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1 Introduction

In order to capture some of the programmers errors, several computer languages, like

Pascal and ML, are equipped with a type system. Using the Curry-Howard interpretation

of propositions as types [3, 8], or as we shall say here, propositions as sets, a type system

can be made strong enough to be used to specify the task a program is supposed to do.

This is one of the basis for Martin-Löf’s suggestion in [11] to use his formulation of type

theory for programming; his ideas are exploited in [14] and there are several computer

implementations of type theory [4, 16]. Similar ideas are also behind Coquand and Huet’s

calculus of constructions [2].

The idea of propositions as sets is closely related to the intuitionistic explanations of

the logical constants given by Heyting [7]. In Martin-Löf’s type theory, the interpretation

of propositions as sets is fundamental since the notions of proposition and set are identical.

So a logical constant is definitionally equal to the corresponding set constant. Conversely,

every set forming operation can be viewed as a logical constant, although some sets are more

natural to think of as data types.

When using Martin-Löf’s type theory for programming one often has to use strong

principles, like a universe or well-orderings, when writing specifications or defining data

types. For instance, a universe must be used when defining a proposition by induction on

natural numbers or lists. There are disadvantages of using a universe and I will instead

introduce an extension of type theory by which the use of a universe often can be avoided.

∗To be published in Notre Dame Journal of Formal Logic.
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The main reason why the rules given here have not been formulated before is that

they require the distinction between sets and types. This is a basic idea of Martin-Löf’s

framework for type theory, which he first presented in a lecture in Göteborg in March 1986.

The extension put forward here is that the elimination rules for the various set forming

operations should be generalized so that the conclusion of such a rule is not restricted to be

of the form “ c is an element in the set C ” but will be of the form “ c is an object of the

type γ ”. This means that it will be possible to define type valued functions by recursion

on a set and, in particular, to define propositional functions by recursion without using a

universe. It is then important that the elimination rules are formulated in the general way

suggested by Schroeder-Heister [19, 20].

I will first briefly describe, following [15], how sets in Martin-Löf’s type theory can be

viewed as specifications and then why a universe sometimes must be used when expressing

propositions. A presentation of the separation of sets and types will be given before the

extension is formulated. Finally, I will give an interpretation of the extended type theory

into type theory with one universe.

Acknowledgements. The convenience of a possibility to define propositions by induc-

tion on sets has been clear for a long time by people using type theory as a programming

logic. For the extension proposed here, I am particularily indebted to Per Martin-Löf, Bengt

Nordström and Kent Petersson for many discussions.

2 Specifications as sets

The idea of of viewing a specification of computer programs as a set in Martin-Löf’s

type theory has its origin both in understanding propositions as sets and in Kolmogorov’s

explanation in [9] of propositions as problems. Kolmogorov explains the sentential constants

in the following way:

A ∧ B is the problem of solving both of the problems A and the problem B .

A ∨ B is the problem of solving at least one of the problems A and B .

A ⊃ B is the problem of solving the problem B provided that a solution to the

problem A is given.

⊥ is a problem which has no solution.

Using the interpretation of propositions as sets and viewing a specification as a problem,

which a program satisfying the specification solves, we can read these explanations as:

A × B is a specification of programs which, when executed, give a pair 〈a, b〉 where

the program a satisfies the specification A and the program b satisfies the specifica-

tion B .
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A + B is a specification of programs which, when executed, either give inl(a) where

the program a satisfies the specification A or inr(b) where the program b satisfies

the specification B .

A → B is a specification of programs which, when executed, give λx.b(x) where the

program b(a) satisfies the specification B if a is a program satisfying the specifica-

tion A .

∅ is a specification which is not satisfied by any program.

Type constructors corresponding to × , + and → occurs in many typed programming

languages. However, in order to obtain a type system in which any interesting specifications

can be expressed, we need cartesian products and disjoint unions on families of sets so that

the quantifiers can be interpreted:

(Πx∈A)B is a specification of programs which, when executed, give λx.b(x) where

the program b(a) satisfies the specification B(a) if a is a program satisfying the

specification A .

(Σx ∈ A)B is a specification of programs which, when executed, give a pair 〈a, b〉

where the program a satisfies the specification A and the program b satisfies the

specification B(a) .

