A Cubical Type Theory

Simon Huber
(j-w.w. Cyril Cohen, Thierry Coquand, Anders Mortberg)

University of Gothenburg

HoTT and UF — Mini-Symposium at DMV 2015
Hamburg, September 25, 2015



Cubical Type Theory: Overview

» Type theory where we can directly argue about n-dimensional
cubes (points, lines, squares, cubes, ....).

» Based on a constructive model of type theory in cubical sets
with connections and diagonals.

» [1, ¥, data types, U
> path types and identity types

» The Univalence Axiom and function extensionality are
provable.

» Some higher inductive types with “good” definitional
equalities



Basic Idea

Expressions may depend on names i, j, k,... ranging over an
interval I. E.g.,

x: ALy :B(i,x)Fu(x,i): C(x,i,y)
is a line connecting the two points

x:Ay:B(0,x)F u(x,0): C(x,0,y)
x:Ay:B(l,x)Fu(x,1): C(x,1,y)

Each line i : I+ t(i) : A gives an equality

F (i) t(i) : Path At(0) t(1)



The Interval T

v

Givenby r,s :=0|1|i|l1—i|rAs|rVs

> | ranges over names or symbols

v

Intuition: 7 an element of [0, 1], A is min, and V is max.

v

Equality is the equality in the free bounded distributive lattice
with generators i, 1 — /.

» De Morgan algebra via
1-0=1 1—(rAs)=(1—-r)V(l—ys)
1-1=0 1—(rvs)=(1-r)A(1—5)
1-(1-0)=i

NB: iA(1—i)#0and iV (l—i)#1l



Overview of the Syntax

A B,a,b,u,v:i=x
|(x:A) = B|Ax:Au|uv
| (x:A)x B|(u,v)]|ul|v2
|U
| PathAab
(i
|ur
| comp’ Au i
| Glue A | (a, 0)

variables

lM-types

Y -types

universe

path types

name abstraction
interval application
composition
glueing

data types. ..



Contexts and Substitutions

Contexts

M-A M
OF Mx:Ab ri:IF

Substitutions are as usual but we also allow to assign an element in
the interval to a name:

o: A—T AFr:1
(o,i=r):A—T,i:l




Face Operations

Certain substitutions correspond to face operations. E.g.:
(x=x,i=0,y=y): (x:Ay:B(i=0)—=(x:Ai:Ly:B)

In general a face operation are a: N — [ setting some names to
0 or 1 and otherwise the identity.

Faces are determined by all the assignments i = b, b € {0,1};
write

a=(ir=b1)...(in= bn)

(Special case: o = id)



Basic Typing Rules

M . M oo
——— (x:AinT) _ (i7:TinT)
NEx:A M=i:I

Nx:AFB Mx:AFv:B
N-=(x:A)—B NEAx:Av:(x:A)—B

N-w:(x:A)—B NFu:A
F-wu:B(x =u)

Also: Sigma types and data types ...



Path Types

Nr-A N-a:A F=b6:A
I-PathAab

M=A Mi:IFu:A
M= (iju:PathAu(i=0)u(i=1)

=w:PathAab M=r:1 ({(Hu)r=u(i

FrFwr: A (iYui=u

~w:PathAab
Nwl0=a:A
lrM~-wl=»5b:A




Path Type

> Reflexivity a: At refl a: Path Aaa is given by the constant

path
refla = (i)a

» Singletons are contractible: for a: A and
S, = (x: A) x (Path Aax) we have

(N(pi,Jyp (i Nj)) : Path S, (a,refl a) (x, p)

for (x,p) : Sa.



Function Extensionality

For f and g of type C = (x: A) — B and
w : (x : A) — Path B (f x) (g x) we have

(DAx:A-wxi : Path Cfg



Kan Operations

Given /i : T+ A we want an equivalence between A(i0) and A(i1).
Require additional composition operations.

Refinement of Kan's extension condition (1955)

“Any open box can be filled”



Systems

A system
U= la— uy]

for ' = A is given by a family of compatible terms
Nl u, : A

(a ranging over a set of faces L, L downwards closed)



A system
Frabk uy: Ao (ae€l)

can be considered as partial element of ' = A with extent L. We
call & connected if thereis a '+ v : A such that:

la bk ua = u, : Ax

For example, if L is generated by the faces

then a system corresponds to a boundary of a square. It is
connected if the boundary of the square can be filled.



