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Abstract11

The relationship between categorical gluing and proofs using the logical relation technique is folklore.12

In this paper we work out this relationship for Martin-Löf type theory and show that parametricity13

and canonicity arise as special cases of gluing. The input of gluing is two models of type theory14

and a pseudomorphism between them and the output is a displayed model over the first model.15

A pseudomorphism preserves the categorical structure strictly, the empty context and context16

extension up to isomorphism, and there are no conditions on preservation of type formers. We look17

at three examples of pseudomorphisms: the identity on the syntax, the interpretation into the set18

model and the global section functor. Gluing along these result in syntactic parametricity, semantic19

parametricity and canonicity, respectively.20
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1 Introduction30

Categorical gluing [9, Section 4.10] is a method to form a new category from two categories31

and a functor between them. Given a functor F from category S toM, an object in the32

glued category is a triple Γ : |S|, ∆ : |M| and a morphismM(∆, F Γ). Models of logics and33

type theories can be given as categories with extra structure and gluing can be extended to34

these models. Gluing was used to prove properties of closed proofs in intuitionistic higher35

order logic [17] and normalisation for simple type theory [12, 20] and System F [2]. In36

programming language semantics, similar results are proved more syntactically using the37

technique of logical relations, see [13] for an introduction and [11, 1] for example proofs using38

this technique. It is folklore that logical relations correspond to gluing. Logical relations39

scale to real-world systems [21, 15] while gluing is a more abstract construction which can40

be applied to systems with well-understood categorical semantics.41

In this paper we develop the correspondence between proof-relevant logical predicates42

and gluing for Martin-Löf type theory. Logical relations were defined for type theory to prove43

free theorems in syntactic [5] and semantic (Reynolds-style) [4] ways. Proof-relevant logical44
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23:2 Gluing for type theory

predicates were employed to prove normalisation and canonicity for type theory [3, 8, 16].45

We unify these approaches by defining gluing in an abstract way, for any pseudomorphism46

between two models of type theory. An important characteristic of our approach is using47

an algebraic syntax of type theory. By this we mean the well-typed syntax of type theory48

given as a quotient inductive-inductive type (QIIT, [14]). A model of this syntax is just an49

algebra of the QIIT which turns out to be the same as a category with families (CwF, [10])50

with extra structure. A pseudomorphism of models is a map from sorts in one model to51

sorts in the other model which preserves the categorical structure strictly and the empty52

context and context extension up to isomorphism. We show that gluing can be performed53

along any pseudomoprhism and gluing preserves Π, Σ, Bool and an infinite hierarchy of54

Russell-universes.55

Our motivational guideline for this paper is the following.56

1. Gluing over identity is syntactic parametricity.57

2. Gluing over the interpretation into the set model is semantic parametricity.58

3. Gluing over the global section functor is canonicity.59

4. Gluing over Yoneda is normalisation.60

5. Gluing over Yoneda composed with the set interpretation is definability/completeness.61

In this paper we only generalise steps 1–3. The Yoneda embedding (from the syntax62

to the presheaf model over a wide subcategory of contexts and substitutions) is also a63

pseudomorphism, so our paper applies to steps 4–5 as well. However, Yoneda has extra64

structure that we do not employ in this paper. This extra structure is needed to obtain full65

normalisation or completeness.66

Structure of the paper67

After summarizing related work and the metatheory, we define our object type theory in68

Section 2 and as an example we define its set model (Section 3). Then we define the notion69

of pseudomorphism (Section 4) and gluing for any pseudomorphism (Section 5). Afterwards,70

in Section 6 we define a non-trivial pseudomorphism: the global section functor which goes71

from the syntax to the set model and maps types to terms of the type in the empty context.72

We put together the pieces in Section 7 by obtaining parametricity and canonicity for our73

object theory using gluing. We conclude and summarize further work in Section 8.74

Contribution75

The contribution of this paper is showing that gluing can be defined for any pseudomorphism76

for Martin-Löf type theory. To our knowledge, this is the first general construction from77

which both parametricity and canonicity arise.78

Related work79

Sterling and Spitters [20] developed gluing for simple type theory and show how it relates80

to syntactic proofs of normalisation by logical relations and semantic proofs based on81

normalisation by evaluation. Altenkirch, Hofmann and Streicher developed gluing for System82

F and prove normalisation in their unpublished note [2]. Rabe and Sojakova [18] defined a83

syntactic framework for logical relations which applies to theories formulated in the Edinburgh84

Logical Framework (LF). Shulman [19] developed gluing for type theory in the context of85

type-theoretic fibration categories and proves homotopy canonicity for a 1-truncated version86
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of homotopy type theory. Compared to Shulman, we work with a notion of model closer87

to the syntax of type theory: categories with families. In previous work [3] we proved88

normalisation for type theory with Π, a base type and a base family. The logical predicate89

used in that proof is an instance of the abstract gluing technique presented in this paper.90

Coquand [8] proves canonicity and normalisation for a richer type theory with Bool and a91

hierarchy of universes. His canonicity proof is an unfolding of the canonicity proof given in92

this paper.93

Gluing along a strict morphism is straightforward and probably there are many examples94

of this construction in the literature. For example, Clairambault and Dybjer [7, right to95

left direction of Prop. 3] define gluing for CwFs with extra structure (however not by this96

name). Using the results of [14], gluing can be defined for any quotient inductive-inductive97

type (QIIT). Given an algebra morphism F from S to M , working in the internal language98

of the CwF model of the QIIT-signature defined in [14, Section 7], the glued displayed model99

is given by Σ (KS) (Eq (mk (F ◦ unk vz)) (mk wk)). These general constructions however fail100

for the global section functor which is not strict, but still allows gluing.101

Metatheory and notation102

Our metatheory is extensional type theory. We have a cumulative hierarchy of universes103

Set0, Set1, . . . with Setω on top. Sometimes we omit the universe indices. Function space104

is denoted by → with constructor λ and application written as juxtaposition. We use105

implicit arguments extensively, e.g. we would write the type of function composition as106