Beside these set forming operations corresponding to the the logical constants, we need

a set Id(A, a, b) expressing that the elements a and b of the set A are identical. We also

need a number of basic data types like the set N of natural numbers and the set List(A) of

lists of elements in a set A . However, many specifications can still not be expressed with

these sets but require a universe.

3 The need of a universe

Martin-Löf’s first formulation of type theory [10] contained a universe V in which all

sets were elements, including V itself. Such a universe would have been very practical

to use but, by Girard’s paradox, V ∈ V implies that all sets are non-empty; hence, it is

impossible to interpret propositions as sets. In Martin-Löf [12], the universe V is replaced

by a series of universes U0, U1, . . . where U0 is the set of small sets and Un ∈ Un+1 .

Following the semantics in Martin-Löf [11], where a set is defined by prescribing how the

canonical elements are formed, it is natural to view an element in a universe as a code for

the corresponding set; this is the approach in [14, 21] and will be used here.
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I will in this section give two examples how one is forced to use a universe in two basic

applications; the first is when defining a simple proposition by induction and the second is

when proving negated equalities.

If we, informally, want to define a predicate member(a, l) which expresses that a ∈ A

is a member of the list l ∈ List(A) where A is a set, we can do that by structural induction

on the list l :

member(a, nil) = ⊥

member(a, b.s) = (a =A b) ∨member(a, s)

where nil is the empty list and b.s is the list obtained by adding the element b to the left

of the list s . Structural induction on a list is in Martin-Löf’s type theory expressed by the

list-elimination rule

l ∈ List(A)

C(v) set [v ∈ List(A)]

c ∈ C(nil)

e(x, y, z) ∈ C(x.y) [x ∈ A, y ∈ List(A), z ∈ C(y)]

listrec(l, c, e) ∈ C(l)

where listrec(l, c, e) is computed according to the rules

listrec(nil, c, e) → c

listrec(a.s, c, e) → e(a, s, listrec(s, d, e))

Using listrec and the interpretation of propositions as sets, we could write the definition

above of member as

member(a, l) = listrec(l, ∅, (x, y, z)(Id(A, a, x) + z))

However, member is a set valued function. So, in order to be able to apply list-elimination

to show that member(a, l) is a proposition, i.e. a set, we must have a family C(v) of sets

on List(A) so that ∅ ∈ C(nil) and Id(A, a, x) + z ∈ C(x.y) [x ∈ A, y ∈ List(A), z ∈ C(y)] .

Hence, we must have a universe in which the sets we are using are elements.

To express member , we need the following codes, writing U for the first universe U0 ,

̂⊥∈U

A+̂B∈U [A ∈ U, B ∈ U]

̂Id(A, a, b)∈U [A ∈ U, a ∈ Set(A), b ∈ Set(A)]

where Set is the decoding function for which we have the set-formation rule

Set(A) set [A ∈ U]
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and the set-equalities

Set(̂∅) = ∅

Set(A+̂B) = Set(A) + Set(B) [A ∈ U, B ∈ U]

Set( ̂Id(A, a, b)) = Id(Set(A), a, b) [A ∈ U, a ∈ Set(A), b ∈ Set(A)]

Now we can define member in type theory by

member(a, l) = Set(listrec(l, ̂∅, (x, y, z)( ̂Id(A, a, x)+̂z)))

and we can show, using list-elimination, that

member(a, l) set [a ∈ A, l ∈ List(A)]

There are two disadvantages with this definition of member . First, the definition involves

some coding compared with the informal definition of member . This is not so serious, since

we could introduce some syntactical sugaring to avoid the coding. The second objection is

more severe: the judgement member(a, l) set [a ∈ A, l ∈ List(A)] holds only when A is a

small set, i.e. when A ∈ U . So member is actually not defined for all sets A ; in particular,

we cannot use the above definition if U was used when defining the set A .

I will here just hint how a universe can be used to show that 0 is different from 1 ,

for the details see [14]. By recursion on the natural numbers, we can define a function F

such that

F (0) = ∅

F (1) = T

where T is the singleton set {tt} . Since F is set valued, the formal definition of F in type

theory requires a universe:

F (n) = Set(natrec(n, ̂∅, (x, y)̂T))

where natrec is the recursion operator on the set of natural numbers. Assuming Id(N, 0, 1)

it is easy, using tt ∈ F (1) , to show that F (0) is nonempty. Since F (0) = ∅ we then obtain

Id(N, 0, 1) → ∅ , i.e., by definition, ¬Id(N, 0, 1) .

