
Optimized Encodings of Fragments of Type

Theory in First Order Logic

Tanel Tammet and Jan M. Smith

Department of Computing Science,
Chalmers University of Technology and Univ. of Göteborg,

S-41296 Göteborg, Sweden.
e-mail: {tammet, smith}@cs.chalmers.se

1 Introduction

The subject of this paper is the problem of automated theorem proving in
Martin-Löf’s monomorphic type theory [17, 8], which is the underlying logic
of the interactive proof development system ALF [2, 14].

In the scope of our paper the task of automated theorem proving in type
theory is understood as demonstrating that a certain type is inhabited by con-
structing a term of that type. The problem of inhabitedness of a type A is
understood in the following way: given a set of judgements Γ (these may be
constant declarations, explicit definitions and defining equalities), find a term a
such that a ∈A is derivable from Γ . The term a is explicitly constructed and,
hence, the judgement a∈A can be checked by ALF.

We consider the question of axiomatizing the problem of inhabitedness of a
type as a formula both in the Horn fragment of the standard first-order logic
(where classical and intuitionistic logic coincide) and in full first-order intuitionis-
tic logic. Translations of Martin-Löf’s type theory to theories based on predicate
logic have been considered earlier by Aczel [1] and Smith [19], but with purposes
different from automated theorem proving.

Our translation is also similar to the translation given by Felty and Miller [10]
of the logical framework LF to the logic hhω of hereditary Harrop formulas with
quantification at all non-predicate types. However, our work differs from theirs
in that we consider translations of fragments of type theory into first order logic
and that our main interest is in optimizing the translation for enhancing the
efficiency of automated proof search for the problem of inhabitedness.

While it is not realistic to expect that fully automated methods will man-
age most of the hard tasks in theorem-proving, we believe that the automated
methods can be used as a powerful tool when developing proofs interactively in
a proof system like ALF.

T. Tammet has implemented a resolution-based theorem prover for the frag-
ments F1 and F2 described in the paper. The prover is designed for use together
with system ALF. It contains also a part for searching structural induction
proofs. Structural induction expressed by pattern-matching is an important ex-
tension, used in ALF, of the underlying monomorphic type theory [8, 14].

2 Martin-Löf’s Type Theory

In type theory we can form judgements of the forms

– A type, A is a type,
– A = B, A and B are equal types,
– a ∈ A, a is an object in the type A,
– a = b ∈ A, a and b are equal objects in the type A.

In general, a judgement is made in a context, i.e., a list of assumptions x1 ∈
A1, . . . , xn∈An where for j ≤ n, Aj may depend on x1, . . . , xj−1.

There are basically two ways of introducing types in Martin-Löf’s type the-
ory: function types and inductively defined sets. Because of the possibility of
introducing sets by induction, type theory is an open theory; it is in this sense
that the theory may serve as a logical framework.

We denote the type of sets by Set. Given a set A we may form the type El(A)

of its elements; hence we have the rule
A ∈ Set

El(A) type
We will write A instead of

El(A), since it will always be clear from the context whether we mean A as a set
(i.e., as an object in Set) or as a type.

If A is a type and B is a family of types for x ∈ A, then we can form the
type of functions (x∈A)B from A to B.

A type B type [x ∈ A]

(x∈A)B type

All free occurrences of x in B become bound in (x∈A)B. Given a function in
(x∈A)B we may apply it on an object in A:

c ∈ (x∈A)B a ∈ A

c(a) ∈ B{a/x}

where B{a/x} denotes the result of substituting a for all free occurrences of x
in B. A basic way of forming functions is by abstraction:

b ∈ B [x ∈ A]

[x]b ∈ (x∈A)B

A function applied on an object is defined by the ordinary β-rule.

a ∈ A b ∈ B [x ∈ A]

([x]b)(a) = b{a/x} ∈ B{a/x}

We also have the usual η-, α- and ξ-rules as well as substitution rules. We
will often use the notation (A)B when B does not contain any free occurrences
of x. In order to increase the readability, we will write (x1 ∈A1; . . . ;xn ∈An)B
instead of (x1 ∈ A1) . . . (xn ∈ An)B and b(a1, . . . , an) instead of b(a1) . . . (an).
Similarly, we will write [x1] . . . [xn]e as [x1, . . . , xn]e.

The generality of type theory as a logical framework comes from the possi-
bilities of introducing new constants. It is in this way that we can introduce the
usual mathematical objects like natural numbers, functions, tuples etc. as well
as sets expressing propositions. There are two kinds of constants: primitive and
defined.

A set is defined by its introduction rules, i.e., by giving a collection of prim-
itive constants with appropriate types. For example, the set of natural numbers
is defined by declaring the constants N ∈ Set, succ ∈ (N)N, 0 ∈ N.

A defined constant can either be explicitly or implicitly defined. We declare an
explicitly defined constant c by giving a definition of it: c = a ∈ A For instance,
we can make the following explicit definitions: 1 = succ(0) ∈ N, IN = [x]x ∈
(N)N, I = [A, x]x ∈ (A∈Set;A)A.

The last example is the monomorphic identity function which when applied
to an arbitrary set A yields the identity function on A.

We declare an implicitly defined constant by showing what definiens it has
when we apply it to its arguments. An implicit definition may be recursive. The
implicit constant +, expressing addition of natural numbers, is introduced by
+ ∈ (N;N)N, +(0, y) = y, +(succ(x), y) = succ(+(x, y)).

The definition of + is an example of an implicit constant defined by pattern-
matching on the possible constructors of the set N. In Martin-Löf’s original for-
mulation, implicitly defined constants were only possible to introduce by primi-
tive recursion schemes. We will, however, use the more general formulation with
pattern-matching, proposed by Coquand [7]. For our approach to automated
theorem proving in type theory, pattern-matching is important since it often
makes it possible to avoid higher order functions.

A basic idea of type theory is the so called Curry-Howard isomorphism be-
tween propositions and sets: a proposition is represented as the set of its proofs.
Hence, the type of propositions is identified with the type Set. Variables are
used as names of assumptions and constants are used as rules. To apply a rule
to a number of subproofs is done by applying a constant to the corresponding
subproof objects.

A theory is presented by a list of typings and definitions of constants. When
we read the constant as a name of a rule, then a primitive constant is usually a
formation or introduction rule, an implicitly defined constant is an elimination
rule (with the contraction rule expressed as the step from the definiendum to
the definiens) and finally, an explicitly defined constant is a lemma or derived
rule.

3 The Resolution Calculus

We will define some standard notions of the resolution method, restricting us
to the Horn fragment where classical and intuitionistic provability coincide. For
further details see, for example, [6] or [4].

