
The Strength of the Subset Type in

Martin-Löf’s Type Theory

Anne Salvesen Jan M. Smith

March 1988

1 Introduction

A program satisfying a specification in Martin-Löf’s type theory

may have parts which never will be used when computing the program.

The reason for this is that the interpretation of propositions as types

may force programs to contain proof objects which only serve as wit-

nesses of the truth of some propositions which are required to hold by

the specification. The subset types have been introduced in type the-

ory in order to avoid this problem [6]. Because of the interpretation

of propositions as types, which demands that we must have an explicit

proof object when we express the truth of a proposition, it is not ob-

vious how to formulate rules for subsets in type theory. The formation

and introduction rules are what one expects:

Subset-formation

A type B(x) type [x ∈ A]

{x ∈ A | B(x)} type

Subset-introduction

a ∈ A b ∈ B(a)

a ∈ {x ∈ A | B(x)}

An elimination rule which captures the way we have introduced

objects of a subset is impossible to give in type theory because when

we have an object a of a subset {x ∈ A | B(x)} we have no explicit

construction of the proof object of B(a) . The best formulation of an

elimination rule we can give is the following:

Subset-elimination

a ∈ {x ∈ A | B(x)} c(x) ∈ C(x) [x ∈ A, y ∈ B(x)]

c(a) ∈ C(a)

where y must not occur free in c(x) nor in C(x)

1

In this rule it is required that C(x) is a type under the assumption

x ∈ {z ∈ A | B(z)} . We will in this paper show that the exact

formulation of the rules of type theory is very important for the power

of the subset type; it actually turns out that there are propositions

involving subsets which are trivially true in naive set theory but which

cannot be proved in type theory. We will look at the provability of

propositions of the form

(∀x ∈ {z ∈ A | P (z)})P (x) (∗)

Propositions of this form are important when modularizing program

derivations, using a top-down approach and decomposing the specifica-

tion into subproblems. When solving the subproblems we may want to

use lemmas which have already been proved. The main idea of split-

ting up a problem into lemmas is, in program derivation as well as in

mathematics, that our original problem can be reduced to the lemmas;

in particular, there should be no need to look into the proofs of the

lemmas. If we have a lemma which talks about subsets we certainly

want (∗) to be provable since if a ∈ {x ∈ A | P (x)} we want to

be able to conclude P (a) without having to investigate the proof of

a ∈ {x ∈ A | P (x)} .

We will discuss adding subsets to two formulations of Martin-Löf’s

type theory which differ in the equality type. In the first formulation,

ITT , the judgemental equality a = b ∈ A is understood as intensional,

or definitional, equality. The rules for the equality types are those

in Martin-Löf [3] which also are the rules now used by Martin-Löf.

The other formulation, ETT , is that of Martin-Löf [4, 5], where the

judgemental equality is extensional and undecidable. The type theory

used in Nuprl [1] is based on ETT .

Because of the syntactical restriction on free variables in the subset-

elimination rule, the strength of this rule is connected with the possi-

bility of having rules in type theory where free variables, other than

those discharged by the rule, may disappear in the conclusion. In ITT

there are actually no essential possibilities to get rid of free variables.

Hence, when adding subsets to ITT , the subset-elimination rule is lim-

ited which, as we will see, results in a very weak subset type for which

(∗) can only be proved in some trivial cases. In ETT there is a possibil-

ity to get rid of variables in the rules for the equality type. So in ETT

there are more cases when we can use subset-elimination and we will

give a general condition on the predicate P (x) which will imply the

provability of (∗) . Nevertheless, in section 5 we will give an instance

of (∗) which cannot be proved in type theory irrespectively of how we

formulate the rules; the example only requires that the axiom of choice,

as formulated in [4, 5], can be proved and that a typable term can be

computed by a Turing machine.

2

2 The subset type in ITT

In ITT the judgemental equality is understood as definitional equal-

ity and the equality type reflects this. So the objects of the equality

type are introduced by:

Eq -introduction

a ∈ A

eq(a) ∈ Eq(A, a, a)

and the elimination rule gives a corresponding principle of structural

induction over an equality type:

Eq -elimination

c ∈ Eq(A, a, b) d(x) ∈ C(x, x, eq(x)) [x ∈ A]

eqpeel(c, d) ∈ C(a, b, c)

The rule of reduction for the noncanonical form introduced in this rule

is that the expression eqpeel(eq(a), d) reduces to d(a) . So, in general,

the argument a in eq(a) is needed when computing eqpeel(eq(a), d) .

Note that the canonical expression eq(a) in the conclusion of the

Eq -introduction rule contains the object expression a in the premiss

and that the type expression Eq(A, a, a) in the conclusion contains the

type expression A in the premiss. In particular, all free variables oc-

curring in the premiss also occur free in the conclusion. This also holds

for all the other introduction rules in ITT ; that is, all free variables oc-

curring in the object and the type of a premiss, except those discharged

by the rule, also occur free in the object and type of the conclusion,

respectively. This fact is used in a crucial way in the proof of the fol-

lowing theorem, which will enable us to give very simple instances of

(∗) which cannot be proved in ITT .

