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1 Introduction

In Hilbert-Ackermann [2] there is given a simple proof of the consistency of first order

predicate logic by reducing it to propositional logic. Intuitively, the proof is based on

interpreting predicate logic in a domain with only one element. Tarski [7] and Gentzen [1]

have extended this method to simple type theory by starting with an individual domain

consisting of a single element and then interpreting a higher type by the set of truth valued

functions on the previous type.

I will use the method of Hilbert and Ackermann on Martin-Löf’s type theory without

universes to show that ¬Eq(A, a, b) cannot be derived without universes for any type A and

any objects a and b of type A . In particular, this proves the conjecture in Martin-Löf [5]

that Peano’s fourth axiom (∀x ∈ N)¬Eq(N, 0, succ(x)) cannot be proved in type theory

without universes. If we by consistency mean that there is no closed term of the empty type,

then the construction will also give a consistency proof by finitary methods of Martin-Löf’s

type theory without universes. So, without universes, the logic obtained by interpreting

propositions as types is surprisingly weak. This is in sharp contrast with type theory as

a computational system, since, for instance, the proof that every object of a type can be

computed to normal form cannot be formalized in first order arithmetic.

The nonderivability of ¬Eq(N, 0, 1) for the version of type theory given in Martin-Löf [4]

was already shown in Smith [6] as a corollary to a somewhat less straightforward construction

made with a different purpose. The proofs in this paper will work for any of the different

formulations of Martin-Löf’s type theory.
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2 The construction of the interpretation

We define a truth valued function ϕ on the types of Martin-Löf’s type theory without

universes. Intuitively, ϕ(A) = ⊤ means that the interpretation of the type A is a set

with one element and ϕ(A) = ⊥ means that A is interpreted as the empty set. ϕ is

defined for each type expression A(x1, . . . , xn) by recursion on the length of the derivation

of A(x1, . . . , xn) type [x1 ∈ A1, . . . , xn ∈ An(x1, . . . , xn−1)] , using the clauses

ϕ(N0) = ⊥

ϕ(Nk) = ⊤ (k = 1, 2, . . . )

ϕ(N) = ⊤

ϕ(Eq(A, a, b)) = ϕ(A)

ϕ(A+ B) = ϕ(A) ∨ ϕ(B)

ϕ((Πx∈A)B(x)) = ϕ(A) → ϕ(B(x))

ϕ((Σx∈A)B(x)) = ϕ(A) ∧ ϕ(B(x))

ϕ((Wx∈A)B(x)) = ϕ(A) ∧ (¬ϕ(B(x)))

ϕ({x ∈ A | B(x)}) = ϕ(A) ∧ ϕ(B(x))

∧ , ∨ , → , and ¬ denote the usual boolean operations.

That ϕ really interprets type theory in the way we have intended is the content of the

following theorem.

Theorem. Let a(x1, . . . , xn) ∈ A(x1, . . . , xn) [x1 ∈ A1, . . . , xn ∈ An(x1, . . . , xn−1)]

be derivable in type theory without universes. Then ϕ(A(x1, . . . , xn)) = ⊤ provided that

ϕ(A1) = · · · = ϕ(An(x1, . . . , xn−1)) = ⊤.

In the proof of this theorem we will use two lemmas. The first says that the truth value

assigned to a type expression is preserved under substitution. The second lemma says that

equality between types is preserved by ϕ .

Lemma 1. If A(x1, . . . , xn) type [x1 ∈ A1, . . . , xn ∈ An(x1, . . . , xn−1)] and

a1 ∈ A1, . . . , an ∈ An(a1, . . . , an−1) are derivable in type theory without universes, then

ϕ(A(x1, . . . , xn)) = ϕ(A(a1, . . . , an)) .

Proof. The proof is by induction on the length of the derivation of A(x1, . . . , xn) type

[x1 ∈ A1, . . . , xn ∈ An(x1, . . . , xn−1)] . The only type forming rule where free variables

may be introduced is Eq -formation. Since ϕ(Eq(A, a, b)) = ϕ(A) the induction hypothesis

directly gives the result.

Lemma 2. If A(x1, . . . , xn) = B(x1, . . . , xn) [x1 ∈ A1, . . . , xn ∈ An(x1, . . . , xn−1)] is

derivable in type theory without universes, then ϕ(A(x1, . . . , xn)) = ϕ(B(x1, . . . , xn)) .