In Smith [22] it is shown that in type theory without a universe, no negated equalities

at all can be proved.

4 The logical framework

The main reason to introduce a type level, more basic than the level of sets, is to have

a framework in which sets can be introduced by simple declarations. This is important
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when building a computer system since you then do not want to make major changes of

the implementation when introducing a new set forming operation. The Edinburgh LF [6]

is based on similar ideas.

The type level introduced by Martin-Löf has judgements of the forms
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α is a type,

α and β are equal types,

a is an object of the type α , and

a and b are equal objects of the type α ,

which we formally write

α:type

α = β:type

a:α

a = b:α

respectively. In a series of lectures in Florence in spring 1987, Martin-Löf presented a detailed

semantics of the type level in which judgemental equality is intensional. When building up

Martin-Löf’s set theory using the framework, we need function types, the type of sets and

to each object in the type of sets, the type of elements of that set. The rules are formulated

in a natural deduction style, but we will here not give the general rules concerned with

substitution, equality and handling of contexts; the semantics and rules are given in detail

in [17].

If we have a type α and a family β of types on α , then we can form the dependent

function type from α to β :

Fun-formation
α : type β : type [x : α]

(x : α)β : type

Functions are introduced by abstraction and we have the rules:

Abstraction
b : β [x : α]

(x)b : (x : α)β

Application

a : α c : (x : α)β

c(a) : β(a/x)

where β(a/x) denotes the result of substituting a for the free variable x , assuming the

usual restrictions on the free variables of a . We also have the following definitional equalities

for objects in a function type:

β -conversion

a : α b : β [x : α]

((x)b)(a) = b(a/x) : β(a/x)
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η -conversion

c : (x : α)β

(x)(c(x)) = c : (x : α)β

x must not occur free in c

ξ -conversion

b = d : β [x : α]

(x)b = (x)d : (x : α)β

We will use the abbreviation (α)β for (x : α)β when β does not depend on x and we

will often display f : (x1 : α1) · · · (xn : αn) β as

f : (x1 :α1)
...

(xn :αn)

β

The notation f(x1, . . . , xn) will be used for the repeated applications f(x1) · · · (xn) and,

similarly, we will write (x1, . . . , xn)e for the repeated abstractions (x1) · · · (xn)e .

That there is a type of sets is expressed by the rule

set -formation

set : type

If we have a set A we may form a type El(A) whose objects are the elements of the set A :

El -formation
A : set

El(A) : type

The notation a ∈ A , which we used in the beginning of the paper, can now be seen as an

abbreviation of a : El(A) .

We illustrate how sets can be introduced in the framework by declaring the constants

for the set of natural numbers and cartesian products.

That N is a set is expressed by

N : set

The constructors for elements in N are then declared by

0 : El(N) succ : (El(N))El(N)
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When declaring the recursion operator natrec for natural numbers, we need dependent

function types:

natrec : (C : (El(N))set)

(n :El(N))

(d :El(C(0)))

(e : (x :El(N))(y : (El(C(x)))El(C(succ(x)))))

El(C(n))

The computation rules for the recursion operator are expressed by the definitional equalities

natrec(C, 0, d, e) = d : El(C(0))

[C : (El(N))set, d : El(C(0)), e : (x :El(N))(El(C(x)))El(C(succ(x)))]

natrec(C, succ(n), d, e) = e(n, natrec(C, n, d, e)) : El(C(succ(n)))

[C : El(N)set, d : El(C(0)), e : (x :El(N))(El(C(x)))El(C(succ(x))), n : El(N)]

Using the rules of the framework, we may derive the natural deduction rules for the

natural numbers in Martin-Löf’s set theory. For instance, from the declaration of natrec ,

we may obtain the elimination rule for natural numbers

C(v) : set [v : El(N)]

n : El(N)

d : El(C(0))

e(x, y) : El(C(succ(x))) [x : El(N), y : El(C(x))]

natrec(C, n, d, e) : El(C(n))

Note that, in the conclusion of the rule, the expression natrec(C, n, d, e) contains the

family C(v) on N . This is a consequence of the explicit declaration of natrec in the

framework, but C is also needed in the expression if we want mechanical type checking.