An atom is a predicate symbol applied to zero or more terms. A positive

literal is an atom. A negative literal is an atom preceded by the negation sign. A

clause is a finite set of literals. All variables in a clause are interpreted as being
universally quantified. In classical logic a clause {L1, L2, . . . , Ln} is interpreted
as the disjunction L1 ∨ L2 ∨ . . . ∨ Ln. A clause, literal, atom or a term is said
to be ground if it contains no variables. A clause is said to be a singleton clause

if it only contains a single literal. A Horn clause is a clause which contains at
most one positive literal. We will often write Horn clauses as sequents; a sequent
L1, . . . , Ln ⇒ L is considered to be the same as a clause {¬L1, . . . ,¬Ln, L}.

New clauses are derived by the rule of hyperresolution

L1, . . . , Ln ⇒ L ⇒ L′

1 . . . ⇒ L′

n

⇒ Lσ
σ = mgu(L1, L

′

1) . . .mgu(Ln, L
′

n)

where mgu(L,L′) denote the most general unifier of the terms or literals L and
L′.

For a clause set S we define Res(S) as the set of all clauses derived from
S by one step of hyperresolution. We define R∗ by R∗(S) =

⋃
i R

i(S), where
R0(S) = S, Ri+1(S) = Ri(S)∪Res(Ri(S)). We say that a clause C is derivable
from a clause set S if C ∈ R∗(S).

4 Translating Non-Nested Function Types

In this section we will consider the fragment F1 of type theory which corresponds
to Horn clauses. A function type is a type of the form (x1 ∈A1; . . . ;xn ∈An)B,
where 0 < n.

Definition A type C belongs to the type fragment F1 if either C does not contain

function types or C has the form (x1∈A1; . . . ;xn∈An)B where none of Ai and

B is or contains a function type.

We say that a judgement belongs to the judgement fragment F1 if the type
of the judgement belongs to F1. When we speak about the fragment F1 in the
following, it will always be clear from the context whether we mean the type
fragment or the judgement fragment.

Example 1. 1. The type (X∈Set; x∈X; y∈X)X, corresponding to the implication
X → (X → X), is in F1. The type (X∈ Set; x∈X; y ∈ (z∈X)X)X, corresponding
to X → ((X → X) → X) contains a function type (z∈X)X in its third argument,
thus it is not in the fragment F1.

4.1 Translating Judgements and the Goal

We use a two-place first-order predicate In and a first-order equality predicate
= to translate judgements.

The intended meaning of In(a,A) is that the term a is an element of the set
denoted by the term A, i.e., a∈A. Each judgement in F1 is encoded as a clause
in the Horn fragment of first-order logic without quantifiers. All the (first-order)
variables in a clause are understood as being universally quantified.

– Application terms. An application term a ≡ f(g1, . . . , gn) is translated
by full uncurrying. So, in case f is a composite term h(l1, . . . , lk), then one
step of uncurrying gives a term h(l1, . . . , lk, g1, . . . , gn) for a. For instance,
the term f(x, y)(g(x)) is translated as f(x, y, g(x)).

Notice that in the fragment F1, all the occurrences of a function symbol in
the translated terms will have the same number of arguments. The last fact
justifies the syntactic correctness of the translation into first-order language
without an extra layer of encoding for application terms.

– Expressions declaring primitive constants. A primitive constant
f ∈ (x1 ∈ A1; . . . ;xn ∈ An)B is translated as the clause
In(x1, A

′

1), . . . , In(xn, A
′

n) ⇒ In(f(x1, . . . , xn), B
′), where each xi is a vari-

able, f is a constant symbol, A′

i and B′ are translations of Ai and B, respec-
tively.

The only variables in the resulting clause are xi (1 ≤ i ≤ n). Notice that in
the translation of an expression in the fragment F1, the leftmost symbol of
each subterm is a function symbol. This justifies the syntactic correctness of
the translation into first-order language.

– Expressions defining implicit constants. The definition f(t1, . . . , tn) =
g(h1, . . . , hk), of an implicit constant f , is translated as the clause ⇒ F ′ =
G′, where F ′ and G′ are translations of f(t1, . . . , tn) and g(h1, . . . , hk), re-
spectively.

– Explicit definitions and equality of types. Explicit definitions c = a∈A
and judgements of the form A = B where A and B are types are not trans-
lated at all. Instead, all the type theory expressions containing occurrences
of the left side c of some explicit definition or the left side A of an asserted
equality of types are normalized by expanding the definition and reducing
the resulting redexes before doing the translation.

– The inhabitedness problem: Given a set of judgements Γ , show the in-
habitedness of a type G ≡ (x1 ∈A1; . . . ;xn ∈An)B. We are moreover only
interested of the case when B is not the constant Set.

In order to avoid n explicit abstraction steps in the final part of the deriva-
tion, we use the pattern-matching formulation of the abstraction term inhab-
iting G. Thus we assume that G is a type of an implicitly defined constant g.
Our goal is to construct a term t (corresponding to the body of the abstrac-
tion term) for the right hand side of the equation g(x1, . . . , xn) = t which
defines a function inhabiting G.

Let σ ≡ {c1/xn, . . . , cn/xn} be a substitution replacing the variables in G by
new constant symbols (Skolem constants) c1, . . . , cn not occurring anywhere
in G or in any of the judgements in Γ . The goal will be encoded as the
problem of deriving a substitution instance of the clause ⇒ In(x,B′σ) from
the set of clauses Γ ′ ∪E ∪A′, where B′ is the translation of B, Γ ′ is the set
of translations of all the elements of Γ , E is the standard axiomatization of
equivalence and substitutivity of equality for Γ ′, A′ and B′, and A′ is the set
of clauses

⇒ In(c1, A
′

1σ), . . . ,⇒ In(cn, A
′

nσ),

where each A′

i is a translation of Ai. The operation of replacing the vari-
ables in G by the new constants is a specific instance of the Skolemization
procedure and, unlike full Skolemization, is correct for intuitionistic logic.
A substitution instance of ⇒ In(x,B′σ) is derivable from the set Γ ′∪E∪A′

if and only if the clause set Γ ′∪E∪A′∪{In(x,B′σ) ⇒} is refutable. We will
say that the translation of the goal typeG is the clause set A′∪{In(x,B′σ) ⇒
} ∪ E′, where E′ is the set of equality substitution axioms for the function
symbols in A ∪B.
There are well-known techniques enabling us to always construct the required
substitution instance of ⇒ In(x,B′σ) from the resolution refutation of Horn
clause sets like Γ ′ ∪ E ∪ A′ ∪ {In(x,B′σ) ⇒}; see [6] and [5]. It is easy to
see that any refutation from a Horn clause set Γ where In(x,B′σ) ⇒ is a
single clause containing no positive literals will end with the hyperresolution
step with premisses being the input clause In(x,B′σ) ⇒ and some derived
clause ⇒ In(t, r). Due to the specific form of the clause sets obtained by
the translations of type theory judgements, the terms t and r will moreover
always be ground.
After finding the refutation we thus have an instance of the clause ⇒
In(x,B′σ) with a ground term t replacing the variable x. The function body
g is built of t by replacing the Skolem constant symbols c1, . . . , cn in t by
the variables x1, . . . , xn, respectively.

