥ true C prop

C true

22 B. Nordström, K. Petersson and J. M. Smith

5.3 The set of natural numbers

In order to introduce the set of natural numbers, N, we must give the rules
for forming all the natural numbers as well as all the rules for forming
two equal natural numbers. These are the introduction rules for natural
numbers.

There are two ways of forming natural numbers, 0 is a natural number
and if n is a natural number then succ(n) is a natural number. There are
also two corresponding ways of forming equal natural numbers, the natural
number 0 is equal to 0 and if the natural number n is equal to m, then
succ(n) is equal to succ(m). So we have explained the meaning of the
natural numbers as a set, and can therefore make the type declaration

N ∈ Set

and form the introduction rules for the natural numbers, by declaring the
types of the constructor constants 0 and succ

0 ∈ N

succ ∈ (n ∈ N)N

The general rules in the framework makes it possible to give the introduc-
tion rules in this simple form.

We will introduce a very general form of selector for natural numbers,
natrec, as a defined constant. It could be used both for expressing elements
by primitive recursion and proving properties by induction. The functional
constant natrec takes four arguments; the first is a family of sets that
determines the set which the result belongs to, the second and third are
the results for the zero and successor case, respectively, and the fourth
argument, finally, is the natural number which is the principal argument
of the selector. Formally, the type of natrec is

natrec ∈ (C ∈ (N)Set;
d ∈ C(0);
e ∈ (x ∈ N; y ∈ C(x))C(succ(x));
n ∈ N)
C(n)

The defining equations for the natrec constant are

natrec(C, d, e, 0) = d

natrec(C, d, e, succ(m)) = e(n, natrec(C, d, e,m))

The selector for natural numbers could, as we already mentioned, be used
for introducing ordinary primitive recursive functions. Addition and mul-
tiplication could, for example, be introduced as two defined constants

Martin-Löf ’s Type Theory 23

plus ∈ (N;N)N

mult ∈ (N;N)N

by the defining equations

plus(m,n) = natrec([x]N, n, [x, y]succ(y),m)

mult(m,n) = natrec([x]N, 0, [x, y]plus(y, n),m)

Using the rules for application together with the type and the definitional
equalities for the constant natrec it is easy to derive the type of the right
hand side of the equalities above as well as the following equalities for
addition and multiplication:

plus(0, n) = n ∈ N [n ∈ N]
plus(succ(m), n) = succ(plus(m,n)) ∈ N [m ∈ N, n ∈ N]

mult(0, n) = 0 ∈ N [n ∈ N]
mult(succ(m), n) = plus(mult(m,n), n) ∈ N [m ∈ N, n ∈ N]

In general, if we have a primitive recursive function f from N to A

f(0) = d
f(succ(n)) = e(n, f(n))

where d ∈ A and e is a function in (N;A)A, we can introduce it as a defined
constant

f ′ ∈ (N)A

using the defining equation

f ′(n) = natrec([x]A, d′, e′, n)

where d′ and e′ are functions in type theory which correspond to d and e
in the definition of f .

The type of the constant natrec represents the usual elimination rule
for natural numbers

C(x) Set [x ∈ N]
d ∈ C(0)
e ∈ C(succ(x)) [x ∈ N, y ∈ C(x)]
x ∈ N

natrec(C, d, e, x) ∈ C(x)

which can be obtained by assuming the arguments and then apply the
constant natrec on them. Note that, in the conclusion of the rule, the
expression natrec(C, d, e, x) contains the family C. This is a consequence
of the explicit declaration of natrec in the framework.

24 B. Nordström, K. Petersson and J. M. Smith

5.4 The set of functions (Cartesian product of a family

of sets)

We have already introduced the type (x ∈ A)B of functions from the type
A to the type B. We need the corresponding set of functions from a set to
another set. If we have a set A and a family of sets B over A, we can form
the cartesian product of a family of sets, which is denoted Π(A,B). The
elements of this set are functions which when applied to an element a in
A yield an element in B(a). The elements of the set Π(A,B) are formed
by applying the constructor λ to the sets A and B and an object of the
corresponding function type.