So, when expressing set theory in the framework, we obtain a monomorphic theory. We

may define a stripping function on the expressions which takes away the set information

and we would then obtain expressions of the polymorphic theory in [11, 13]. However, the

polymorphic theory is fundamentally different from the monomorphic theory; in Salvesen

[18] it is shown that there are derivable judgements in the polymorphic theory which cannot

come from any derivable judgement in the monomorphic theory by stripping.

The cartesian product on a family of sets is formed by the declaration

Π : (A : set)((B : El(A))set) set
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The elements in a cartesian product are obtained by λ -abstraction:

λ : (A : set)

(B : (El(A))set)

(b : (x :El(A))El(B(x)))

El(Π(A,B))

From the declaration of λ we get the introduction rule for the cartesian product:

A : set

B(x) : set [x : El(A)]

b(x) : El(B(x)) [x : El(A)]

λ(A,B, b) : El(Π(A,B))

If we declare the constant apply by

apply : (A : set)

(B : (El(A))set)

(El(Π(A,B)))

(u :El(A))

El(B(u))

we obtain the elimination rule

A : set

B(x) : set [x : El(A)]

c : El(Π(A,B))

a : El(A)

apply(A,B, c, a) : El(B(a))

This rule corresponds ∀ -elimination when interpreting propositions as sets. However, this

elimination rule does not follow the pattern of the other elimination rules of Martin-Löf’s

set theory in that it does not express a recursion principle. In the preface of Martin-Löf [13],

higher order assumptions were introduced by which it is possible to formulate recursion on

a cartesian product. The selector apply is then replaced by funsplit , which is declared by
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funsplit : (A : set)

(B : (El(A))set)

(C : (El(Π(A,B)))set)

(d : (y : (x :El(A))El(B(x)))El(C(λ(A,B, y))))

(c :El(Π(A,B)))

El(C(c))

and associated with it is the definitional equality

funsplit(A,B,C, d, λ(A,B, b)) = d(b) : El(C(λ(A,B, b)))

[A : set, B : (El(A))set, C : (El((Π(A,B)))set, b : (x :El(A))El(B(x)),

d : (y : (x :El(A))El(B(x)))El(C(λ(A,B, y)))]

As in [13], apply can now be introduced by the explicit definition

apply(A,B, c, a) = funsplit(A,B, (x)(B(a)), (y)(y(a)), c)

[A : set, B : (El(A))set, c : El(Π(A,B)), a : El(A)]

thereby replacing the above declaration of apply . From the declaration of funsplit , we get

the elimination rule for cartesian products

A : set

B(x) : set [x : El(A)]

C(z) : set [z El(Π(A,B))]

c : El(Π(A,B))

d(y) : El(C(λ(A,B, y))) [y : (x :El(A))El(B(x))]

funsplit(A,B,C, d, c) : El(C(c))

where the assumption y : (x : El(A))El(B(x)) corresponds to the higher order assumption

y(x) ∈ B(x) [x ∈ A] . By the interpretation of propositions as sets, this rule corresponds to

the generalized ∀ -elimination in Schroeder-Heister [20].

5 The extension

In the elimination rule for natural numbers

n : El(N)

C(v) : set [v : El(N)]

d : El(C(0))

e(x, y) : El(C(succ(x))) [x : El(N), y : El(C(x))]

natrec(C, n, d, e) : El(C(n))
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we have as one of the premisses that C(v) is a family of sets on the set of natural numbers.

In order to strengthen the rule so that we e.g. can define family of sets by recursion without

using a universe, we generalize the rule to an arbitrary family γ of types on the natural

numbers:
n : El(N)

γ : type [v : El(N)]

d : γ(0/v)

e(x, y) : γ(succ(x)/v) [x : El(N), y : γ(x/v)]

Natrecγ(n, d, e) : γ(n/v)

Formally, given γ : type [v : N] , we introduce the constant Natrecγ by the declaration

Natrecγ : (n :El(N))

(γ(0/v))

(e : (x :El(N)) (γ(x/v))γ(succ(x)/v))

γ(n/v)

We also have to assert the definitional equalities

Natrecγ(0, d, e) = d : γ(0/v)

[d : γ(0/v), e : (x :El(N))(γ(x/v)))γ(succ(x)/v)]

Natrecγ(succ(n), d, e) = e(n,Natrecγ(n, d, e)) : γ(succ(n)/v)

[d : γ(0/v), e : (x :El(N))(γ(x/v)))γ(succ(x)/v), n : El(N)]

Note that we cannot introduce a Natrec -operator uniformly over all families γ of types

on the set of natural numbers but instead have to, given a family γ , introduce a new constant

Natrecγ . This is in contrast to the declaration of natrec , which is the same constant for

all families C(v) of sets on the natural numbers. If we want a uniform operator, we would

have to extend the framework with yet another level where we would have type as object;

such a level would correspond to the level of kinds in the Edinburgh LF [6].