Before formulating the theorem, we define a mapping ′ which to

each object expression a in ITT with subsets associates an object

expression a′ in ITT and to each type expression A in ITT with

subsets associates a type expression A′ in ITT . The mapping is defined

so that it commutes with all constants in ITT . For subsets it is defined

by

{x ∈ A | B(x)}′ = A′

and for codes for subsets in the universe U it is correspondingly defined

by

{̂|} (a, b)′ = a′

Theorem 1 If a ∈ A is derivable in ITT extended with the rules

for subsets, then a′ can be computed to a canonical value of type A′ .

Since, by the definition of the mapping ′ ,

((∀x ∈ {z ∈ A | P (z)})P (x))′ = (∀x ∈ A′)P (x)′

we obtain the following corollary from theorem 1:

3

Corollary 1 If t ∈ (∀x ∈ {z ∈ A | P (z)})P (x) is derivable in ITT

with the rules for subsets, and neither A nor P syntactically contains

the subset type, then t′ can be computed to a canonical value of type

(∀x ∈ A)P (x) .

For instance, not even (∀x ∈ {z ∈ T | ⊥})⊥ can be proved in ITT

with subsets, since otherwise we would have, by the corollary, a term

t′ which could be computed to a canonical value of type (∀x ∈ T)⊥

Hence, apply(t′, tt) , where tt is the canonical object in T , could be

computed to a canonical value of type ⊥ which is impossible since ⊥

is empty. So the corollary is a strongly negative result which shows

that a straightforward introduction of the subset type by just adding

formation, introduction and elimination rules does not work for ITT .

Proof of theorem 1. The proof of this theorem is by induction

on the length of the derivation of a ∈ A and is based on Tait’s method

[10] for proving normalization. However, in order to cope with subset-

elimination, where the interpretation by ′ of the type in the major

premiss a ∈ {x ∈ A | B(x)} is just A′ , we must show that we in the

interpretation of the minor premiss c(x) ∈ C(x) [x ∈ A, y ∈ B(x)]

can do without the assumption that there exists a canonical element

in B(a)′ when concluding that c(a)′ can be computed to a canonical

value of type C(a)′ ; something which does not hold for ETT . We must

therefore, compared with the normalization proof in Martin-Löf [3],

strengthen the induction hypothesis by having stronger conditions on

the computable terms of a type depending on assumptions. We will

not give all the details of the proof, but concentrate on the differences

compared with [3].

The set Comp(A) of computable terms of type A in a context ΓA

is defined by induction on the length of the derivation of A type [ΓA]

in ITT ; in particular, the induction hypothesis implies that the set of

computable terms has been defined for all the types in the context ΓA .

We define the set of computable terms for N , the function types and

equality types; the remaining types are handled in a similar way.

We are using the notation e(e1/x1, . . . , en/xn) for the result of sub-

stituting e1, . . . , en for the free variables x1, . . . , xn in e , respectively,

where e may either be an ordinary expression or a context.

That the term t is an element in Comp(N) in the context ΓN is

defined in the following way:

The free variables of t must all be declared in the context ΓN . Let

Γt ≡ y1 ∈ C1, . . . , yn ∈ Cn(y1, . . . , yn−1)

be the smallest subcontext of ΓN such that all the free variables in t

are declared in Γt . The term t is an element in the set

Comp(N)

4

if for all c1 ∈ Comp(C1), . . . , cn ∈ Comp(Cn(c1, . . . , cn−1)) the term

t(c1/y1, . . . , cn/yn) can be computed to a numeral, that is, it has either

value 0 or a value of the form succ(succ(. . . (0) . . .)) .

We must also define what it means for two elements s and t in

Comp(N) to equal in Comp(N) in the context ΓN . Let

Γst ≡ y1 ∈ C1, . . . , yn ∈ Cn(y1, . . . , yn−1)

be the smallest subcontext of ΓN such that all the free variables in s

and t are declared in Γt . The terms s and t are equal in the set

Comp(N)

if for all c1 ∈ Comp(C1), . . . , cn ∈ Comp(Cn(c1, . . . , cn−1)) the terms

s(c1/y1, . . . , cn/yn) and t(c1/y1, . . . , cn/yn) have the same numeral as

value.

We now come to the definition of the set of computable terms for

a function type. Let A be a type in a context ΓA and B a type in a

context ΓB . Then A → B is a type in a context ΓA→B containing ΓA

and ΓB and, by the induction hypothesis, the set of computable terms

has been defined for A and B as well as for all the types appearing in

the context ΓA→B . That a term t is an element in Comp(A → B) ,

depending on the context ΓA→B , is defined in the following way:

The free variables of the term t must all be declared in the context

ΓA→B . Let

Γt ≡ y1 ∈ C1, . . . , yn ∈ Cn(y1, . . . , yn−1)

be the smallest subcontext of ΓA→B such that all the free variables in

t are declared in Γt . The term t is an element in the set

Comp(A → B)

if for all c1 ∈ Comp(C1), . . . , cn ∈ Comp(Cn(c1, . . . , cn−1)) there

exists a term b(x) such that t(c1/y1, . . . , cn/yn) can be computed to

λx.b(x) and where b(x) has the property given below.

Let a be a term with its free variables declared in ΓA and which

has the following property:

Let

Γa ≡ u1 ∈ D1, . . . , uk ∈ Dk(u1, . . . , uk−1)

be the smallest subcontext of ΓA(c1/y1, . . . , cn/yn) such that all free

variables in a(c1/y1, . . . , cn/yn) are declared in Γa .