Compositions

ri:I-A M- wu:A(i=0) Fa,i:IF uy: Ao (a € L)
Nk ua = uy(i =0): Aa(i = 0)

M comp’ Auir: A(i = 1)

(comp’ Au i) = up(i = 1) ifael

(COmpiA u LT)J = compi A(a, i :J) uo J(U’ i :j)



Filling

There is also an operation
FiIHfilllAud: A

connecting u to comp’ Au . This can be defined using
compositions:

filll A(7) w (i) = comp? A(i AJ) u [oe = ua(i AJ), (i = 0) — u]

Special case: path lifting property (7 =[])



Composition

comp’ Au i is defined by induction on the type A:
» Case i: 1+ A= Path B bg b;.

comp' Auid =

() comp’ B (uj)[a = uaj, (j = 0) = bo, (j = 1) > bi]
» Case i :IF A= (x:B)— C. For by : B(il)
comp’ Af g by = comp/ C(i = j,x = b)(f bo) (€(i = j) b)

with b= fill 7 B(i =j) by [] and by = b(j = 0) : B(i = 0).



Judgmental equalities are given by unfolding the definitions.



Glue

To justify composition for U and univalence we add glueing.

Given a system of equivalences on a type we introduce a new type:

r-A Fa b f, : Equiv T, Aa (a € L)
[ GlueAf

MFa: A fabty: T, ot fut, = aa : Ax
M+ (a,f): GlueAf

Af)a=T, (a, t)a = t, fael
(Glue Af)o = Glue Ao fo (a, t)o = (ao, to)



Compositions for the Universe

We also can define composition for Glue A f
For the universe U, we can reduce composition in U to Glue.

Any path P : Path U A B induces an equivalence P™ : EquivA B
whose function part is given by:

a:Abrcomp'(Pi)a[]: B



Univalence from Glue

Using Glue we can also prove the Univalence Axiom! Main
ingredients:

» Given an equivalence f : Equiv A B we can construct a path
Ef : PathUAB by

Er = (i) Glue B[(i = 0) — f,(i = 1) = ({k)B)"]
» Starting from P : PathU A B we can also construct a square
Path (PathUAB) Ep+ P
using Glue:

(ji)y GlueB[(i =0)~ PT,



|dentity Types

For the path type Path A uv we can define the J-eliminator.
But: the usual definitional equality only holds propositional.

Recently, Andrew Swan found a way to recover an identity type
Id Auv (based on a cofibration/trivial fibration factorization). This
identity type interprets the definitional equality for J!



|dentity Types

N=w:PathAuv
Fa b wa = (i) ua : Path Acvava (a€l)

N-=(w,L):1dAuv

The system L remembers where w is constant.

For u : A define refl u as ({i)u, 1), where 1 is the maximal system
generated by the identity.

One can define J with the usual definitional equality!

We expect univalence also to hold for Id.



Implementation: Cubicaltt

Prototype proof-assistant implemented in Haskell.

Based on: “A simple type-theoretic language: Mini-TT",
T. Coquand, Y. Kinoshita, B. Nordstrom, M. Takeya (2008).

Mini-TT is a variant of Martin-Lof type theory with data types.
Cubicaltt extends Mini-TT with:

>

>

>

>

>

name abstraction and application

identity types

composition

equivalences can be transformed into equalities (glueing)

some higher inductive types (experimental)

Try it: https://github.com/mortberg/cubicaltt


https://github.com/mortberg/cubicaltt

Further Work

» Formal correctness proof of model and implementation
» Proof of normalization and decidability of type-checking

» Related work: Brunerie/Licata, Polonsky, Altenkirch/Kaposi,
Bernardy/Coquand/Moulin



Q>



Semantics

Consider the category Cqm with objects finite sets of names
I,J,K,... and a morphism | — J is a map J — dM(/) where
dM(1) is the free De Morgan algebra on the generators /.

A context I - is a presheaf on C, i.e.,
» given by sets (/) for each /,
» and maps I'(J) = (1), p — pf foreach f: | — Js.t.

(pf)g = p(fg) and pid=p

The interval I is interpreted as the presheaf I(J) = dM(J).



Semantics
A type [ A is given by a presheaf on the category of elements of
I ie.,
» given by a family of sets Ap for each p € I'(/),
» and maps Ap — A(pf),a — af s.t.

(af)g = a(fg) and aid=a

Moreover, we require a composition structure: for each p € ['(1,i),
family of compatible elements u, € Apa (a € L, i not in &), and
u € Ap(i =0) s.t. ua = uy(i =0), there is

comp’(Ap)uid € Ap(i =1)
such that

(comp'(Ap) u d)f = comp! (Ap(f, i = j)) uf if forf: 1 —J
(comp’(Ap) u i) = ug(i = 1)



Examples of HITs: Propositional Truncation

Fr=A lFa: A
inh A Finca:inhA

~u:inhA =v:inhA MN=r:I squashuv0 = u
Ik squashuvr:inh A squashuvl=v

N-wu:inhA Mo, i IF ug FaF uy(i =0) = va : inh Aa
r I—'hcomp" ud:inh A
Fa b (hcomp' ud)a = us(i = 1) :inh Aa

One can define compositions for inh A (uses compositions in A).