2



Proof. This lemma is straightforwardly proved by induction on the length of the deriva-

tion of A(x1, . . . , xn) = B(x1, . . . , xn) [x1 ∈ A1, . . . , xn ∈ An(x1, . . . , xn−1)] . Note that

lemma 1 is needed for the rule

a = b ∈ A C(x) type [x ∈ A]

C(a) = C(b)

Proof of the theorem. The proof is by induction on the length of the derivation of

a(x1, . . . , xn) ∈ A(x1, . . . , xn) [x1 ∈ A1, . . . , xn ∈ An(x1, . . . , xn−1)] . I will only discuss a

few of the rules; the remaining can be handled in the same way.

Equality of types
a ∈ A A = B

a ∈ B

By the induction hypothesis we have that ϕ(A) = ⊤ and, by lemma 2, that ϕ(A) = ϕ(B) .

Hence, ϕ(B) = ⊤ .

There are different formulations of the rules for the Eq -type in Martin-Löf [3] and Martin-

Löf [4, 5]. I will here use the earlier formulation which is the one now used by Martin-Löf

since it does not destroy the decidability of the judgemental equality

a = b ∈ A .

Eq -introduction
a ∈ A

eq(a) ∈ Eq(A, a, a)

Since, by the definition of ϕ , ϕ(Eq(A, a, a)) = ϕ(A) , the induction hypothesis directly gives

ϕ(Eq(A, a, a)) = ⊤ .

Eq -elimination

c ∈ Eq(A, a, b) d(x) ∈ C(x, x, eq(x)) [x ∈ A]

J(c, d) ∈ C(a, b, c)

By the induction hypothesis we have that ϕ(Eq(A, a, b)) = ⊤ and that ϕ(C(x, x, eq(x))) =

⊤ if ϕ(A) = ⊤ . Hence, since ϕ(Eq(A, a, b)) = ϕ(A) , ϕ(C(x, x, eq(x))) = ⊤ which, by

lemma 1, gives ϕ(C(a, b, c)) = ⊤ .

If we instead had considered the Eq -rules in Martin-Löf [4] we could simplify the defini-

tion of ϕ by putting ϕ(Eq(A, a, b)) = ⊤ .

Π -introduction
b(x) ∈ B(x) [x ∈ A]

λ(b) ∈ (Πx∈A)B(x)

By the induction hypothesis we know that ϕ(B(x)) = ⊤ if ϕ(A) = ⊤ . Since

ϕ((Πx∈A)B(x)) = ϕ(A) → ϕ(B(x)) this gives that ϕ((Πx∈A)B(x)) = ⊤ .
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Π-elimination
a ∈ A c ∈ (Πx∈A)B(x)

apply(c, a) ∈ B(a)

According to the induction hypothesis, we have ϕ(A) = ⊤ and ϕ((Πx ∈ A)B(x)) = ⊤ ,

which, since ϕ((Πx ∈ A)B(x)) = ϕ(A) → ϕ(B(x)) , gives that ϕ(B(x)) = ⊤ . Hence, by

lemma 1, ϕ(B(a)) = ⊤ .

N -elimination

n ∈ N d ∈ C(0) e(x, y) ∈ C(succ(x)) [x ∈ N, y ∈ C(x)]

rec(n, d, e) ∈ C(n)

By the induction hypothesis we have that ϕ(C(0)) = ⊤ which, by lemma 1, gives ϕ(C(n)) =

⊤ .

3 Some consequences of the interpretation

3.1 The unprovability of Peano’s fourth axiom

By the interpretation we can now see that for no type A and terms a and b does there

exist a closed term t such that

t ∈ ¬Eq(A, a, b) (∗)

is derivable in type theory without universes. Assume that (∗) holds. Then there must

exist a derivation of Eq(A, a, b) type and, hence, also a derivation of a ∈ A . So, by the

theorem, ϕ(A) = ⊤ which, together with the definitions of ϕ and ¬ , gives

ϕ(¬Eq(A, a, b)) = ϕ(Eq(A, a, b)→N0) = ϕ(Eq(A, a, b)) → ϕ(N0) = ϕ(A) → ⊥ = ⊥

Hence, by the theorem, ¬Eq(A, a, b) cannot be derived in type theory without universes.

Assume that Peano’s fourth axiom can be derived, that is, that we have a derivation of

s ∈ (Πx∈N)¬Eq(N, 0, succ(x))

for some closed term s . By Π -elimination we then get apply(s, 0) ∈ ¬Eq(N, 0, succ(0))

which is of the form (∗) and therefore impossible to derive in type theory without universes.