(B → C) → (A → B) → (A → C) instead of (A : Set) → (B : Set) → (C : Set) → (B →107

C)→ (A→ B)→ (A→ C). When a metavariable is not quantified explicitly (such as A, B,108

C), we assume implicit quantification and implicit application as well. Sometimes we omit109

explicit arguments for readability, in this case we write undescore _ instead of the argument.110

Pairs are denoted by × with constructor – , – and destructors .1 and .2. Both → and × come111

with η laws. The one-element type is denoted 1 with constructor ∗, the two-element type is112

denoted 2, its constructors being ∗ and ∗∗ and its eliminator case. Equality is denoted =113

and we use equational reasoning to write equality proofs.114

2 Type theory115

By type theory we mean the (generalised) algebraic structure in Figure 1 with four sorts,116

26 operators and 34 equations. The four sorts are those of contexts, types, substitutions117

and terms. Types are indexed by a universe level which is a metatheoretic natural number.118

Furthermore, types are indexed by contexts and terms by a context and a type in that119

context so that we can only mention well-typed terms. Substitutions are indexed by their120

domain and codomain, both contexts.121

We explain the operators and laws for the substitution calculus (first column, operators id122

to , ◦) as follows: Con and Sub form a category (id to idr); there is a contravariant, functorial123

action of substitutions on types and terms (– [– ] to [◦]), there is an empty context · with a124

unique (·η) empty substitution ε into it (· is the terminal object of the category); extended125

contexts can be formed using – . – and there is a natural isomorphism between substitutions126

into ∆ BA and a pair of a substitution σ into ∆ and a term of type A[σ]. The substitution127

calculus is the same as the structure of a predicative category with families (CwF, [10]). In128

the CwF language, context extension is called comprehension. We denote n-times iteration129

of the weakening substitution p by pn where p0 = id, and we denote De Bruijn indices by130

natural numbers, i.e. 0 := q, 1 := q[p], . . . , n := q[pn]. We define lifting of a substitution131

CVIT 2016



23:4 Gluing for type theory

Con : Set Σ : (A : Ty iΓ)→ Ty j (Γ . A)→
Ty : N→ Con→ Set Ty (i t j) Γ
Sub : Con→ Con→ Set – , – : (u : Tm ΓA)→ Tm Γ (B[id, u])→
Tm : (Γ : Con)→ Ty iΓ→ Set Tm Γ (ΣAB)
id : Sub Γ Γ projl : Tm Γ (ΣAB)→ Tm ΓA
– ◦ – : Sub Θ ∆→ Sub Γ Θ→ Sub Γ ∆ projr : (t : Tm Γ (ΣAB))→
ass : (σ ◦ δ) ◦ ν = σ ◦ (δ ◦ ν) Tm Γ (B[id, projl t])
idl : id ◦ σ = σ Σβ1 : projl (u, v) = u

idr : σ ◦ id = σ Σβ2 : projr (u, v) = v

– [– ] : Ty i∆→ Sub Γ ∆→ Ty iΓ Ση : (projl t, projr t) = t

– [– ] : Tm ∆A→ (σ : Sub Γ ∆)→ Σ[] : (ΣAB)[σ] = Σ (A[σ]) (B[σ↑])
Tm Γ (A[σ]) , [] : (u, v)[σ] = (u[σ], v[σ])

[id] : A[id] = A > : Ty 0 Γ
[◦] : A[σ ◦ δ] = A[σ][δ] tt : Tm Γ>
[id] : t[id] = t >η : (t : Tm Γ>) = tt
[◦] : t[σ ◦ δ] = t[σ][δ] >[] : >[σ] = >
· : Con tt[] : tt[σ] = tt
ε : Sub Γ · U : (i : N)→ Ty (i+ 1) Γ
·η : (σ : Sub Γ ·) = ε El : Tm Γ (U i)→ Ty iΓ
– . – : (Γ : Con)→ Ty iΓ→ Con c : Ty iΓ→ Tm Γ (U i)
– , – : (σ : Sub Γ ∆)→ Tm Γ (A[σ])→ Uβ : El (cA) = A

Sub Γ (∆ . A) Uη : c (El a) = a

p : Sub (Γ . A) Γ U[] : (U i)[σ] = (U i)
q : Tm (Γ . A) (A[p]) El[] : (El a)[σ] = El (a[σ])
.β1 : p ◦ (σ, t) = σ Bool : Ty 0 Γ
.β2 : q[σ, t] = t true : Tm Γ Bool
.η : (p, q) = id false : Tm Γ Bool
, ◦ : (σ, t) ◦ ν = (σ ◦ ν, t[ν]) if : (C : Ty i (Γ . Bool))→
Π : (A : Ty iΓ)→ Ty j (Γ . A)→ Tm Γ (P [id, true])→

Ty (i t j) Γ Tm Γ (P [id, false])→
lam : Tm (Γ . A)B → Tm Γ (ΠAB) (t : Tm Γ Bool)→ Tm Γ (C[id, t])
app : Tm Γ (ΠAB)→ Tm (Γ . A)B Boolβ1 : if C uv true = u

Πβ : app (lam t) = t Boolβ2 : if C uv false = v

Πη : lam (app t) = t Bool[] : Bool[σ] = Bool
Π[] : (ΠAB)[σ] = Π (A[σ]) (B[σ↑]) true[] : true[σ] = true
lam[] : (lam t)[σ] = lam (t[σ↑]) false[] : false[σ] = false

if[] : (if C uv t)[σ] =
if (C[σ↑]) (u[σ]) (v[σ]) (t[σ])

Figure 1 Type theory as a generalised algebraic structure. σ↑ abbreviates (σ ◦ p, q).
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σ : Sub Γ ∆ by σ↑ : Sub (Γ . A[σ]) (∆ . A) := (σ ◦ p, q). We observe that it has the property132

