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Göteborg, Sweden 2015



Abstract

The intensional identity type is one if the most intricate concepts of dependent
type theory. The recently discovered connection between homotopy theory and
type theory gives a novel perspective on the identity type. Voevodsky’s so-
called Univalence Axiom furthermore explains the identity type for type the-
oretic universes as homotopy equivalences. This licentiate thesis is concerned
with understanding these new developments from a computational point of
view. While the Univalence Axiom has a model using Kan simplicial sets,
this model inherently uses classical logic and thus can not be used to explain
the axiom computationally. To preserve the computational properties of type
theory it is, however, crucial to give a computational interpretation of the
added constants. This thesis presents a model of dependent type theory with
dependent products, sums, a universe, and identity types, based on cubical
sets. The novelty of this model is that it is formulated in a constructive meta
theory.
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Introduction

Dependent type theory has been successfully used as a foundation to develop
formalized mathematics and computer science. This is reflected not only by
the popularity of the proof assistants Coq and Agda (among others) based on
type theory, but also the formal proofs of the Four Color Theorem [20] and the
Feit-Thompson (Odd Order) Theorem [21] show that non-trivial mathematics
can be encoded in type theory.

There is however one especially intricate concept in dependent type theory:
equality. The identity type, IdA(u, v), for u and v of type A, serves as the type
of proofs witnessing that u and v are identical. Dependent type theory also
comes with a different notion of equality namely definitional equality which,
in contrast to the identity type, is not a type (hence the identity type is often
referred to as propositional equality), but definitional equality concerns the
computational aspect of type theory, and is often presented as a judgment
(and hence also referred to as judgmental equality). Martin-Löf formulated
two variations of the identity type, the intensional identity type from [31], and
the “extensional” identity type from [32]. In the latter one has the so-called
reflection rule: if we have a proof of IdA(u, v), we can deduce that u and v are
definitionally equal. This equality reflection rule, however, destroys the decid-
ability of type checking, resulting in a formal system where it is not decidable
whether a given syntactic entity is in fact a proof of a given proposition. The
intensional identity type on the other hand, drops this rule while still keeping
its introduction and elimination rules (the latter often referred to as the J-
rule), which entail the usual properties of equality, in particular Leibniz’s rule
of indiscernability of identicals.

While the formulation without equality reflection retains decidability of
type checking, the intensional identity type per se is, however, often too restric-
tive to directly encode certain mathematical practices such as identifying two
functions which are extensionally equal, that is, for which each argument gives
equal results. The intensional identity type only identifies functions which are
definitionally equal which often tends to be too restrictive in practice. One
remedy to this particular problem is to simply add functional extensionality
as an axiom—but this destroys the good computational properties of type the-
ory: e.g., one can define a closed term of type N (the type of natural numbers)
which is not definitionally equal to a numeral (i.e., a term merely built up from
successors and zero). One possibility is to exploit Hofmann’s [24] setoid inter-
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pretation and work with setoids (a type with an equivalence relation) instead,
and relativize to functions preserving this relation. This, however, turns out
to be rather cumbersome in practice. A type theory incorporating ideas from
the setoid interpretation and reconciling some of the extensional concepts with
intensional type theory is observational type theory [2].

The rich structure of the intensional identity type stems from the fact that
in type theory we can iterate the identity type to obtain “higher-dimensional”
identity types: for p and q of type IdA(u, v) we can form the IdIdA(u,v)(p, q);
and for α and β of type IdIdA(u,v)(p, q) we can furthermore form the type

IdIdIdA(u,v)(p,q)(α, β);

etc. It is a natural question to ask what the structure of these higher identity
types is. In particular, can one prove IdIdA(u,v)(p, q) for p and q of type
IdA(u, v), i.e., is there essentially only “one way” to prove a propositional
equality IdA(u, v)? The latter principle is often referred to as uniqueness of
identity proofs (UIP). In extensional type theory UIP is provable from the
reflection rule and thus this hierarchy collapses. For intensional type theory,
however, UIP is not provable as shown by the pioneering work of Hofmann
and Streicher [27]. They devise a model of intensional type theory where a
(closed) type A is interpreted by a groupoid1 G and the closed terms of A
are interpreted as the objects in G. The arrows u → v for u and v objects
of G stand for the witnesses that u and v are propositionally equal. UIP is
then refuted by specifying a groupoid with two distinct parallel arrows u→ v.
The fact that G is required to be a groupoid stems from the fact that one
can define–internally in type theory–operations corresponding to the groupoid
operations: the introduction rule reflu : IdA(u, u) corresponds to the identity
map, transitivity

◦ : IdA(v, w)→ IdA(u, v)→ IdA(u,w)

corresponds to composition, and symmetry

−1 : IdA(u, v)→ IdA(v, u)

corresponds to taking the inverse. These operations satisfy the expected
groupoid equations, but in general only up to propositional equality ; e.g.,
(p ◦ q) ◦ r (for appropriately typed p, q, r) is not definitional equal to p ◦ (q ◦ r),
but we can define a higher equality between equalities

αp,q,r : IdIdA(u,w′)((p ◦ q) ◦ r, p ◦ (q ◦ r)).

Already the groupoid interpretation suggests that a type in intensional
type theory should be thought of more than merely a “set”. Instead, a type
should be thought of as a topological space—but up to homotopy. Around
2006 Awodey and Warren [3] and Garner [18] discovered connections between

1A category where each arrow is invertible.
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homotopy theory and type theory in the context of Quillen model categories.
Moreover, Streicher and independently Voevodsky [29] built a model of type
theory using Kan simplicial sets (the latter model also supporting type theo-
retic universes, i.e., types of types).

One crucial point in this analogy between types and spaces is what under
this view is the interpretation of the identity type: while u : A should be
thought of as a point in the space A, a term p : IdA(u, v) should be thought
of as a path between u and v, i.e., a continuous map p : I → A (where I =
[0, 1] is the interval) such that p(0) = u and p(1) = v. Higher equalities
α : IdIdA(u,v)(p, q) correspond to homotopies (or 2-dimensional paths) α : I→
AI ∼= I× I→ A between the paths p, q : I→ A with α|{0}×I = p and α|{1}×I =
q; etc.

u • u • • v u • • v . . .
p

p

q

α

All the higher homotopies on a space A organize into a structure called the fun-
damental ∞-groupoid of A, the prime example of a so-called weak ∞-groupoid.
These higher groupoids are closely connected to homotopy theory, as proposed
by Grothendieck [23].

Another groundbreaking insight by Voevodsky was that the interpreta-
tion of type theory using Kan simplicial sets satisfies an additional axiom,
the so-called Univalence Axiom. This axiom explains the identity type for
type theoretic universes. (A type theoretic universe U is a type of types.)
The Univalence Axiom states, loosely speaking, that isomorphic types (as el-
ements of U) are equal, where “equal” refers to the identity type of U . This
formalizes the everyday habit by mathematicians to identify isomorphic struc-
tures. Although this is clearly not valid in set theory: 0 ∈ {0} but 1 /∈ {0}
even though {0} ∼= {1}. The Univalence Axiom can also be seen as an ex-
tensionality principle: it is a natural generalization of the concept in simple
type theory formulated by Church [10] that two propositions are equal given
that they are logically equivalent. The Univalence Axiom allows for a bet-
ter encoding of mathematics in dependent type theory à la Martin-Löf, as is
particularly shown in the book [42]. One aspect of this is that it entails the
function extensionality axiom discussed above.

Another important contribution by Voevodsky is how notions from ho-
motopy theory translate into the language of type theory. For example, the
important hierarchy of h-levels: Call a type A contractible, or of h-level 0, if we
have (Σa : A)(Πx : A) IdA(a, x). A type A is of h-level n+ 1 if for all x, y : A
the type IdA(x, y) is of h-level n. For a type to be of h-level 2 is then the same
to have UIP for this type (those are called h-sets). Types with h-level 3 are
called h-groupoids. The Univalence Axiom yields that this hierarchy is “well
behaved”, in particular it is closed under function types.

Similar to the situation with the function extensionality axiom, simply
postulating the Univalence Axiom as a constant added to Martin-Löf type
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theory destroys the good computational behavior of type theory, making it
necessary to explain univalence computationally. One possible attempt to do
so is to build a model of this axiom in type theory itself or at least in a
constructive metatheory. Such a computational interpretation could then be
obtained through semantics, for example, by evaluating a term of type N (the
natural numbers) in the model.

The model of univalence using Kan simplicial sets by Voevodsky is, as it
is, not suited to justify the axiom computationally since it is not constructive.
This model is formulated using ZFC set theory and uses classical logic and the
axiom of choice in an essential way. One problem with using simplicial sets has
to do with the fact that the notion of degeneracy is not decidable in general
and that simplicial maps have to commute with degeneracy maps. The theory
of simplicial sets and Kan simplicial sets however uses this fact crucially. One
example where this is needed is that for a Kan fibration, a path in the base
induces an equivalence between the fibers over the endpoints; this was shown in
[6], using a Kripke counter-model, to be not intuitionistically provable. Similar
problems seem to appear when looking at the different proofs (e.g., [33, 19])
of the fact that BA is a Kan simplicial set if B is so.

One possible remedy for this problem is to use Kan semi -simplicial sets
instead as was done in [4]. This approach however is very involved and does
not model various laws for substitutions. This licentiate thesis presents a
different approach based on cubical sets. Cubical sets were used to give the
first combinatorial definition of homotopy groups by Kan [28].

Our formulation of cubical sets gives a formal representation of cubes seen
as continuous maps u : IJ → X (with I = [0, 1]) where J is a finite set of names
x1, . . . , xn, instead of the more common u : In → X. We want to view such a
cube as “value depending on the names” x1, . . . , xn. We have face operations
like, e.g., u(xi = 0), setting the xi-coordinate to 0; for a fresh name y we
can view u as depending on x1, . . . , xn, y; this corresponds to the degeneracy
operation; another primitive operation is to rename a variable. Thus the basic
operations in cubical sets are certain substitutions of names. This formulation
bears close resemblance to the theory of nominal sets [37, 36, 38]. There are
various different variations of cubical sets used in the literature (see, e.g., [22]).

Formally cubical sets are given as presheaves on the (opposite of the) so-
called cubical category, a category given by finite sets of names and certain
substitutions between them. Following, e.g., [25], this yields a model of type
theory where the contexts are interpreted as cubical sets. However to obtain
the envisaged identity types we have to strengthen, similarly as in the Kan
simplicial set model, the interpretation of types: we require types to have a Kan
structure. This structure is a refinement of Kan’s original extension condition
(“Kan cubical sets”) as defined in [28] which amounts to have fillers for all
open boxes. We refine Kan’s notion in two aspects: first, we require these
fillers to be explicitly given as operations, and, second, that these operations
satisfy certain uniformity conditions which ensure that the filling operations
commute with the name substitutions in a suitable way. The second refinement
is crucially used to show that types are closed under dependent function spaces.
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This licentiate thesis presents this model for type theory with identity
types, Σ-types, Π-types, and a universe. The interpretation of the identity
type, however, only satisfies the usual equation of the J-eliminator up to
propositional equality and not as definitional equality as is usually required in
type theory. The thesis is based on the publication [7] and adds more detailed
proofs. A new contribution in this thesis is the semantics of universes as Kan
cubical sets. The treatment of the Univalence Axiom is not included here, but
will be part of a future publication; sketches of the verification of univalence
in this model are however given in [7, Section 8.4] and [13].

Moreover, this model (in its nominal set presentation) has been, imple-
mented as the type-checker Cubical [11]2 together with C. Cohen, T. Coquand,
and A. Mörtberg. This implementation builds on top of ordinary dependent
type theory (without identity types) where certain primitive constants (giv-
ing rise to the properties we want for propositional equality) are available;
whenever the type checker requires to check for conversion of two terms (i.e.,
definitional equality) we compare their semantics in the model. The imple-
mentation supports computing with the Univalence Axiom and in particular
transporting along an equivalence.

Outline

In Chapter 1 we define semantics of Martin-Löf type theory relying on the
notion of categories with families; we show how presheaves form an instance
of this structure and thus give rise to a model of type theory. Chapter 2
introduces cubical sets as presheaves on the so-called cubical category along
with examples. We also look into the relationship to nominal sets. Chapter 3 is
the heart of this thesis: we introduce the notion of (uniform) Kan cubical sets
and show that these induce a category with families extending the presheaf
semantics. We give the interpretation of dependent sums, dependent products,
and identity types. We also show how any cubical set can be “completed” to
a Kan cubical set. In Chapter 4 we give the construction of a universe of Kan
cubical set and show that it is itself a Kan cubical set, thus providing the
semantics of a type theoretic universe in our model.

2The version relevant for this thesis is on the master branch dated September 24, 2014.
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Chapter 1

Semantics of Martin-Löf
Type Theory

In this chapter we will introduce semantics of type theory based on the notion
of categories with families. As an extended example we explain how presheaf
categories induce such a model of type theory. This is the basis for the model
described in the next chapters.

1.1 Categories with Families

There are various similar notions to organize models of dependent type theory.
In what follows we chose categories with families (CwF) which were introduced
by Dybjer [17] and further popularized by Hofmann [25]. Categories with
families can be seen as an algebraic presentation of type theory. Even though
the definition of a CwF is given using categorical language we want to stress
the fact that it is an instance of a generalized algebraic theory [9]. To devise
a CwF is to give: interpretations (as sets) for the sorts of contexts, context
morphisms, types, and terms; operations including the context extension; and
to check equations involving those operations.

We will not be concerned with the (non-trivial) task to interpret the syntax
of Martin-Löf type theory into a CwF. We refer the reader to [25] for a sketch
of this.

The category of families of sets, Fam, has as objects (A,B) where A is a set
and B = (Ba | a ∈ A) is a A-indexed family of sets Ba, a ∈ A. A morphism
between (A,B) → (A′, B′) is given by a pair (f, g) where f : A → A′ is a
function and g is an A-indexed family of functions such that ga : Ba → B′fa.

Definition 1.1. A category with families (CwF for short) is given by (C,F)
where:

1. C is a category whose objects Γ,∆, . . . we call contexts and whose mor-
phisms σ, τ, . . . we call substitutions or context morphisms; we write Γ `
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to indicate that Γ is an object of C, if C is clear from the context.

2. A terminal object 1 in C called the empty context.

3. F is a functor F : Cop → Fam; for Γ ` we write TyF (Γ) for the indexing
set of the family F(Γ) and its family as (TerF (Γ;A) | A ∈ TyF (Γ)); we
also write Γ ` A for A ∈ TyF (Γ) and call A a type in context Γ (or
over Γ), and Γ ` a : A for a ∈ TerF (Γ;A) and call a a term of type A
in context Γ. For a substitution σ : ∆ → Γ the morphism F(σ) acts on
types Γ ` A as Aσ, and on terms Γ ` a : A as aσ. Note that ∆ ` Aσ
and ∆ ` aσ : Aσ, and the fact that F is a functor yields:

A1 = A (Aσ)τ = A(στ) a1 = a (aσ)τ = a(στ)

(Here and henceforth 1 denotes the suitable identity morphism.)

4. The operations of context extension: if Γ ` and Γ ` A, there is a con-
text Γ.A, a context morphism p : Γ.A → Γ, and a term Γ.A ` q : A p.
This should satisfy the following (universal) property: for each ∆ `
and substitution σ : ∆ → Γ and ∆ ` a : Aσ, there is a substitution
(σ, a) : ∆→ Γ.A such that:

p(σ, a) = σ q(σ, a) = a (σ, a)τ = (στ, aτ) (p, q) = 1

where in the last equation 1 : Γ.A→ Γ.A.

Note that above we use polymorphic notation to increase readability as
in [9, 17]; e.g., without this convention we should have written pΓ,A for the
first projection p : Γ.A→ Γ. We also leave parameters implicit, so, e.g., in the
equation Aστ = A(στ) tacitly assumes premises σ : ∆ → Γ, τ : Θ → ∆, and
Γ ` A.