Example 2. In this example, we introduce an inductively defined predicate Leq,
expressing the less than or equal relation on the natural numbers (we will add
numbers for easier reference).

N∈Set (1)

0∈N (2)

s∈(x∈N)N (3)

Leq∈(x, y∈N)Set (4)

leq0∈(x∈N)Leq(0, x) (5)

leqs∈(x, y∈N; z∈Leq(x, y))Leq(s(x), s(y)) (6)

We denote these declarations by Γ . Consider the task of finding a term
inhabiting the following type C:

(x∈N)Leq(s(0), s(s(s(x))))

The translation Tr(Γ) of Γ is the following clause set:

1: ⇒ In(N,Set)
2: ⇒ In(0, N)
3: In(x,N) ⇒ In(s(x), N)
4: In(x,N), In(y,N) ⇒ In(Leq(x, y), Set)
5: In(x,N) ⇒ In(leq0(x), Leq(0, x))

6: In(x,N), In(y,N), In(z, Leq(x, y)) ⇒ In(leqs(x, y, z), Leq(s(x), s(y)))

where x, y and z are the only variables. The translation of the goal is the following
clause set C ′:

7: ⇒ In(c,N)
8: In(u, Leq(s(0), s(s(s(c))))) ⇒

where c is a new constant symbol. We want to show that the clause set Tr(Γ)∪C ′

is refutable and find a term t such that the set Tr(Γ) ∪ C ′{t/u} would also be
refutable. Indeed, there exists the following resolution refutation:

9 (from 3,7): ⇒ In(s(c), N)
10 (from 3,9): ⇒ In(s(s(c)), N)
11 (from 5,10): ⇒ In(leq0(s(s(c))), Leq(0, s(s(c))))
12 (from 6,2,10,11): ⇒ In(leqs(0, s(s(c)), leq0(s(s(c)))), Leq(s(0), s(s(s(c)))))
13 (from 8,12): ⇒

giving us the term leqs(0, s(s(c)), leq0(s(s(c)))) as the required substitution in-
stance for u in In(u, Leq(s(0), s(s(s(c))))). By replacing the new constant c with
a variable x we get the term leqs(0, s(s(x)), leq0(s(s(x)))) as the body of a func-
tion inhabiting the type (x∈N)Leq(s(0), s(s(s(x)))).

We will below present an optimizations leading to a smaller input clause set
which will avoid the explicit derivation of 9, 10 and 11 in the present example.

4.2 Translating Derivation Rules

Type Formation Rules For our purposes, the set of assumptions and the goal
can be assumed to be already correctly formed types. Because the derivation
rules of type theory preserve type correctness, we can ignore type formation
rules without losing soundness.

Notice that our translation preserves the subformula structure. Concerning
completeness, we see that we may ignore type construction rules as long as we
only need types that are syntactically subtypes of the assumptions and the goal.
Since F1 corresponds to a fragment of first-order logic and since the normal form
of any derivation in first-order logic has the subformula property, we may, hence,
ignore type construction rules.

The Application rule and the Substitution Rules These are the main
rules for our purposes. It is easy to see that for the fragment F1 the application
rule

c∈(x∈A)B a∈A

c(a)∈B{a/x}

can be assumed to have a “multiple form” instantiating all the arguments of a
function at once:

c∈(x1∈A1; . . . ;xn∈An)B a1∈A1 . . . an∈An

c(a1, . . . , an)∈B{a1/x1, . . . , an/xn}

Indeed, since in F1 function types do not occur as argument types of functions,
if the result of a single-step application rule is a function, then this function can
only be used as a left premiss of an application rule.

The translated form of the multiple application rule is:

In(x1, A1), . . . , In(xn, An) ⇒ In(c(x1, . . . , xn), B) ⇒ In(a1, A1)
... ⇒ In(an, An)

⇒ In(c(a1, . . . , an), B{a1/x1, . . . , an/xn})

The last rule is an instance of the hyperresolution rule combining multiple modus
ponens with substitution limited to most general unifiers:

F1, . . . , Fn ⇒ F ⇒ F ′

1 . . . ⇒ F ′

n

⇒ Fσ
σ = mgu(F1, F

′

1) . . .mgu(Fn, F
′

n)

4.3 Soundness and Completeness of the Translation

We will denote the result of translating a judgement or a set of judgements A
as Tr(A). We will denote the set of clauses obtained by translating a goal type
A as Trg(A).

We will show soundness and completeness of the translation and the hyper-
resolution calculus with respect to the fragment F1 of type theory. By soundness
we mean that if there is a hyperresolution refutation of Trg(G) ∪ Tr(Γ) for a
goal type G and a set of judgements Γ , then there is a term t and type theory
proof of t ∈ G from Γ . By completeness we mean that if there is a type theory
proof from Γ showing that some term inhabits a certain type G, then there is a
hyperresolution refutation of Trg(G) ∪ Tr(Γ).

Lemma1. Removing all the equality rules of type theory except β-conversion
preserves completeness for the fragment F1.

Proof. All the equality rules except β-conversion are covered by the standard
first-order axiomatization of equivalence and substitutivity properties of the first-
order equality predicate.

Lemma2. The type theory calculus obtained by removing the abstraction rule

and the β-conversion rule preserves completeness for the fragment F1.

Proof. It is easy to see that for the fragment F1 the abstraction rule is unneces-
sary. The reason is that F1 corresponds to a fragment of first-order logic, and for
the latter we have the subformula property, guaranteeing completeness without
introducing any assumptions which are not subformulas of the conclusion.

Since we do not have assumptions, that is, formulas of the form b∈B[x∈A] in
the fragment F1, and the abstraction rule is unnecessary, then the β-conversion
rule (corresponding to the cut rule in first-order logic)

a∈A b∈B[x∈A]

((x)b)(a) = b{a/x}∈B{a/x}

is also unnecessary.

The following is the standard lifting lemma of the theory of resolution calcu-
lus. (see e.g. [6]):

Lemma3. Let A and B be two clauses A ≡ {A1, . . . , An} and B ≡
{A1, . . . , An}. Let A′ and B′ be two clauses with the following properties:

A′ = Aσ ∪ A′′, B′ = Bρ ∪ B′′ where σ and ρ are substitutions, A′′ and B′′

are arbitrary clauses. Whenever a new clause C ′ can be derived from A′ and B′

by resolution, such a clause C can be derived from A and B that C ′ = Cµ∪C ′′,

where µ is a substitution and C ′′ is a clause.