Let d1 ∈ Comp(D1), . . . , dk ∈ Comp(Dk(d1, . . . , dk−1)) and let

v1 ∈ E1, . . . , vl ∈ El(v1, . . . , vl−1)

be the smallest context containing the free variables in

A(c1/y1, . . . , cn/yn, d1/u1, . . . , dk/uk)

5

Then

a(c1/y1, . . . , cn/yn, d1/u1, . . . , dk/uk) ∈

Comp(A(c1/y1, . . . , cn/yn, d1/u1, . . . , dk/uk, e1/v1, . . . , el/vl))

for all e1 ∈ Comp(E1), . . . , el ∈ Comp(El(e1, . . . , en−1))

Now we come to the property that b(x) must satisfy. Let

z1 ∈ F1, . . . , zp ∈ Fp(z1, . . . , zp−1)

be the smallest context containing the free variables in

B(c1/y1, . . . , cn/yn, d1/u1, . . . , dk/uk)

Then

b(a(c1/y1, . . . , cn/yn, d1/u1, . . . , dk/uk)) ∈

Comp(B(c1/y1, . . . , cn/yn, d1/u1, . . . , dk/uk, f1/z1, . . . , fp/zp))

for all f1 ∈ Comp(F1), . . . , fp ∈ Comp(Fp(f1, . . . , fp−1)) .

The difference between this definition of Comp(A → B) and the

definition in Martin-Löf [3] is that in [3] it is required that the term

t must have a value of the form λx.b(x) only when we substitute

computable terms for all the variables in the context ΓA→B .

We must also define equality on Comp(A → B) . So let s and t be

elements in Comp(A → B) and let

Γst ≡ y1 ∈ C1, . . . , yn ∈ Cn(y1, . . . , yn−1)

be the smallest subcontext of ΓA→B such that all free variables in s

and t are declared in Γst .

The terms s and t are equal in Comp(A → B) if for all c1 ∈

Comp(C1), . . . , cn ∈ Comp(Cn(c1, . . . , cn−1)) the value λx.bs(x) of

s(c1/y1, . . . , cn/yn) and the value λx.bt(x) of t(c1/y1, . . . , cn/yn) have

the property given below.

Let a be a term which satisfy similar conditions as the term a in

the definition of the elements in Comp(A → B) . So a is a term with

its free variables declared in ΓA and which has the following property:

Let

Γa ≡ u1 ∈ D1, . . . , uk ∈ Dk(u1, . . . , uk−1)

be the smallest subcontext of ΓA(c1/y1, . . . , cn/yn) such that all free

variables in a(c1/y1, . . . , cn/yn) are declared in Γa .

Let d1 ∈ Comp(D1), . . . , dk ∈ Comp(Dk(d1, . . . , dk−1)) and let

v1 ∈ E1, . . . , vl ∈ El(v1, . . . , vl−1)

be the smallest context containing the free variables in

A(c1/y1, . . . , cn/yn, d1/u1, . . . , dk/uk)

6

Then

a(c1/y1, . . . , cn/yn, d1/u1, . . . , dk/uk) ∈

Comp(A(c1/y1, . . . , cn/yn, d1/u1, . . . , dk/uk, e1/v1, . . . , el/vl))

for all e1 ∈ Comp(E1), . . . , el ∈ Comp(El(e1, . . . , en−1))

Now we come to the property that bs(x) and bt(x) must satisfy.

Let

z1 ∈ F1, . . . , zp ∈ Fp(z1, . . . , zp−1)

be the smallest context containing the free variables in

B(c1/y1, . . . , cn/yn, d1/u1, . . . , dk/uk)

Then

bs(a(c1/y1, . . . , cn/yn, d1/u1, . . . , dk/uk))

and

bt(a(c1/y1, . . . , cn/yn, d1/u1, . . . , dk/uk))

are equal elements in

Comp(B(c1/y1, . . . , cn/yn, d1/u1, . . . , dk/uk, f1/z1, . . . , fp/zp))

for all f1 ∈ Comp(F1), . . . , fp ∈ Comp(Fp(f1, . . . , fp−1)) .

We will also define Comp(Eq(A, a, b)) . So let A be a type in a

context ΓA , a an object of A in a context Γa and b an object of

B in a context Γb . Then Eq(A, a, b) is a type in a context ΓEq(A,a,b)

containing the contexts ΓA , Γa and Γb . That the term t is an element

in Comp(Eq(A, a, b)) , depending on the context ΓEq(A,a,b) is defined

in the following way:

Let the free variables of the term t all be declared in the context

ΓEq(A,a,b) . Let

Γt ≡ y1 ∈ C1, . . . , yn ∈ Cn(y1, . . . , yn−1)

be the smallest subcontext of ΓEq(A,a,b) containing all the free variables

in t . The term t is an element in

Comp(Eq(A, a, b))

if for all c1 ∈ Comp(C1), . . . , cn ∈ Comp(Cn(c1, . . . , cn−1)) there

exists a term e such that t(c1/y1, . . . , cn/yn) can be computed to eq(e)

where e has the following property:

Let

u1 ∈ A1, . . . , uk ∈ Ak(u1, . . . , uk−1)

be the context ΓA(c1/y1, . . . , cn/yn) . Then

e ∈ Comp(A(c1/y1, . . . , cn/yn, a1/u1, . . . , ak/uk))

for all a1 ∈ Comp(A1), . . . , ak ∈ Comp(Ak(a1, . . . , ak−1)) and

a(c1/y1, . . . , cn/yn) and b(c1/y1, . . . , cn/yn) can both be computed

to e .