Example 1.2. We can make the category of sets Set into the category of
contexts of a CwF if we set the types over a set Γ to be the families of (small)
sets Aγ indexed over γ ∈ Γ. A term is simply a dependent function aγ ∈ Aγ
for each γ ∈ Γ, i.e., an element in the (set-theoretic) dependent function space
Πγ∈ΓAγ . Context extensions are defined by the disjoint union

Γ.A = {(γ, a) | γ ∈ Γ and a ∈ Aγ}

with p(γ, a) = a and q(γ, a) = a.

As already indicated in the notation above we will usually suppress the
reference to the CwF if clear from context. Moreover, we will usually present
properties in rule form from now on. So, e.g., we will present the above
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definition in rule form as:

1 `
Γ ` Γ ` A

Γ.A `

Γ ` A σ : ∆→ Γ

∆ ` Aσ
Γ ` a : A σ : ∆→ Γ

∆ ` aσ : Aσ

Γ ` A
p : Γ.A→ Γ

Γ ` A
Γ.A ` q : Ap

σ : ∆→ Γ Γ ` A ∆ ` a : Aσ

(σ, a) : ∆→ Γ.A

If we have a type Γ ` A and a dependent type or term over A, say Γ.A ` B,
the operation to substitute a term of A, say Γ ` a : A, is represented in a CwF
as follows. We have the identity context morphism 1 : Γ → Γ and hence we
can form (1, a) : Γ→ Γ.A which we usually denote by [a] : Γ→ Γ.A; this gives
a type Γ ` B[a].

Remark 1.3. Terms Γ ` a : A are in a one-to-one correspondence with sections
s : Γ→ Γ.A of p : Γ.A→ Γ, i.e., ps = 1,

Γ.A Γ

p

s

1Γ

and, moreover, all sections are of the form [a] for some Γ ` a : A.

As the definition of CwF is an instance of a generalized algebraic theory [17,
Section 2.2], there is a notion of morphism of CwFs: we have to give opera-
tors for each of the different sorts preserving the required equations. We will
however not make use of this notion and refer the reader to [9, Section 11] for
the precise definition.

A mere CwF does not give much structure and only models type depen-
dencies. We are interested in CwFs that have more structure.

A CwF supports Π-types if it is closed under the following rules:

Γ ` A Γ.A ` B
Γ ` ΠAB

Γ.A ` b : B

Γ ` λ b : ΠAB

Γ ` u : ΠAB Γ ` a : A

Γ ` app(u, a) : B[a]

Furthermore, we require the operations to satisfy β- and η-laws

app(λ b, a) = b[a]

u = λ app(up, q)
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and laws for commutation with substitutions:

(ΠAB)σ = Π(Aσ)(B(σp, q))

(λ b)σ = λ (b(σp, q))

app(u, a)σ = app(uσ, aσ)

Note that these equations only make sense in the appropriate types. For,
e.g., (λ b)σ = λ (b(σp, q)) to make sense, we need the equation (ΠAB)σ =
Π(Aσ)(B(σp, q)).

Likewise, a CwF supports Σ-types if it is closed under the following rules:

Γ ` A Γ.A ` B
Γ ` ΣAB

Γ ` a : A Γ ` b : B[a]

Γ ` (a, b) : ΣAB

Γ ` u : ΣAB

Γ ` pu : A

Γ ` u : ΣAB

Γ ` qu : B[pu]

Note that we overload the notation for pairs and projections in Σ-types with
the notation for context morphisms as they are required to satisfy similar
equations:

p(a, b) = a

q(a, b) = b

u = (pu, qu)

and the laws for substitutions:

(ΣAB)σ = Σ(Aσ)(B(σp, q))

(a, b)σ = (aσ, bσ)

(pu)σ = p(uσ)

(qu)σ = q(uσ)

Note that the above definitions for a CwF to support a type former are
rather direct from the corresponding syntactical formulation. A morphism of
CwFs between CwFs supporting a certain structure (like Π-types) preserves
this structure if the type and term formers are preserved.

Since it is slightly easier to use later on, we use Paulin-Mohring’s formu-
lation of the identity type [35]. A CwF supports identity types if it is closed
under the following rules:

Γ ` A Γ ` a : A Γ ` b : A

Γ ` IdA(a, b)

Γ ` a : A

Γ ` refl a : IdA(a, a)

Γ ` A Γ ` a : A Γ.A. IdAp(ap, q) ` C
Γ ` v : C[a, refl a] Γ ` b : A Γ ` p : IdA(a, b)

Γ ` J(a, v, b, p) : C[b, p]
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Where [b, p] is the substitution ([b], p) : Γ → Γ.A. IdAp(ap, q). As before, we
require that the operations commute with substitution:

(IdA(a, b))σ = IdAσ(aσ, bσ)

(refl a)σ = refl(aσ)

(J(a, v, b, p))σ = J(aσ, vσ, bσ, pσ)

where in the last equation J on the right hand side is w.r.t. C, and on the left
hand side w.r.t. C(σp, q). (Note that J depends on C although suppressed in
our syntax.) Additionally, we require

J(a, v, a, refl a) = v. (1.1)

The identity type of the model we consider later in Chapter 3 will not satisfy
equation (1.1). For this reason we say that a CwF supports weak identity
types if all conditions of identity types except equation (1.1) are satisfied but
where equation (1.1) holds only propositionally, i.e., only up to a witness of a
respective identity type, that is, we require the rule

Γ ` A Γ ` a : A Γ.A. IdAp(ap, q) ` C Γ ` v : C[a, refl a]

Γ ` JEq(a, v) : IdC[a,refl a](v, J(a, v, a, refl a))

such that (JEq(a, v))σ = JEq(aσ, vσ).
There are usually two different ways to introduce a universe to dependent

type theory: universes à la Tarski and universes à la Russel. A universe à
la Tarski contains codes of the actual types and is equipped with a function
decoding codes into types, where as a universe à la Russel has types as its
elements. We will use a variant of a universe à la Tarski but in a formulation
which is less general but simpler and is sufficient for the universes we consider
(cf. Section 1.2.4).

Definition 1.4. A universe in a CwF (C,F) is a CwF U = (C,F0) on the
same category of contexts and substitutions such that TyF0

(Γ) ⊆ TyF (Γ) and
TerF0

(Γ;A) = TerF (Γ;A) if A ∈ TyF0
(Γ), and the context operations of U are

inherited from (C,F). We write Γ ` A Type0 for A ∈ TyF0
(Γ) and call A a

U-small type; thus we require:

Γ ` A Type0

Γ ` A

Moreover, we require that there is a type 1 ` U (writing also U for Uσ for the
(unique) substitution σ : Γ→ 1) equipped with coding and decoding functions

1 ` U
Γ ` A Type0

Γ ` pAq : U

Γ ` T : U

Γ ` ElT Type0

Uσ = U pAqσ = pAσq (ElT )σ = El(Tσ)
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satisfying the equations

El pAq = A and pElTq = T. (1.2)

If (C,F) supports Π-types, we say that the universe U supports Π-types if
(C,F0) is closed under the induced Π-types, or in other words if U supports
Π-types and the inclusion CwF-morphism U ↪→ (C,F) preserves Π. Similarly
for other type formers.

Note with the equations (1.2) there is no need to require coding functions
for the type formers which simplifies the treatment of universes significantly.
E.g., for Π-types given Γ ` a : U and Γ.El a ` b : U we can define Γ ` π a b : U
by

π a b = pΠ(El a)(El b)q

which satisfies El(π a b) = Π(El a)(El b).

1.2 Presheaf Models of Type Theory

We will now show how any presheaf category gives rise to a category with
families where the contexts are presheaves. Let us first recall the notion of
presheaf.

Definition 1.5. Let C be a category. A presheaf on C is a contravariant
functor from C into Set. The category of presheaves on C, denoted by Psh(C)
or sometimes Ĉ, is the functor category [Cop,Set]. In particular its morphisms
are natural transformations.

Let us now fix a small category C. In this section, we denote objects of C
by I, J,K and morphisms by f, g, h. In what follows we describe how Psh(C)
induces a CwF where the category of contexts is Psh(C).

So a context Γ ` is a presheaf Γ on C is a functor Γ: Cop → Set, i.e., we
are given a set Γ(I) for each I in C, and functions Γ(I)→ Γ(J), ρ 7→ ρf (called
restriction, and written as f acting on the right) for each f : J → I, such that

ρ1 = ρ and (ρf)g = ρ(fg)

for g : K → J and f : J → I. In this section we will sometimes refer to the
map ρ 7→ ρf as Γf .

The empty context 1 is the terminal presheaf which is constant a singleton
{?}.

A context morphism σ between contexts Γ and ∆ is then a natural trans-
formation σ : ∆→ Γ, i.e., for each I in C there is a map σI : ∆(I)→ Γ(I) such
that for any f : J → I the square

∆(I) Γ(I)

∆(J) Γ(J)

σI

∆f Γf

σJ
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commutes, i.e., Γf ◦ σI = σJ ◦∆f . From now on we will suppress writing the
subscripts to σ; this way, if we write Γf and ∆f as f acting on the right again,
the equation simply becomes

(σρ)f = σ(ρf)

for ρ in ∆(I).

Next, we describe how to give a dependent type Γ ` A in a context Γ `.
For each object I ∈ C and ρ ∈ Γ(I) we require a set Aρ, and for each f : J → I,
we require a function Aρ → A(ρf), written as a 7→ af satisfying a1 = a and
afg = a(fg) if g : K → J . Note that we tacitly suppressed the dependence
on I in Aρ in our notation to keep it lighter; similarly we omit I and ρ in
af . Substitution ∆ ` Aσ with σ : ∆ → Γ is simply given (Aσ)ρ = A(σρ) for
ρ ∈ ∆(I), together with the induced map

(Aσ)ρ = A(σρ)→ A((σρ)f) = A(σ(ρf)) = (Aσ)(ρf)

for f : J → I. Clearly, this satisfies the required equations for substitutions.

Note that types in the empty context 1 ` A correspond exactly to contexts
A `. We will usually write ` A instead of 1 ` A.

The definition of a dependent type can also be rephrased more categorically:
A is a presheaf on

∫
C Γ, where

∫
C Γ is the category of elements of the presheaf

Γ, defined as follows:

• objects are pairs (I, ρ) where I ∈ C and ρ ∈ Γ(I);

• a morphism (J, ρ′) → (I, ρ) is a morphism f : J → I in C such that
ρ′ = Γfρ.

Note that substitution of A : (
∫
C Γ)op → Set with σ : ∆ → Γ corresponds to

precomposing with
∫
C σ :

∫
C ∆→

∫
C Γ induced by σ. (In fact, this construction

induces a functor
∫
C : Psh(C)→ Cat.)

A term Γ ` a : A of a dependent type Γ ` A is given by a family of
elements aρ ∈ Aρ for each I in C and ρ ∈ Γ(I), such that aρf = a(ρf) for
each f : J → I. The substitution ∆ ` aσ : Aσ with σ : ∆→ Γ is given by the
family (aσ)ρ = a(σρ).

For Γ ` A, the context extension Γ.A ` is defined by

(Γ.A)(I) = {(ρ, u) | ρ ∈ Γ(I) and u ∈ Aρ} for I ∈ C
(ρ, u)f = (ρf, uf) for f : J → I

and the projections are defined by p : Γ.A→ Γ, p(ρ, u) = ρ, and Γ.A ` q : Ap
by q(ρ, u) = u. Now assume σ : ∆→ Γ and ∆ ` a : Aσ; we define (σ, a) : ∆→
Γ.A by (σ, a)ρ = (σρ, aρ). One readily checks that this satisfies all the required
equations; this concludes the definition of the CwF associated to a presheaf
category.
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For later use let us recall the Yoneda Lemma: the Yoneda embedding is
the functor y : C → Ĉ is given by yI = HomC(−, I), i.e.,

(yI)(J) = HomC(J, I) for I an object of C
(yI)f : (yI)(J)→ (yI)(K), g 7→ fg for f : K → J in C.

The Yoneda functor is fully faithful and we have for a presheaf Γ,

Γ(I) ∼= HomPsh(C)(yI,Γ)

both natural in Γ and I. A presheaf Γ is representable if it is naturally iso-
morphic to a yI for some I.

1.2.1 Dependent Products

As a motivation for the definition of dependent products let us recall how
to define exponents in presheaf categories. Let Γ and ∆ be presheaves and
suppose we already know how the exponent ∆Γ is constructed. Then we get
by the Yoneda Lemma and the fact that −Γ should be right adjoint to −× Γ,
that

(∆Γ)(I) ∼= Hom(yI,∆Γ)
∼= Hom(yI × Γ,∆)

The latter can now be taken as a definition. So an element w of (∆Γ)(I) is a
natural transformation w : yI × Γ→ ∆, so it is given by functions

wJ : (yI)(J)× Γ(J)→ ∆(J),

and the naturality condition becomes (wJ(f, ρ))g = wK(fg, ρg) for f : J → I,
ρ ∈ Γ(J), and g : K → J .

We will now show that the CwF associated to a presheaf category supports
Π-types. Given Γ ` A and Γ.A ` B we have to define Γ ` ΠAB, that is, we
have to define the set (ΠAB)ρ for I ∈ C and ρ ∈ Γ(I). The elements w of
(ΠAB)ρ are families w = (wf | J ∈ C, f : J → I) of (dependent) functions
such that

wfu ∈ B(ρf, u) for J ∈ C, f : J → I, and u ∈ A(ρf),

with the requirement that for g : K → J

(wfu)g = wfg(ug).

For such a family w ∈ (ΠAB)ρ, the restriction wf ∈ (ΠAB)(ρf) for f : J → I
is defined by taking

(wf)gu = wfgu ∈ B(ρfg, u)

where g : K → J and u ∈ A(ρfg). (Note that this needs ρfg = ρ(fg).) This
definition satisfies w1 = w and wfg = w(fg).
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Now let Γ.A ` b : B; we have to define Γ ` λ b : ΠAB, that is, give
(λ b)ρ ∈ (ΠAB)ρ. For f : J → I and u ∈ A(ρf) we set

((λ b)ρ)fu = b(ρf, u) ∈ B(ρf, u).

This satisfies for g : K → J

(((λ b)ρ)fu)g = (b(ρf, u))g = b(ρ(fg), ug) = ((λ b)ρ)fg(ug)

and defines a term since

(((λ b)ρ)f)gu = ((λ b)ρ)fgu = b(ρfg, u) = ((λ b)(ρf))gu.

To define the application let Γ ` u : ΠAB and Γ ` v : A, and we set
app(u, v)ρ = (uρ)1(vρ) ∈ B(ρ, vρ), thus app(u, v)ρ ∈ B[v]ρ as (ρ, vρ) =
(1, v)ρ = [v]ρ. β-equality is readily checked

app(λ b, v)ρ = ((λ b)ρ)1(vρ) = b(ρ, vρ) = b[v]ρ,

and similarly for η-equality and the other equations.

It is also possible to calculate the dependent product using the Yoneda
Lemma similar to exponents (i.e., non-dependent products); this does however
not add much to the explanation so we have refrained from adding it.

Remark 1.6. It is worthwhile to note that there is a simpler way to describe
the sections of Π-types. Given a section Γ ` w : ΠAB it satisfies (wρ)f =
((wρ)f)1 = (w(ρf))1 by definition. This entails that w is determined by the
(wρ)1’s and moreover we have

((wρ)1a)f = (wρ)f (af) = (w(ρf))1(af).

Conversely, assume that we have a family ϕ of functions ϕρ such that
ϕρa ∈ B(ρ, a) for a ∈ Aρ satisfying

(ϕρa)f = ϕ(ρf)(af).

This defines a section Γ ` v : ΠAB by putting

(vρ)fa = ϕ(ρf)a.

These assignments are inverse to each other. Using this representation, appli-
cation can be simply written as

app(ϕ, v)ρ = ϕρ(vρ),

and abstraction as (λu)ρ a = u(ρ, a).
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1.2.2 Dependent Sums

The interpretation Σ-types Γ ` ΣAB for Γ ` A and Γ.A ` B is defined by

(ΣAB)ρ = {(a, b) | a ∈ Aρ and b ∈ B(ρ, a)}

for ρ ∈ Γ(I), I ∈ C. The restrictions are defined componentwise (a, b)f =
(af, bf) for f : J → I. The pairing operation Γ ` (u, v) : ΣAB of Γ ` u : A
and Γ.A ` v : B[u] is defined by the componentwise pairing: (u, v)ρ = (uρ, vρ).
Likewise for the projections p and q, (pw)ρ = a and (qw)ρ = b for wρ = (a, b).
This validates the necessary equations.