Lemma4. The hyperresolution rule applied to the translation of type theory

judgements is sound and complete for type theory with only application and sub-

stitution as derivation rules.

Proof. The proof of soundness is by induction on the size of derivation. The
base case is immediate. The induction step is also obvious, since every hyperres-
olution application corresponds to a derivation in type theory containing only
substitutions and applications.

The proof of completeness is also by induction on the size of derivation.
Again, the base case is obvious. For the induction step, assume that we have a
substitution or application in type theory from premisses Γ with conclusion F .
We have to show that there is a corresponding hyperresolution derivation from
the clause set Tr(Γ ′) giving a clause Tr(F ′) such that Γ is a set of substitution
instances of Γ ′ and F is a substitution instance of F ′. The substitution step
is obvious: take the translation of the unchanged premiss of the substitution
derivation. The application step follows from the lifting lemma.

Theorem5. The translation and hyperresolution are sound and complete with

respect to the fragment F1 of type theory.

Proof. Follows from the previous lemmas in this section.

4.4 Optimizing the Translation

We introduce several optimizations of our translation of the fragment F1.

The First Optimization: O1 Let Γ be a set of type theory judgements in the
fragment F1 and let G be a goal type in the fragment F1. Observe that all the
positive singleton clauses in Tr(Γ)∪ Trg(G) are ground and all the variables in
a positive literal of any non-singleton clause C in Tr(Γ)∪ Trg(G) occur as first
arguments in the negative literals of C. Therefore any nonempty clause derived
from Tr(Γ) ∪ Trg(G) by hyperresolution is a singleton ground clause.

We present an optimization O1 for translations of type theory judgements,
which is crucial for improving the efficiency of automated proof search. The point
of O1 is allowing the derivation of non-ground singleton clauses, each covering a
possibly infinite set of ground singleton clauses derivable from the non-optimized
clause set.

The optimization O1 is obtained by replacing all atoms with the binary pred-
icate In by an atom with a unary predicate Inh, always discarding the first
argument of In.

The encoded goal clause G ≡ ⇒ In(x,Bσ) turns into a ground clause
O1(G) ≡ ⇒ Inh(Bσ). After we have found a first-order derivation of the clause
O1(G) from the set of optimized assumption clauses O1(Γ), we construct the
corresponding derivation of a substitution instance of the non-optimized G from
the set of non-optimized assumptions Γ .

Example 2. 3. Consider the set of judgements A obtained by translating the type
theory judgements in example 2. The optimization O1 applied to the clauses in
example 2 will give the following clause set O1(A).

1’: ⇒ Inh(Set)
2’: ⇒ Inh(N)
3’: Inh(N) ⇒ Inh(N)
4’: Inh(N), Inh(N) ⇒ Inh(Set)
5’: Inh(N) ⇒ Inh(Leq(0, x))
6’: Inh(N), Inh(N), Inh(Leq(x, y)) ⇒ Inh(Leq(s(x), s(y)))
7’: ⇒ Inh(N)
8’: Inh(Leq(s(0), s(s(s(c))))) ⇒

There exists the following resolution refutation from O1(A):

11’ (from 2’,5’): ⇒ Inh(Leq(0, x)
12’ (from 2’,2’,11’,6’): ⇒ Inh(Leq(s(0), s(x)))
13’ (from 8’,12’): ⇒

Let Γ be a clause set in the fragment F1, let G be a goal type in F1. Tr(Γ)
is a translated form of Γ and Trg(G) is the translated form of G. O1(Tr(Γ)) is
the optimized form of Tr(Γ).

For the simplicity of presentation we will assume that equality is not present
in Γ or G and that Trg(G) consists of a sole negative singleton clause. The case
with the equality will be treated later in the Section 5. It is always possible
to reformulate G and Γ as G′ and Γ ′ by assuming that all the positive single-
ton clauses in the original Trg(G) are members of Tr(Γ ′). The reformulated
Trg(G′) then consists of a sole negative singleton clause, which can be used in
the hyperresolution refutation of Tr(Γ ′) ∪ Trg(G′) only for the last inference,
the derivation of the empty clause.

The crucial importance of the optimization O1 stands in that whereas hyper-
resolution derives only ground clauses from Tr(Γ), from O1(Tr(Γ)) it is possible
to derive new clauses containing variables. Such clauses stand for generally infi-
nite sets of ground clauses derivable from Tr(Γ).

In the example above, we can derive a non-ground clause ⇒
Inh(leq(s(0), s(y))) from the clauses 2’, 5’ and 6’, covering the infi-
nite set of clauses ⇒ In(p1, leq(s(0), s(0))),⇒ In(p2, leq(s(0), s(s(0)))),⇒
In(p3, leq(s(0), s(s(s(0))))), . . .} derivable from A.

Build a new clause set Ai from the unoptimized clause set A in the example
above by replacing the clause 8 : In(u, leq(s(0), s(s(s(c))))) ⇒ with the clause
8i : In(u, leq(s(0), si(c))) ⇒ where si(c) stands for the term where s is applied
i times. The shortest hyperresolution refutation of Ai consists of i+3 hyperreso-
lution steps. The shortest hyperresolution refutation of O1(A

i) consists always of
3 steps, regardless of i. Due to the optimization we avoid deriving the previously
necessary sequent ⇒ In(si(c), N).

Soundness and completeness of the optimization O1 The first order
language of Tr(Γ) is not typed. However, due to the construction of Tr(Γ),
all the terms occurring in the clauses of Tr(Γ) can be seen as being typed by Γ .
Every variable x occuring in a clause C in Tr(Γ) occurs in a literal In(x, tx) in
C, corresponding to a judgement x∈ tx in Γ .

In the following we consider all the variables, constants, function symbols and
terms (briefly: objects) in Tr(Γ) to be typed. The type of an object in Tr(Γ) is
determined by Γ . The type of an object in O1(Tr(Γ)) is the same as the type
of a corresponding object in Tr(Γ). A term t constructed from objects in Tr(Γ)
is type-correct iff the term t′ corresponding to t in type theory is type-correct in
the context of Γ .

By ∆ ⊢h∗ C we denote that a clause C is derivable from the clause set ∆ by
hyperresolution. Since any clause C such that Tr(Γ) ⊢h∗ C is ground, it is easy
to see that C is type-correct.

Differently from Tr(Γ), it is possible to derive non-ground clauses from
O1(Tr(Γ)). We extend the notion of type-correctness to clauses C such that
O1(Tr(Γ)) ⊢h∗ C. Each variable x occurring in C can be traced (renaming
taken into account) through the derivation tree of C to the occurrence of some
variable y in O1(Tr(Γ)). Thus we can say that it has a type of the variable y
and we will extend the notion of type-correctness to the clauses derived from
O1(Tr(Γ)).