To introduce a type valued recursion operator on a cartesian product Π(A,B) where

A : set and B : (x : El(A)) set , we must first have a family of types on the cartesian

product. So let

γ : type [v : El(Π(A,B))]

be given. The constant Funsplitγ is then introduced by the declaration

Funsplitγ : (d : (y : (x :El(A))El(B(x))) γ(λ(A,B, y)/v))

(c :El(Π(A,B)))

γ(c/v)
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and we assert the definitional equality

Funsplitγ(d, λ(A,B, b)) = d(b) : γ(λ(A,B, b))

[d : (y : (x :El(A))El(B(x))) γ(λ(A,B, y)/v)]

Note that it is impossible to generalize apply in this way, since, in the declaration of apply ,

there is no family C(v) of sets which we can replace by a family of types. This also holds

for the selectors fst and snd for a cartesian product of two sets. Instead we have to use

the selector split , by which we have the elimination rule

A : set

B : set

C(v) : set [v : El(A× B)]

p : El(A×B)

e(x, y) : El(C(〈x, y〉)) [x : El(A), y : El(B)]

split(A,B,C, p, e) : El(C(p))

This rule corresponds to the generalized elimination rule for conjunction in natural deduc-

tion, formulated in [19]:
A ∧ B C [A, B]

C
Given sets A and B and a family of types over a cartesian product of A and B

γ : type [v : El(A×B)]

we declare the constant Splitγ by

Splitγ : (c : El(A× B))

(d : (x :El(A))(y : El(B)) γ(〈x, y〉/v))

γ(c/v)

and assert the definitional equality

Splitγ(〈a, b〉, d) = d(a, b) : γ(〈a, b〉/v)

[a : El(A), b : El(B), d : (x :El(A))(y : El(B)) γ(〈x, y〉/v)]

In the same way as for N , Π(A,B) and A× B , it is now straightforward to introduce

type valued recursion operators for the other sets.

6 Applications of the extension

We can now define member in type theory so that the definition really captures the

informal definition we gave earlier. We first introduce a type valued recursion operator on
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lists. So, let a set A and a family

γ : type [v : El(List(A))]

both be given. The constant Listrecγ is declared by

Listrecγ : (l :El(List(A)))

(γ(nil/v))

(e : (x :El(A))(y :El(List(A)))(γ(y/v)) γ(x.y/v))

γ(l/v)

and we also assert the definitional equalities

Listrecγ(nil, d, e) = d : γ(nil/v)

[d : γ(nil/v), e : (x :El(A))(y :El(List(A)))(γ(y/v)) γ(x.y/v)]

Listrecγ(a.l, d, e) = e(a, l, Listrecγ(l, d, e)) : γ(a.l/v)

[d : γ(nil/v), e : (x :El(A))(y :El(List(A)))(γ(y/v)) γ(x.y/v),

a : El(A), l : List(A)]

To express member , the family γ in Listrecγ is chosen to be the constant family set :

Listrecset : (El(List(A)))

(set)

(e : (El(A))(El(List(A)))(set) set)

set

We can now introduce member by the explicit definition

member(a, l) = Listrecset(l, ∅, (x, y, z)(Id(A, a, x) + z)) : set

[l : El(List(A)), a : El(A)]

Negated equalities can now be derived without a universe. In the proof of ¬Id(N, 0, 1) ,

a function F satisfying

F (0) = ∅

F (1) = T

was used. F can now be defined by

F (n) = Natrecset(n, ∅, (x, y)T)
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and ¬Id(N, 0, 1) can be proved.

The two examples above are quite obvious uses of type valued recursion. I have no such

basic application of Funsplitγ , but here is a nice example, suggested by Bengt Nordström,

of a simplification of the definition of application in a cartesian product on a family of sets.