1.2.3 Identity Types

There is also a “standard” interpretation for identity types in a presheaf model.
However, this is not the interpretation we are interested in since it is proof
irrelevant and satisfies uniqueness of identity proofs. Thus we will only briefly
sketch the definition: for Γ ` A, Γ ` a : A, and Γ ` b : A, the identity type
is given by (IdA(a, b))ρ = {∗ | aρ = bρ}. This allows an interpretation for the
rules of identity types, e.g., (refl a)ρ = ∗; this interpretation is such that the
equation (1.1) on page 11 holds. In the rest of this thesis, we will not make
further use of this identity type.

1.2.4 Universes

We will now show how to lift a universe à la Grothendieck in the underlying
set theory to the presheaf model following [26, 40].

Assume a universe of small sets, say Set0 ∈ Set, and call the elements
small sets. From this we will now give a type theoretic universe. We recall
from Definition 1.4 that to give a type theoretic universe we have to first single
out the small types: the judgment Γ ` A Type0 is defined to mean that for
each ρ ∈ Γ(I), the set Aρ is small, i.e., Aρ ∈ Set0. In this case we call A a
small type (in context Γ). We clearly have that any small type is a type, i.e.,

Γ ` A Type0

Γ ` A

Since our underlying universe of small sets Set0 is closed under set-theoretic
operations we get that the small types Γ ` A Type0 form itself a CwF of small
types supporting the discussed type forming operations like Π, Σ, and are
closed under substitution.

Next, we have to give the type of codes for small types in the empty context
` U . This is the same as giving a context U `. The definition has to be such
that for each small type Γ ` A Type0 there is a code Γ ` pAq : U , and for each
section of U , say Γ ` T : U , there is a small type Γ ` ElT Type0 satisfying:

ElpAq = A pElTq = T
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We now define U as a context. For I ∈ C, U(I) consists of small types

yI ` A Type0

where y denotes the Yoneda embedding. The restrictions are as well given by
the Yoneda embedding: if f : J → I and A ∈ U(I), that is, yI ` A is small,
then the restriction Af ∈ U(J) is defined to be the small type yJ ` Ayf ,
where yf : yJ → yI.

Let us unfold the above definition: for I ∈ C, U(I) consists of small types
yI ` A Type0, that is, for each f with cod f = I a small set Af (we use a
subscript to not confuse the set Af with the restriction of A along f written
as Af), and A comes together with maps Af → Afg, a 7→ ag for g : K → J ,
f : J → I such that a1 = a and agh = a(gh) for h : L → K. The restriction
U(I)→ U(J) along f : J → I is (Af)g = Ayfg = Afg for g : K → J .

In other words, the elements of U(I) can also be described as Set0-valued
presheaves on C/I (the slice category over I), i.e., [(C/I)op,Set0], with the
restriction induced by C/f : C/J → C/I. This is reflected by the equivalence
of categories:

C/I ≈
∫
C

yI

Next, we define a small type Γ ` ElT given Γ ` T : U . For ρ ∈ U(I) we
have Tρ ∈ U(I) and set (ElT )ρ = (Tρ)1I

which is a small set. The required
map (ElT )ρ→ (ElT )ρf for f : J → I is defined to be the given map (Tρ)1 →
(Tρ)f , which makes sense since (ElT )ρf = (Tρf)1 = ((Tρ)f)1J

= (Tρ)f .
If σ : ∆→ Γ and Γ ` T : U , then (ElT )σ = El(Tσ) since for ρ ∈ ∆(I)

((ElT )σ)ρ = (ElT )(σρ) = (T (σρ))1 = ((Tσ)ρ)1 = (El(Tσ))ρ.

Last, we define the code Γ ` pAq : U of a small type Γ ` A Type0. For
ρ ∈ Γ(I) we define pAqρ ∈ U(I) as the small type yI ` pAqρ given by
(pAqρ)f = A(ρf) for f ∈ (yI)(J), i.e., f : J → I; and the induced restriction
maps

(pAqρ)f = A(ρf)→ A(ρf)g = A(ρ(fg)) = (pAqρ)fg.

The verification of pAqσ = pAσq for a substitution σ : ∆ → Γ is straightfor-
ward.

It remains to check the equation (1.2) of Definition 1.4: we have that

(ElpAq)ρ = (pAqρ)1 = A(ρ1) = Aρ,

and likewise

(pElTqρ)f = (ElT )(ρf) = (T (ρf))1 = (Tρ)f .

Analogously, one can lift a hierarchy of Grothendieck universes Set0 ∈
Set1 ∈ · · · ∈ Setn ∈ · · · ∈ Set to a type theoretic hierarchy of universes
U0, U1, . . . , Un, . . . with corresponding coding and decoding machinery.
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Chapter 2

Cubical Sets

This chapter introduces cubical sets. Cubical sets are presheaves on the cubical
category ��� introduced in Section 2.1.

2.1 The Cubical Category

We fix a countable and discrete set of atomic names A which will serve as
explicit names for dimensions. We will denote elements of A by x, y, z, . . . and
call them names. Later we will also assume that given a finite set of names
I ⊆ A there is a fresh name xI . The choice of the set A is irrelevant—what
counts is that we can decide the equality of names. We will also assume that
there are two elements 0 and 1 called directions which are not names; we will
usually use c, d to denote directions; we write c̄ for flipping the direction, i.e.,
c̄ = 1− c. We set 2 = {0, 1}.

Definition 2.1. The cubical category ��� has as objects finite subsets of the
fixed set of names A, usually denoted by I, J,K, . . . . A morphisms f : I → J
is given by a set-theoretic function f : I → J ∪ 2 such that for x, y ∈ I with
f x, f y /∈ 2 we have

f x = f y implies x = y,

i.e., f is injective when restricted to its defined elements

def(f) = {x ∈ I | f x 6∈ 2}.

The composition of two morphism f : I → J and g : J → K is given by

(g ◦ f)x =

{
g(fx) if x ∈ def(f),

fx otherwise.

For the composition of two morphisms f and g as above we also write
fg = g ◦ f , i.e., we use diagram order. For finite sets of names we will write
commas instead of unions and often omit curly braces; e.g., we write I, x, y for
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I ∪ {x, y}, and I − x, y for the set-difference of I with {x, y}. From now on, if
not stated otherwise, we assume that f, g, h range over morphisms in ���.

The face maps are morphisms (x = 0), (x = 1): I → I − x for x ∈ I
sending x to 0 and 1, respectively; so in particular def (x = c) = I − x. For
I ⊆ J , we call the inclusion map I → J a degeneracy map; in particular,
if x /∈ I, we denote the inclusion I ⊆ I, x by sx : I → I, x. For x, y /∈ I
the renaming (x = y) : I, x→ I, y sends x to y and leaves the rest untouched.
(Note that it is crucial that both x and y are not in I, otherwise the injectivity
condition on defined elements is violated.) For x, y ∈ I the swapping of x and
y, (x y) : I → I, is defined by

(x y)z =


y if z = x,

x if z = y,

z otherwise.

Note that with the standard programming trick to swap two variables using
assignments and a third variable, we can write a swap (x y) : I, x, y → I, x, y
(where x, y /∈ I) as a composition of renamings: with a fresh z we have

I, x, y I, x, y

I, y, z I, x, z

(x y)

(x=z)

(y=x)

(z=y)

For f : I → J set f − x : I − x → J − fx to be f restricted to I − x with
adapted codomain (where J−fx = J if fx is 0 or 1). Similarly we can extend
f : I → J for x /∈ I and a a name, 0, or 1, to (f, x = a) : I, x → J, a (by
convention, J, 0 = J, 1 = J).

We call f : I → J strict if def(f) = I.

The following lemma (whose proof is trivial) gives a factorization of any
morphism as composition of faces, swapping (or renaming), and a degeneracy
map.

Lemma 2.2. Any f : I → J can be uniquely as f = f01g where f01 : I →
def(f) is a composition of face maps and g : def(f) → J is a strict map.
Moreover, if I0 = ~x = f−1(0) and I1 = ~y = f−1(1), then f01 = (~x = 0)(~y = 1),
and we have a commuting square

I J

def(f) im(f)

f

f01

f ′

g

where f ′ is a bijection (and thus can be written a composition of transpositions,
i.e., swappings, and thus also as a composition of renamings).
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2.2 Cubical Sets

Similar to simplicial sets, cubical sets are defined as presheaves.

Definition 2.3. A cubical set X is a functor X : ���→ Set, i.e., X is a presheaf
over ���op.

That is, a cubical set X is given by sets X(I) for each finite set of names
I, and for each morphism in f : I → J in ���, a function X(I)→ X(J), u 7→ uf
such that

u1 = u and ufg = u(fg)

for f : I → J and g : J → K in ���. Note that the latter equation is the reason
for the use of the diagram order for composition in ���; this enables us to write
the action of a morphism on the right and still have the arrows from ��� and
not its opposite category.

As with any presheaf category, the morphisms between cubical sets are
given by natural transformations. This makes cubical sets into a category,
denoted by cSet.

For u ∈ X(I) and x ∈ I we can form the faces u(x = 0) ∈ X(I − x) and
u(x = 1) ∈ X(I−x) of u. In this way, we can think of u as a “line” connecting
u(x = 0) and u(x = 1) along x, written as

u(x = 0) u(x = 1)u
x (2.1)

We sometimes omit the subscript x in (2.1) if irrelevant or clear from the
context.

In this way one can think of an element u in X(I) as a hypercube of
dimension |I|, and we call the elements of X(I) also I-cubes. For example, if
u in X(x, y), x 6= y, first note that u(x = c)(y = d) = u(y = d)(x = c) and
thus with ucd = u(x = c)(y = d) we get a cube (indicating the naming of the
dimensions on the right)

u01 u11

u

u00 u10

u(y=1)

u(x=0)

u(y=0)

u(x=1) y

x

This cube should be thought as a “solid” cube, filled by u. Note that there is
no “diagonal” in this cube, i.e., a face of u which connects u00 with u11.

For an I-cube u and an x /∈ I, we can consider the degenerate usx ∈ X(I, x)
of u, connecting usx(x = 0) = u and usx(x = 1) = u, i.e., u with itself along
x:

u u
usx

x
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Intuitively, one can think of usx as the line which is constantly u. If w = usx
for some u and x, we write that w # x borrowing notation from nominal sets
(cf. Section 2.3) and say that w is degenerate (along x). Note that it is in
general undecidable whether an element is degenerate.

Summing up, if we have an I-cube u we want to think of it as depending
on the names in I; there are the following basic operations on u: renaming a
name in I with a fresh name, setting one of the variables in I to 0 or 1, and
adding a variable dependency (degeneracy maps).

From the fact that the category of cubical sets is a presheaf category we
know that it has the structure of a topos and thus has a rich structure. In
particular, we have seen in detail in Section 1.2 how cSet gives rise to a
category with families. Let us introduce some examples of cubical sets.

Example 2.4. For every set A the discrete cubical set ∆(A) given by the
constant presheaf ∆(A)(I) = A and ∆(A)(f) = 1A.

Example 2.5. A particularly natural example, suggested by Peter Aczel,
is given by polynomial rings. Let R be a commutative ring with 1. For
I = x1, . . . , xn let R[I] = R[x1, . . . , xn] denote the polynomial ring with inde-
terminates x1, . . . , xn and coefficients in R. This assignment I 7→ R[I] defines
a cubical set which we denote by R[·]; if f : I → J and p(x1, . . . , xn) ∈ R[I],
pf is given by the polynomial p(fx1, . . . , fxn). So, for example, (1 + x2y +
z)(y = 0) = 1 + z. Note that we assume R[I] ⊆ R[I, x] and degeneracy is an
inclusion: psx = p.

Example 2.6. The interval I is defined by I(I) = I ∪2 and I(f) : I(I)→ I(J)
for f : I → J is defined by extending (the underlying set-theoretic map of) f
with I(f)(0) = 0 and I(f)(1) = 1. Note that this is a representable cubical set:
fix any name x, then y{x} ∼= I. For example, y{x}∅ = cSet({x}, ∅) consists of
the moprphisms (x = 0), (x = 1): x → ∅; similarly, y{x}{y1, · · · , yn} consists
of the morphisms (x = a) for a ∈ I(y1, · · · , yn).

More generally, we set ���I = yI for a finite set of names I and call it the
standard I-cube. For any I and J with n-elements, we clearly have ���I ∼= ���J ,
and thus it makes sense to speak of ���I of a standard n-cube. The Yoneda
Lemma gives that for a cubical set X, morphisms ���I → X correspond to
the elements of X(I). Note that ���∅ is terminal in cSet, and thus 1 → X
corresponds to X(∅), the points of X.

Note that the product I× I is not isomorphic to ���x,y. The latter does not
contain the diagonal while the former does (cf. also the next example).

Example 2.7 (Nerve). To any small category C we associate its (cubical)
nerve N C whose n-cubes are given by n-dimensional cubical commutative
diagrams, defined as follows. For a finite set of names I we consider {0, 1}I =
2I as a poset, and hence category. The set (N C)(I) is defined to be the
functors 2I → C. Any f : I → J determines a monotone 2f : 2J → 2I , sending
α ∈ 2J to (2fα)(i) = α(fi) for i ∈ I and f defined on i, and (2fα)(i) = fi
otherwise; for θ ∈ (N C)(I), i.e., θ : 2I → C a functor, we set the restriction θf
to be θ2f : 2J → 2I → C.
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Elements of (N C)(∅) are functors 1 → C, i.e., correspond to objects in C;
elements of (N C)(x) are functors α : {0, 1} → C, i.e., correspond to morphisms
in C (given by α(0 ≤ 1), 0 ≤ 1 denoting the (unique) arrow 0 → 1 etc.);
likewise, elements of (N C)(x, y) are functors θ : 2x,y → C, i.e., correspond to
commuting squares in C (writing 01 for (x 7→ 0, y 7→ 1) ∈ 2x,y etc.)

θ(01) θ(11)

θ(00) θ(10)

θ(01≤11)

θ(00≤01)

θ(00≤10)

θ(00≤11) θ(10≤11)

and so on for higher cubes. Note that N(2I) is in general not isomorphic to
yI (for I = x, y, the cube in the nerve contains a diagonal which is not there
in the standard cube).

Remark 2.8. Often, cubical sets are described as presheaves on a category dual
to our cubical category; morphisms are given by certain 2J → 2I (namely those
which come from 2f with f : I → J in the cubical category). This is used (for
a variation of the cubical sets considered here) in [22, Section 4].

The following two definitions are crucial for the rest of this thesis.

Definition 2.9 (Non-dependent Path Space). Let X be a cubical set. The
(non-dependent) path space [I]X is defined by ([I]X)(I) = X(I, xI) (recall
that xI is a chosen fresh name for I). We can extend f : I → J to (f, xI =
xJ) : I, xI → J, xJ , and thus define the restriction along f of ω ∈ ([I]X)(I) by
ωf = ω(f, xI = xJ). (Note that on the left hand side the restriction is in [I]X
whereas on the right hand side it is in X.) This defines a cubical set. Its points
are ([I]X)(∅) = X(x∅), that is, the lines of X; its lines ([I]X)(x) = X(x, y), y
fresh, are the squares of X; and so on.

There is also an alternative definition of [I]X: the elements ([I]X)(I) are
(equivalence classes) of the form 〈x〉p where x /∈ I and p ∈ X(I, x); two such
elements 〈x〉p and 〈y〉q get identified if p(x = y) = q ∈ X(I, y). For f : I → J
we define (〈x〉p)f = 〈z〉(p(f, x = z)) where z is some J-fresh name. The
operation 〈x〉− should be thought of as an abstraction- or binding operation.
Correspondingly, there is also an application of 〈x〉p ∈ ([I]X)(I) to a ∈ {0, 1}
or a a fresh name (i.e., a /∈ I) given by

(〈x〉p) @ a = p(x = a) ∈ X(I, a),

where I, 0 = I, 1 = I by convention. This structure can be seen as the “affine”
exponential of X by I (this can be made precise in the presentation of cubical
sets as nominal sets, cf. 2.4).