Lemma6. Consider a variable x occurring inside O1(Tr(Γ)). Either x occurs

as an argument of the predicate Inh, in which case it has a universal type Set or

x is an argument ai of some term f(a1, . . . , an) occurring inside O1(Tr(Γ)). In
the last case the type of x is determined by the function symbol f , the position

i of ai in the term and and a subset of arguments ∆ ⊂ {a1, . . . , an} such that

ai 6∈ ∆. There exists a reflexive ordering �d of the elements of {a1, . . . , an},
such that whenever ak �d al (1 ≤ k, l ≤ n), the type of al cannot depend on the

type of ak.

Proof. Follows from the rules of monomorphic type theory as a syntactic prop-
erty.

Theorem7. The optimization O1 preserves soundness and completeness.

Proof. Let Γ be a clause set in the fragment F1, let Tr(Γ) be a translated form
of Γ and let O1(Tr(Γ)) be the optimized form of Tr(Γ).

Completeness: if Tr(Γ) ⊢h∗ C holds, then there is such a clause C ′ and such
a substitution σ that C = C ′σ and O1(Tr(Γ)) ⊢h∗ O1(C

′) holds. Consequently,
if Tr(Γ) ∪ Trg(G) is refutable, then O1(Tr(Γ)) ∪O1(Trg(G)) is refutable.

The proof is easy, since O1 does nothing but removes the first argument of
each predicate symbol. Let D be a hyperresolution derivation of C from Tr(Γ).
Construct a new derivation D′ by removing the first arguments from each oc-
currence of the predicate Inh in D and replacing Inh with In. Then D′ is a
substitution instance of a derivation giving O1(C

′) from O1(Tr(Γ)). Therefore,
due to the completeness of hyperresolution, O1(Tr(Γ)) ⊢h∗ O1(C

′) holds.
Soundness: If O1(Tr(Γ)) ⊢h∗ C holds, then C is type-correct. Consequently

(due to the completeness of Tr(Γ) for type theory), if O1(Tr(Γ))∪O1(Trg(G))
is refutable, then Tr(Γ) ∪ Trg(G) is refutable.

Proof. We use induction over the hyperresolution derivation for the optimized
case. The proof relies on that we are using monomorphic type theory where the
previous lemma holds and that any applied substitution is a most general unifier
of two existing terms.

Base case: obvious.
Induction step. Consider the hyperresolution rule:

L1, . . . , Ln ⇒ L ⇒ L′

1 . . . ⇒ L′

n

⇒ Lσ
σ = mgu(L1, L

′

1) . . .mgu(Ln, L
′

n)

The literal L has a form Inh(r). The induction step is proved by showing that
Lσ is type-correct.

The proof is by induction over the substitution σ which is ordered by the de-
pendency ordering �d. Base case is obvious, we proceed to proving the induction
step.

An element t/x of σ − ρ is obtained by unifying a variable x in a literal Liρ
with the term t in L′

iρ, where ρ ⊂ σ. We have:

∀u, p, v, s.({p/u} ⊂ (σ − ρ) & {s/v} ⊂ ρ) ⇒ v �d u

The variable x either occurs as a sole argument in the literal Inh(x), in which
case x has a universal type Set or as an argument ai of some surrounding term
f(a1, . . . , an).

In the first case also t occurs as a sole argument of Inh(t), the type of t is
Set and thus rρ{t/x} is type-correct.

Consider the second case. Here also the term t occurs as an i-th argument of
a surrounding term f(a′1, . . . , a

′

n). Both the leading function symbol f and the
position index i in the surrounding term are the same for x and t. Thus either
both the types of x and t do no depend on other terms or they both depend
on a subset of arguments in the surrounding term. Consider the case where the
types of x and t do not depend on other terms. In that case the type of t is the
same as the type of x and thus rρ{t/x} is type-correct.

Consider the case where the types of x and t depend on other terms. Due
to the previous lemma all these depended-upon terms form a subset of pairwise
corresponding arguments D of f(a1, . . . , an) and D′ of f(a′1, . . . , a

′

n). The previ-
ous lemma shows that there exists a dependency ordering �d so that the types

of the elements of D and D′ do not depend on the types of x and t. Thus we
can assume that D = D′ = Dσ = D′σ, i.e, the terms corresponding to D and
D′ in Li and L′

i are already unified by ρ. Hence the type of t in L′

iρ is the same
as the type of x in Liρ, thus rρ{t/x} is type-correct.

Observe that in some sense the unrestricted substitution rule (i.e. a sub-
stitution rule which uses arbitrary substitutions, not only these obtained by
unification) would make the optimized calculus unsound in respect to the type
theory, although the refutability of a set O1(Tr(Γ)) with unrestricted substitu-
tion added as a derivation rule would still be equivalent to the refutability of
Tr(Γ).

The Second Optimization: O2 The second optimization O2 is applicable only
to such clause sets which have been already optimized by O1. O2 is obtained by
removing certain clauses and some atoms on the left sides of other clauses. It
is essentially a preprocessing phase pre-applying obvious hyperresolution steps
and removing redundant clauses and literals.

Definition We say that a type f ∈ (x1 ∈ A1; . . . ;xn ∈ An)Set is essentially
independent in a given set of judgements iff it can be shown that f(x1, . . . , xn)ρ
is inhabited for any substitution ρ such that f(x1, . . . , xn)ρ is correctly formed

regarding types. We will call such f an essentially independent constructor

For example, the special type Set, the type of natural numbers N ∈ Set,
0 ∈ N, s ∈ (x ∈ N)N and the parameterized list type List ∈ (x ∈ Set)Set,
nil∈ (x∈Set)List(x), cons∈ (x∈Set; y∈ x; z∈List(x))List(x) are easily shown to
be essentially independent.

The optimization O2 takes a set of assumptions of the form given by the
optimization O1. It returns a modified set of assumptions and the goal where for
any input judgement clause s ≡ Inh(A1), . . . , Inh(Am) ⇒ Inh(B) the following
is done:

– if B is a composite term with an essentially independent constructor as a
leading function symbol, remove the clause s.

– remove any premiss Inh(Ai) such that Ai has an essentially independent
constructor as a leading function symbol.

Example 3. 4. Take the O1-optimized clause set S from the example 3. You may
also want to look at the original untranslated set of type theory judgements and
the goal in the example 2. The result of the optimization S2 applied to S is the
following set of three clauses:

5”: ⇒ Inh(Leq(0, x))
6”: Inh(Leq(x, y)) ⇒ Inh(Leq(s(x), s(y)))
8”: Inh(Leq(s(0), s(s(s(c))))) ⇒

The last clause set has a short refutation:

1 (from 6”, 5”) ⇒ Inh(Leq(s(0), s(y))
2 (from 8”, 1) ⇒

In case the type term A in the goal clause G ≡⇒ Inh(A) has an essentially
independent leading function symbol, then the problem of constructing an el-
ement of A reduces to the simple problem of using the procedure of checking
essential independency for constructing an element of A.