The constant Π is introduced by the type declaration

Π ∈ (A ∈ Set;B ∈ (x ∈ A)Set)Set

and the constant λ by

λ ∈ (A ∈ Set;B ∈ (x ∈ A)Set; f ∈ (x ∈ A)B)Π(A,B)

These constant declarations correspond to the rules

A ∈ Set B(x) ∈ Set [x ∈ A]
Π(A,B) ∈ Set

A ∈ Set B(x) ∈ Set [x ∈ A] f ∈ B(x) [x ∈ A]
λ(A,B, f) ∈ Π(A,B)

Notice that the elements of a cartesian product of a family of sets, Π(A,B),
are more general than ordinary functions from A to B in that the result of
applying an element of Π(A,B) to an argument can be in a set which may
depend on the value of the argument.

The most important defined constant in the Π-set is the constant for
application. In type theory this selector takes as arguments not only an
element of Π(A,B) and an object of type A but also the sets A and B
themselves. The constant is introduced by the type declaration

apply ∈ (A ∈ Set;B ∈ (x ∈ A)Set; g ∈ Π(A,B); a ∈ A)B(a)

and the definitional equality

apply(A,B,λ(f), a) = f(a)

The cartesian product of a family of sets is, when viewed as a propo-
sition the same as universal quantification. The type of the constructor
corresponds to the introduction rule

B(x) true [x ∈ A]
(∀x ∈ A)B(x) true

Martin-Löf ’s Type Theory 25

and the type of the selector corresponds to the elimination rule

(∀x ∈ A)B(x) true a ∈ A

B(a) true

The cartesian product of a family of sets is a generalization of the ordi-
nary function set. If the family of sets B over A is the same for all elements
of A, then the cartesian product is just the set of ordinary functions. The
constant → is introduced by the following explicit definition:

→ ∈ (A,B ∈ Set)Set

→ = [A,B]Π(A, [x]B)

The set of functions is, when viewed as a proposition, the same as
implication since the type of the constructor is the same as the introduction
rule for implication

B true [A true]
A ⊃ B true

and the type of the selector is the same as the elimination rule

A ⊃ B true A true

B true

Given the empty set and the set of function we can define a constant
for negation in the following way

¬ ∈ (A ∈ Set)Set

¬(A) = A→{}

Example 1. Let us see how to prove the proposition A ⊃ ¬¬A. In order
to prove the proposition we must find an element in the set

A → (¬(¬A)) ≡ A → ((A → {}) → {})

We start by making the assumptions x ∈ A and y ∈ A → {} and then
obtain an element in {}

apply(A → {}, A, y, x) ∈ {}

and therefore

λ(A, (A → {}) → {},
[x]λ(A → {}, {},

[y]apply(A → {}, A, y, x)))
∈ A → ((A → {}) → {}) ≡ A → (¬(¬A))

26 B. Nordström, K. Petersson and J. M. Smith

Example 2. Using the rules for natural numbers, booleans and functions
we will show how to define a function, eqN ∈ (N,N)Bool, that decides if
two natural numbers are equal. We want the following equalities to hold:

eqN(0, 0) = true

eqN(0, succ(n)) = false

eqN(succ(m), 0) = false

eqN(succ(m), succ(n)) = eqN(m,n)

It is impossible to define eqN directly just using natural numbers and re-
cursion on the arguments. We have to do recursion on the arguments
separately and first use recursion on the first argument to compute a func-
tion which when applied to the second argument gives us the result we
want. So we first define a function f ∈ (N) (N → Bool) which satisfies the
equalities

f(0) = λ([m] iszero(m))

f(succ(n)) = λ([m] natrec(m, false, [x, y] apply(f(n), x)))

where

iszero(m) = natrec(m, true, [x, y] false)

If we use the recursion operator explicitly, we can define f as

f(n) = natrec(n,
λ([m]iszero(m)),
[u, v]λ((m)natrec(m, false, [x, y] apply(v, x))))

The function f is such that f(n) is equal to a function which gives true if
is applied to n and false otherwise, that is, we can use it to define eqN as
follows

eqN(m,n) = apply(f(m), n)

It is a simple exercise to show that

eqN ∈ (N,N)Bool

and that it satisfies the equalities we want it to satisfy.