↑[] : (σ↑)[δ, t] = (σ ◦ δ, t).133

Π types are given by a natural isomorphism between lam and app. We define the usual134

application as t $u := (app t)[id, u]. A⇒ B abbreviates ΠA (B[p]). Σ types are given by the135

constructor – , – and projections projl and projr and they support an η law. There is a unit136

type > with one constructor tt and an η law and there is a hierarchy of Russell-universes,137

given by natural isomorphisms between Ty iΓ and Tm Γ (U i) for every i.1 As Π, Σ and U138

are given by natural isomorphisms, we only stated one substitution law, the others can be139

derived. We illustrate how to do this for app and state the other laws.140

app[] : (app t)[σ↑] Πβ= app (lam ((app t)[σ↑])) lam[]= app ((lam (app t))[σ]) Πη= app (t[σ])141

$[] : (t $u)[σ] = t[σ] $u[σ]142

projl[] : (projl t)[σ] = projl (t[σ])143

projr[] : (projr t)[σ] = projr (t[σ])144

c[] : (cA)[σ] = c (A[σ])145
146

Finally, we have booleans with a dependent eliminator if into any universe. Sometimes for147

readability we omit the first argument (C) of if and write _ instead.148

As an example we write the polymorphic identity function as lam (lam q). Note that149

lam and q have several implicit arguments that we did not write down. However when we150

write a term, these implicit arguments should be clear from the context. In this example by151

saying that it has type Tm · (Π (U 0) (El q⇒ El q)) fixes all its implicit arguments. We don’t152

have raw terms with a type assignment or type inference system, we only work with fully153

annotated well-typed terms where lots of information is implicit (as usual in mathematics).154

We call algebras of this algebraic structure a model of type theory. When referring to155

different models, we put the model in lower index, i.e. ConM refers to contexts in model M ,156

idM : SubM ΓM ΓM refers to the identitity substitution in this model. For metavariables, we157

usually use the same lower index as for the two occurrences of ΓM in the type of idM .158

We assume the existence of the quotient inductive-inductive type (QIIT, [14]) specified159

by this algebraic structure. This entails the following:160

A (strict) morphism H between models M and N consists of four functions between the161

sorts which preserve all the 26 operators (up to equality). We use lower indices to mark162

which component we mean, e.g. some of the components are the following.163

HCon : ConM → ConN164

HTy : TyM iΓ→ TyN i (H Γ)165

HSub : SubM Γ ∆→ SubN (H Γ) (H ∆)166

HTm : TmM ΓA→ TmN (H Γ) (H A)167

H[] : HTy (A[σ]M ) = (HTy A)[HSub σ]N168

H. : HCon (Γ .M A) = HCon Γ .N HTy A169

HΠ : HTy (ΠM AB) = ΠN (HTy A) (HTy B)170

Hlam : HTm (lamM t) = lamN (HTm t)171

Happ : HTm (appM t) = appN (HTm t)172
173

1 We learned this representation of Russell-universes from Thierry Coquand.
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23:6 Gluing for type theory

Sometimes we omit lower indices for readability, e.g. above we wrote H Γ instead of174

HCon Γ and we also did not decorate metavariables with lower indices, all Γs were meant175

in ConM , σ in SubM etc. We will follow this convention later.176

A displayed model Q over a model M is given by four families over the sorts in M , 26177

operations and 34 equalities which are all over those of M , e.g.178

ConQ : ConM → Set179

TyQ : (i : N)→ ConQ Γ→ TyM iΓ→ Set180

SubQ : ConQ Γ→ ConQ ∆→ SubM Γ ∆→ Set181

TmQ : (ΓQ : ConQ Γ)→ TyQ j ΓQA→ TmM ΓA→ Set182

– [– ]Q : TyQ i∆QA→ SubQ ΓQ ∆Q σ → TyQ iΓQ (A[σ]M )183

– .Q – : (ΓQ : ConQ Γ)→ TyQ iΓQA→ ConQ (Γ .M A)184

ΠQ : (AQ : TyQ iΓQA)→ TyQ j (ΓQ .Q AQ)B → TyQ (i t j) ΓQ (ΠM AB)185

lamQ : TmQ (ΓQ .Q AQ)BQ t→ TmQ ΓQ (ΠQAQBQ) (lamM t)186

appQ : TmQ ΓQ (ΠQAQBQ) t→ TmQ (ΓQ .Q AQ)BQ (appM t)187

ΠβQ : appQ (lamQ tQ) = tQ188
189

A section I of a displayed model Q over M is like a dependent morphism and contains,190

among others, the following components.191

ICon : (Γ : ConM )→ ConQ Γ192

ITy : (A : TyM j Γ)→ TyQ j (I Γ)A193

ISub : (σ : SubM Γ ∆)→ SubQ (I Γ) (I ∆)σ194

IA[σ] : I (A[σ]M ) = (I A)[I σ]Q195

I. : I (Γ .M A) = I Γ .Q I A196

IΠ : I (ΠM AB) = ΠQ (I A) (I B)197

Ilam : I (lamM t) = lamQ (I t)198

Iapp : I (appM t) = appQ (I t)199
200

There is a model S called the syntax and for every model M , there is a morphism recM201

from S to M called the recursor. For every displayed model Q over S there is a section202

elimQ of Q called the eliminator.203

2.1 The identity type204

In our construction of gluing we will assume that the target model has identity types. Identity205

types extend type theory as given in Figure 1 with the following operators and equations.206

Id : (A : Ty iΓ)→ Tm ΓA→ Tm ΓA→ Ty iΓ207

refl : (u : Tm ΓA)→ Tm Γ (IdAuu)208

J :
(
C : Ty i (Γ . A . Id (A[p]) (u[p]) 0)

)
→ Tm Γ (C[id, u, reflu])→209

(e : Tm Γ (IdAuv))→ Tm Γ (C[id, v, e[p]])210

Idβ : JC w (reflu) = w211

Id[] : (IdAuv)[σ] = Id (A[σ]) (u[σ]) (v[σ])212

refl[] : (reflu)[σ] = refl (u[σ])213
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J[] : (JC w e)[σ] = J (C[σ↑↑]) (w[σ]) (e[σ])214
215