7

Following the pattern in Comp(A → B) , it is straightforward to

define what it means for two elements to be equal in Comp(Eq(A, a, b)) .

Let the context Γ′ be obtained from Γ by applying the mapping ′

on all the types in Γ . We can now prove, by induction on the length

of the derivation, that

• if A type is derivable in a context Γ in ITT with subsets, then

Comp(A′) is defined in the smallest subcontext of Γ′ containing

all the free variables in A′ .

• if A = B is derivable in a context Γ in ITT with subsets, then

Comp(A′) = Comp(B′) in the smallest subcontext of Γ′ contain-

ing all the free variables in A′ and B′ .

• if a ∈ A is derivable in a context Γ in ITT with subsets, then

a′ ∈ Comp(A′) in the smallest subcontext of Γ′ containing all

the free variables in a′ and A′ .

• if a = b ∈ A is derivable in a context Γ in ITT with subsets,

then a′ and b′ are equal elements in Comp(A′) in the smallest

subcontext of Γ′ containing all the free variables in a , b , and A .

The proof is trivial in the case of an introduction rule because of the

remark above that no free variables, except those possibly discharged

by the rule, disappears in the conclusion of an introduction rule in ITT .

We do the induction step for two of the elimination rules.

Subset-elimination

a ∈ {x ∈ A | B(x)} c(x) ∈ C(x) [x ∈ A, y ∈ B(x)]

c(a) ∈ C(a)

By the induction hypothesis, we know that a′ ∈ Comp({x ∈ A | B(x)}′) .

Since y does not occur free in c(x) , we know that c′(d) ∈ Comp(C ′(d))

for all d ∈ Comp(A′) because C(x) is a type under the assump-

tion x ∈ {z ∈ A | B(z)} and {x ∈ A | B(x)}′ ≡ A′ . Hence,

c′(a′) ∈ Comp(C ′(a′)) as desired.

We also verify a crucial instance of → -elimination in which the

conclusion apply(f, a) ∈ B depends on an assumption y ∈ C although

y occurs free neither in apply(f, a) nor in B .

a ∈ A(y) [y ∈ C] f ∈ A(y) → B [y ∈ C]

apply(f, a) ∈ B [y ∈ C]

We are here assuming that A(y) type [y ∈ C] , B type and that y

is occurring free neither in a nor in f . By the induction hypothesis,

f ′ ∈ Comp(A′(y) → B′) in the context y ∈ C which means that f ′ can

be computed to a term λx.b(x) such that if a ∈ Comp(A′(c)) for all

c ∈ Comp(C ′) then b(a) ∈ Comp(B′) . By the induction hypothesis, we

have a′ ∈ Comp(A′(c)) for all c ∈ Comp(C ′) . Hence, since apply(f ′, a′)

reduces to b(a′) , we get apply(f ′, a′) ∈ Comp(B′) .

8

✷

The main part of this proof is really a normalization proof for ITT ,

which, because of the strong definition of the computability predicate,

is of interest already without subsets. A more detailed presentation of

this proof together with some consequences of it for ITT will be given

in a paper in preparation by Jan Smith.

Remark. The exact formulation of ITT we have in mind here is

obtained from the formulation of type theory in [4, 5] by just replacing

the rules for the equality type. This formulation of type theory is

polymorphic, but if we instead consider a monomorphic formulation of

ITT , we can strengthen theorem 1 to even get that if we have a closed

derivation of a ∈ A then a′ ∈ A′ is also derivable. The proof is by

induction on the length of the derivation of a ∈ A and we then also

have to consider open derivations. The crucial lemma is then that if

a ∈ A(y) [y ∈ C] is derivable in the monomorphic ITT and a does

not contain y free, then there exists a type A∗ not contain y free

and such that A∗ = A(y) [y ∈ C] and a ∈ A∗ . The proof of this

lemma, which does not hold for the polymorphic formulation of ITT ,

uses the Church-Rosser property. The reason why the theorem can be

strengthened for a monomorphic theory is that we now cannot even in

an elimination rule lose any variables.

3 The subset type in ETT

In ETT the canonical objects of the equality type are introduced

by reflection of the judgemental equality:

Eq -introduction

a = b ∈ A

eq ∈ Eq(A, a, b)

There is an elimination rule giving a structural induction principle,

but the important rule is the strong Eq -elimination which connects

the judgemental level with the type level:

Strong Eq -elimination

c ∈ Eq(A, a, b)

a = b ∈ A

This elimination rule is much stronger than the Eq -elimination rule in

ITT since judgemental equalities now can be proved by mathematical

reasoning, using the propositional level of type theory.

Let

P (x1, . . . , xn) type [x1 ∈ A1, . . . , xn ∈ An(x1, . . . , xn−1)]

9

The predicate P (x1, . . . , xn) is called stable if

¬¬P (x1, . . . , xn) → P (x1, . . . , xn)

[x1 ∈ A1, . . . , xn ∈ An(x1, . . . , xn−1)]

Using strong Eq -elimination together with the universe, we can prove

that (∗) holds for all stable predicates:

Theorem 2 In ETT extended with the rules for subsets, we can

derive (∀x∈A)(¬¬P (x) → P (x)) → (∀x∈{z ∈ A | P (z)})P (x) .