Martin-Löf ’s Type Theory 27

5.5 Propositional equality

The equality on the judgement level a = b ∈ A is a definitional equality
and two objects are equal if they have the same normal form. In order to
express that, for example, addition of natural numbers is a commutative
operation it is necessary to introduce a set for propositional equality.

If a and b are elements in the set A, then Id(A, a, b) is a set. We express
this by introducing the constant Id and its type

Id ∈ (X ∈ Set; a ∈ X ; b ∈ X)Set

The only constructor of elements in equality sets is id and it is introduced
by the type declaration

id ∈ (X ∈ Set;x ∈ X) Id(X,x, x)

To say that id is the only constructor for Id(A, a, b) is the same as to say
that Id(A, a, b) is the least reflexive relation. Transitivity, symmetry and
congruence can be proven from this definition. We use the name idpeel for
the selector and it is introduced by the type declaration

idpeel ∈ (A ∈ Set;
C ∈ (x, y ∈ A; e ∈ Id(A, x, y))Set;
a, b ∈ A;
e ∈ Id(A, a, b);
d ∈ (x ∈ A)C(x, x, id(A, x)))
C(a, b, e)

and the equality

idpeel(A,C, a, b, id(A, a), d) = d(a)

The intuition behind this constant is that it expresses a substitution rule
for elements which are propositionally equal.

Example 3. The type of the constructor in the set Id(A, a, b) corresponds
to the reflexivity rule of equality. The symmetry and transitivity rules can
easily be derived.

Let A be a set and a and b two elements of A. Assume that

d ∈ Id(A, a, b)

In order to prove symmetry, we must construct an element in Id(A, b, a).
By applying idpeel on A, [x, y, e]Id(A, y, x), a, b, d and [x]id(A, x) we get,
by simple typechecking, an element in the set Id(A, b, a).

idpeel(A, [x, y, e]Id(A, y, x), a, b, d, [x]id(A, x)) ∈ Id(A, b, a)

28 B. Nordström, K. Petersson and J. M. Smith

The derived rule for symmetry can therefore be expressed by the constant
symm defined by

idsymm ∈ (A ∈ Set; a, b ∈ A; d ∈ Id(A, a, b)) Id(A, b, a)

idsymm(A, a, b, d) = idpeel(A, [x, y, e]Id(A, y, x), a, b, d, [x]id(A, x))

Transitivity is proved in a similar way. Let A be a set and a, b and c
elements of A. Assume that

d ∈ Id(A, a, b) and e ∈ Id(A, b, c)

By applying idpeel on A, [x, y, z]Id(A, y, c)→Id(A, z, c), a, b, d and the iden-
tity function [x]λ(Id(A, x, c), Id(A, x, c), [w]w) we get an element in the set
Id(A, b, c)→Id(A, a, c). This element is applied on e in order to get the
desired element in Id(A, a, c).

idtrans ∈ (A ∈ Set; a, b, c ∈ A; d ∈ Id(A, a, b); e ∈ Id(A, b, c)) Id(A, a, c)

idtrans(A, a, b, c, d, e) = apply(Id(A, b, c), Id(A, a, c),
idpeel(A, [x, y, z]Id(A, y, c)→Id(A, x, c),

a, b, d,
[x]λ(Id(A, x, c), Id(A, x, c), [w]w)),

e)

Example 4. Let us see how we can derive a rule for substitution in set
expressions. We want to have a rule

P (x) ∈ set [x ∈ A] a ∈ A b ∈ A c ∈ Id(A, a, b) p ∈ P (a)
subst(P, a, b, c, p) ∈ P (b)

To derive such a rule, first assume that we have a set A and elements a
and b of A. Furthermore assume that c ∈ Id(A, a, b), P (x) ∈ Set [x ∈ A]
and p ∈ P (a). Type checking gives us that

λ(P (x), P (x), [w]w) ∈ P (x)→P (x) [x ∈ A]

idpeel(A, [x, y, z](P (x)→P (y)), a, b, c, [x]λ(P (x), P (x), [w]w))
∈ P (a)→P (b)