IdAuv expresses that u is equal to v, there is one constructor refl expressing reflexivity and216

there is the eliminator J which says that given a family over identities and a witness of that217

family for refl we get that there is an element of that family for every identity proof.218

3 The Set model219

As an example of a simple model, we define the set model (standard model, metacircular220

model). In this model, contexts are sets, types are families over their contexts, substitutions221

are functions and terms are dependent functions. Context extension is metatheoretic Σ,222

otherwise everything is modelled by its metatheoretic counterparts, e.g. Π types are dependent223

functions, lam is λ, app is metatheoretic application. We list a few components for illustration.224

Con := Setω225

Ty iΓ := Γ→ Seti226

Sub Γ ∆ := Γ→ ∆227

Tm ΓA := (γ : Γ)→ Aγ228

A[σ] := λγ.A (σ γ)229

· := 1230

ε := λ_.∗231

Γ BA := (γ : Γ)×Aγ232

(σ, t) := (σ, t)233

p := projl234

q := projr235

ΠAB := λγ.(α : Aγ)→ B (γ, α)236

lam t := λγ.λα.t (γ, α)237

app t := λγ.t γ.1 γ.2238

Πβ : app (lam t) = λγ′.(λγ.λα.t (γ, α)) γ′.1 γ′.2
→β= λγ′.t (γ′.1, γ′.2) ×η= λγ′.t γ′

→η= t239

U i := λ_.Seti240

El a := a241

c a := a242

Bool := 2243

true := ∗244

false := ∗∗245

if C t u v := case t u v246

IdAuv := (u = v)247
248

The β law for Π uses the metatheoretic β and η laws for the functions and η for pairs.249

Using the recursor we can define an interpreter for our syntax which maps syntactic terms250

to metatheoretic objects.251

J–K : ConS → Setω := recSet
Con252

J–K : TyS iΓ → JΓK→ Seti := recSet
Ty253

CVIT 2016



23:8 Gluing for type theory

J–K : SubS Γ ∆→ JΓK→ J∆K := recSet
Sub254

J–K : TmS ΓA → (γ : JΓK)→ JAK γ := recSet
Tm255

256

For example, the interpretation of the polymorphic identity function is mapped to257

Jlam (lam q)K : (γ : 1)→ (A : Set0)→ A→ A = λγ.λA.λa.a.258

4 Pseudomorphism259

In this section we define morphisms of models of type theory which are strict on the category260

structure and weak on · and – . –. We call such a morphism a pseudomorphism.261

The components of a pseudomorphism F from S to M are the following.262

FCon : ConS → Con263

FTy : TyS j Γ→ Ty j (F Γ)264

FSub : SubS Γ ∆→ Sub (F Γ) (F ∆)265

FTm : TmS ΓA→ Tm (F Γ) (F A)266

Fid : F idS = id267

F◦ : F (σ ◦S δ) = F σ ◦ F δ268

F[] : F (A[σ]S) = (F A)[F σ]269

F[] : F (t[σ]S) = (F t)[F σ]270

F· : F ·S ∼= ·271

Fε : F εS = F·.2 ◦ ε272

F. : F (Γ .S A) ∼= F Γ . F A273

F..1◦ : F..1 ◦ F (σ↑S ) = (F σ)↑ ◦ F..1274

F, : F (σ,S t) = F..2 ◦ (F σ, F t)275

Fp : F pS = p ◦ F..1276

Fq : F qS = q[F..1]277
278

For readability, we omit the lower indices S from the metavariable names and all the M279

lower indicies. That is, when we write Con or id we mean ConM and idM . We overload the280

different parts of F , i.e. write F for FCon, FTy, FSub etc.281

Categorically, this pseudomorphism is a functor on categories of contexts with natural282

transformations on types and terms such that given A : TyS j∆ with σ : SubS Γ ∆ and283

t : TmS Γ (A[σ]S) with the pair (σ, t) having the universal property of the context extension284

of ∆ with A in S, then (FSubσ, FTmt) has the universal property of the context extension of285

FCon∆ with FTyA in M .286

Just as a strict morphism (described in Section 2), a pseudomorphism maps contexts287

in S to contexts in M , types in S to types in M , etc. Identity, composition and action on288

substitution are preserved strictly (Fid, F◦, F[] and F[]). The empty context and context289

extension are preserved up to definitional isomorphism. Definitional isomorphism between290

two contexts Γ,∆ : Con is defined as follows.291

(f : Γ ∼= ∆) := (f.1 : Sub Γ ∆)× (f.2 : Sub ∆ Γ)× (f.12 : f.1 ◦f.2 = id)× (f.21 : f.2 ◦f.1 = id)292

F..1◦ denotes a naturality condition that F. has to satisfy. The empty substitution ε and the293

comprehension operators – , –, p, q are preserved strictly, but this is up to the weakness of ..294
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We derive the following naturality condition.295

F..2◦ : F..2 ◦M (F σ)↑M
F..12= F..2 ◦ (F σ)↑M ◦ F..1 ◦ F..2

F..1◦=296

F..2 ◦ F..1 ◦ F (σ↑S ) ◦ F..2
F..21= F (σ↑S ) ◦M F..2297

298

We also note that F (σ↑S ) = F..2 ◦M (F σ)↑M ◦M F..1.299

Note that every strict morphism F is automatically pseudo, with F·.1 = F·.2 = idM and300

F..1 = F..2 = idM .301

5 Gluing302

In this section, given a pseudomorphism F from model S to model M , we define a displayed303

model PF (P for short) over S. We call this model gluing along F and its components are304

given in Figure 2. We omit the S indices of metavariables and all the M indices for readability.305