That no negated equalities can be proved reflects the intuition behind ϕ , which is that

it interprets type theory in a domain with a single element. We can make this explicit inside

type theory by introducing a new constant ⋆ and for each type A such that ϕ(A) = ⊤

adding a new rule

⋆ ∈ A
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The theorem can still be proved with this new rule added, so the extension is consistent.

Since ϕ((Πx∈A)Eq(A, x, ⋆)) = ϕ(A) → ϕ(A) = ⊤ we have that ⋆ ∈ (Πx∈A)Eq(A, x, ⋆) ,

that is, all objects of a type are equal to ⋆ . Note that the extension is classical because

⋆ ∈ A∨ (¬A) . Since ⋆ ∈ Eq(N, 0, 1) , type theory with universes becomes inconsistent if

the ⋆ -rule is added.

3.2 Well-orderings

The definition of ϕ on well-orderings, ϕ((Wx∈A)B(x)) = ϕ(A)∧ (¬ϕ(B(x))) , is made

as to validate the rules in Martin-Löf [4]. The W -introduction rule in [4] does not have a

bottom clause 0 ∈ (Wx∈A)B(x) since such a clause can be derived using a universe. We

can now see that this use of a universe is necessary. Since ϕ((Wx∈A)B(x)) = ⊤ implies

ϕ(A) = ⊤ and ϕ(B(x)) = ⊥ we get, by the theorem, that if (Wx∈A)B(x) is not empty

then B(a) must be empty for all a in A . This gives that all elements of a well-ordering

type are initial, that is, without predecessors. So, only very trivial well-orderings can be

constructed.

If we add a bottom clause to the W -rules and change the definition of ϕ by

ϕ((Wx ∈A)B(x)) = ⊤ , we get the full computational strength of the well-ordering types

and can still prove our theorem.

3.3 Consistency

Since absurdity is interpreted in type theory by the empty type N0 , the obvious way of

defining consistency for type theory is to say that there is no closed term of type N0 . Since

ϕ(N0) = ⊥ , the theorem shows that there cannot be a closed term of type N0 . Clearly, this

consistency proof is finitary in the sense of Hilbert and can be carried out in primitive recur-

sive arithmetic. This may seem surprising since the proof theoretic strength of type theory

without universes measured in terms of provable well-orderings is, without well-ordering

types, the same as first order arithmetic and, with well-ordering types, even far beyond ε0 .

However, this is not in conflict with Gödel’s second incompletness theorem, because in order

to prove Gödel’s theorem, primitive recursive predicates must be numeralwise expressible in

the theory and, as we have seen, not even equality is numeralwise expressible in type theory

without universes.

If we instead by consistency mean that there is no closed term of type Eq(N, 0, 1) , the

consistency of type theory cannot be proved using the theorem since ϕ(Eq(N, 0, 1)) = ⊤ .

Actually, defining absurdity by Eq(N, 0, 1) instead of N0 , first order arithmetic can be

interpreted in type theory without universes. So, with this definition of consistency, there

cannot be a finitary consistency proof.
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3.4 Universes

If ϕ was extended to a universe, then ϕ(T(a)) has to be defined for each object a of

the universe U because of the rule
a ∈ U

T(a) type

which says that if a is the code of a type then T(a) is the type that a encodes. Let n0

and n1 be the codes of N0 and N1 respectively. Since

T(n0) = N0 and T(n1) = N1

we must have

ϕ(T(n0)) = ⊥ and ϕ(T(n1)) = ⊤

Hence, lemma 1, which is crucial for the proof of the theorem, would no longer hold.

An obvious way of extending type theory in order to obtain the strength of first order

arithmetic is to add Peano’s fourth axiom. This would not, however, follow the general pat-

tern of introduction and elimination rules in type theory which is very natural, particularly

when viewing a type as a set and not as a proposition: the elements of a set are defined

by the introduction rules and the elimination rule makes it possible to define functions by

recursion on the set.

Martin-Löf has instead suggested to extend type theory without universes by using the

objects 02 and 12 of type N2 as codes for N0 and N1 respectively. We then have to add

the type formation rule
a ∈ N2

T(a) type

and the type equalities

T(02) = N0 T(12) = N1

This makes the two element type N2 function as a very small universe, containing codes

only for the types N0 and N1 , and Peano’s fourth axiom can now be proved as in [5].
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