We can now apply the function above on p to obtain an element in P (b). So
we can define a constant subst that expresses the substitution rule above.
The type of subst is

subst ∈ (A ∈ Set;
P ∈ (A)Set;
a, b ∈ A;
c ∈ Id(A, a, b);
p ∈ P (a))
P (b)

Martin-Löf ’s Type Theory 29

and the defining equation

subst(A,P, a, b, c, p) = apply(P (a), P (b),
idpeel(A, [x, y, z](P (x)→P (y)),

a, b, c,
[x]λ(P (x), P (x), [w]w)),

p)

5.6 The set of lists

The set of lists List(A) is introduced in a similar way as the natural num-
bers, except that there is a parameter A that determines which set the
elements of a list belongs to. There are two constructors to build a list, nil
for the empty list and cons to add an element to a list. The constants we
have introduced so far have the following types:

List ∈ (A ∈ set)Set

nil ∈ (A ∈ set) List(A)
cons ∈ (A ∈ set; a ∈ A; l ∈ List(A)) List(A)

The selector listrec for types is a constant that expresses primitive recursion
for lists. The selector is introduced by the type declaration

listrec ∈ (A ∈ Set;
C ∈ (List(A))Set;
c ∈ C(nil(A));
e ∈ (x ∈ A; y ∈ List(A); z ∈ C(y))C(cons(A, x, y));
l ∈ List(A))
C(l)

The defining equations for the listrec constant are

listrec(A,C, c, e, nil(A)) = c

listrec(A,C, c, e, cons(A, a, l)) = e(l, a, listrec(A,C, c, e, l))

5.7 Disjoint union of two sets

If we have two sets A and B we can form the disjoint union A+B. The ele-
ments of this set are either of the form inl(A,B, a) or of the form inr(A,B, b)
where a ∈ A and b ∈ B. In order to express this in the framework we in-
troduce the constants

+ ∈ (A,B ∈ Set)Set

inl ∈ (A,B ∈ Set;A)A+B

inr ∈ (A,B ∈ Set;B)A+B

30 B. Nordström, K. Petersson and J. M. Smith

The selector when is introduced by the type declaration

when ∈ (A,B ∈ Set;
C ∈ (A+B)Set;
e ∈ (x ∈ A)C(inl(A,B, x));
f ∈ (y ∈ B)C(inr(A,B, y));
p ∈ A+B)
C(p)

and defined by the equations

when(A,B,C, e, f, inl(A,B, a)) = e(a)

when(A,B,C, e, f, inr(A,B, b)) = f(b)

Seen as a proposition the disjoint union of two sets expresses disjunction.
The constructors correspond to the introduction rules

A true

A ∨B true

B true

A ∨B true

and the selector when corresponds to the elimination rule.

A ∨B true C prop C true [A true] C true [B true]
C true

5.8 Disjoint union of a family of sets

In order to be able to deal with the existential quantifier and to have a set
of ordinary pairs, we will introduce the disjoint union of a family of sets.
The set is introduced by the type declaration

Σ ∈ (A ∈ Set;B ∈ (A)Set)Set

There is one constructor in this set, pair, which is introduced by the type
declaration

pair ∈ (A ∈ Set;B ∈ (A)Set; a ∈ A;B(a))Σ(A,B)

The selector of a set Σ(A,B) splits a pair into its parts. It is defined by
the type declaration

split ∈ (A ∈ Set;B ∈ (A)Set;
C ∈ (Σ(A,B))Set;
d ∈ (a ∈ A; b ∈ B(a))C(pair(A,B, a, b));
p ∈ Σ(A,B))
C(p)

Martin-Löf ’s Type Theory 31

and the defining equation

split(A,B,C, d, pair(A,B, a, b)) = d(a, b)

Given the selector split it is easy to define the two projection functions that
give the first and second component of a pair.

fst ∈ (A ∈ Set;B ∈ (A)Set; p ∈ Σ(A,B))A
fst(A,B, p) = split(A,B, [x]A, [x, y]x, p)

snd ∈ (A ∈ Set;B ∈ (A)Set; p ∈ Σ(A,B))B(fst(A,B, p)
snd(A,B, p) = split(A,B, [x]B(fst(A,B, p)), [x, y]y, p)