Proof. By the interpretation of propositions as types, we have to

construct an object of the type

(Πx ∈ {z ∈ A | P (z)})P (x) (1)

from the assumption

h ∈ (Πx ∈ A)(((P (x) → ⊥) → ⊥) → P (x)) (2)

We will derive (1) by constructing an object

p(x) ∈ P (x) [x ∈ {z ∈ A | P (z)}] (3)

and then use Π -introduction. We will first derive

p(z) ∈ P (z) [z ∈ A, y ∈ P (z)]

from which we then obtain (3) by subset-elimination. Of course, p(z)

must not contain the variable y free. In order to construct p(z) we

will construct an object

q(z) ∈ (P (z) → ⊥) → ⊥ [z ∈ A, y ∈ P (z)]

such that q(z) does not contain the variable y free and then use the

assumption (2).

The first step in the derivation is to apply → -elimination on the

assumptions y ∈ P (z) and u ∈ P (z) → ⊥ to obtain

apply(u, y) ∈ ⊥ [z ∈ A, y ∈ P (z), u ∈ P (z) → ⊥] (4)

The term apply(u, y) contains y free, so we will now construct an

object in ⊥ which does not contain y free. By ⊥ -elimination applied

on (4), we obtain

case0(apply(u, y)) ∈ Eq(U, N̂ , ⊥̂) [z ∈ A, y ∈ P (z),

u ∈ P (z) → ⊥]

(5)

where U is the first universe, i.e. the type of encodings of the small

types, and N̂ and ⊥̂ are the codes for N and ⊥ , respectively. The

strong Eq -elimination rule applied on (5) gives

N̂ = ⊥̂ ∈ U [z ∈ A, y ∈ P (z), u ∈ P (z) → ⊥]

10

from which we get, by the decoding rules for the universe,

N = ⊥ [z ∈ A, y ∈ P (z), u ∈ P (z) → ⊥] (6)

Since 0 ∈ N we get from (6)

0 ∈ ⊥ [z ∈ A, y ∈ P (z), u ∈ P (z) → ⊥] (7)

and we have obtained an object in ⊥ not containing the variable y

free. → -introduction on (7) gives

λu.0 ∈ (P (z) → ⊥) → ⊥ [z ∈ A, y ∈ P (z)] (8)

From the assumption (2) we get, by Π -elimination,

apply(h, z) ∈ ((P (z) → ⊥) → ⊥) → P (z) [z ∈ A] (9)

Using → -elimination on (8) and (9) we obtain

apply(apply(h, z), λu.0) ∈ P (z) [z ∈ A, y ∈ P (z)] (10)

Since y does not occur free in apply(apply(h, z), λu.0) we can apply

subset-elimination on (10) and obtain

apply(apply(h, x), λu.0) ∈ P (x) [x ∈ {z ∈ A | P (z)}]

and, by using Π -introduction, we finally obtain

λx.apply(apply(h, x), λu.0) ∈ (Πx ∈ {z ∈ A | P (z)})P (x)

✷

The interest of theorem 2 depends on how large the class of stable

propositions is. Using the strong Eq -elimination rule in a crucial way,

we can prove that Eq(A, x, y) is stable:

Theorem 3 (∀x ∈ A)(∀y ∈ A)(¬¬Eq(A, x, y) → Eq(A, x, y)) can

be derived in ETT for all types A .

Proof. The proof is by induction of the length of the derivation

that A is a type. It turns out that the proof can be carried out in a

uniform manner for all the formation rules as well as for the rule

a ∈ U

Type(a) type

where we also must use U -induction, reflecting the proof for the for-

mation rules.

The key to the proof lies in the rules for introducing equal canonical

objects of the types together with the strong Eq -elimination rule. Let

A be a type obtained by one of the formation rules. It is easy to refine

11

our goal to a subgoal where the objects are on canonical form. Hence,

our original goal is achieved if we can find an object of

Eq(A, a, b) [IA, p ∈ ¬¬Eq(A, a, b)] (1)

where IA is a list of assumptions, depending on the type A , and a

and b are on canonical form. There are two cases: a and b have

different outer canonical form or a and b have equal outer canonical

form. The first case is easily proved by absurdity-elimination. In the

second case, p ∈ ¬¬Eq(A, a, b) and the induction hypothesis will allow

us to construct a proof of the premisses of the introduction rule for

equal canonical objects of the type A . It is then straightforward to

obtain a proof of (1). We will give the details of the proof in the case

when A has been introduced by Π -formation:

C type D(z) type [z ∈ C]

(Πz ∈ C)D(z) type

By the induction hypothesis we can find objects f1 and f2 such that

f1 ∈ (Πx ∈ C)(Πy ∈ C)(¬¬Eq(C, x, y) → Eq(C, x, y))

and

f2 ∈ (Πx ∈ D(z))(Πy ∈ D(z))

(¬¬Eq(D(z), x, y) → Eq(D(z), x, y)) [z ∈ C] (2)

We must construct an object of the type

(∀x ∈ (Πz ∈ C)D(z))(∀y ∈ (Πz ∈ C)D(z))