In the introduction we remarked that in categorical gluing an object in the glued model306

consists of a triple Γ : |S|, ∆ : |M| and a morphismM(∆, F Γ). We could follow this line307

and define contexts in the glued model as such triples. This would be called the fibrational or308

display map approach. Instead our definition is more type theoretic, it uses indexed families,309

doubly (for the correspondence between fibrations and families see e.g. [6, p. 221]). Firstly,310

the glued model is given as a displayed model, that is, for each Γ : ConS we have a set ConP Γ.311

Secondly, instead of setting ConP Γ to (∆ : ConM )× SubM ∆ (F Γ), we use the built-in notion312

of indexed families in M , that is: types. Hence a context over Γ is an M -type in context313

F Γ. We remark that the glueing construction also works with the former choice of contexts.314

Types in type theory can be thought of as proof-relevant predicates over their context315

and this is the intuition we adopt for describing the glued model. This is in line with the316

logical predicate view of gluing. We start with ConP Γ: a predicate at Γ is indexed over the317

F -image of Γ. A predicate at a type A is indexed over the image of Γ for which the predicate318

holds and the image of A. For a substitution σ, we state the fundamental lemma: if the319

predicate holds at Γ, the predicate holds at ∆ for the F -image of the substitution. In short,320

images of substitutions respect the predicate. For terms, we similarly state that the image of321

a term respects the predicate.322

We continue by explaining what the logical predicate says at different contexts and types.323

The predicate at the empty context ·P is always true. At extended contexts the predicate324

is given pointwise by a Σ type. ΓP . AP is in context F (Γ . A), but ΓP only needs the325

component F Γ which we obtain using the isomorphism F..1 from F (Γ .S A) to F Γ . F A326

followed by first projection. AP is first indexed over F Γ which is given by p ◦ F..1 ◦ p, then327

over ΓP which is the first component of the Σ type referenced by q, then over F A which is328

provided by the F..1 part of the isomorphism.329

The predicate at a Π type holds for a function of type F (ΠAB) if whenever it holds for330

an input, it holds for the output. Let’s look at how we express that the predicate holds at B331

for the output! We are in context332

Θ := F Γ . ΓP︸︷︷︸
3

.F (ΠS AB)︸ ︷︷ ︸
2

.F A[p2]︸ ︷︷ ︸
1

.AP[p2, q]︸ ︷︷ ︸
0

333

where we wrote the De Bruijn indices referring to each component underneath. BP is a334

predicate indexed over F (Γ .S A), ΓP .P AP and F B[p]. The first index is given by F..2335

which puts together the F Γ (forgetting the last four elements in Θ by p4) and the F A336

components (last but one element in Θ, i.e. 1). The second index is given by De Bruijn337
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ConP Γ := Tyω (F Γ)
TyP iΓP A := Ty i (F Γ . ΓP . F A[p])
SubP ΓP ∆P σ := Tm (F Γ . ΓP) (∆P[F σ ◦ p])
TmP ΓP AP t := Tm (F Γ . ΓP) (AP[id, F t[p]])
idP := q
σP ◦P δP := σP[F δ ◦ p, δP]
AP[σP]P := AP[F σ ◦ p2, σP[p], q]
tP[σP]P := tP[F σ ◦ p, σP]
·P := >
εP := tt
ΓP .P AP := Σ

(
ΓP[p ◦ F..1]

) (
AP[p ◦ F..1 ◦ p, 0, q[F..1 ◦ p]]

)
σP,P tP := (σP, tP)
pP := projl q
qP := projr q
ΠP AP BP := Π

(
F A[p2]

)(
Π
(
AP[p2, q]

)
(
BP
[
F..2 ◦ (p4, 1), (3, 0), F (appS q)[F..2 ◦ (F..2 ◦ (p4, 2), 1)]

]))
lam tP := lam

(
lam

(
tP
[
F..2 ◦ (p3, 1), (2, 0)

]))
app tP :=

(
app (app tP)

)[
p ◦ F..1 ◦ p, projl 0, 0[F..1 ◦ p], projr 0

]
ΣP AP BP := Σ

(
AP
[
p, F (projlS q)[F..2 ◦ (p2, q)]

])(
BP
[
F..2 ◦ (p3, F (projlS q)[F..2 ◦ (p3, 1)]), (2, 0),
F (projrS q)[F..2 ◦ (p3, 1)]

])
(uP,P vP) := (uP, vP)
projlP tP := projl tP
projrP tP := projr tP
>P := >
ttP := tt
UP i := F (ElS q)[F..2 ◦ (p2, q)]⇒ U i
ElP aP := El (app aP)
cP AP := lam (cAP)
BoolP := Σ Bool

(
Id (F BoolS [p3]) (if (F BoolS [p4]) 0 (F trueS [p3]) (F falseS [p3])) 1

)
trueP := (true, refl (F trueS [p]))
falseP := (false, refl (F falseS [p]))
ifP CP tP uP vP := J_ (if _ (projl tP)uP vP) (projr tP)

Figure 2 The displayed model PF obtained by gluing along F . We write P instead of PF , we
omit the S indices of metavariables and all the M indices for readability. The full version of ifP (with
the _s filled in) is given in Appendix A.
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indices 3 and 0. The last index is the result of applying the function given by De Bruijn338

index 2. We cannot just use app since 2 does not have a function type, it has an image of a339

function type. However we can still apply it by observing that340

app q : TmS (Γ .S ΠS AB .S A[pS ]S) (B[pS2,S qS ]S)341

and applying F to this results in342

F (app q) : Tm
(
F (Γ .S ΠS AB .S A[pS ]S)

)
(F B[F..2 ◦ (p ◦ F..1 ◦ p ◦ F..1, q[F..1])]).343

Substituting this term by F..2 ◦ (F..2 ◦ (p4, 2), 1) and using the fact that F. is an isomorphism344

results in exactly what we need.345

The predicate at a Σ type holds if it holds pointwise. Here we use F (projlS q) and346