Given A : set and B(x) : set [x : A] we introduce applyΠ(A,B) by the definition

applyΠ(A,B) = Funsplit(x :El(A))El(B(x))((y)y) : (x : El(A))El(B(x))

So applyΠ(A,B) is defined by just applying Funsplit(x :El(A))El(B(x)) on the identity function

of ((x : El(A))El(B(x))) (x : El(A))El(B(x)) .

In Synek [23] type valued recursion is used when defining a set constructor for mutual

recursive sets in terms of well-orderings. In this application, type valued recursion is crucial

since otherwise, using a universe instead, the interpretation would only work for recursion

involving small sets. A similar application of type valued recursion is also used in [14] when

interpreting subsets in type theory.

7 Relation to universes

I will in this section sketch an interpretation of set theory with type valued recursion

but without a universe into set theory with a universe but without type valued recursion.

Aczel has shown in [1] (see also [5]) that the proof theoretic ordinal of Martin-Löf’s type

theory with a universe is, in Veblen’s notation, φǫ0(0) . So we will then get an upper limit

on the strength of set theory extended with type valued recursion. In particular, we will

know that the extension is consistent.

The universe U is defined by an inductive definition so one can justify an elimination rule

expressing a recursion principle on U ; such an elimination rule is formulated in [14]. Since

the concept of set is open, there is no corresponding induction principle for set and this is

an important difference between type theory with a universe and type theory extended with

type valued recursion. The formulation of type theory investigated in [1] does not include

an elimination rule for U ; if such a rule is added, one would expect a considerable increase

of the proof theoretic strength.

The interpretation is defined in the following way. To each type α we associate a set α′

and to each object a of type α an element a′ in the set α′ . The judgements
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α:type

α = β:type

a:α

a = b:α

are then interpreted by

α′:set

α′ = β′:set

a′:El(α′)

a′ = b′:El(α′)

respectively. If a judgement depends on a context x1 : α1, . . . , xn : αn , then the interpreted

judgement will depend on the context x1 : El(α′

1), . . . , xn : El(α′

n) .

It is easy to see that a type must have the form

(x1 : α1) · · · (xn : αn)β n = 0, 1, . . . .

where β is either set or El(A) for some A : set . We define set′ by

set′ ≡ U

For A : set , A′ will be an element of U and El(A)′ is then defined to be Set(A′) .

A function type (x1 : α1) · · · (xn : αn)β is interpreted as the cartesian product

(Πx1 : α
′

1) · · · (Πxn : α′

n)β
′

where (Πx : A)B(x) is a sugared notation for Π(A,B) . An abstraction introduced by

b : β [x : α]

(x)b : (x : α)β

is interpreted by λ(α′, β′, (x)b′) and an application introduced by

a : α f : (x : α)β

f(a) : β(a/x)

is interpreted by apply(α′, β′, f ′, a′) .

Since we have η -conversion for objects of a function type but not for elements in a carte-

sian product, assumptions cannot be directly interpreted by a corresponding assumption;

instead we must interpret an assumption

x : (x1 : α1) · · · (xn : αn)β [x : (x1 : α1) · · · (xn : αn)β]
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by the derivable judgement

λx1 . . . xn . apply(. . . apply(x, x1) . . . , xn) :

El((Πx1 :α
′

1) · · · (Πxn :α
′

n)β
′) [x : El((Πx1 :α

′

1) · · · (Πxn :α
′

n)β
′)]

where stripping is used on λ and apply in order to avoid heavy notation. I will often use

stripping in the sequel, but it will always be clear from the context how to decorate the

terms with types.

Given these definitions, together with the interpretation below of the various constants,

it is straightforward but tedious to prove, by induction on the length of the derivation, that

if a judgement is derivable in type theory with type valued recursion then the interpretation

of the judgement is derivable in type theory with a universe.

7.1 Interpretation of the set theoretic constants

The interpretation follows the same pattern for all the set theoretic constants. So we will

only give the definitions for cartesian product and natural numbers, including type valued

recursion on the natural numbers.

For each constant, we first give the interpretation of its type and then it is quite obvious

how the interpretation of the constant must be defined. When a constant is declared to be

an object in a function type, it is always the case that the interpretation is on λ form; hence

they are η -convertible.