Our first definition corresponds to choosing a canonical representative xI
for the bound name. We will mostly use this definition from now on but deviate
whenever appropriate. But note that we also have the operation ω@ a =
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ω(xI = a) ∈ X(I, a) for a ∈ {0, 1} or a fresh, with ω ∈ ([I]X)(I), and the
operation 〈x〉p = p(xI = x) for p ∈ X(I, x).

Definition 2.10 (Non-dependent Identity Type). For a cubical set X and
two global sections u, v ∈ X(∅) we define the (non-dependent) identity type
IdX(u, v) to be the subobject IdX(u, v) ⊆ [I]X such that ω ∈ ([I]X)(I) is an
element of (IdX(u, v))(I) if ω@ 0 = usI and ω@ 1 = vsI , where sI : ∅ → I
denotes the inclusion map; that is, ω is a line along xI connecting u to v (more
precisely, their degenerates).

More generally, we can also define X ×X ` IdX ; for w0 and w1 in X(I),
IdX(w0, w1) are those ω ∈ [I]X such that ω@ 0 = w0 and ω@ 1 = w1.
(The above cubical set IdX(u, v) is given by substituting X ×X ` IdX along
〈u, v〉 : 1→ X ×X.)

As an example, let us come back to the interval I. We have two points
` 0 : I and ` 1 : I given by 0J = 0 ∈ I(J) and likewise 1J = 1. Those two
points are equal via ` seg : IdI(0, 1) given by segJ = 〈x〉x since x ∈ I(J, x)
for x J-fresh.

Remark 2.11. It is important to note that this definition (or its dependent
version we will see later) does not justify the axioms for an identity type in
the CwF induced by cSet. Let us illustrate one of the requirements; assume
we have a cubical set X and a dependent type over it, X ` C, and two global
sections of X, ` u, v : X (which correspond to two elements u, v ∈ X(∅)).
Moreover, we have an ` ω : IdX(u, v) and ` p : C[u]. The rules for the
identity type require in particular an inhabitant of ` C[v], i.e., we must be
able to transport the element p along ω to an element in C[v]; but for arbitrary
C there is no hope that we can achieve this as C[v] might be empty even though
C[u] is not! Consider, e.g., the type I ` C defined for ρ ∈ I(I) = I ∪ 2 as
Cρ = ∅ if ρ 6= 0, and Cρ = N if ρ = 0. The restriction maps Cρ → Cρf
is given by the unique map ∅ → Cρf if ρ 6= 0, and given by the identity on
N if ρ = 0 (and thus also ρf = 0). Now seg = 〈x〉x gives a term of type
IdI(0, 1), but there is no map from C[0] = N to C[1] = ∅. Hence we have to
restrict the types in such a way that this property follows—this is the content
of Chapter 3.

Remark 2.12. It is possible to justify the introduction rule for this iden-
tity types though: if ` u : X given by the family uI ∈ X(I), define `
reflu : IdX(u, u) by (reflu)I = uIsxI

∈ X(I, xI); note that (reflu)I ∈
(IdX(u, u))(I) as

(reflu)I @ b = uI .

Moreover, this defines a term as for f : I → J ,

(reflu)If = (usxI
)f = usxI

(f, xI = xJ) = (uf)sxJ
.
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2.3 Cubical Sets via Nominal Sets

In this section we give equivalent categories to the category of cubical sets
which are given by nominal sets with extra structure: so called 01-substitutions
introduced in [36]. As studied in [38], the latter can also be presented as
finitely supported M -sets for a suitable monoid M . The theory of nominal
sets provides a mathematical theory of names based on symmetry. For more
background on nominal sets we refer the reader to [37]. Here we follow [38].

We want to think of I-cubes u in a cubical set X, for say I = x1, . . . , xn, as
entities depending on the names x1, . . . , xn, and can emphasize this by writing
u = u(x1, . . . , xn) (similarly to indicate possible dependence of variables in a
formula of predicate logic; see also Example 2.5). Now applying a morphism
f : I → J should be thought of as applying a substitution of those names; the
basic operations are renaming a variable into 0 or 1, renaming a variable into
a fresh variable, and adding a (vacuous) variable dependency. E.g., if n = 3
and f = (x1 = y, x2 = 0, x3 = x3) : I → x3, y, z, we think of uf ∈ X(x3, y, z)
as u(y, 0, x3) (with this notation, the application of a degeneracy map is not
explicit).

Nominal sets capture this idea as well: each element in a nominal set
depends on a finite set of names, and we can swap names (governed by suitable
equations). The additional structure of 01-substitutions on a nominal set
allows to set names to 0 or 1.

Definition 2.13. A finite substitution is a map π : A → A ∪ 2 such that
{x | πx 6= x} is finite. We denote the monoid of all finite substitutions by Sb:
its monoid operation is given by ππ′ : A→ A∪ 2 defined as (ππ′)(x) = π′(πx)
(note the order) if πx /∈ 2 and (ππ′)(x) = πx for πx ∈ 2; the unit 1 is given by
the inclusion A ↪→ A∪2. The element in Sb transposing x with y for x, y ∈ A
is denoted by (x y); the element (x = b) ∈ Sb for x ∈ A and b ∈ 2 sends x to
b and is the identity otherwise.

Let us assume that M is a submonoid of Sb.

Definition 2.14. The category of M-sets is simply the presheaf category
[M,Set] where M is considered as a category (with one element). So such an
M-set Γ is given by a set Γ and an action Γ×M→ Γ satisfying

ρ 1 = ρ (ρ π)π′ = ρ (ππ′)

for ρ ∈ Γ and π, π′ ∈M.

A finite subset I ⊆ A supports an element ρ ∈ Γ if for all π, π′ ∈M,

∀x ∈ I(πx = π′x)→ ρ π = ρ π′. (2.2)

The category of finitely supported M-sets [M,Set]fs is the full subcategory of
M-sets for whose objects Γ every ρ ∈ Γ is finitely supported (i.e., has a support
which is finite).
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The submonoid Cb of Sb contains those π ∈ Sb satisfying for πx, πy /∈ 2:

πx = πy → x = y

This condition is like the condition for morphisms in the cubical category ���.
This entails the following lemma.

Lemma 2.15. For all f : I → J in ��� there exists a π ∈ Cb for which πx = fx
for all x ∈ I.

Proof. See [38].

Theorem 2.16. The category of finitely supported Cb-sets [Cb,Set]fs is
equivalent to the category of cubical sets cSet.

Proof. We only define the functor F : cSet→ [Cb,Set]fs and its inverse G on
objects; for the detailed proof we refer the reader to [38]. For a cubical set
X we take the colimit of X in ��� restricted to inclusions I ⊆ J , and define
FX = lim−→I

X(I). So an element in FX is an equivalence class [I, u] with I a

finite set of atoms and u ∈ X(I); two such equivalence classes [I, u] and [J, v]
are equal iff for some K ⊇ I ∪ J , uι = vι′ where ι and ι′ are the inclusions
I ⊆ K and J ⊆ K, respectively. For π ∈ Cb we have that π|I : I → π(I)− 2
is a morphism in ���, and we define [I, u]π = [π(I)− 2, u(π|I)].

Conversely, given a finitely supported Cb-set Y , GY is defined by

(GY )(I) = {u ∈ Y | u is supported by I}.

For u ∈ (GY )(I) and f : I → J , uf := uπ with π as in Lemma 2.15; this
doesn’t depend on the choice of π since I supports u, and is well defined since
uπ is supported by π(I)− 2 ⊆ J (cf. [38, Corollary 2.5]).

Let Γ be a finitely supported Cb-set and u ∈ Γ; then u there is a least set of
names supporting u denoted by supp(u) (cf. [38, Definition 2.6]). Then a set of
atoms I supports u iff supp(u) ⊆ I. We write u # v for if supp(u)∩supp(v) = ∅
for u, v ∈ Γ. The set A∪2 becomes a finitely supported Cb-set via xπ = π(x),
0π = 0, and 1π = 1, whose corresponding cubical set is isomorphic to the
interval I; clearly supp(x) = {x} and supp(0) = supp(1) = ∅.

Another way to present finitely supported Cb-sets is as nominal sets with
extra structure.

Definition 2.17. The group Per(A) is given by the permutations in Sb, i.e.,
bijections π : A → A such that {x ∈ A | πx 6= x} is finite. The category of
nominal sets Nom is the category of finitely supported Per(A)-sets.

Each finitely supported Cb-set is also a nominal set. The notion of support
w.r.t. the Cb-set structure coincides with the notion of support of nominal sets.

Definition 2.18. Let Γ be a nominal set. A structure of 01-substitutions on
Γ is given by operations ((x = c)) : Γ→ Γ for each name x and c ∈ 2 satisfying
for u ∈ Γ:
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(a) (u((x = c)))π = uπ((πx = c));

(b) u((x = c)) # x;

(c) u # x→ u((x = c)) = u;

(d) x 6= y → u((x = c))((y = d)) = u((y = d))((x = c)).

The nominal sets with 01-substitutions constitute the object of the category
01Nom whose morphisms are morphisms σ : Γ → ∆ in Nom such that
(σ(u))((x = c)) = σ(u((x = c))).

Lemma 2.19. The categories 01Nom and finitely supported Cb-sets are
equivalent. And thus the former is also equivalent to cSet.

Proof. See [38]. The main idea is to use that any element in Cb is a composi-
tion of swaps (x y) and (x = a). The latter are taken care of by the structure
of 01-substitutions ((x = a)).

2.4 Separated Products

The equivalence of cubical sets with nominal sets equipped with 01-substitu-
tions lets us translate important constructions on nominal sets to cubical sets.
Let X and Y be cubical sets and u ∈ X(I); recall that we wrote x # u if u
degenerate along x ∈ I. If also v ∈ Y (I), write u # v if there are u′ ∈ X(J)
and v′ ∈ X(K) for J,K ⊆ I with J ∩K = ∅ such that u = u′ι and v = v′ι′

with ι and ι′ being the respective inclusions J ⊆ I and K ⊆ I. In that case
uf # vf for f : I → I ′ witnessed by u′(f |J) and v′(f |K) and f(J)∩f(K) ⊆ 2
since f is injective on names.

The separated product X ∗ Y of X and Y is given by

(X ∗ Y )(I) = {(u, v) ∈ X(I)× Y (I) | u # v} ⊆ (X × Y )(I)

and componentwise restrictions, making it a sub-cubical set of X × Y .
It is easily verified that for J,K disjoint, we have

yJ ∗ yK ∼= y(J ∪K).

Moreover, −∗Y extends to a functor which has a right adjoint Y ( −, which
we have already seen in Definition 2.9 as [I]− in the special case of Y = I.

The functor on cubical sets Y ( − is given by

(Y ( Z)(I) = cSet(Y ∗ yI, Z)

for Z in cSet (this is natural in I and Z, and thus induces a endo-functor on
cSet). That this is adjoint to −∗Y follows from the fact that −∗Y commutes
with colimits.

Let us sketch that [I]X is isomorphic to I( X. Define the map ϕ : [I]X →
(I( X) as follows: let (a, f) ∈ (I ∗ yI)(J), i.e., a ∈ I(J) and f : I → J with
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a # f ; the latter yields that f = f ′ι with f ′ : I → J − a and ι the inclusion
I − a ⊆ I. We define for 〈x〉ω in ([I]X)(J)

ϕ(〈x〉ω)(a, f) = ω(f ′, x = a) ∈ X(J).

One can check that ϕ(〈x〉ω) is an element in (I ( X)(J), and that ϕ is a
morphism. The inverse ψ : (I( X)→ [I]X is given for θ ∈ (I( X)(I) by

ψθ = 〈x〉θ(x, sx)

for x fresh, so x # sx. One can check that this defines a morphism, which is
indeed an inverse of ϕ.



Chapter 3

Kan Cubical Sets

As we have seen in the last chapter it is not possible to justify the elimination
rules for the identity types defined from path spaces in the cubical set model.
In this chapter we will introduce the notion of when a type Γ ` A is a uniform
Kan type; restricting to types with this condition is sufficient to justify the
elimination rule for identity types defined from path spaces. The main work
is to show that this notion is closed under the type formers.

3.1 The Uniform Kan Condition

The uniform Kan condition is about requiring fillers of “open box” like shapes.
It is reminiscent of Daniel Kan’s original extension axiom in [28]. Kan intro-
duced this notion in order to give a combinatorial definition of homotopy
groups. To simplify the discussion of the filling condition we will first only
introduce the non-relative case. Let us first introduce these open box shapes
and operations on them; these shapes correspond to horns in simplicial sets.

Definition 3.1 (Open Boxes). Let I be a finite sets of names, x, J ⊆ I with
x /∈ J and a ∈ {0, 1}. The triple S = ((x, a); J ; I) is called an open box shape
on I; its indices 〈S〉 are given by

〈S〉 = {(y, c) | c ∈ 2, y ∈ J, x and (y, c) 6= (x, a)} = {(x, ā)} ∪ J × 2.

If a = 1, we call S a +-shape; otherwise, i.e., a = 0, a −-shape.
Let X be a cubical set. An S-open box in X (or simply open box ) is given

by a family ~u indexed by 〈S〉 such that uyb ∈ X(I − y) for (y, b) ∈ 〈S〉 and
such that ~u is adjacent compatible, i.e., for all (y, b), (z, c) ∈ 〈S〉 with y 6= z we
have

uyb(z = c) = uzc(y = b) (3.1)

The element uxā of an S-open box ~u is called the principal side of ~u and x its
principal direction; the sides uyc, for y ∈ J , are called its non-principal sides,



30 Chapter 3. Kan Cubical Sets

and J its non-principal directions. We assume that the first entry v in ~u = v,~v
is its principal side.

For f : I → K with x, J ⊆ def(f) and an S-open box ~u in I, we define the
open box ~uf given by the components uyb(f − y) ∈ X(K − fy); this gives in
an Sf -open box where Sf = ((fx, a); fJ ;K) for S = ((x, a); J ; I) and where
fJ denotes the image of J under f.

Definition 3.2 (Kan Cubical Set). A uniform Kan cubical set X, or simply
Kan cubical set, is a cubical set X equipped with the following filling oper-
ations. For each open box shape S and S-open box ~u in X, we require and
element

[X]S~u ∈ X(I)

such that for (y, b) ∈ 〈S〉

([X]S~u)(y = b) = uyb

and additionally for each f : I → K with x, J ⊆ def(f) the following uniformity
condition (or coherence condition):

([X]S~u)f = [X]Sf (~uf) (3.2)

If S is a +-shape, we denote [X]S~u by X↑S~u; and if S is a −-shape by X↓S~u.
Moreover, we usually suppress the shape of the box and tacitly assume that
an open box fits the filling operator. We also give names to the face in the
principal direction

X+~u = (X↑~u)(x = 1) and X−~u = (X↓~u)(x = 0)

and call them the induced composition operations.
It is also possible to consider a cubical set X with only composition oper-

ations: for each open box shape S = ((x, a); J ; I) and S-open box we require
|X|S~u ∈ X(I − x) such that for (y, b) ∈ 〈S〉, (|X|S~u)(y = b) = uyb(x = a) and
for f : I − x→ J defined on I − x, we require the uniformity conditions

(|X|S~u)f = |X|Sf ′(~uf ′)

with f ′ = (f, x = z) : I → J, z for z fresh w.r.t. J . (One should consider the
name x in |X|S~u ∈ X to be bound.) The induced composition operations of a
Kan cubical set are composition operations in this sense.

We emphasize that the above definition requires a fixed choice of fillers of
open boxes and is thus equipped with “algebraic” operations, and this algebraic
presentation is crucial in order to formulate the uniformity condition (3.2). A
similar notion for simplicial sets is that of an algebraic Kan complex [34]. But
note that these come without additional equations like the uniformity condition
above. Similar operations for semi-simplicial sets have been considered in [4].