F (projrS q) to obtain F A and F B from F (ΣS AB). The predicate at > is trivial. The347

predicate at the universe is predicate space expressed as functions into U i. The domain of348

this function space is again obtained by applying F to ElS q. The predicate at Bool for a b349

in F Bool says that b is either F trueS or F falseS . We express this by encoding the sum type350

as a Σ over Bool.351

The substition and term part of the gluing model is fairly straightforward. The most352

interesting component is ifP where we use J to eliminate the right projection of tP (which is353

the equality in the second component of BoolP), then we case split on the first projection354

by ifM and return uP and vP in the true and false cases, respectively. We omitted some355

arguments of J and if for readability, the full version is given in Appendix A. There we also356

verify that all equalities of the displayed model of type theory hold.357

6 Global section functor358

In this section we show that the global section functor is a pseudomorphism. In the next359

section we will use this property to derive canonicity for type theory.360

The global section functor G is a pseudomorphism from S to Set defined as follows (S is361

the syntax, the set model Set is defined in Section 3).362

GCon Γ : ConSet︸ ︷︷ ︸
=Setω

:= SubS · Γ363

GTy A : TySet j (G Γ)︸ ︷︷ ︸
=G Γ→Setj

:= λρ .TmS · (A[ρ]S)364

GSub σ : SubSet (G Γ) (G ∆)︸ ︷︷ ︸
=G Γ→G ∆

:= λρ . σ ◦S ρ365

GTm t : TmSet (G Γ) (GA)︸ ︷︷ ︸
=(ρ:G Γ)→GAρ

:= λρ . t[ρ]S366

367

A context is mapped to the set of closed syntactic substitutions into that context. A type is368

mapped to a function which takes a closed substitution and returns a set. This is the set of369

closed terms of that type substituted by the input substitution. Substitutions and terms are370

mapped to postcomposition.371

Notice that this functor is weak on the empty context: SubS · · is isomorphic to 1 (this is372

the empty context in the Set model), but not equal. Similarly, SubS · (Γ . A) is isomorphic373

to (ρ : SubS · Γ)× TmS · (A[ρ]) by the isomorphism given by comprehension, but not equal.374

We list the components needed to show that G is a pseudomorphism in Figure 3.375
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Gid : G idS = λρ.id ◦S ρ
idlS= λρ.ρ = idSet

G◦ : G (σ ◦S δ) = λρ.(σ ◦S δ) ◦S ρ
assS= λρ.σ ◦S (δ ◦S ρ) = Gσ ◦Set G δ

G[] : G (A[δ]S) = λρ.TmS · (A[δ][ρ])
[◦]S= λρ.TmS · (A[δ ◦ ρ]) = (GA)[Gσ]Set

G[] : G (t[δ]S) = λρ.t[δ][ρ]
[◦]S= λρ.t[δ ◦ ρ] = (G t)[Gσ]Set

G· : G ·S ∼= ·Set := (λρ.∗, λ_.ε, trivial, trivial)

Gε : G εS = λρ.ε ◦ ρ ·ηS= λρ.ε = G·.2 ◦Set εSet

G. : G (Γ .S A) ∼= G Γ .Set GA := (λρ.(p ◦ ρ, q[ρ]), λ(ρ, u).(ρ,S u), )
G..2 : SubSet (G Γ .Set GA) (G (Γ .S A)) := λ(ρ, u).(ρ,S u)

G..12 : G..1 ◦Set G..2 = λ(ρ, u).(p ◦ (ρ,S u),S q[ρ,S , u]) .β1,.β2= λ(ρ, u).(ρ, u) = idSet

G..21 : G..2 ◦Set G..1 = λρ.(p ◦ ρ,S q[ρ]) ,◦S= λρ.(p, q) ◦ ρ .η= λρ.id ◦ ρ idlS= λρ.ρ = idSet

G..1◦ : G..1 ◦Set G (σ↑S) = λρ.(σ ◦ p ◦ ρ, q[ρ]) ,◦S= λρ.(σ ◦ p, q) ◦ ρ idlS,.ηS=
ρ.(σ ◦ p, q) ◦ (p ◦ ρ, q[ρ]) = (Gσ)↑Set ◦Set G..1

G, : G (σ,S t) = λρ.(σ, t) ◦ ρ ,◦S= ρ.(σ ◦ ρ, t[ρ]) = G..2 ◦Set (Gσ,Set G t)
Gp : G pS = λρ.p ◦ ρ = λρ.(p ◦ ρ, q[ρ]).1 = pSet ◦Set G..1
Gq : G qS = λρ.q[ρ] = λρ.(p ◦ ρ, q[ρ]).2 = qSet[G..1]Set

Figure 3 Proof that the global section functor is a pseudomorphism.

7 Reaping the fruits376

Let I be the identity morphism from S to S which is obviously a strict morphism, hence377

pseudo.2 Gluing along I produces a function whose input is a term t in context Γ and whose378

output is a term in context Γ extended by elimPI

Tm Γ which expresses that the predicate holds379

at Γ. The type of the output term says that the predicate holds at A for t. This is the380

fundamental lemma or parametricity theorem.381

elimPI

Tm : (t : TmS ΓA)→ TmS (Γ . elimPI

Tm Γ)
(
(elimPI

Tm A)[id, t[p]]
)

382

Let us look at the “hello world” example of parametricity, the case where Γ = · and383

A = Π (U i) (El q ⇒ El q). Now using the fact that elimPI
is a section, the type of elimPI

Tm t384

computes to385

TmS (· .>)
(

Π (U i)
(

Π (El q⇒ U i)
(

Π (El 1)
(
El (1 $ 0)⇒ El (1 $(t $ 2 $ 0))

))))
,386

where the type is the object theoretic syntax for387

(A : Seti)(C : A→ Seti)(a : A)→ C a→ C (t A a).388

2 Note that the target of the pseudomorphism needs to have identity types, so technically I is the
embedding of the syntax without identity types into the syntax with identity types. Alternatively, we
can extend gluing for identity types.
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Given a fixed type A : TyS i · and an element u : TmS · A we have389