(¬¬Eq((Πz ∈ C)D(z), x, y) → Eq((Πz ∈ C)D(z), x, y))

Refining this goal with introduction and elimination with respect to

both quantifiers leaves us with the goal

¬¬Eq((Πz ∈ C)D(z), λz.b(z), λz.d(z)) →

Eq((Πz ∈ C)D(z), λz.b(z), λz.d(z)) (3)

under the list of assumptions IΠ :

h1 ∈ (Πz ∈ C)D(z), b(x) ∈ D(x) [x ∈ C],

h2 ∈ (Πz ∈ C)D(z), d(x) ∈ D(x) [x ∈ C]

Note that we have here used the strong formulation of Π -elimination

discussed in the preface of [5]. We will prove (3) by constructing an

object of the type

¬¬Eq(D(z), b(z), d(z)) (4)

under the assumptions

IΠ, g ∈ ¬¬Eq((Πz ∈ C)D(z), λz.b(z), λz.d(z)), z ∈ C

12

We can then use f2 on (4) to get an object of

Eq(D(z), b(z), d(z))

and then strong Eq -elimination to obtain

b(z) = d(z) ∈ D(z) (5)

under the assumptions

IΠ, g ∈ ¬¬Eq((Πz ∈ C)D(z), λz.b(z), λz.d(z)), z ∈ C

Using the rule

b(x) = d(x) ∈ D(x) [x ∈ C]

λx.b(x) = λx.d(x) ∈ (Πx ∈ C)D(x)

for forming equal canonical objects of the Π -type, we obtain (3) from

(5) by Eq -introduction and → -introduction. In order to prove (4) we

will construct an object of

Eq((Πz ∈ C)D(z), λz.b(z), λz.d(z)) →

Eq(D(z), b(z), d(z)) [IΠ, z ∈ C] (6)

and we then get (4) by an application of the general lemma

(P → Q) → (¬¬P → ¬¬Q)

and → -elimination. In order to prove (6) we introduce the new as-

sumption

e ∈ Eq((Πz ∈ C)D(z), λz.b(z), λz.d(z))

Since apply(f, z) ∈ D(z) [f ∈ (Πz ∈ C)D(z), z ∈ C] , we get, by strong

Eq –elimination and substitution,

apply(λz.b(z), z) = apply(λz.d(z), z) ∈ D(z)

which gives

b(z) = d(z) ∈ D(z)

under the assumptions

IΠ, z ∈ C, e ∈ Eq((Πx ∈ C)D(x), λx.b(x), λx.d(x))

and by Eq -introduction and → -introduction we get that λe.eq is an

object of (6).

✷

The details of the full proof can be found in Salvesen [8].

13

4 Harrop formulas

We will define a class of stable formulas corresponding to Harrop-

formulas in predicate logic [2]. The definition is made in two steps

where the first is a straightforward translation of the definition of

Harrop-formulas given for instance in [12] to type theory. The sec-

ond step is made by reflection of the first, using the universe U . So

first we define the class of Harrop -formulas by the following inductive

definition.

• ⊥ is a Harrop -formula.

• T is a Harrop -formula.

• If A is a type, a ∈ A and b ∈ A then Eq(A, a, b) is a Harrop -

formula.

• If A and B are Harrop -formulas then A&B is a Harrop -formula.

• If A is a type and B is a Harrop -formula then A → B is a

Harrop -formula.

• If A is a type and B(x) is a Harrop -formula under the assump-

tion that x ∈ A then (∀x ∈ A)B(x) is a Harrop -formula.

Since ¬A is identified with A → ⊥ we have that ¬A is a Harrop -

formula if A is a type. Note that if A is a Harrop -formula then A

must be a type. So the notion of Harrop -formulas depends on the

formulation of type theory.

We can now prove the following theorem.

Theorem 4 If A is a Harrop -formula in ETT , then ¬¬A → A

is derivable in ETT .

Proof. Straightforward by induction on the length of the proof

that A is a Harrop -formula, using theorem 3.
✷

We shall extend the class of Harrop -formulas by reflection on the

definition above, using the universe U . We first define the type H by

H ≡ {z ∈ U |Type(h(z))}

where h is defined, using the recursion operator for U , so that

h(T̂) = T̂ ∈ U

h(⊥̂) = T̂ ∈ U

h(Êq(A, a, b) = T̂ ∈ U

h(&̂(A,B)) = &̂(h(B), h(A)) ∈ U

h(→̂(A,B) = h(B) ∈ U

h(∀̂(A,B) = ∀̂(A, (x)h(B(x))) ∈ U

h(A) = ⊥̂ ∈ U all other canonical forms of U.

14

Using the induction principle of U and that h is recursively defined

by reflections of stable propositions, we can prove that Type(h(x)) is

stable for all x ∈ U :

(∀x ∈ U)(¬¬Type(h(x)) → Type(h(x))) (1)

We can also prove that objects satisfying h are stable:

(∀x ∈ U)(Type(h(x)) → (¬¬Type(x) → Type(x))) (2)

The proofs of (1) and (2) use the induction principle of U together

with the definition of h .

Using (1), theorem 2 and (2) we obtain the following theorem.

Theorem 5 The objects of H are stable, that is

(∀x ∈ H)(¬¬Type(x) → Type(x)) .