We will sometimes refer to the operations of a Kan cubical set as its Kan
structure.
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Let us analyze the filling operations of a uniform Kan cubical set X in low
dimensions. The simplest case is where J is empty (with the same notations
as in the definition above): a corresponding open box, for say a = 1, is simply
given by an element ux0 ∈ X(I − x); the filler X↑ux0 is an element in X(I)
with (X↑ux0)(x = 0) = ux0. Thus if say y ∈ I, this gives a square:

ux0

w

X+ux0

v

X↑ux0

y

x

By definition the right hand face is the composition X+ux0 ∈ X(I − x).
But what about the top and bottom faces v and w? The uniformity con-
ditions guarantee that the filling operation commutes with the face operations
(y = 1) and (y = 0), and thus we know that v = X↑(ux0(y = 1)) and
u = X↑(ux0(y = 0)). Moreover, if ux0 happens to be degenerate along y, the
uniformity condition entails that X↑ux0 = vsy.

Let us now assume that J = y; then an open box of the corresponding
shape comes with three elements: ~u = ux0, uy0, uy1 such that ux0 ∈ X(I − x)
and uy0, uy1 ∈ X(I − y), and that ux0(y = b) = uyb(x = 0) for b ∈ 2. Thus
the situation can be depicted as a “U-shape” whose filler X↑~u ∈ X(I) is as
indicated:

ux0

uy0

X+~u

uy1

X↑~u

y

x

If we also have another z ∈ I this situation also can be depicted as follows,
where the filler X↑~u is the whole cube (omitting the arrow tips):

ux0

uy0

uy1

yz

x

The uniformity conditions ensure that the top face (z = 1) of the cube is
the filler of the top “U-shape” ~u(z = 1); and likewise for the bottom. And
similarly, if all of the sides in ~u are degenerate in direction z, the filling cube
is the degenerate of the filling square of the top “U-shape” (which is in this
case equal to the lower one).
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And so on: with J having two elements, corresponding open boxes become
cubes with a missing side and missing interior etc.

(But note that the uniformity conditions say nothing about how two filling
operations for different cardinalities of the J parameter relate.)

Lemma 3.3. Let R be a commutative ring. The cubical set P = R[·] induced
by R as defined in Example 2.5 is a Kan cubical set.

Proof. Let S = ((x, a); J ; I) and ~p an open box of shape S in P . We will
construct the filler p = [P ]S~p by an iterated linear interpolation. First we
define pJ ∈ R[I] such that pJ(y = b) = pyb for y ∈ J by induction on the size
of J : we start with p∅ = 0; if J = z,K, we set

pz,K = pK + (1− z)(pz0 − pK(z = 0)) + z(pz1 − pK(z = 1)).

Note that if K = ∅, this pz is simply the linear interpolation

pz = (1− z)pz0 + zpz1.

We have for b ∈ 2, pz,K(z = b) = pK(z = b) + pzb − pK(z = b) = pzb and for
y ∈ K with the IH and the fact that ~p is adjacent compatible:

pz,K(y = b) = pK(y = b) + (1− z)
(
pz0(y = b)− pK(y = b)(z = 0)

)
+ z
(
pz1(y = b)− pK(y = b)(z = 1)

)
= pyb + (1− z)

(
pyb(z = 0)− pyb(z = 0)

)
+ z(pyb(z = 1)− pyb(z = 1)) = pyb

As a last step we define the filler p ∈ R[I] in case a = 1 by

p = pJ + (1− x)(px0 − pJ(x = 0))

and analogously for a = 0. This has the correct faces as is readily checked.
The definition satisfies the uniformity conditions: observe that (pJ)f for f
defined on J is the same as the corresponding polynomial for the pyb(f − y)
with y ∈ J ; similarly, this extends to pf for f defined on x, J .

Lemma 3.4. The cubical nerve N(G) of a (small) groupoid G is a Kan cubical
set.

Proof. Let S = ((x, 1); J ; I) and ~u an S-open box in N(G). The proof for
−-open boxes is similar. In case J = ∅, we define the filling of ~u (which
only consists of ux0) by usx. This clearly satisfies the required uniformity
conditions. In case J contains at least two elements, we argue that the input
box ~u already contains all the needed edges and can be uniquely considered
as an I-cube: we define the filler u : 2I → G on an object α : I → 2 by
uα = uyb(α−y) for αy = b with (y, b) ∈ 〈S〉. Note that there has to exist such
a (y, b) since J 6= ∅. Also, this is well defined since ~u is adjacent compatible.
On morphisms α ≤ β we first define u(α ≤ β) as follows. If both αy = βy = b
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for some (y, b) ∈ 〈S〉, then we take uyb(α − y ≤ β − y). Otherwise, there are
(y, b), (z, c) ∈ 〈S〉 with αy = b and βz = c with y 6= z since J contains at least
two elements; then we take

uzc((β−z, x = 0) ≤ β−z)◦ux0(α−x ≤ β−x)◦(uyb((α−y, x = 0) ≤ α−y))−1

which is forced by the groupoid structure. This determines u uniquely from
the fact that u has to have ~u as corresponding faces.

It remains the case where J consists exactly of one element, say y. We
construct the filler by induction on I − (x, J) together with showing that the
filler is unique, and hence satisfies the required uniformity conditions. In case
I − (x, J) is empty, we construct the composition as follows:

uy0

ux0

uy1

uy1ux0u
−1
y0

This also determines the filler u ∈ (N(G))(x, y) since the diagram commutes,
and is unique by the groupoid structure. Now in case, I−(x, J) contains z, we
inductively fill ~u(z = 0) and ~u(z = 1) to unique uz0 and uz1 in (N(G))(I − z),
respectively. Now we define the filler u ∈ (N(G))(I) of ~u as the filler of the
extended open box ~u, uz0, uz1 (which we already constructed above). If u′ ∈
(N(G))(I) is another filler of ~u, then by IH, u′(z = b) has to be equal to uzb,
and hence to u(z = b). But then u and u′ are both also fillers of ~u, uz0, uz1
which we have shown to be unique above.

Definition 3.5. Let Γ be a cubical set. A type Γ ` A is a uniform Kan
type, or simply Kan type, if it is equipped with the following operations. Let
α ∈ Γ(I), S an open box shape on I, and ~u an S-open box in Aα, i.e., ~u is
an 〈S〉-indexed family where the component uyb for (y, b) ∈ 〈S〉 is an element
uyb ∈ Aα(y = b), such that ~u is adjacent compatible. We require fillers

[Aα]S~u ∈ Aα

such that for (y, b) ∈ 〈S〉

([Aα]S~u)(z = b) = uyb

and additionally for each f : I → K with x, J ⊆ def(f) the uniformity condi-
tion holds, i.e.,

([Aα]S~u)f = [Aα]Sf (~uf).

We will use the analogous notation Aα↑~u,Aα↓~u,Aα+~u,Aα−~u as in Defini-
tion 3.2.
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Remark 3.6. To get the definition of when a map of cubical sets σ : ∆→ Γ is
a (uniform) Kan fibration replace Aα by σ−1(α) in the above definition. Then
Γ ` A is a uniform Kan type iff the projection p : Γ.A → Γ is a uniform Kan
fibration.

As an immediate consequence of the definition we get:

Lemma 3.7. A X cubical set is a Kan cubical set if and only if, X considered
as a type in the empty context 1 ` X is a Kan type.

Remark 3.8. The open box shapes with non-principal faces appear naturally
when we want that the operation u 7→ Aρ↑u extends to the identity type, say,
X ×X ` IdX for a cubical set X. Given u, v ∈ X(I, x) and ω ∈ IdX(u0, v0)
(where u0 = u(x = 0) etc.), so ω@ 0 = u0 and ω@ 1 = v0; let y be fresh.
A filler IdX(u, v)↑ω is a filler of the following open box shape (modulo the
abstraction 〈y〉−):

ω@ y

u

v

Thus it is natural to require these more general filling operations on X.

Remark 3.9. Similar to the lifting condition for simplicial sets w.r.t. horn
inclusions, we can formulate the uniform Kan condition of a type Γ ` A as
the lifting of maps. Let tS(K) ⊆ ���I(K) for S = ((x, a); J ; I) consist of those
f : I → K such that fy = b for some (y, b) ∈ 〈S〉. This defines a sub-cubical
set of ���I . Open boxes of shape S in a cubical set Γ correspond to morphisms
tS → Γ. The existence of fillers are chosen diagonal fillers for every outer
square (where the lower horizontal map corresponds to an I-cube in Γ, and
the upper horizontal map to an open box):

tS Γ.A

���I Γ

~u

p

α

For f : I → K defined on all of x, J the map (given by the Yoneda embedding)
���f : ���K →���I restricts to a map tSf → tS (since for g ∈ tSf (L), i.e., gz = b
for (z, b) ∈ 〈Sf〉, we have z = fy for some y ∈ J , and thus fg =���fg ∈ tS(L)).
The uniformity conditions translate to the commutation of the following prism
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where the two diagonal (slightly bent) arrows into Γ.A are the chosen fillers:

tSf Γ.A

tS

���K Γ

���I

p

���f

Remark 3.10. Note that for S = ((x, a); J ; I) with I = x, J,K, where x, J and
K disjoint, we have

tS ∼= t((x,a);J;J) ∗���K . (3.3)

Moreover, for f : I → I ′ defined on x, J , we can write I ′ = fx, fJ,K ′ (disjoint).
We have the induced map

t((x,a);J;J) ∗���K ∼= tS −→ tSf ∼= t((fx,a);fJ;fJ) ∗���K′

whose right component is induced by the renaming on x, J and whose left
component is induced by the morphism f − x, J : K → K ′.

Now this suggests yet another reformulation of the Kan structure on a
cubical set due to Peter Lumsdaine of which we only give a short sketch. Let
tax;J := t((x,a);J;J) ⊆ ���x,J and consider the cubical set tax;J ( X for a cubical
set X: by the Yoneda Lemma, its K-cubes are

tax;J ∗���K → X

which in case that x, J and K are disjoint corresponds to (by (3.3))

t((x,a);J;x,J,K) → X,

i.e., the ((x, a); J ;x, J,K) open boxes in X. Consider the canonical map

rax;J : (���x,J ( X)→ (tax;J ( X)

induced by the inclusion tax;J ⊆���x,J .
Assume now that X has a Kan structure. We define a section sax;J of rax;J .

This amounts to give level-wise sections

(tax;J ( X)(K)→ (���x,J ( X)(K)

natural in K. But the left hand side corresponds to open boxes ~u of shape
((x, a); J ;x, J,K), and the right hand side corresponds to x, J,K cubes, and
thus we can use [X]S~u to define the image of ~u. Now this is natural in K
since we have the uniformity conditions for maps f : x, J,K → x, J,K ′ which
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are the identity on x, J . The uniformity conditions for renaming in x, J yield
additional equations on the sections: a renaming f : x, J → fx, fJ defined on
all of x, J induces the vertical maps in

(���x,J ( X) (tax;J ( X)

(���fx,fJ ( X) (tafx;fJ ( X)

(3.4)

where the horizontal maps are given by the corresponding sections and retrac-
tions. Now the (full) uniformity conditions yield that the diagram commutes.
The converse is also true: if we have a choice of sections for all the rax;J such
that all the squares of the form (3.4) commute, then X has a Kan structure.

3.2 The Kan Cubical Set Model

In this section we show that Kan types are closed under the type formers and
gives rise to a CwF supporting Σ-, and Π-types. It is crucial to observe that
the filling operations are part of the definition when Γ ` A is a Kan type. That
means that for Kan types Γ ` A and Γ ` B we can have A = B as cubical sets
but not necessarily as Kan types, i.e., their Kan structures might not coincide.
Thus we have to check coherence conditions, i.e., we have to verify that the
CwF equations between types are preserved by the filling operations.

Theorem 3.11. Kan types give rise to a CwF supporting Π- and Σ-types,
where

1. contexts Γ ` are interpreted by cubical sets;

2. substitutions σ : ∆→ Γ are maps of cubical sets;

3. types Γ ` A are Kan types;

4. terms of a Kan type Γ ` A are terms of Γ ` A considered as a type in
the cubical set (i.e., presheaf) sense.

Note that by Section 1.2 and the fact that cubical sets are just presheaves on
the cubical category ���, we get that cubical sets induce a CwF. The difference
to the model we give in the theorem is in item 3, that is, types are equipped
with a Kan structure. The proof of Theorem 3.11 spans the rest of this section
and the definition of the respective Kan structures are given in the proofs of
the following theorems. The part of the CwF which is shared with the CwF
of cubical sets is given in the same manner. So context extension and the
definition of the required terms and context morphisms are defined to be the
same as for the cubical set model. Also, the constructions on types are the
same except that we have to care about the Kan structure as well. In other
words, forgetting the Kan structure induces a morphism of CwFs preserving
Π and Σ.
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Let us also mention (without proof) that the model also supports base
types like the natural numbers. Their interpretation is given via the constant
presheaf.

We will reserve “type” for a type in the cubical set sense and use “Kan
type” for a type with its Kan structure.

Theorem 3.12. If Γ ` A is a Kan type, ∆ `, and σ : ∆ → Γ a context
morphism, then also the type ∆ ` Aσ is a Kan type. Moreover, the Kan
structure is such that we get:

A1 = A (Aσ)τ = A(στ)

Proof. For an I-cube α of ∆ recall that we defined (Aσ)α = A(σα). We define
the filling operations of (Aσ)α to be those of A(σα), i.e., we set [(Aσ)α]S~u =
[A(σα)]S~u for an open box ~u. With this definition it is clear that A and A1
have the same Kan structure, and likewise for the other equation.

Theorem 3.13. If Γ ` A and Γ.A ` B are Kan types, then so is the type
Γ ` ΣAB. Moreover, (ΣAB)σ = Σ(Aσ)(B(σp, q)) as Kan types.

Proof. Let ~u be an S-open box in (ΣAB)α for α ∈ Γ(I). Then with wyb =
(uyb, vyb) where uyb ∈ Aα(y = b) and vyb ∈ B(α(y = b), uyb) for (y, b) ∈ 〈S〉,
we get that ~u is an S-open box in Aα which we can fill to u = [Aα]S~u. Now
~v is also a S-open box in B(α, u) and we set

[(ΣAB)α]S ~w = (u, [B(α, u)]S~v).

This definitions satisfies the required uniformity conditions as they are satisfied
for Γ ` A and Γ.A ` B.

Now if α = σβ for σ : ∆→ Γ, we get that u = [(Aσ)β]S~u and

[B(σβ, u)]S~v = [(B(σp, q))(β, u)]S~v,

yielding (ΣAB)σ = Σ(Aσ)(B(σp, q)) as Kan types.

For the next theorem we need some notations. Given Γ ` A, α ∈ Γ(I), u ∈
Aα, and a shape S = ((x, a); J ; I), we define an S-open box uS by “carving”
out an S-shape from u, i.e., uS is given by the components uSyc = u(y = c) ∈
Aα(y = c). Note that the filling operation [Aα]S is a section of this operation
(−)S . Moreover, for f : I → J defined on J, x we have (uS)f = uSf .

For Γ ` ΠAB and S-shapes ~w in (ΠAB)α and ~u in Aα such that uS = ~u
for some u ∈ Aα, we define the S-shape ~w~u in B(α, u) by the components
(~w~u)yc = (wyc)1uyc ∈ B(α(y = c), u(y = c)). (Recall from Section 1.2.1
that elements in Π-types are families of dependent functions.) For f : I → J
defined on J, x this satisfies (~w~u)f = (~wf)(~vf) since:

(~w~u)yc(f − y) = ((wyc)1uyc)(f − y)

= (wyc)(f−y)(uyc(f − y))

= (wyc(f − y))1(uyc(f − y))
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Theorem 3.14. If Γ ` A and Γ.A ` B are Kan types, then so is Γ ` ΠAB.
Moreover, (ΠAB)σ = Π(Aσ)(B(σp, q)) as Kan types.

Proof. Let C = ΠAB and let S be an open box shape. We assume that S is a
+-shape, i.e., of the form S = ((x, 1); J ; I); the case of −-shapes is symmetric.