(elimPI

Tm t)[ε, tt] $ cA $ lam (c (Id (A[ε]) 0u[ε])) $u $ reflu : Tm ·
(
IdA (t $ cA $u)u

)
,390

that is, we get that for any A and u, t $ cA $u is equal to u.391

Gluing along recSet (the interpretation into the set model, see end of Section 3) produces392

Reynolds-style parametricity. It says that if there is an interpretation of the context Γ for393

which the predicate holds at Γ, the predicate holds at A for the interpretation of t.394

elimPrecSet

Tm : (t : TmS ΓA)→ (γ : JΓK)× (γ̄ : elimPrecSet

Con Γ γ)→ elimPrecSet

Ty A (γ, γ̄, JtK γ)395

Gluing along the global section functor G produces the following.396

elimPG

Tm : (t : TmS ΓA)→ (ρ : SubS · Γ)× (ρ̄ : elimPG

Con Γ ρ)→ elimPG

Ty A (ρ, ρ̄, t[ρ])397

If t is a boolean in the empty context, the type of elimPG

Tm t (id, ∗) is elimPG

Ty Bool (ρ, ∗, t) which398

is equal to (b : 2)× (case b trueS falseS = t), i.e. canonicity.399

8 Conclusions and further work400

In this paper we defined gluing for pseudomorphisms of models of type theory thus generalising401

parametricity and canonicity. We did not try to derive the most general notion of gluing, e.g.402

we require that the target model supports >, Σ, Id types in addition to what we have in the403

domain model. It would have been possible to give a less indexed variant of gluing where404

> and Σ are not needed, but Id types (or Bool-indexed inductive families) are required to405

support gluing for Bool. A less indexed variant however would be more tedious to work with406

due to all the naturality conditions that one would need to keep track of.407

In the future we would like to generalise our construction to richer type theories having408

an identity type, inductive and coinductive types. We believe that this is possible without409

any extra conditions.410

Normalisation by evaluation (NBE) for type theory is also defined using a proof-relevant411

logical predicate [3]. This logical predicate is given by gluing along the Yoneda embedding412

from the syntax to the presheaf model over the category of contexts and renamings. This is413

a pseudomorphism, so we obtain a glued model using our method. However, the universe in414

this model is not what we want. As a second step after gluing, NBE requires the definition415

of quote and unquote (sometimes called reify and reflect) functions from terms for which416

the predicate holds to normal forms and from neutral terms to witnesses of the predicate,417

respectively. We need to include these as part of the universe in the glued model to make418

the construction work. The predicate for Bool also needs to be adjusted.419

We would also like to investigate examples of non-strict pseudo morphisms apart from420

global section and Yoneda for which the construction in this paper could be useful. For421

example, to derive canonicity proofs for type theories justified by models other than the set422

model.423
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A Full version of ifP and equalities in gluing485

ifP is part of the glued displayed model P, see Section 5, Figure 2. Its definition is the486

following including the omitted _ arguments.487

ifP CP tP uP vP :=488

J
(
Cp
[
F..2 ◦ (p3, 1), (2, (projl tP[p2], 0)), F

(
ifS (C[p2, q]) q (u[p]) (v[p])

)
[F..2 ◦ (p3, 1)]

])
489 (

if
(
CP
[
F..2 ◦ (p2, w), (1, (0, reflw)), F

(
if (C[p2, q]) q (u[p]) (v[p])

)
[F..2 ◦ (p2, w)]

])
490

(projl tP)uP vP
)

491

(projr tP)492
493

where w abbreviates if (F BoolS [p2]) 0 (F trueS [p2]) (F false[p2]).494

Here we check that the P satisfies all the equalities of displayed models. We note that495

σP
↑P =

(
σP[p ◦ F..1 ◦ p, projl q], projr q

)
.496

idlP : idP ◦P σP = 0[F σ ◦ p, σP] = σP497

idrP : σP ◦P idP = σP[F id ◦ p, 0] = σP[p, q] = σP[id] = σP498

assP : (σP ◦P δP) ◦P νP = σP[F δ ◦ p, δP][F ν ◦ p, νP] =499

σP[F (δ ◦S ν) ◦ p, δP[F ν ◦ p, νP]] = σP ◦P (δP ◦P νP)500

[id]P : AP[idP]P = AP[F id ◦ p2, q[p], q] = AP[(p, q) ◦ p, q] = AP[id ◦ p, q] = AP[id] = AP501

[◦]P : AP[σP ◦P δP]P = AP[F (σ ◦S δ) ◦ p2, σP[F δ ◦ p, δP][p], q] =502

AP[F σ ◦ p2, σP[p], q][F δ ◦ p2, δP[p], q] = AP[σP]P[δP]P503

[id]P : tP[idP]P = tP[F id ◦ p, q] = tP[p, q] = tP[id] = tP504

[◦]P : tP[σP ◦P δP]P = tP[F (σ ◦ δ) ◦ p, σP[F δ ◦ p, δP]] =505

tP[F σ ◦ p, σP][F δ ◦ p, δP] = tP[σP]P[δP]P506

εηP : (δP : SubP ΓP ·P) = (δP : Tm (F Γ . ΓP)>) ·η= tt = εP507

.β1P : pP ◦P (σP,P tP) = (projl q)[F (σ,S t) ◦ p, (σP, tP)] =508

projl (q[F (σ,S t) ◦ p, (σP, tP)]) = projl (σP, tP) = σP509

.β2P : qP[σP,P tP]P = (projr q)[F (σ,S t) ◦ p, (σP, tP)] =510

projr (q[F (σ,S t) ◦ p, (σP, tP)]) = projr (σP, tP) = tP511

.ηP : (pP,P qP) = (projl q, projr q) Ση= q = idP512

, ◦P : (σP,P tP) ◦P δP = (σP, tP)[F δ ◦ p, δP] ,[]= (σP[F δ ◦ p, δP], tP[F δ ◦ p, δP]) =513