In view of this theorem we may add a the clause

• if a ∈ H then Type(a) is a Harrop -formula.

to the inductive definition of Harrop formulas and still prove theorem 4.

A more detailed discussion of the class of Harrop -formulas can be

found in Salvesen [8].

5 A counterexample

If P (x) ≡ (∃y ∈ B)Q(y) then a proof of (∗) would give us a

method for constructing an object b of B such that Q(b) holds from

an object of {x ∈ A | (∃y ∈ B)Q(y)} . We cannot expect this to

hold in general since an object of {x ∈ A | (∃y ∈ B)Q(y)} does not

contain any information of an object b of B for which Q(b) holds. If

we go outside the class of stable formulas, then we can actually find a

counterexample to (∗) :

Theorem 6 If P (x) ≡ (∃y ∈N)T (x, x, y) ∨ ¬(∃y ∈N)T (x, x, y) ,

where T is Kleene’s T-predicate, and A ≡ N , then (∗) cannot be

derived in type theory extended with subsets.

The idea of this counterexample comes from the refutation in Troel-

stra [11] of a generalization of the so called extended Church thesis,

ECT0 :

(∀x)(P (x) → (∃y)Q(x, y)) →

(∃u)(∀x)(P (x) → (∃v)(T (u, x, v)&Q(x, U(v)))) (1)

where P (x) must be an almost negative formula. Troelstra shows, by

a diagonalization argument, that (1) is false if we put P (x) equal to

(∃y)T (x, x, y) ∨ ¬(∃y)T (x, x, y)

15

which is not almost negative. ECT0 is closely related to (∗) : By the

same method as in the proof below, we can show, using (∗) and the

axiom of choice in type theory, that there exists a term

h(x) ∈ N [x ∈ N, y ∈ P (x)]

such that

(∀x∈N)(P (x) → (∃y∈N)Q(x, y)) → (∀x∈N)(P (x) → Q(x, h(x)))

Proof of theorem 6. Assume that we have a derivation of

(∀x∈{z ∈ N | (∃y∈N)T (z, z, y) ∨ ¬(∃y∈N)T (z, z, y)})

(∃y∈N)T (x, x, y) ∨ ¬(∃y∈N)T (x, x, y) (2)

Using the rules for subsets, it is easy to prove

(∀x ∈ {z ∈ A | P (z)})Q(x) & (∀x∈A)(Q(x) → R(x)) →

(∀x ∈ {z ∈ A | P (z)})R(x) (3)

Since

(∀x∈N)(((∃y∈N)T (x, x, y) ∨ ¬(∃y∈N)T (x, x, y)) →

(∃z∈N)((z > 0 → T (x, x, z
.
−1)) & (z = 0 → ¬(∃y∈N)T (x, x, y))))

is provable in first-order intuitionistic arithmetic, it must also be deriv-

able in type theory. Hence, using (3), we obtain from (2)

(∀x ∈ {z ∈ N | (∃y∈N)T (z, z, y) ∨ ¬(∃y∈N)T (z, z, y)})

(∃z∈N)((z > 0 → T (x, x, z
.
−1)) & (z = 0 → ¬(∃y∈N)T (x, x, y))) (4)

By the axiom of choice in type theory, we get from (4) a term h such

that

h(x) ∈ N [x ∈ {z ∈ N | (∃y∈N)T (z, z, y) ∨ ¬(∃y∈N)T (z, z, y)}] (5)

and

(∀x ∈ {z ∈ N | (∃y∈N)T (z, z, y) ∨ ¬(∃y∈N)T (z, z, y)})

((h(x) > 0 → T (x, x, h(x)
.
−1))&(h(x) = 0 → ¬(∃y∈N)T (x, x, y))) (6)

Using subset-introduction, it easy to prove

(∀x ∈ {z ∈ A | P (z)})Q(x) → (∀x∈A)(P (x) → Q(x)) (7)

From (6) and (7) we get

(∀x∈N)((∃y∈N)T (x, x, y) ∨ ¬(∃y∈N)T (x, x, y) →

((h(x) > 0 → T (x, x, h(x)
.
−1)) &

(h(x) = 0 → ¬(∃y∈N)T (x, x, y)))) (8)

16

From (5) we get, by subset introduction,

h(x) ∈ N [x ∈ N, z ∈ ((∃y∈N)T (x, x, y) ∨ ¬(∃y∈N)T (x, x, y))] (9)

Since all functions formally derivable in type theory are mechanically

computable, we know that the term h(x) is extensionally equal to a

partial recursive function. A tedious proof of this could be obtained

by induction on the length of the derivation that the function has a

type; informally we could just appeal to Church thesis. Let u0 be a

gödelnumber for this function. By soundness, we get from (9) that the

proposition

(∀x∈N)(((∃y∈N)T (x, x, y) ∨ ¬(∃y∈N)T (x, x, y)) →

(∃w∈N)(T (u0, x, w)&U(w) = h(x)))

is semantically true. Hence, we get from (8) that the following propo-

sition is true:

(∀x∈N)(((∃y∈N)T (x, x, y) ∨ ¬(∃y∈N)T (x, x, y)) →

((∃w∈N)T (u0, x, w) &(U(w) > 0 → T (x, x, U(w)
.
−1)) &

(U(w) = 0 → ¬(∃y∈N)T (x, x, y)))) (10)

Following Troelstra [11] p.381 (or [12] p. 197), we can see that (10)

is false and, hence, that (2) cannot be derived in type theory. Since

(∀x∈N)¬¬((∃y∈N)T (x, x, y) ∨ ¬(∃y∈N)T (x, x, y))

holds intuitionistically, we obtain from (10)

(∀x∈N)¬¬((∃w∈N)(T (u0, x, w) &(U(w) > 0 → T (x, x, U(w)
.
− 1)) &

(U(w) = 0 → ¬(∃y∈N)T (x, x, y)))) (11)

Let v0 be such that (∀n ∈ N)((∃w ∈ N)T (v0, x, w) ↔ {u0}(x) ≃ 0) .