First, we will define the composition operations Cα+
S ~w ∈ (ΠAB)α(x = 1)

for α ∈ Γ(I) and ~w an S-open box in (ΠAB)α. This amounts to define a
family of dependent functions (Cα+

S ~w)f in
∏
u∈Aα(x=1)f B(α(x = 1)f, u) for

all f : I − x→ K, such that(
(Cα+

S ~w)f (u)
)
g = (Cα+

S ~w)fg(ug). (3.5)

We will first define (Cα+
Sw)f for f = 1 : I − x → I − x. For this let u ∈

Aα(x = 1). We use the Kan fillings with shape Sx = ((x, 0); ∅; I) to extend u
to Aα↓xu ∈ Aα (with ↓x for ↓Sx

), of which we carve out an S-shape we then
apply to ~w, and map the result up:

(Cα+
S ~w)1(u) = B(α,Aα↓xu)

+
S (~w (Aα↓xu)S) (3.6)

which is in B(α(x = 1), u) as (Aα↓xu)(x = 1) = u. This defines (Cα+
S ~w)1 for

arbitrary α and w. Note that to give the open box (Aα↓xu)S we only need
composition operations of Γ ` A (not so in the argument to B).

Let us illustrate this (where we assume one non-principal direction y). We
are given ~w

~w x

y

and we are given u which we fill to ū = Aα↓xu

uū
in Aα

of which we carve out the open box ūS and apply ~w, which we then fill in
B(α, ū)

~wūS
(3.7)

where the last dashed line on the right is the definition of (Cα+
S ~w)1.

For general f : I − x → K we define (Cα+
S ~w)f as follows. In case there

is (y, c) ∈ 〈S〉 such that fy = c we write f as f = (y = c)(f − y) with
(f − y) : I − x, y → K. (Note that y 6= x.) We define

(Cα+
S ~w)f = (wyc)(x=1)(f−y). (3.8)

This is well defined since ~w is adjacent compatible. Note that this ensures

(Cα+
S ~w)(y = c) = wyc(x = 1).
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Otherwise, i.e., f is defined on J we let z be fresh w.r.t. K (e.g., take z = xK)
and set

(Cα+
S ~w)f =

(
(Cαfzx)+

Sfz
x
(~wfzx)

)
1

(3.9)

where fzx is (f, x = z) : I → K, z. By the uniformity conditions, this definition
does not depend on the choice of z, and we also get by uniformity, (3.6), and
the discussion above(

(Cα+
S ~w)1(u)

)
f =

(
(Cαfzx)+

Sfz
x
(~wfzx)

)
1
(uf). (3.10)

Note, that (3.9) says that the family (Cα+
S ~w)f is determined by the value

at f = 1 (with different α, S and ~w). The uniformity condition follows from
(3.9) (note that the left hand side is ((Cα+

S ~w)f)1 by definition). Equation (3.5)
follows from (3.10) together with (3.8) and (3.9); more formally, to prove (3.5)
one distinguishes cases on the definedness of f . If f is not defined on one of the
non-principal sides, (3.5) follows from (3.8). Otherwise, the left hand side in
(3.5) is given by (3.9), in which case one distinguishes cases on the definedness
of g: in case g is not defined on one of the corresponding non-principal sides
one uses (3.8) again, and otherwise, uses (3.10). Thus we obtain an element
in Cα(x = 1).

Next we define Cα↑S ~w ∈ Cα; we do so again by first defining (Cα↑S ~w)f
for f = 1 : I → I. Let v ∈ Aα, u = v(x = 1), and let z be fresh (e.g., z = xI).
Consider the shape Sx,z = ((x, 0); z; I); we get an Sx,z open box usz, Aα↓xu,
v in Aαsz (where usz is the principal side and the next two sides are at (z, 0)
and (z, 1) respectively), illustrated as (again only with one non-principal side
y, ū = Aα↓xu, and all sides should be considered “solid”)

uū

v

usz

x

z y

which we fill to
θ = Aαsz↓x,z(usz, Aα↓xu, v) ∈ Aαsz

where we wrote ↓x,z for ↓Sx,z
. From this we carve out an Ssz = ((x, 1); J ; I, z)

open box and apply it to ~wsz to get an Ssz open box

(~wsz) θ
Ssz in B(αsz, θ), (3.11)

or as picture (where we write wx0θx0 for (wx0)sz (θ(x = 0)) etc.)

wx0θx0

wy0θy0

wy1θy1
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Notice that if we take the face (z = 0) in the above picture, we get the same
open box ~wūS as in (3.7).

We define the open box χ in B(αsz, θ) of shape ((z, 1);x, J ; I, z) with the
principal side

B(α,Aα↓Su)↑S(~w (Aα↓xu)S)

(which is the square in (3.7)) and where the non-principal side at (x, 1) is(
(Cα+

S ~w)1(u)
)
sz; these are compatible by construction (3.6); the non-principal

side at (x, 0) is given by the principal side of the open box (3.11); the non-
principal sides in directions J are the non-principal sides of (3.11).

We fill this to obtain the definition

(Cα↑~w)1(v) = B(αsz, θ)
+
χ (3.12)

yielding an element in B(α, v) since θ(z = 1) = v by definition of θ. This
concludes the definition of ((Cα)↑~w)1 for all α and ~w.

For general f : I → K we define (Cα↑~w)f by distinguishing cases:

(Cα↑S ~w)f =


(Cα+

S ~w)(f−x) if fx = 1,

(wyc)(f−y) if fy = c for some (y, c) ∈ 〈S〉,
(Cαf↑Sfx ~wf)1 otherwise, i.e., f is defined on x, J.

where (f − x) : I − x→ K and (f − y) : I − y → K.
To conclude that this definition is a well-defined element of Cα and satisfies

the uniformity condition we need to verify that(
(Cα↑~w)1(v)

)
f = (Cα↑~w)f (vf) (3.13)

for f : I → K. If for some y ∈ x, J , fy is not defined, (3.13) follows from
how the open box χ is defined. Otherwise, i.e., f is defined on all x, J , (3.13)
follows by inspecting that, in the definition of (Cα↑~w)1(v),

(B(αsz, θ)
+
χ)f = B(αfsz′ , θf

′)
+

(χf ′)

where f ′ = (f, z = z′) and z′ fresh w.r.t. K. And θf ′ and χf ′ are, by unifor-
mity, exactly those arguments appearing in the definition of (Cαf↑~wf)1(vf)
which is the right hand side of (3.13).

To verify that the Kan structure of Π(Aσ)(B(σp, q)) (as defined above)
is equal to the Kan structure for (ΠAB)σ (as defined in the proof of Theo-
rem 3.12), assume that above α = σβ for σ : ∆→ Γ; then Cα = ((ΠAB)σ)β
and in equation (3.6) we have

B(σβ,A(σβ)↓xu)+(~w(A(σβ)↓xu)S)

= (B(σp, q))(β, (Aσ)β↓xu)+(~w((Aσ)β↓xu)S)

and the right hand side is the definition of
(
Π(Aσ)(B(σp, q))

+
~w
)

1
(u). Simi-

larly for the other parts of the definition.
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Remark 3.15. We also get a CwF if in Theorem 3.11, we require contexts to be
Kan cubical sets instead of just cubical sets. The crucial point that this works
is that if Γ ` is a Kan cubical set and Γ ` A is a Kan type, then Γ.A ` is a
Kan cubical set. The proof of this statement is along the lines of the closure of
Kan types under Σ-types (see Theorem 3.13); in fact, it can be derived using
that 1 ` Γ is a Kan type.

3.3 Identity Types

We will now define the identity type of a cubical set and justify an elimination
operator and functional extensionality for it. The underlying idea of the def-
inition of identity type is that a proof of equality IdA(a, b) should be a path
with endpoints a and b.

Recall the definition of the non-dependent path space (Definition 2.9), non-
dependent identity types (Definition 2.10), and the notation used there.

Definition 3.16. Let Γ ` A, Γ ` a : A, Γ ` b : A. The identity type
Γ ` IdA(a, b) is defined as follows: for ρ ∈ Γ(I) an element ω ∈ (IdA(a, b))ρ
is an element ω ∈ A(ρsxI

) such that ω(xI = 0) = aρ and ω(xI = 1) = bρ.
The restriction by a f : I → J of ω ∈ (IdA(a, b))ρ is defined, as for the non-
dependent identity type, by ωf = ω(f, xI = xJ) (where on right we use the
restriction of A).

As in 2.10 we could have used equivalence classes 〈x〉p with p ∈ A(ρsx)
where ρ ∈ Γ(I), x fresh for I, and 〈x〉p = 〈y〉q if p(x = y) = q. The operation
ω@ a for a ∈ 2 or a fresh is defined as there, i.e., ω@ a = ω(xI = a). For p ∈
Aρsx we set 〈x〉p = p(xI = x). Note that for f : I → J and ω ∈ (IdA(a, b))ρ,
x /∈ I we have (ω@x)(f, x = a) = ωf @ a. No matter which definition is used
we have the notions of 〈x〉p and ω@ a as in 2.10.

Theorem 3.17. Kan types are closed under identity types, i.e., if Γ ` A is
a Kan type, Γ ` a : A, and Γ ` b : A, then Γ ` IdA(a, b) is a Kan type.
Moreover, for σ : ∆→ Γ, (IdA(a, b))σ = IdAσ(aσ, bσ) as Kan types.

Proof. Let ~ω be an S-open box in (IdA(a, b))ρ with ρ ∈ Γ(I) and let z be
fresh; then ~ω@ z (component-wise) is an S-open box in Aρsz. We extend this
to an S, z-open box in Aρsz, where S, z is like S but with the non-principal
side z added, given by ~ω@ z, aρ, bρ and define

[IdA(a, b)ρ]S~ω = 〈z〉 [Aρsz]S,z(~ω@ z, aρ, bρ) (3.14)

Note that by the definition of the extended open box

([IdA(a, b)ρ]S~ω) @ 0 = aρ and ([IdA(a, b)ρ]S~ω) @ 1 = bρ.

The uniformity conditions follow from those in A.
For a substitution σ : ∆→ Γ an element ω of (IdA(a, b)σ)ρ = IdA(a, b)(σρ)

is given by ω@ z in A((σρ)sz) = (Aσ)(ρsz) with ω@ 0 = a(σρ) = (aσ)ρ
and ω@ 1 = b(σρ) = (bσ)ρ. Hence IdA(a, b)σ = IdAσ(aσ, bσ) as types, and
similarly this holds for the Kan structure.
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Note that for the filling operations in IdA(a, b) we need the filling opera-
tions in A with one more non-principal direction. This is the main reason to
require operations with non-principal sides!

Lemma 3.18. For Γ ` A and Γ ` a : A we have Γ ` refl a : IdA(a, a), and
(refl(a))σ = refl(aσ) for a substitution σ : ∆→ Γ.

Proof. For ρ ∈ Γ(I) define (refl a)ρ = a(ρsxI
), i.e., (refl a)ρ = 〈x〉a(ρsx).

This defines a term as (a(ρsxI
))f = a(ρsxI

(f, xI = xJ)) = a((ρf)sxJ
) =

(refl a)(ρf) for f : I → J .

Note that the previous lemma does not rely on Γ ` A to be a Kan type.
Next, we will define an elimination operator for the identity type. We

will define various operations which together define the J-eliminator where the
usual definitional equality holds only up to propositional equality (i.e., we will
give an inhabitant of the respective Id-type).

First we define the transport along a path. Let Γ ` A be a type and
Γ.A ` C be a Kan type. Furthermore let Γ ` a : A, Γ ` b : A, Γ ` e : C[a],
and Γ ` d : IdA(a, b). (Recall that [a] is the substitution (1, a) : Γ → Γ.A.)
We define a term Γ ` substC(d, e) : C[b] as follows. For ρ ∈ Γ(I) and a
fresh x = xI we have that dρ@x ∈ Aρsx with (dρ@x)(x = 0) = aρ and
(dρ@x)(x = 1) = bρ. Thus (ρsx, dρ@x) connects [a]ρ to [b]ρ along x. We
define

substC(d, e)ρ = C(ρsx, dρ@x)
+
x (eρ) ∈ C[b]ρ (3.15)

where the composition operation is w.r.t. the shape ((x, 1); ∅; I). This defines
a term, since by the uniformity conditions we get for f : I → J and y = xJ
J-fresh:

(substC(d, e)ρ)f =
(
C(ρsx, dρ@x)

+
x (eρ)

)
f

=
(
C(ρsx, dρ@x)(f, x = y)

)+
y

(eρf)

= C(ρfsy, dρf @ y)
+
y (eρf)

= subst(d, e)(ρf)

where we used that sx(f, x = y) = fsy.
If σ : ∆→ Γ, then (substC(d, e))σ = substC(σp,q)(dσ, eσ) which is readily

checked from the defining equation (3.15).
According to the definition of subst the line C(ρsx, dρ@x)↑x(eρ) connects

eρ to substC(d, e)ρ. In particular, for d = refl a we get

Γ ` substEqC(a, e) : IdC[a](e, substC(refl a, e))

where
substEqC(a, e)ρ = 〈x〉C(ρsx, aρsx)↑x(eρ). (3.16)

Similar to above one can show that this defines a term and is stable under
substitution.
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Definition 3.19. For a type Γ ` A we define the type Γ ` contr(A) by

contr(A) = ΣA (ΠAp(IdApp(qp, q)))

or using “informal” type theoretical notation

contr(A) = (Σx : A) (Πy : A) IdA(x, y).

We say that a type Γ ` A is contractible if the type Γ ` contr(A) is inhabited.
In this case we call the first projection a center of contraction.

Next, we show that if Γ ` A is a Kan type and Γ ` a : A, then the
singleton type singl(A, a) = ΣA IdAp(ap, q) is contractible. We clearly have
Γ ` (a, refl a) : singl(A, a). We now show that (a, refl a) is also a center of
contraction, i.e., we have to give a term

Γ. singl(A, a) ` isCenter(a) : Id((a, refl a)p, q).

where we omitted the subscript singl(A, a)p. Let ρ ∈ Γ(I) and (b, ω) ∈
singl(A, a)ρ, so b ∈ Aρ and ω ∈ (IdAp(ap, q))(ρ, b). For a fresh x = xI ,
ω@x ∈ Aρsx connects aρ to b. Let y be a fresh name (y = xI,x). We have to
give an element in Id((a, refl a)p, q)(ρ, (b, ω)) for which we give an element
in singl(A, a)ρsy connecting (a, refl a)ρ to (b, ω). This amounts to give a
pair whose first component α is in Aρsy and connects a to b and whose second
component in (IdAp(ap, q))(ρsy, α) connects (refl a)ρ to ω along y. Consider
the open box (aρsy, aρsx, ω@x) in A(ρsxsy):

aρ b

aρ aρ

aρsx
aρsy

ω@ x (3.17)

Its filler gives rise to the second component and its composition, i.e., its upper
face gives the first component. Thus we define

isCenter(a)(ρ, (b, ω)) = 〈y〉
(
A(ρsxsy)

+
x,y(aρsy, aρsx, ω@x),

〈x〉A(ρsxsy)↑x,y(aρsy, aρsx, ω@x)
) (3.18)

The uniformity conditions guarantee that this defines a section.
Let us define the more common elimination operator of Paulin-Mohring

from the above operations—with the difference that the usual definitional
equality is only propositional. To not make the notation too heavy we’ll use
informal reasoning in type theory; note that the definition can be given inter-
nally in type theory and we don’t refer to the model; this definition follows
Danielsson’s Agda development1 accompanying [15]. First note that using the
transport operation subst one can define composition p � q : IdA(a, c) of two
identity proofs p : IdA(a, b), q : IdA(b, c), as well as inverses p−1 : IdA(b, a).