When viewed as a proposition the disjoint union of a family of sets
Σ(A,B) corresponds to the existential quantifier (∃ x ∈ A)B(x). The types
of constructor pair and when correspond to the natural deduction rules for
the existential quantifier

a ∈ A B(a) true
(∃x ∈ A)B(x) true

(∃x ∈ A)B(x) true C prop C true [x ∈ A,B(x) true]
C true

5.9 The set of small sets

A set of small sets U, or a universe, is a set that reflects some part of the set
structure on the object level. It is of course necessary to introduce this set
if one wants to do some computation using sets, for example to specify and
prove a type checking algorithm correct, but it is also necessary in order to
prove inequalities such as 0 0= succ(0). Furthermore, the universe can be
used for defining families of sets using recursion, for example non-empty
lists and sets such as Nn.

We will introduce the universe simultanously with a function S that
maps an element of U to the set the element encodes. The universe we will
introduce has one constructor for each set we have defined. The constants
for sets are introduced by the type declaration

U ∈ Set
S ∈ (U)Set

32 B. Nordström, K. Petersson and J. M. Smith

Then we introduce the constructors in U and the defining equations for S

BoolU ∈ U
S(BoolU) = Bool

{}U ∈ U
S({}U) = {}

NU ∈ U
S(NU) = N

ΠU ∈ (A ∈ U;B ∈ (S(A))U)U
S(ΠU (A,B)) = Π(S(A), [h]S(B(h)))

IdU ∈ (A ∈ U; a ∈ S(A); b ∈ S(A))U
S(IdU (A, a, b)) = Id(S(A), a, b)

ListU ∈ (A ∈ U)U
S(ListU (A)) = List(S(A))

+U ∈ (A ∈ U;B ∈ U)U
S(+U (A,B)) = +(S(A), S(B))

ΣU ∈ (A ∈ U;B ∈ (S(A))U)U
S(ΣU (A,B)) = Σ(S(A), [h]S(B(h)))

Example 5. Let us see how we can derive an element in the set

¬Id(N, 0, succ(0))

or, in other words, how we can find an expression in the set

Id(N, 0, succ(0))→{}

We start by assuming that

x ∈ Id(N, 0, succ(0))

Then we construct a function, Iszero, that maps a natural number to an
element in the universe.

Iszero ∈ (N)U

Iszero(m) = natrec(m,BoolU , [y, z]{}U)

It is easy to see that

Iszero(0) = S(BoolU) = Bool

Iszero(succ(0)) = S({}U) = {}

Martin-Löf ’s Type Theory 33

and therefore
true ∈ Bool = Iszero(0)

subst(x, true) ∈ Iszero(succ(0)) = {}

Finally, we have the element we are looking for

λ(Id(N, 0, succ(0)), {}, [x]subst(x, true)) ∈ Id(N, 0, succ(0))→{}

It is shown in Smith [39] that without a universe no negated equalities can
be proved.

6 The ALF series of interactive editors for type

theory

At the department of Computing Science in Göteborg, we have developed a
series of interactive editors for objects and types in type theory. The editors
are based on direct manipulation, that is, the things which are being built
are shown on the screen, and editing is done by pointing and clicking on
the screen.

The proof object is used as a true representative of a proof. The process
of proving the proposition A is represented by the process of building a
proof object of A. The language of type theory is extended with place
holders (written as indexed question marks). The notation ? ∈ A stands
for the problem of finding an object in A. An object is edited by replacing
the placeholders by expressions which may contain placeholders. It is also
possible to delete a subpart of an object by replacing it with a placeholder.