Interpretation of Π . The set theoretic constant Π is declared by

Π : (X : set)(Y : (El(X))set)set

The code ̂Π for Π is declared by

̂Π : (X : El(U))(Y : (El(Set(X)))El(U))El(U) (1)

The interpretation of the type of Π is, according to the definitions above,

(ΠX : U)(ΠY : Set(X) → U)U

where we have used the notation Set(X) → U for Π(Set(X), (x)U) since x does not occur

inU . Using function application, we obtain from (1)

̂Π(X, Y ) : El(U) [X : El(U), Y : (El(Set(X)))El(U)] (2)

Since apply(Y, x) : El(U) [X : El(U), x : El(Set(X)), Y : El(Set(X) → U)] , we get

from (2)
̂Π(X, (x)apply(Y, x)) : El(U) [X : El(U), Y : El(Set(X) → U)]
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which gives

λXY . ̂Π(X, (x)apply(Y, x)) : (ΠX : U)(ΠY : Set(X) → U)U

So we define Π′ by

Π′ ≡ λXY . ̂Π(X, (x)apply(Y, x))

Interpretation of λ . The constant λ is introduced by

λ : (X : set)(Y : (El(X))set)(z : (x : El(X))Y (x))El(Π(X, Y )) (3)

The type of λ is translated to

(ΠX :U)(ΠY :Set(X) → U)(Πz : (Πx :Set(X))apply(Y, x))

Set(̂Π(X, (x)apply(Y, x)))

From (3) we get

λ(X, Y, z) : El(Π(X, Y ))

under the assumptions X : set , Y : (El(X))set and z : (x : El(X))El(Y (x)) . From the

assumptions

X : El(U), Y : El(Set(x) → U), z : El(Πx : Set(X))Set(apply(Y, x)))

we obtain

Set(X) : set, (x)apply(Y, x) : (El(Set(X)))set

and

(x)apply(z, x) : (x : El(Set(X)))El(Set(apply(Y, x)))

Hence, we define the interpretation of λ by

λ′ ≡ λXY z . λ(El(Set(X)), (x)apply(Y, x), (x)apply(z, x))

Interpretation of apply . The constant apply is introduced by

apply : (X : set)(Y : (El(X))set)(z : El(Π(X, Y )))(u : El(X))El(Y (u))

The type of apply is translated to

(ΠX :U)(ΠY :Set(X) → U)(Πz :Set(̂Π(X, (x)apply(Y, x))))

(Πu :Set(X))(Set(apply(Y, u)))
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From the assumptions

X : El(U), Y : El(Set(X) → U)

we get

Set(X) : set, (x)Set(apply(Y, x)) : (El(Set(X)))set

We also make the assumptions

z : El(Set( ̂Π(X, (x)apply(Y, x)))), u : El(Set(X))

Since

Set( ̂Π(A,B)) = Π(Set(A), (x)Set(B(x)))

when A : El(U) and B(x) : El(U) [x : El(Set(A))] , we obtain

apply(Set(X), (x)Set(apply(Y, x)), z, u) : Set(apply(Y, x))

Hence, we define apply′ by

apply′ ≡ λXY zu . apply(Set(X), (x)Set(apply(Y, x), z, u))

Interpretation of N , 0 and succ . The constant N is declared by N : set . So, N′

can simply be defined to be the code forN :

N′ ≡ ̂N

Since 0 : El(N) we just interpret 0 by

0′ ≡ 0

The constant succ is introduced by the declaration succ : (El(N))El(N) whose type is

interpreted by Set( ̂N ) → Set( ̂N ) which is equal to N → N . Hence, we define succ′ by

succ′ ≡ λx.succ(x)

The constant natrec interpreted in a similar way.

Interpretation of Natrecγ . Let γ be a family of types on the set of natural numbers:

γ : type [v : El(N)]

The recursion operator Natrecγ is introduced by the declaration

Natrecγ : (n : El(N))(D : γ(0/v))(E : (x : El(N))(Y : γ(x/v))γ(succ(x)/v)γ(n)
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The interpretation of the type of Natrecγ is

(Πn : N)(ΠD : γ′(0/v))(ΠE : (Πx : N)(Y : γ′(x))γ′(succ(x)/v)γ′(n/v)

In a similar way as for the constants for the cartesian product, we see that Natrec′γ must

be defined by

Natrec′γ ≡ λnDE . natrec((v)γ′, n,D, (x, Y )apply(apply(E, x), Y ))
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