1Available at www.cse.chalmers.se/~nad/.

www.cse.chalmers.se/~nad/
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Let A be a type, a : A, and C(b, p) a type given b : A, p : IdA(a, b), such
that v : C(a, refl a); for b : A and p : IdA(a, b) we define J(a, v, b, p) : C(b, u).
We can consider C as a dependent type over singl(A, a) via C(pw, qw) for
w : singl(A, a). As we showed in the last paragraph, singl(A, a) is con-
tractible with center (a, refl a), and thus we get a witness app(ϕ, (b, p)) :
Id((a, refl a), (b, p)) for ϕ = λ isCenter(a); now with subst (w.r.t. the type
C(pw, qw) for w : singl(A, a)) we can define

J(a, v, b, p) = subst((app(ϕ, (a, refl a)))−1 � app(ϕ, (b, p)), v). (3.19)

Note that we now are able to derive IdIdA(a,a)(p
−1�p, refl a) for all p : IdA(a, b)

using J and substEq.
It remains to check the propositional equality for J. If, in (3.19), p = refl a

and b = a, we get that

app(ϕ, (a, refl a))−1 � app(ϕ, (b, p))

is propositionally equal to refl(refl a), and thus using subst and substEq

again one gets a witness of IdC(a,refl a)(v, J(a, v, a, refl a)). This concludes
the sketch that J with the rewrite rule as propositional equality is definable
from subst, substEq, and isCenter—and that alone in type theory without
referring to their actual semantics.

Note that to get the propositional equality for J we could not use subst

on app(ϕ, (b, p)) directly.

3.3.1 Functional Extensionality

The equality on the function space is extensional.

Theorem 3.20. Equality on Π-types is extensional, i.e., any pointwise equal
functions are equal. More precisely, given Γ ` A, Γ.A ` B we can justify the
rule:

Γ ` w : ΠAB
Γ ` w′ : ΠAB Γ ` e : ΠA IdB[q](app(wp, q), app(w′p, q))

Γ ` funExt(w,w′, e) : Id(w,w′)

Proof. Let ρ ∈ Γ(I), x = xI fresh, and write θ for funExt(w,w′, e). We have
to define a dependent function

(θρ)f in
∏

u∈A(ρsxf)

B(ρsxf, u) for each f : I, x→ J.

In case fx = 0 we set (θρ)f = wρ(f−x), and likewise, in case fx = 1 we
set (θρ)f = w′ρ(f−x). For f defined on x we set (θρ)f = (θ(ρf))1 so that
we can assume f = 1 : I, x → I, x. This definition ensures (θρ)g = θ(ρg).
Let u ∈ Aρsx and ub = u(x = b) ∈ Aρ; we have to define (θρ)1u ∈ B(ρsx, u)
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connecting wρ1u0 to w′ρ1u1 along x. Let y be fresh. We get that (eρ1u1) @ y ∈
B(ρsy, u1) and hence we define (θρ)1u to be the filler of the following box

wρ1u0 w′ρ1u1

wρ1u0 wρ1u1

(θρ)1u

(wρ1u0)sy

wρsxu

(eρ1u1)@ y over B(ρsxsy, usy).

That is, (θρ)1u = B(ρsxsy, usy)
+
y,x(wρsxu, (wρ1u0)sy, (eρ1u1) @ y). Now if

f : I, x→ J is defined on x and z J-fresh, we get by the uniformity conditions

((θρ)1u)f =
(
B(ρsxsy, usy)

+
y,x(wρsxu, (wρ1u0)sy, (eρ1u1) @ y)

)
f

=
(
B(ρsxsy, usy)(f, y = z)

)+
z,fx(

(wρsxu)f, (wρ1u0)(f − x)sz, (eρ1u1)(f − x) @ z
)

which is the same as (θρ)f (uf). In case f is not defined on x we get ((θρ)1u)f =
(θρ)f (uf) by the above definition. We leave the verification of (θρ)f = θ(ρf)
from these equations to the reader.

3.3.2 Path Application

Although in general subst and J don’t satisfy the usual definitional equali-
ties the model justifies another operation ap which satisfies new definitional
equalities which don’t hold if we define the operation using J.

Theorem 3.21. Let Γ ` A and Γ ` B be Kan types, Γ ` u : A, and Γ ` v : A.
Then we can validate the rule

Γ ` ϕ : A→ B Γ ` w : IdA(u, v)

Γ ` ap(ϕ,w) : IdB(app(ϕ, u), app(ϕ, v))

satisfying

ap(id, w) = w

ap(ϕ ◦ ψ,w) = ap
(
ϕ, ap(ψ,w)

)
ap(ϕ, refl a) = refl(app(ϕ, a))

ap(λ(bp), w) = refl b

where id is the identity function, ◦ denotes composition, and λ(bp) is the con-
stant b function. Moreover this operation is stable under substitution, i.e.,
ap(ϕ,w)σ = ap(ϕσ,wσ) for σ : ∆→ Γ.

Proof. For ρ ∈ Γ(I) and a fresh x we set

ap(ϕ,w)ρ = 〈x〉 (ϕρ)sx(wρ@x).
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This defines a term as for f : I → J and y J-fresh we get

(ap(ϕ,w)ρ)f = 〈y〉 ((ϕρ)sx(wρ@x))(f, x = y)

= 〈y〉 (ϕρ)sx(f,x=y)(wρ@x(f, x = y))

= 〈y〉 (ϕρ)fsy (w(ρf) @ y)

= 〈y〉 (ϕ(ρf))sy (w(ρf) @ y) = ap(ϕ,w)(ρf)

The other equations immediately follow from the definition. Let us, for exam-
ple, check the second equation: ϕ ◦ ψ is λ app(ϕp, app(ψp, q)) and hence

ap(ϕ ◦ ψ,w)ρ @x = ((ϕ ◦ ψ)ρ)sx(wρ@x)

= app(ϕp, app(ψp, q))(ρsx, wρ@x)

which using ((ϕp)(ρsx, wρ@x))1 = (ϕρ)sx (and analogously for ψ) becomes

= (ϕρ)sx((ψρ)sx(wρ@x))

= (ϕρ)sx(ap(ψ,w)ρ @x)

= (ap(ϕ, ap(ψ,w)))ρ @x.

3.3.3 Heterogeneous Identity Types

The model also comes with a natural notion of heterogeneous identity types
satisfying the following rules

Γ ` A Γ ` u0 : A Γ ` u1 : A Γ ` p : IdA(u0, u1)
Γ.A ` C Γ ` v0 : C[u0] Γ ` v1 : C[u1]

Γ ` HIdpC(v0, v1)

HIdrefluC (v0, v1) = IdC[u](v0, v1)

omitting the equations for stability under substitution. Its interpretation in
the cubical set model is given by: for ρ ∈ Γ(I) the set (HIdpC(v0, v1))ρ contains
elements 〈x〉w with w ∈ C(ρsx, pρ@x) (up to renaming of bound variables,
or making a canonical choice x = xI as for the identity type) such that w(x =
b) = vb for b ∈ 2. The Kan structure is given by the equation:

[(HIdpC(v0, v1))ρ]S~ω = 〈z〉 [C(ρsz, pρ@ z)]S,z(~ω, v0ρ, v1ρ).

The accompanying equation is immediate given the definition of Id.

3.4 Regular Kan Types

We have seen that in general the usual definitional equality for J holds only up
to propositional equality. If we restrict to Kan types which satisfy a regularity
condition we can give a definition of J for which the equality is definitional.
This notion is however not preserved by all the type formers.
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Definition 3.22. A Kan type Γ ` A is regular if for any open box shape S with
principal direction x and S-open box ~u in ρsx such that each component uyb
with y 6= x is degenerated along x, i.e., uyb = vybsx for some vyb ∈ Aρ(y = b),
then the filling satisfies

[Aρsx]S~u = uxasx

where uxa is the principal face of ~u. (So ~u = uxa, ~vsx.)

Theorem 3.23. Regularity is preserved under substitution and the type for-
mers Id and Σ, that is:

1. If Γ ` A is a regular Kan type, then so is ∆ ` Aσ for σ : ∆→ Γ.

2. If Γ ` A be a regular Kan type, Γ ` a : A, and Γ ` b : A, then also
Γ ` IdA(a, b) is regular.

3. If Γ ` A and Γ.A ` B are regular Kan types, then so is Γ ` ΣAB.

Proof. The proof is by analyzing the definitions of the fillings. For (1) re-
call that the fillings in (Aσ)ρsx are defined by fillings in A(σ(ρsx)). Since σ
commutes with degenerates, regularity is preserved to Aσ.

For (2) the defining equation (3.14) yields for an S-open box ω, ~ω in
IdA(a, b)ρsx degenerate along x (where x is the principal direction of S and ω
the principal side of the box)

[IdA(a, b)ρsx]S(ω, ~ω) = 〈z〉 [Aρsxsz]S,z(ω@ z, ~ω@ z, aρsx, bρsx)

= 〈z〉 (ω@ z)sx = ωsx

as sxsz = szsx and (ω@ z, ~ω@ z, aρsx, bρsx) is also degenerate along x.

For (3) one readily checks from the defining equations in Theorem 3.13.

Let us sketch how one can use regularity in order to define a variant of J
given in Section 3.3 but with the right definitional equality for regular Kan
types (using the notations from Section 3.3): First, the definition of subst

and isCenter is as in Section 3.3. Note that by the regularity condition (for
C) substEqC(a, e) is simply refl(e) in equation (3.16) on page 42. Moreover,
the definition of isCenter(a) on page 43 is such that if b = aρ and ω = aρsx
the square (3.17) is degenerate. Second, this can be used to directly define a
variant J′ of J by

J′(a, v, b, p) = subst(app(ϕ, (b, p)), v).

where ϕ was λ isCenter(a). This now satisfies the right definitional equality
since if p = refl(a) and b = a, then app(ϕ, (a, refl(a))) = refl(a, refl(a)),
and so using subst along a reflexivity path yields v.
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3.5 Kan Completion

In this section we will show how to complete any cubical set Γ to a Kan cubical
set Γ̂. This works by freely attaching fillers to Γ; their restrictions are guided
by the uniformity conditions. This construction however does not work for
dependent types in a satisfactory way since it does not necessarily commute
with substitutions.2

Theorem 3.24. For any cubical set Γ there is a Kan cubical set Γ̂ and a
monomorphism inc : Γ→ Γ̂ such that for any Kan cubical set ∆ and σ : Γ→ ∆
there is a morphism σ̂ : Γ̂→ ∆ making the following diagram commute:

Γ Γ̂

∆

inc

σ σ̂

Proof. Given a cubical set Γ ` we define the sets Γ̂(I) for I in��� and restriction
maps Γ̂(I) 3 ρ 7→ ρf ∈ Γ̂(J) for f : I → J by induction-recursion as follows.
The sets are given by the rules:

1. If ρ ∈ Γ(I), then inc ρ ∈ Γ̂(I).

2. If S is an open box shape with principal side (x, a) and ~u is an S-open
box in Γ̂(I), then fillS ~u ∈ ρ̂.

3. If S is an open box shape with principal side (x, a) and ~u is an S-open
box in Γ̂(I) and x = xI−x, then compS ~u ∈ Γ̂(I − x).

Here inc, fillS , and compS are constructors, with the intended rôle for the latter
two being the filling and composition operation, respectively. Note that in (2)
and (3) being an open box refers to the restrictions defined at the same time.
Note that the assumption on the variable x in (3) is due to the fact that x
is bound. (One could also identify these expressions up to renaming of the
bound variables, similar as for the path types.) The restrictions are guided by
the uniformity conditions. For f : I → J we define

(inc a)f = inc(af)

(fillS ~u)f =


uyc(f − y) if for some (y, c) ∈ 〈S〉, fy = c,

compSf ′(~uf
′) if fx = a,

fillSf (~uf) otherwise.

2Indeed, type theory can’t be consistently extended with such a rule, cf. http://ncatlab.
org/homotopytypetheory/show/Homotopy+Type+System#fibrant_replacement (October 13,
2014).

http://ncatlab.org/homotopytypetheory/show/Homotopy+Type+System#fibrant_replacement
http://ncatlab.org/homotopytypetheory/show/Homotopy+Type+System#fibrant_replacement
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where f ′ = (f −x, x = xJ) and the restriction of a composition compS ~u along
f : I − x→ J is defined by

(compS ~u)f =

{
uyc(x = a)(f − y) if for some (y, c) ∈ 〈S〉, fy = c,

compSf̃ (~uf̃) otherwise.

where now f̃ = (f, x = xJ) : I → J, xJ .
Now one proves by induction on a ∈ Γ̂(I) that (ρf)g = ρ(fg) and ρ1 = ρ

to make Γ̂ into a cubical set. The Kan fillers are given by the constructor fillS
making Γ̂ into a Kan cubical set. We directly get the monomorphism Γ → Γ̂
from the constructor inc.

Given a Kan cubical set ∆ and σ : Γ→ ∆ we define maps Γ̂(I)→ ∆(I), ρ 7→
σ̂ρ while simultaneously proving (σ̂ρ)f = σ̂(ρf) for f : I → J :

σ̂(inc ρ) = σρ

σ̂(fillS ~u) = [∆]S(σ̂~u)

σ̂(compS ~u) = |∆|S(σ̂~u)

where (x, a) is the principle side of S (with x = xI−x in the last case), and σ̂~u is
the family of elements σ̂(uyb) for (y, b) ∈ 〈S〉; by the induction hypothesis, this
is an open box in ∆(I). That ϕ̂ commutes with restrictions is by construction,
as is the commuting diagram.
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Chapter 4

The Universe of Kan
Cubical Sets

In this chapter we will define the universe of small Kan types and show that
it is itself a uniform Kan cubical set. The main work goes into the latter and
we will decompose this into first defining the composition- and then the filling
operations (similarly to what we did for Π-types).

Recall from Section 1.2.4 how to lift a Grothendieck universe Set0 to a
universe in the presheaf model. This is adapted to give a universe of small
Kan types by basically replacing “type” with “Kan type” in the definition:
First, we adapt the definition of small type. The judgment Γ ` A KType0 is
defined to be that Γ ` A is a Kan type and Aρ is a small set (i.e., an element
of Set0) for each ρ ∈ Γ(I); we also call such a Γ ` A a small Kan type. Second,
we define the universe accordingly:

Definition 4.1. The cubical set U of small Kan types is defined as follows.
The set U(I) consists of all small Kan types yI ` A KType0; restrictions along
f : I → J are defined by substituting with yf : yJ → yI.

The definitions of p·q and El are as in Section 1.2.4, where the fillings
are defined by [(ElT )ρ]S~u = [(Tρ)1]S~u and [(pAqρ)f ]S~u = [A(ρf)]S~u. This
defines a universe structure on the Kan cubical set model if we prove that
Γ ` U is itself a Kan type, i.e., that U is a Kan cubical set.

Note that the points of U are simply the (small) Kan cubical sets: for
y∅ ` A we get a Kan cubical set with A(I) being Af where f is the unique
∅ → I. A line in U between points A and B can be seen as a “heterogeneous”
notion of lines, cubes, . . . , a→ b where a is an I-cube of A and b and I-cube
of B.

Theorem 4.2. The cubical set U of small Kan types is a Kan cubical set.

We first show that U has compositions. The intuitive idea behind the
composition is that of composing relations (hence the name). If we are given
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a open box in the universe, say of the form

C D

A B

γ

β

α

δ y
x

we want to define the line δ in the universe. δ will be given by a family δf for
f : {y} → I where the main case is δ1 which will be defined to consist of triples
(u, v, w) where u ∈ α1, v ∈ β1, and w ∈ γ1 such that they are compatible in
the sense that u(x = 0) = v(y = 0) and w(x = 0) = v(y = 1), i.e., a open box
shape:

· ·

· ·

w

v

u

We then have to verify that δ has filling operations.

Lemma 4.3. U has composition operations.

Proof. Let S = ((x, d); J ; I) be an open box shape in I and ~A an S-open box
in U(I), that is, compatible Aya ∈ U(I − y) for (y, a) ∈ 〈S〉. We first define

the composition Axd = |U|S ~A as a type y(I − x) ` Axd and then explain its
Kan structure. Let d̄ = 1− d.