From (11) we then obtain a contradiction:

(∃w∈N)T (v0, v0, w) ↔ {u0}(v0) ≃ 0 ↔ ¬(∃y∈N)T (v0, v0, y)

✷

Remark. Note that this proof shows that if we require our theory

to be constructive, then we cannot expect (∗) to hold for all predi-

cates P (x) . However, if we to ETT add the axiom

?A ∈ A ∨ (¬A)

for each type A , as suggested in [9], then (∗) becomes provable for

all predicates since the law of the excluded middle implies that all

predicates are stable.

17

6 Conclusions

A straightforward introduction of subset types in type theory is

problematic because the subset type is difficult to integrate with propo-

sitions as types. Although theorem 2 together with Harrop -formulas

give some possibilities in ETT to retrieve information from a subset, it

is not the kind of restrictions you want to have when using type theory.

It seems to us that if one wants to have a subset type which will

work in practice, it must be possible to say that a proposition is true

without explicitly showing a proof object. One way of obtaining this is

to extend type theory with the two new forms of judgement A prop and

A true , meaning that A is a proposition and A is a true proposition,

respectively. We would then no longer view the logical constants as

abbreviations of the corresponding type theoretical constants, using

the interpretation of propositions as types. The rules for predicate

logic, with the quantifiers ranging over types, would then have to be

added. The formation and introduction rules for subsets now become:

Subset-formation

A type B(x) prop [x ∈ A]

{x ∈ A | B(x)} type

Subset-introduction

a ∈ A B(a) true

a ∈ {x ∈ A | B(x)}

As for all the other types, there must now be two elimination rules:

Subset-elimination for types

a ∈ {x ∈ A | B(x)} c(x) ∈ C(x) [x ∈ A, B(x) true]

c(a) ∈ C(a)

Subset-elimination for propositions

a ∈ {x ∈ A | B(x)} C(x) true [x ∈ A, B(x) true]

C(a) true

In the first elimination rule we must have C(x) type [x ∈ {z ∈ A | B(z)}]

and in the second elimination rule C(x) prop [x ∈ {z ∈ A | B(z)}] .

It is now easy to derive (∗) . By putting B ≡ C ≡ P in subset-

elimination for propositions, we get

P (x) true [x ∈ {z ∈ A | P (z)}]

from which we obtain (∗) by ∀ -introduction.

Acknowledgements. We would like to thank Per Martin-Löf,

Bengt Nordström and Kent Petersson for many discussions on adding

subsets to type theory.

18

References

[1] The Prl Staff (R. Constable et al.). Implementing Mathematics

with The Nuprl Proof Development System. Prentice-Hall, 1986.

[2] R. Harrop. Concerning formulas of the types A → B ∨ C , A →

(Ex)B(x) in intuitionistic formal systems. Journal of Symbolic

Logic Vol. 25, No. 1, March 1960, pp. 27-32.

[3] P. Martin-Löf. An intuitionistic theory of types: predicative part.

In Logic Colloquium ’73, North-Holland, 1975.

[4] P. Martin-Löf. Constructive Mathematics and Computer Program-

ming. In Sixth International Congress for Logic, Methodology, and

Philosophy of Science, pp. 153-175. North-Holland, 1982.

[5] P. Martin-Löf. Intuitionistic Type Theory. Studies in Proof The-

ory, Lecture Notes, Bibliopolis, Napoli, 1984.

[6] B. Nordström and K. Petersson. Types and specifications. In Pro-

ceedings IFIP’83, Paris, pp. 915-920. Elsevier, Amsterdam 1983.

[7] B. Nordström, K. Petersson and J.M. Smith. Programming in

Martin-Löf’s type theory. An introduction. Monograph. In prepa-

ration. To be published by Oxford University Press.

[8] A. Salvesen. Stable propositions in Martin-Löf’s extensional type

theory. In preparation.

[9] J.M. Smith. On a Nonconstructive Type Theory and Program

Derivation. To appear in the proceedings of Conference on Logic

and its Applications, Bulgaria 1986 (Plenum Press).

[10] W.W. Tait. Intensional interpretation of functionals of finite type I.

Journal of Symbolic Logic Vol. 32, No. 2, June 1967, pp. 198-212.

[11] A.S. Troelstra. Notions of Realizability. In Proceedings of the Sec-

ond Scandinavian Logic Symposium, pp. 369-405. North-Holland,

Amsterdam, 1971.

[12] A.S. Troelstra. Metamathematical Investigation of Intuitionistic

Arithmetic and Analysis. Lecture Notes in Mathematics, No. 344,

Springer-Verlag, 1973.

19