There is a close connection between the individual steps in proving A
and the steps to build a proof object of A. When we are making a top-
down proof of a proposition A, then we try to reduce the problem A to some
subproblems B1, . . . , Bn by using a rule c which takes proofs of B1, . . . , Bn

to a proof of A. Then we continue by proving B1, . . . , Bn. For instance,
we can reduce the problem A to the two problems C ⊃ A and C by using
modus ponens. In this way we can continue until we have only axioms and
assumptions left. This process corresponds exactly to how we can build a
mathematical object from the outside and in. If we have a problem

? ∈ A

then it is possible to refine the place holder in the following ways:

• The placeholder can be replaced by an application c(?1, . . .?n) where
c is a constant, or x(?1, . . .?n), where x is a variable. In the case that
we have a constant, we must have that c(?1, . . .?n) ∈ A, which holds

34 B. Nordström, K. Petersson and J. M. Smith

if the type of the constant c is equal to (x1∈A1; . . . ;xn ∈An)B and
?1 ∈ A1, ?2 ∈ A2 [x1←?1], . . . , xn∈An[x1←?1, . . . , xn−1←?n−1] and

B[x1←?1, . . . , xn−1←?n−1] = A

So, we have reduced the problemA to the subproblemsA1, A2 [x1←?1],
. . . , An[x1←?1, . . . , xn−1←?n−1] and further refinements must satisfy
the constraint B[x1←?1, . . . , xn−1←?n−1] = A. The number n of new
placeholders can be computed from the arity of the constant c and
the expected arity of the placeholder. As an example, if we start with
? ∈ A and A is not a function type and if we apply the constant c of
type (x∈B)C, then the new term will be

c(?1) ∈ A

where the new placeholder ?1 must have the type B (since all argu-
ments to c must have that type) and furthermore the type of c(?1)
must be equal to A, that is, the following equality must hold:

C [x←?1] = A.

These kind of constraints will in general be simplified by the system.
So, the editing step from ? ∈ A to c(?1) ∈ A is correct if ?1 ∈ B and
C [x←?1] = A. This operation corresponds to applying a rule when
we are constructing a proof. The rule c reduces the problem A to the
problem B.

• The placeholder is replaced by an abstraction [x]?1. We must have
that

[x]?1 ∈ A

which holds if A is equal to a function type (y ∈ B)C. The type of
the variable x must be B and we must keep track of the fact that
?1 may be substituted by an expression which may depend on the
variable x. This corresponds to making a new assumption, when we
are constructing a proof. We reduce the general problem (y∈B)C to
the problem C [y←x] under the assumption that x∈B. The assumed
object x can be used to construct a solution to C, that is, we may
use the knowledge that we have a solution to the problem B when
we are constructing a solution to the problem C.

• The placeholder is replaced by a constant c. This is correct if the
type of c is equal to A.

• The placeholder is replaced by a variable x. The type of x must be
equal to A. But we cannot replace a placeholder with any variable of
the correct type, the variable must have been abstracted earlier.

Martin-Löf ’s Type Theory 35

To delete a part of a proof object corresponds to regretting some earlier
steps in the proof. Notice that the deleted steps do not have to be the last
steps in the derivation, by moving the pointer around in the proof object it
is possible to undo any of the preceeding steps without altering the effect
of following steps. However, the deletion of a sub-object is a non-trivial
operation; it may cause the deletion of other parts which are depending on
this.

The proof engine, which is the abstract machine representing an ongoing
proof process (or an ongoing construction of a mathematical object) has two
parts: the theory (which is a list of constant declarations) and the scratch
area. Objects are built up in the scratch area and moved to the theory part
when they are completed. There are two basic operations which are used to
manipulate the scratch area. The insertion command replaces a placeholder
by a new (possible incomplete) object and the deletion command replaces
a sub-object by a placeholder.

When implementing type theory we have to decide what kind of induc-
tive definitions and definitional equalities to allow. The situation is similar
for both, we could give syntactic restrictions which guarantees that only
meaningful definitions and equalities are allowed. We could for instance
impose that an inductive definition has to be strictly positive and a defin-
ional equality has to be primitive recursive. We know, however, that any
such restriction would disallow meaningful definitions. We have therefore
– for the moment – no restrictions at all. This means that the correctness
of a definition is the user’s responsibility.