(σP ◦P δP,P tP[δP]P)514

ΠβP : appP (lamP tP) =515 (
app (app (lam (lam (tP[F..2 ◦ (p3, 1), (2, 0)]))))

)
516 [

p ◦ F..1 ◦ p, projl 0, 0[F..1 ◦ p], projr 0
] Πβ=517

tP[F..2 ◦ (p3, 1), (2, 0)][p ◦ F..1 ◦ p, projl 0, 0[F..1 ◦ p], projr 0
]

=518
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tP[p, (projl 0, projr 0)] = tP[id] = tP519

ΠηP : lamP (appP tP) =520

lam
(

lam
((

app (app tP)
)[

p ◦ F..1 ◦ p, projl 0, 0[F..1 ◦ p], projr 0
]

521 [
F..2 ◦ (p3, 1), (2, 0)

]))
=522

lam
(
lam

(
(app (app tP))[p3, 2, 1, 0]

))
= lam (lam ((app (app tP))[id])) ΠηS= tP523

Π[]P : (ΠP AP BP)[σP]P =524

Π
(
F A[F σ ◦ p2]

)
525 (

Π
(
AP
[
F σ ◦ p2, σP[p], q

]
[p2, q]

)
526 (

BP
[
F..2 ◦ (F σ ◦ p4, 1), (σP[p3], 0),527

F (app q)[F..2 ◦ (F..2 ◦ (F σ ◦ p4, 2), 1)]
]))

=528

Π
(
F (A[σ])[p2]

)
529 (

Π
(
AP[σP]P[p2, q]

)
530 (

BP
[
F..2 ◦ (F σ)↑ ◦ F..1 ◦ p2,

(
σP[p ◦ F..1 ◦ p2, projl 1], projr 1

)
, q
]

531 [
F..2 ◦ (p4, 1), (3, 0), F (app q)[F..2 ◦ (F..2 ◦ (p4, 2), 1)]

]))
=532

ΠP (AP[σP]P) (BP[σP
↑P ]P)533

lam[]P : (lamP tP)[σP]P = lam (lam (tP[F..2 ◦ (F σ ◦ p3, 1), (σP[p2], 0)])) =534

lamP (tP[σP
↑P ]P)535

Σβ1P : projlP (uP,P vP) = projl (uP, vP) = uP536

Σβ2P : projrP (uP,P vP) = projr (uP, vP) = vP537

ΣηP : (projlP tP,P projrP tP) = (projl tP, projr tP) = tP538

Σ[]P : (ΣP AP BP)[σP]P =539

Σ
(
AP
[
F σ ◦ p2, σP[p], F (projl q)[F..2 ◦ (F σ ◦ p2, q)]

])
540 (

BP
[
F..2 ◦

(
F σ ◦ p3, F (projl q)[F..2 ◦ (F σ ◦ p3, 1)]

)
, (σP[p2], 0),541

F (projr q)[F..2 ◦ (F σ ◦ p3, 1)]
])

=542

Σ
(
AP
[
F σ ◦ p2, σP[p], F (projl q)[F..2 ◦ (p2, q)]

])
543 (

BP
[
F..2 ◦

(
F σ ◦ p3, F (projl q)[F..2 ◦ (p3, 1)]

)
, (σP[p2], 0),544

F (projr q)[F..2 ◦ (p3, 1)]
])

=545

ΣP (AP[σP]P) (BP[σP
↑P ]P)546

, []P : (uP,P vP)[σP]P = (uP[F σ ◦ p, σP], vP[F σ ◦ p, σP]) = (uP[σP]P,P vP[σP]P)547

>ηP : (tP : TmP ΓP>P) = (tP : Tm (F Γ . ΓP)>) >η= tt = ttP548

>[]P : >P[σP]P = > = >P549

tt[]P : ttP[σP]P = tt = ttP550

UβP : ElP (cP AP) = El (app (lam (cAP))) Πβ= El (cAP) Uβ= AP551

UηP : cP (ElP aP) = lam (c (El (app aP))) Elη= lam (app aP) Πη= aP552

U[]P : (UP i)[σP]P = F (ElS q)[F..2 ◦ (F σ ◦ p2, q)]⇒ U i =553

F (ElS q)[F..2 ◦ (F σ)↑ ◦ (p2, q)]⇒ U i =554



A. Kaposi, S. Huber, C. Sattler 23:17

F (ElS q)[F (σ↑) ◦ F..2 ◦ (p2, q)]⇒ U i = F (ElS q)[F..2 ◦ (p2, q)]⇒ U i = UP i555

El[]P : (ElP aP)[σP]P = (El (app aP))[F σ ◦ p2, σP[p], q] El[]=556

El ((app aP)[F σ ◦ p2, σ[p], q]) app[]= El (app (aP[F σ ◦ p, σP])) = ElP (aP[σP]P)557

Bool[]P : BoolP[σP]P =558

Σ Bool
(
Id (F Bool[F σ ◦ p3])559 (

if (F Bool[F σ ◦ p4]) 0 (F true[F σ ◦ p3]) (F false[F σ ◦ p3])
)

1
)

=560

Σ Bool
(
Id (F Bool[p3])

(
if (F Bool[p4]) 0 (F true[p3]) (F false[p3])

)
1
)

=561

BoolP562

true[]P : trueP[σP]P =
(
true, refl (F (trueS [σ])[p])

) true[]S= (true, refl (F trueS [p])) = trueP563

false[]P : falseP[σP]P =
(
false, refl (F (falseS [σ])[p])

) false[]S= (false, refl (F falseS [p])) = falseP564

if[]P : (ifP _ tP uP vP)[σP]P =565 (
J_ (if _ (projl tP)uP vP) (projr tP)

)
[F σ ◦ p, σP] J[],if[],projl[],projr[]=566 (

J_ (if _ (projl (tP[σP]P)) (uP[σP]P) (vP[σP]P)) (projr (tP[σP]P))
)

=567

ifP _ (tP[σP]P) (uP[σP]P) (vP[σP]P)568
569
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