Soundness and completeness of the optimization O2 follow from the definition
of essentially independent types.

5 Building In Equality

For the Horn fragment where the translation of the F1 class belongs, the explicit
axiomatization of the equality predicate (except the reflexivity axiom x = x
which must be preserved) can be replaced by the following restricted form of
paramodulation without losing completeness (see e.g. [12]).

⇒ L[t] ⇒ t′ = g

⇒ L[g]σ
σ = mgu(t, t′)

where L[g] is obtained by replacing one occurrence of the term t in L[t] by the
term g. The term t (the term paramodulated into) in the paramodulation rule is
prohibited to be a variable. The equality predicate in the rule is assumed to be
commutative, i.e., t′ = g is the same as g = t′.

The definitional equality predicate = in type theory extended with pattern-
matching (as in Alf) is always assumed to define a terminating and confluent
rewrite relation E. Thus we do not lose completeness in case we treat such
equality axioms as rewrite rules, ie. if we rewrite any term in any derived first-
order clause modulo the rewriting relation E. See [12]). However, we will still
need to keep the paramodulation rule to guarantee completeness.

The soundness and completeness of using the paramodulation (or rewrite
rules) for theO1-optimized translations of type theory judgements is proved anal-
ogously to the earlier proof of soundness and completeness of the O1-optimized
translation.

Note that the other type of equality often used in the applications of type
theory, the propositional equality Id, is not definable in F1. However, we can
build the propositional equality directly into the first order calculus.

We will use the following special form of the paramodulation rule along with
the reflexivity axiom ⇒ Id(A, x, x) instead of the standard equivalence and
substitution rule schemes for Id:

⇒ L[t] ⇒ Id(A, t′, g)

⇒ L[g]σ
σ = mgu(t, t′)

where L[g] is obtained by replacing one occurrence of the term t in L[t] by
the term g. The terms t and t′ in the paramodulation rule are prohibited to
be variables. Id is assumed to be commutative, i.e., Id(A, t′, g) is the same as
Id(A, g, t′).

6 Translating Nested Function Types

6.1 The General Case

Consider full type theory. We obtain the translation Tri by modifying and ex-
tending the translation Tr given for the fragment F1 to the implicational frag-
ment of first-order intuitionistic logic as a target logic.

– Application terms. f(g1, g2, . . . , gn) is translated as
ap(. . . ap(ap(Tri(f), T ri(g1)), T ri(g2)), . . .), T ri(gn)), where Tri(t) denotes
the result of the translation of t.

– Abstraction terms. An abstraction term [x]t is translated by Schönfinkel’s
abstraction algorithm:

[x]x → I

[x]M → ap(K,Tri(M)) if M is a variable or constant, M 6= x.

[x](MN) → ap(ap(S, [x]Tri(M)), [x]Tri(N)).

where I, S,K are special constants.

– Type judgements. A judgement t∈ (x∈A)B is translated as ∀x.Tri(x∈
A) ⇒ Tri(ap(t, x) ∈ B). A judgement t ∈ C where C is not a function
type is translated as Inh(Tri(t), T ri(C)). Constants and variables remain
unchanged by the translation.

– Goal. The goal G1, . . . , Gn ⊢tt?∈B of finding a term inhabiting B in the
context of judgements G1, . . . , Gn is translated as a formula Tri(G1) ⇒
(. . . (Tri(Gn) ⇒ ∃x.Tri(x∈B)) . . .).

– Target logic. An implicational fragment of first-order intuitionistic logic
with the equality predicate plus the standard equalities S=,K=, I= for com-
binators S,K, I: ap(I, x) = x, ap(ap(K,x), y) = x, ap(ap(ap(S, x), y), z) =
ap(ap(x, z), ap(y, z)).

It is known (see [3]) that the Schönfinkel’s abstraction algorithm combined with
the before-mentioned equality rules for S,K, I simulates weak β-reduction of
lambda calculus ([x]MN) = M{N/x} but not the ξ rule: M = M ′ ⇒ [x]M =
[x]M ′.

From the view of automated theorem proving the main problem with using
the equalities S=,K=, I= stands in that these equalities significantly expand the
search space of proving a type theory goal. In the following we will consider
a fragment where S=,K=, I= can be avoided without resorting to higher order
unification.

6.2 Translating Types with Independent Nested Function Types

The following fragment F2 is a superset of the previously considered fragment
F1. The motivation for considering F2 stems from the fact that the problems
arising in the general case disappear, but F2 is strong enough to allow synthesis
of conditional programs.

Definition An independent function type is a type with the form (x∈A)B such

that x does not occur in B.

A type C in type theory belongs to the type fragment F2 iff C is either not a

function type or it has a form (x∈A)B such that the following two cases hold:

1. B belongs to the type fragment F2

2. A is not a function type or A is an independent function type and x does

not occur in B.

A type theory judgement C belongs to the judgement fragment F2 if C does not

contain a type outside the type fragment F2.

The translation Tr′ for F2 is obtained from the previously considered trans-
lation Tri by applying an optimization O1 (literals of the form In(t, g) are con-
verted to the form Inh(g)). Soundness and completeness proofs of the translation
are obtained from the analogous proofs for the fragment F1. The most conve-
nient way to extend these proofs is to use the resolution method for intuitionistic
logic proposed by G.Mints, see [15] and [16].

In addition to the optimization O1, we will apply the analogue of the opti-
mization O2 to the formula given by the translation Tri.

We note that the introduction and elimination rules for disjunction and con-
junction can be defined in F2. These connectives will be on the different level
than implication, but we can enhance the efficiency of the prover by building
these connectives into the target logic, much like we can build propositional
equality into target logic.

Since quantifiers cannot be defined in F2, we can handle those only by build-
ing them into the target logic, ie. considering full intuitionistic logic instead of
the implicational fragment.

7 Experiments with the Implementation

T.Tammet has implement an automated theorem prover Gandalf, which looks for
type theory proofs in the fragments F1 and F2. Gandalf is written in Scheme and
compiled to C. The timings presented in the following are obtained by running
Gandalf on the SUN SS-10.

Gandalf takes a file containing type theory judgements and possibly several
goal types, written in the ALF syntax. It converts the judgements and goals
to first order language using the translation and optimizations described in the
previous sections. After that it starts looking for proofs. Gandalf organizes proof
search by iterative deepening on runtime. Suppose the input file contains a set
of judgements Γ and a set of goal types G1, . . . , Gn. Gandalf will take the first
time limit t1 and allocate t1/n seconds for the attempt to prove G1. In case it
fails, Gandalf will proceed to G2, etc. In case it succeeds, all the following proof
search subtasks will treat G1 as a judgement, the remaining time from t1 will be
divided between goals G2, . . . , Gn and Gandalf will proceed to the next goal G2.
In case a proof search attempt has been conducted for each goal G1, . . . , Gn and

for some of these no proof is found, Gandalf will take a new time limit t2 = f ∗ t1
for some factor f and will perform a new iteration for yet unproved goals with
the new time limit t2.