Among the examples developed in ALF, we can mention a proof that
Ackermann’s function is not primitive recursive [40], functional complete-
ness of combinatorial logic [17], Tait’s normalization proof for Gödel’s
T [18], the fundamental theorem of arithmetic [42], a constructive ver-
sion of Ramsey’s theorem [16], and a semantical analysis of simply typed
lambda calculus with explicit substitution [8]. Further work includes a con-
structive proof of the Heine-Borel covering theorem for formal reals [5] and
a constructive completeness theorem of Intuitionistic Predicate Logic [36]

We are currently working on Agda and Alfa, the successors of ALF. We
are moving towards a language for proving and programming. A more de-
tailed description of ongoing research can be found at the group’s homepage
www.cs.chalmers.se/Cs/Research/Logic/.

References

[1] L. Augustsson, T. Coquand, and B. Nordström. A short description
of Another Logical Framework. In Proceedings of the First Workshop
on Logical Frameworks, Antibes, pages 39–42, 1990.

[2] R. Backhouse. On the meaning and construction of the rules in Martin-

36 B. Nordström, K. Petersson and J. M. Smith

Löf’s theory of types. In Proceedings of the Workshop on General
Logic, Edinburgh. Laboratory for the Foundations of Computer Sci-
ence, University of Edinburgh, February 1987.

[3] R. Backhouse, P. Chisholm, G. Malcolm, and E. Saaman. Do-it-
yourself type theory. Formal Aspects of Computing, 1:19–84, 1989.

[4] E. Bishop. Mathematics as a numerical language. In Myhill, Kino,
and Vesley, editors, Intuitionism and Proof Theory, pages 53–71, Am-
sterdam, 1970. North Holland.

[5] J. Cederquist and S. Negri. A constructive proof of the Heine-Borel
covering theorem for formal reals. In S. Berardi and C. Coppo, edi-
tors, Types for Proofs and Programs, volume 1158 of Lecture Notes in
Computer Science, pages 62–75. Springer-Verlag, 1996.

[6] A. Church. A Formulation of the Simple Theory of Types. Journal of
Symbolic Logic, 5:56–68, 1940.

[7] R. L. Constable et al. Implementing Mathematics with the NuPRL
Proof Development System. Prentice-Hall, Englewood Cliffs, NJ, 1986.

[8] C. Coquand. From Semantics to Rules: a Machine Assisted Analy-
sis. In Börger, Gurevich, and Meinke, editors, CSL’93, pages 91–105.
Springer-Verlag, LNCS 832, 1994.

[9] T. Coquand and G. Huet. The Calculus of Constructions. Technical
Report 530, INRIA, Centre de Rocquencourt, 1986.

[10] T. Coquand and C. Paulin-Mohring. Inductively defined types. In
Proceedings of the Workshop on Programming Logic, B̊astad, 1989.

[11] H. B. Curry and R. Feys. Combinatory Logic, volume I. North-Holland,
1958.

[12] N. G. de Bruijn. The Mathematical Language AUTOMATH, its us-
age and some of its extensions. In Symposium on Automatic Demon-
stration, volume 125 of Lecture Notes in Mathematics, pages 29–61,
Versailles, France, 1968. IRIA, Springer-Verlag.

[13] N. G. de Bruijn. A survey of the project AUTOMATH. In J. P. Seldin
and J. R. Hindley, editors, To H. B. Curry: Essays on Combinatory
Logic, Lambda Calculus, and Formalism, pages 589–606, New York,
1980. Academic Press.

[14] G. Dowek, A. Felty, H. Herbelin, H. Huet, G. P. Murthy, C. Parent,
C. Paulin-Mohring, and B. Werner. The coq proof assistant user’s
guide version 5.6. Technical report, Rapport Technique 134, INRIA,
December 1991.

Martin-Löf ’s Type Theory 37

[15] P. Dybjer. Inductive families. Formal Aspects of Computing, pages
440–465, 1994.

[16] D. Fridlender. Ramsey’s theorem in type theory. Licentiate Thesis,
Chalmers University of Technology and University of Göteborg, Swe-
den, October 1993.

[17] V. Gaspes. Formal Proofs of Combinatorial Completeness. In To
appear in the informal proceedings from the logical framework workshop
at B̊astad, June 1992.

[18] V. Gaspes and J. M. Smith. Machine Checked Normalization Proofs
for Typed Combinator Calculi. In Proceeding from the logical frame-
work workshop at B̊astad, June 1992.