Consider the task of proving a separate subgoal G: (x1∈A1; . . . ;xn∈An)B.
Gandalf will attempt to use structural induction, i.e., pattern-matching, for prov-
ing G. It will consider each argument type Ai in G, finding all these judge-
ments in Γ which are introduction rules for Ai, that is, which are of the form
(y1 ∈B1; . . . ; yn ∈Bm)C with C and Ai being unifiable. It will then generate a
set T of different proof search tasks for G, each element of T corresponding to a
subset of variables x1, . . . , xn being inducted upon. To every element (induction
case) of the task in T it adds the induction assumptions. Induction assumptions
are generated from the subterms of the pattern of the inductive case at hand.
Only these assumptions are considered which are structurally smaller than the
pattern of the particular induction case.

A certain amount of time will be allocated for proof search for each element
of T . In case Gandalf manages to prove some element E of T , it has found the
proof for G and it will continue with the next open goal from the set G1, . . . , Gn.

Consider the task of proving an element E in the set of proof search tasks
for G. Each such element generally consists of a number of pure first order proof
tasks R1, . . . , Rk, each Ri corresponding to one case of structural induction. E
is proved only if each of R1, . . . , Rk has been proved.

In case Gandalf finds a proof for some goal Gi, it will construct a sound
type theory proof of Gi, using the ALF syntax. Each inductive case will have
its own separate proof. Each such separate proof is constructed from the proof
found for the corresponding first order clause set. In order to make this possible,
Gandalf keeps track of all the necessary information while looking for the first
order proofs.

The current implementation of Gandalf is only able to to construct type
theory proofs for the fragment F1. The part constructing type theory proofs
from the resolution proofs for the intuitionistic fragment F2 is being worked
upon.

Gandalf does not attempt to construct lemmas. Thus it is completely up to
the user to include all the necessary lemmas in the input file. Selecting lemmas
to be proved (and later used for the main proof) is one of the main mechanisms
available to the user in order to guide the blind search of Gandalf.

In addition to the selection of lemmas, there are a number of flags and pa-
rameters the user can give to Gandalf in order to guide the proof search. For
example, it is possible to indicate that no induction should be used for a certain
goal or that a certain subset of variables has to be inducted upon, etc.

7.1 Example. Correctness of Toy Compiler

The following example encodes the problem of proving correctness of a simple
compiler. The example is presented in [8] with a proof created by a human user
(C.Coquand) in interaction with the ALF system. We present a proof found by

the Gandalf system using a number of crucial hints given to Gandalf by the
human user.

We want to compute a polynomial expression build of multiplication, addi-
tion, basic integers and one variable on a simple stack machine. The instructions
for this machine are:

– Duplication of the top of the stack.
– Reversal of the top items on the stack.
– Replacement of the top items on the stack by an item that is their sum

(respectively product).
– Replacement of the top item n on the stack by a given item n0.

The problem is to compile a given polynomial expression e(x) to a list l of instruc-
tions such that if we execute l on the stack, then the result of this computation
is the stack with the value of the expression e(x) pushed to the top.

The evaluation function is represented as a type theoretic function
Eval ∈ (Expr;N)N such that Eval(e, n) gives the value of the expression e when its
unique variable is set equal to value n. The execution function which computes
a final stack from the input stack and a list of instructions is represented as an
inductively defined relation EXEC between a list of instructions and two stacks.
This definition uses an auxiliary relation Exec between a single relation and two
stacks.

The proof of the main theorem thm requires a lemma showing that EXEC is
a transitive relation. Gandalf does not attempt to create lemmas automatically,
thus lemma is present in the input file along with the assumption that it is
already proved.

N : Set, 0 : N, s : (N)N

plus : (N;N)N, mult : (N;N)N

List : (Set)Set

nil : (t:Set)List(t)

cons : (t:Set; x:t; y:List(t))List(t)

Stack : Set, null: Stack, push:(N;r)Stack

Instr : Set

Dup : Instr, Rev : Instr, Add : Instr, Mul : Instr, Lit : (N)Instr

Expr : Set,

Sum : (Expr;Expr)Expr,

Pro : (Expr;Expr)Expr

Num : (N)Expr

Arg : Expr

Eval : (Expr;N)N

Eval(Sum(e1,e2),n)=plus(Eval(e1,n),Eval(e2,n))

Eval(Pro(f1,f2),n)=mult(Eval(f1,n),Eval(f2,n))

Eval(Num(n1),n)=n1

Eval(Arg,n)=n

append : (List(Instr);List(Instr))List(Instr)

append(nil(Instr),x)=x

append(cons(Instr,x,y),z)=cons(Instr,x,append(y,z))

append(x,nil(Instr))=x

Exec : (Instr;Stack;Stack)Set

Exec_Dup : (n:N;r:Stack)

Exec(Dup,push(n,r),push(n,push(n,r)))

Exec_Rev : (n1,n2:N;r:Stack)

Exec(Rev,push(n1,push(n2,r)),push(n2,push(n1,r)))

Exec_Add : (n1,n2:N;r:Stack)

Exec(Add,push(n1,push(n2,r)),push(plus(n1,n2),r))

Exec_Mul : (n1,n2:N;r:Stack)

Exec(Mul,push(n1,push(n2,r)),push(mult(n1,n2),r))

Exec_Lit : (n,m:N;r:Stack)

Exec(Lit(n),push(m,r),push(n,r))

Program = List(Instr) : Set

EXEC : (Program; Stack; Stack)Set

exec_nil : (r:Stack)EXEC(nil(Instr),r,r)

exec_seq : (i:Instr; p:Program; r1,r2,r3:Stack;

Exec(i,r1,r2); EXEC(p,r2,r3))

EXEC(cons(Instr,i,p),r1,r3)

Comp : (e:Expr)Program

Comp(Sum(e1,e2)) =

cons(Instr,

Dup,

append(Comp(e2),

append(cons(Instr,Rev,nil(Instr)),

append(Comp(e1),cons(Instr,Add,nil(Instr))))))

Comp(Pro(f1,f2)) =

cons(Instr,

Dup,

append(Comp(f2),

append(cons(Instr,Rev,nil(Instr)),

append(Comp(f1),cons(Instr,Mul,nil(Instr))))))

Comp(Num(n)) =

cons(Instr,Lit(n),nil(Instr))

Comp(Arg) = nil(Instr)

lemma : (p1,p2:Program; s1,s2,s3:Stack;

EXEC(p1,s1,s2); EXEC(p2,s2,s3))

EXEC(append(p1,p2),s1,s3)

thm : (e:Expr; r:Stack; n:N)

EXEC(Comp(e),push(n,r),push(Eval(e,n),r))

thm(a,b,c) = ?(forceind(a),noind(b,c),method(both-ends))

The expression thm(a, b, c) =?(forceind(a), noind(b, c),method(both-ends))
gives hints for the search of the proof of thm. The expressions forceind(a) and
noind(b, c) tell Gandalf that it is necessary to use induction on the variable a,
while it is prohibited to use induction on the variables b and c. In case we do
not provide Gandalf with these two hints, it will spend a lot of time attempting
to use induction schemas which are of no use when proving thm, and the proof
is found only after a one-hour search.