[19] K. Gödel. Über eine bisher noch nicht benutze erweitrung des finiten
standpunktes. Dialectica, 12, 1958.

[20] M. Gordon, R. Milner, and C. Wadsworth. Edinburgh LCF, volume 78
of Lecture Notes in Computer Science. Springer-Verlag, 1979.

[21] R. Harper, F. Honsell, and G. Plotkin. A Framework for Defining
Logics. JACM, 40(1):143–184, 1993.

[22] A. Heyting. Intuitionism: An Introduction. North-Holland, Amster-
dam, 1956.

[23] W. A. Howard. The formulae-as-types notion of construction. In
J. P. Seldin and J. R. Hindley, editors, To H.B. Curry: Essays on
Combinatory Logic, Lambda Calculus and Formalism, pages 479–490.
Academic Press, London, 1980.

[24] P. Hudak et al. Report on the Programming Language Haskell: A Non-
Strict, Purely Functional Language, March 1992. Version 1.2. Also in
Sigplan Notices, May 1992.

[25] L. S. van Benthem Jutting. Checking Landau’s “Grundlagen” in
the AUTOMATH system, volume 83 of Mathematical Centre Tracts.
Mathematisch Centrum, Amsterdam, 1979.

[26] A. N. Kolmogorov. Zur Deutung der intuitionistischen Logik. Matem-
atische Zeitschrift, 35:58–65, 1932.

[27] Z. Luo and R. Pollack. LEGO Proof Development System: User’s
Manual. Technical report, LFCS Technical Report ECS-LFCS-92-211,
1992.

[28] L. Magnusson and B. Nordström. The ALF proof editor and its proof
engine. In Types for Proofs and Programs, LNCS, pages 213–237,
Nijmegen, 1994. Springer-Verlag.

38 B. Nordström, K. Petersson and J. M. Smith

[29] P. Martin-Löf. A Theory of Types. Technical Report 71–3, University
of Stockholm, 1971.

[30] P. Martin-Löf. Hauptsatz for the Intuitionistic Theory of Iterated
Inductive Definitions. In J. E. Fenstad, editor, Proceedings of the
Second Scandinavian Logic Symposium, pages 179–216. North-Holland
Publishing Company, 1971.

[31] P. Martin-Löf. Constructive Mathematics and Computer Program-
ming. In Logic, Methodology and Philosophy of Science, VI, 1979,
pages 153–175. North-Holland, 1982.

[32] P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, Napoli, 1984.

[33] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML.
MIT Press, 1990.

[34] B. Nordström, K. Petersson, and J. M. Smith. Programming in
Martin-Löf ’s Type Theory. An Introduction. Oxford University Press,
1990.

[35] L. C. Paulson. Logic and Computation. Cambridge University Press,
1987.

[36] H. Persson. Constructive completeness of intuitionistic predicate logic:
A formalisation in type theory. Licentiate Thesis, Chalmers University
of Technology and University of Göteborg, Sweden, November 1996.

[37] K. Petersson. A Programming System for Type Theory. PMG re-
port 9, Chalmers University of Technology, S–412 96 Göteborg, 1982,
1984.

[38] D. Prawitz. Natural Deduction. Almquist & Wiksell, Stockholm, 1965.

[39] J. M. Smith. The Independence of Peano’s Fourth Axiom fromMartin-
Löf’s Type Theory without Universes. Journal of Symbolic Logic,
53(3), 1988.

[40] N. Szasz. A Machine Checked Proof that Ackermann’s Function is
not Primitive Recursive. Licentiate Thesis, Chalmers University of
Technology and University of Göteborg, Sweden, June 1991. Also
in G. Huet and G. Plotkin, editors, Logical Frameworks, Cambridge
University Press.

[41] W. Tait. Infinitely long terms of transfinite type. In Formal systems
and recursive functions, pages 176–185, Amsterdam, 1965. North-
Holland.

Martin-Löf ’s Type Theory 39

[42] B. von Sydow. A machine-assisted proof of the fundamental theorem
of arithmetic. PMG Report 68, Chalmers University of Technology,
June 1992.