The expression method(both-ends) tells Gandalf that it should look for proof
by reasoning from both ends, i.e. doing both forward reasoning and backward
reasoning simultaneously (implemented as binary unit resolution). The default
strategy of Gandalf is using pure forward reasoning (implemented as hyper-
resolution), which is ill suited for the current problem. It takes Gandalf al-
most two hours (deriving 337008 clauses) to prove even a single induction case
thm(Sum(x4, x5), b, c) using pure forward reasoning.

We are planning to implement a heuristic module of Gandalf which would
automatically make choices between reasoning methods.

Consider the definition of append used in the formulation of the problem.
The current version of the proof checker ALF does not allow overlapping pat-
terns, thus it fails to type-check the third case append(x, nil(Instr)) = x. How-
ever, this case preserves confluency of the definition of append. We have pre-
ferred to add it to the definition of append, since the extended rewriting re-
lation clears up a noticeable amount of search space and enables the prover
to find the proof faster. Alternatively, we could consider proving the equality
Id(List(Instr), append(x, nil(Instr)), x) as a separate lemma, which will have
the same efficiency-boosting effect in case the prover is able to orient this equality
to a rewriting rule.

The following is a proof found by Gandalf. We have deleted five arguments of
essentially independent type from each application of the functions lemma and
exec seq in order to shorten the proof.

The proof is found in ca two and a half minutes. The first two induction cases
thm(Sum(x4, x5), b, c) and thm(Pro(x2, x3), b, c) are both proved in one minute

(five thousand clauses derived, four thousand of these kept), the last two cases
thm(Num(x1), b, c) and thm(Arg, b, c) are proved in a fraction of a second (respec-
tively 21 and 14 clauses derived), half a minute is wasted on an initial attempt
to prove thm(Sum(x4, x5), b, c) with a half-minute time limit.

thm(Sum(x4,x5),b,c) =

lemma(exec_seq(ExecDup(c,b),

thm(x5,push(c,b),c)),

lemma(exec_seq(Exec_Rev(Eval(x5,c),c,b),

thm(x4,push(Eval(x5,c),b),c)),

exec_seq(Exec_Add(Eval(x4,c),Eval(x5,c),b),

exec_nil(push(plus(Eval(x4,c),Eval(x5,c)),b)))))

thm(Pro(x2,x3),b,c) =

lemma(exec_seq(Exec_Dup(c,b),

thm(x3,push(c,b),c)),

lemma(exec_seq(Exec_Rev(Eval(x3,c),c,b),

thm(x2,push(Eval(x3,c),b),c)),

exec_seq(Exec_Mul(Eval(x2,c),Eval(x3,c),b),

exec_nil(push(mult(Eval(x2,c),Eval(x3,c)),b)))))

thm(Num(x1),b,c) =

exec_seq(Exec_Lit(x1,c,b),

exec_nil(push(x1,b)))

thm(Arg,b,c) = exec_nil(push(c,b))

References

1. Peter Aczel. The strength of Martin-Löf’s type theory with one universe. In
Proceedings of the Symposium on Mathematical Logic, Oulu, 1974, pages 1–32.
Report No 2, Department of Philosophy, University of Helsinki, 1977.

2. L. Augustsson, T. Coquand, and B. Nordström. A short description of Another
Logical Framework. In Proceedings of the First Workshop on Logical Frameworks,

Antibes, pages 39–42, 1990.
3. H. Barendregt. The Lambda Calculus. North Holland, 1981.
4. T.Tammet C.Fermüller, A.Leitsch and N.Zamov. Resolution Methods for the De-

cision Problem, volume 679 of Lecture Notes in Artificial Intelligence. Springer-
Verlag, Berlin Heidelberg, 1993.

5. C.Green. Application of theorem-proving to problem solving. In Proc. 1st Internat.

Joint. Conf. Artificial Intelligence, pages 219–239, 1969.
6. C.L.Chang and R.C.T Lee. Symbolic Logic and Mechanical Theorem Proving.

Academic Press, 1973.
7. Thierry Coquand. Pattern matching with dependent types. In Proceeding from

the logical framework workshop at B̊astad, June 1992.

8. Thierry Coquand, Bengt Nordström, Jan M. Smith, and Björn von Sydow. Type
theory and programming. EATCS, (52), February 1994.

9. T.Franzen D.Sahlin and S.Haridi. An intuitionistic predicate logic theorem prover.
Journal of Logic and Computation, 2(5):619–656, 1992.

10. A. Felty and D. Miller. Encoding a Dependent-type λ-Calculus in a Logic Pro-
gramming Language. In Proceedings of CADE-10. Lecture Notes in Artificial In-
telligence 449, Springer Verlag, 1990.

11. W. D. Goldfarb. The undecidability of the second-order unification problem. The-
oretical Computer Science, 13:225–230, 1981.

12. G.Peterson. A technique for establishing completeness results in theorem proving
with equality. SIAM J. of Comput, 12:82–100, 1983.

13. Gérard Huet. A unification algorithm for typed λ-calculus. Theoretical Computer

Science, 1(1):27–57, 1975.
14. Lena Magnusson. The new Implementation of ALF. In The informal proceeding

from the logical framework workshop at B̊astad, June 1992, 1992.
15. G. Mints. Gentzen-type systems and resolution rules. part i. propositional logic.

In COLOG-88, volume 417 of Lecture Notes in Computer Science, pages 198–231.
Springer Verlag, 1990.

16. G. Mints. Resolution strategies for the intuitionistic logic. In Constraint Pro-

gramming, volume 131 of NATO ASI Series F, pages 289–311. Springer Verlag,
1994.

17. Bengt Nordström, Kent Petersson, and Jan M. Smith. Programming in Martin-

Löf ’s Type Theory. An Introduction. Oxford University Press, 1990.
18. J. A. Robinson. A Machine-oriented Logic Based on the Resolution Principle.

ACM, 12:23–41, 1965.
19. Jan Smith. An interpretation of Martin-Löf’s type theory in a type-free theory of

propositions. Journal of Symbolic Logic, 49(3):730–753, 1984.

This article was processed using the LATEX macro package with LLNCS style