Before we define Axd let us introduce some notation. An S-open box ~u
in ~A is given by a family uyb ∈ (Ayb)1 for (y, b) ∈ 〈S〉 such that they are
compatible, i.e., uyb(z = c) = uzc(y = b) ∈ (Ayb)(z=c) = (Azc)(y=b) for y 6= z,

(y, b), (z, c) ∈ 〈S〉. We denote the set of all such S-open boxes by 〈S〉 ~A. Note

that if f : I → K is defined on x, J , then ~u ∈ 〈S〉 ~A implies ~uf ∈ 〈Sf〉 ~Af .
For f : I − x → K we define the (small) set (Axd)f by distinguishing

cases. In case f(y) = b for some (y, b) ∈ 〈S〉 (note that y 6= x), then f =
(y = b)(f − y) and define (Axd)f = (Ayb)(f−y,x=d). Note that this is well

defined as ~A is compatible. Otherwise, i.e., in case f is defined on J , we define
(Axd)f = 〈Sf ′〉Af ′ where f ′ = (f, x = xK) : I → K,xK . This guarantees
that Axd has the right faces. One can also define it to be elements 〈z〉~u with

~u ∈ 〈S(f, x = z)〉 ~A(f, x = z) and identify modulo α-conversion; we will use
this notation.

To summarize, (Axd)f consists of elements of the form

1. u ∈ (Ayb)(f−y,x=d) if f(y) = b for some (y, b) ∈ 〈S〉;

2. 〈z〉~u, where ~u ∈ 〈S(f, x = z)〉 ~A(f, x = z) and z is fresh, otherwise.

Now if g : K → L we define the restrictions of an element in (Axd)f as follows.
For elements u of the form (1), we use the restriction ug of (Ayb)(f−y,x=d).
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The restriction of an element 〈z〉~u of the form (2) is defined by

(〈z〉~u)g =

{
u(fy)b(g − fy, z = d) if g(f(y)) = b for some (y, b) ∈ 〈S〉,
〈z′〉~u(g, z = z′) otherwise,

where z′ is fresh w.r.t. the codomain of g. Note that in each case the resulting
element is in (Axd)fg. In particular, for (y, b) ∈ 〈S〉 and f = 1 we have

(〈z〉~u)(y = b) = uyb(z = d).

This defines Axd = |U|S ~A as a cubical set satisfying (as cubical sets)

(|U|S ~A)(y = b) = Ayb for (y, b) ∈ 〈S〉, (4.1)

(|U|S ~A)f = |U|Sf ′ ~Af ′ if f is defined on J, (4.2)

with f ′ = (f, x = z) and in particular as sets we have

(|U|S ~A)f =

{
(Ayb)(f−y,x=d) if f(y) = b for some (y, b) ∈ 〈S〉,
(|U|Sf ′ ~Af ′)1 if f is defined on J.

(4.3)

We now have to define the filling operations for (Axd)f = (|U|S ~A)f .
W.l.o.g. we assume that f = 1 : I − x → I − x as we take (4.3) as defin-
ing equations for the filling operations as well otherwise. Let ~w be an open
box of shape S′ = ((x′, d′); J ′; I − x) in (Axd)1, i.e., wyb ∈ (Axd)(y=b) for
(y, b) ∈ 〈S′〉 such that for (y, b), (z, c) ∈ 〈S′〉, y 6= z

wyb(z = c) = wzc(y = b). (4.4)

Note that for (y, b) ∈ 〈S′〉 − 〈S〉 (i.e., (y, b) ∈ 〈S′〉 and y /∈ J) we have

that wyb = 〈x〉~uyb with ~uyb ∈ 〈S(y = b)〉 ~A(y = b). (We assume that all
bound variables are x which is fresh for I − x.) Since y /∈ x, J we have
〈S(y = b)〉 = 〈S〉, so uybzc ∈ (Azc)(y=b) for (z, c) ∈ 〈S〉 such that

uybzc(z
′ = c′) = uybz′c′(z = c) (4.5)

whenever these elements are defined. Moreover, by the definition of the re-
striction

wyb(z = c) = uybzc(x = d) (4.6)

and so, since ~w is adjacent compatible (4.4), we get for (y, b) ∈ 〈S′〉 − 〈S〉 and
(z, c) ∈ 〈S〉,

wzc(y = b) = uybzc(x = d). (4.7)

Moreover, if (y, b), (y′, b′) ∈ 〈S′〉 − 〈S〉 with y 6= y′, we have since wyb(y
′ =

b′) = wy′b′(y = b) that the corresponding entries at (z, c) ∈ 〈S〉 of the vectors
are equal, i.e.,

uybzc(y
′ = b′) = uy

′b′

zc (y = b). (4.8)
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For (z, c) ∈ 〈S〉 we denote the family (not necessarily an open box) of the uybzc,
(y, b) ∈ 〈S′〉 − 〈S〉 by aux(z, c). By (4.8) this family is compatible.

We want to define the element [(Axd)1]S′ ~w = [(|U|S ~A)1]S′ ~w ∈ (Axd)1 in
such a way that this definition satisfies the uniformity condition. I.e., for
f : I − x→ L defined on x′, J ′ ⊆ I − x, we require

([(|U|S ~A)1]S′ ~w)f = [(|U|S ~A)f ]S′f (~wf)

that is, according to (4.3),(
[(|U|S ~A)1]S′ ~w

)
f ={

[(|U|Sf ′ ~Af ′)1]S′f (~wf) if J ⊆ def(f),

[(Ayb)(f−y,x=d)]S′f (~wf) if fy = b for a (y, b) ∈ 〈S〉.
(4.9)

Let us write 〈x〉~u for the element [(|U|S ~A)1]S′ ~w we are going to define. To
satisfy the second equation of (4.9) we need for y ∈ J and (y, b) /∈ 〈S〉′ that

uyb(x = d) = (〈x〉~u)(y = b) = [(Ayb)(x=d)]S′(y=b)(~w(y = b)). (4.10)

To give 〈x〉~u there are three cases to consider. We leave it for the reader
to verify (〈x〉~u)(y = b) = wyb for (y, b) ∈ 〈S〉 along with the definition of ~u.

1. W.l.o.g. J ⊆ x′, J ′. Let us first illustrate this in a (low-dimensional)
special case where I = {x, x′, y}, J = {y}, d = d′ = 1, and also J ′ = ∅. We
are given the dotted line in:

x′ y

x

Ax0

Ay0

Ay1

Ax1 = |U|( ~A)

The types of the corresponding cubes are indicated in the lower square (which
is not filled). The dotted line is, as an element in the composition, given by an
open box indicated as the solid lines. To give the filling of the dotted line in
the upwards direction is to give an open box indicated with the dashed lines;
the first step is to fill each of the black dots upwards, and to proceed with the
other cases with the extended box which now contains the non-principal sides
for y ∈ J .

More formally and in the general case, for each y ∈ J with y /∈ x′, J ′ we
have that (y, b) /∈ 〈S〉′ (for b ∈ 2) and we construct

wyb ∈ (Ayb)(x=d)
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by filling ~w(y = b) of shape S′(y = b) in (Ayb)(x=d). Note that for (y, b), (z, c)
with y, z ∈ J and y, z /∈ x′, J ′ the so constructed elements are adjacent com-
patible since:

wyb(z = c) = ([(Ayb)(x=d)]S′(y=b)(~w(y = b)))(z = c)

= [(Ayb)(x=d)(z=c)]S′(y=b)(z=c)(~w(y = b)(z = c))

= [(Azc)(x=d)(y=b)]S′(z=c)(y=b)(~w(z = c)(y = b))

= wzc(y = b)

Moreover, by construction they are adjacent compatible with the given open
box ~w. Thus, we can extend the ~w to a ((x, d); J ′, (J − (x′, J ′)); I − x) open
box.

2. Case x′ /∈ J . Let us first illustrate again in the special case as above
but now with J ′ = y. So we are given the dotted line and the the solid lines
on the right in:

1

2

2

The dotted line again corresponds to the three lower solid lines, and we want
to construct three squares indicated by the dashed lines. To do so, we first
fill on the left as indicated by the double arrow labeled “1”; second, we fill
those sides labeled with “2” by the other sides taking into account those faces
already constructed in the first step.

2.1. We construct uxd̄ ∈ (Axd̄)1 by filling aux(x, d̄) in (Axd̄)1. Note that
here aux(x, d̄) is an open box of shape ((x′, d′); J ′ − J ; I − x).

2.2. Next, for (z, c) ∈ 〈S〉 with z 6= x we construct uzc ∈ (Axd̄)1 by filling
in (Axd̄)1 the open box

aux(z, c), uxd̄(z = c), wzc of shape ((x′, d′); (J ′ − J), x; I − z).

where the latter two elements are the non-principal sides at (x, d̄) and (x, d),
respectively.

2.3. This concludes the construction of ~u in this case.
3. Case x′ ∈ J . Let us again first sketch the construction in the above

special case where x′ = y, J = J ′ = y. We are given the right hand open box
given by the two dotted lines (which become the lower and upper solid lines)
and the solid line on the right in:
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The filler of the open box is now constructed doing the fillers indicated with
the double arrows in order: starting with the front where there are three solid
lines forming an open box, and continuing the way to the back, always taking
into account the face of the previously constructed filler as principal side.

3.1. We begin by extending the input box along x in direction d̄. More
precisely, we construct uzc ∈ (Azc)1 where (z, c) ∈ 〈(x′, d′); J − x′〉 (note
J − x′ = J ∩ J ′) by filling

wzc, aux(z, c) of shape ((x, d̄); J ′ − J ; I − z).

Here wzc ∈ (Axd)zc = (Azc)(x=d) is the principal side of the open box; more-
over, note that 〈(x′, d′); J − x′〉 contains (x′, d̄′) where d̄′ = 1 − d′, but not
(x′, d′) and not (x, d̄).

3.2. Next, we construct uxd̄ ∈ (Axd̄)1 by filling the open box

uzc(x = d̄) for (z, c) ∈ 〈(x′, d′); J − x′〉,
aux(x, d̄)

of shape

((x′, d′); (J − x′) ∪ (J ′ − J); I − x) = ((x′, d′); J ′; I − x) = S′,

where ux′d̄′(x = d̄) ∈ (Ax′d̄′)(x=d̄) = (Axd̄)(x′=d̄′) is the principal side of the
open box.

3.3. Finally, we construct the missing side ux′d′ ∈ (Ax′d′)1 by filling

uxd̄(x
′ = d′),

uzc(x
′ = d′) for z ∈ J − x′, c ∈ 2, and

aux(x′, d′)

of shape ((x, d); (J − x) ∪ (J ′ − J); I − x′) = ((x, d); J ′; I − x′).
3.4. This concludes the construction of ~u in this case.
We have to verify that this definition satisfies the uniformity conditions,

i.e., that equations (4.9) are valid. Let f : I − x→ L be defined on x′, J ′.
Assume fy = b for some y ∈ J . To simplify notations, say f = (z = b).

Then y /∈ x′, J ′ since f was defined on x′, J ′. Thus we obtain

(〈x〉~u)(y = b) = wyb = [(Ayb)(x=d)]S′(x=d)(~w(x = d))

as constructed in step 1, which we had to show.
Let us now assume that f is also defined on J . We have to show

(〈x〉~u)f = [(|U|Sf ′ ~Af ′)1]S′f (~wf)

where f ′ = (f, x = x∗) with x∗ fresh. Let us denote the right hand side
element by 〈x∗〉~u∗ and all abbreviations used in the definition of ~u∗ will be
decorated with a ∗ as well (e.g., aux∗). Thus we have to show ~uf ′ = ~u∗. Since
f is injective x′ ∈ J iff fx′ ∈ fJ , and thus ~u and ~u∗ are defined via the same
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case. Moreover, for (y, b) ∈ 〈S′〉 − 〈S〉 (which is iff (fy, b) ∈ 〈S′f〉 − 〈Sf ′〉) we
have

w∗(fy)b = wyb(f − y) = (〈x〉~uyb)(f − y) = 〈x∗〉 ~uyb(f − y, x = x∗)

and thus aux(z, c)(f ′ − z) = aux∗(f ′z, c) for (z, c) ∈ 〈S〉. Now for example, in
case 2 the first construction of u∗

(fx)d̄
is by filling aux∗(fx, d̄), so

u∗x∗d̄ = [(A∗x∗d̄)1](aux∗(x∗, d̄))

= [(A∗x∗d̄)1](aux(x, d̄)(f ′ − x))

= [(Axd̄)f ](aux(x, d̄)f)

= uxd̄f = uxd̄(f
′ − x)

using the uniformity condition of (Axd̄)1. Similarly, in the construction of the
u∗(fy)b for (y, b) ∈ 〈S〉, y 6= x. The other case is analogous, concluding the
proof.

Theorem 4.4. U is a Kan cubical set.

Proof. We extend the composition operations of Lemma 4.3 to filling oper-
ations making U into a Kan cubical set. Let S = ((x, d); J ; I) be an open

box shape in I and ~A an S-open box in U(I), i.e., adjacent compatible

Aya ∈ U(I − y) for (y, a) ∈ 〈S〉. We first define the filling A = [U]S ~A as
a type yI ` Axd and then explain its Kan structure. Note that this will be
such that A(x = d) = Axd with Axd := |U|S ~A as constructed in the preceding
lemma.

For f : I → K we give a (small) set Af . In case fy = b for some (y, b) ∈
〈S〉∪{(x, d)} we have f = (y = b)(f −y) and set Af = (Ayb)(f−y). Otherwise,
i.e., f is defined on x, J , we can w.l.o.g. assume f = 1 : I → I as we otherwise
set Af = ([U]Sf ~Af)1. The set A1 is now defined as follows: an element is of

the form 〈z〉~w where ~w is an open box in ~Asz of shape Ssz and z is fresh, so
~w is given by elements wyb ∈ (Ayb)sz for (y, b) ∈ 〈S〉; moreover, we require for
(y, b) ∈ 〈S〉 with y 6= x that wyb(x = 1) # z, i.e., wyb is degenerate along z.
Here z is a bound variable. Let us illustrate this definition in the special case
where J = y and d = 1: such an element ~w is given by

wx0

wy0

wy1

z y

x

Ax0

Ay0

Ay1
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where the dashed lines are required to be degenerate. Note that projecting
~w to (z = 1) gives an element of Ax1 = |U|( ~A) (disregarding binders for the
moment). A good way to think of ~w is to imagine wy0 and wy1 as triangles by
shrinking each of the dashed lines to a point, and to think of the dimension z
as “hidden”:

wy0

wy1

y

x
wx0

Here, the right hand lines are the projection (z = 1), which is how we will
define the restriction of the element ~w to (x = 1), and the dots correspond to
the dashed lines above.

The restriction ug ∈ Afg along g : K → L of an element u ∈ Af where
f : I → K is defined as follows: In case fy = b for some (y, b) ∈ 〈S〉 ∪ {(x, d)},
ug is given by the restriction of (Ayb)(f−y). Otherwise, f is defined on x, J

and u = 〈z〉~w with ~w and open box in ~Af of shape (Sf)sz; we set

(〈z〉~w)g =


w(fy)b(z = 0)(g − fy) if g(fy) = b for some (y, b) ∈ 〈S〉,
(〈x〉~w(z = 1))(g − fx) if g(fx) = d and fJ ⊆ def(g),

〈z′〉 ~w(g, z = z′) otherwise,

where in the last case z′ is fresh w.r.t. the codomain of g. In particular, if
f = 1, this definitions reads as

(〈z〉~w)g =


wyb(z = 0)(g − y) if gy = b for some (y, b) ∈ 〈S〉,
(〈x〉~w(z = 1))(g − x) if gx = d and J ⊆ def(g),

〈z′〉 ~w(g, z = z′) otherwise.

This definition deserves some explanation: in case gy = b for (y, b) ∈ 〈S〉,
wyb ∈ (Ayb)sz and thus wyb(z = 0)(g − y) ∈ (Ayb)(g−y) = Ag; in the second

case where gx = d, ~w(z = 1) is an S-open box in ~A, and thus, 〈x〉~w(z = 1)

is an an element of (Axd)1 = (|U|S ~A)1 (cf. the definition in Lemma 4.3). It

can be checked that this defines a (small) type yI ` [U]S ~A = A satisfying (as
types, not yet as Kan types)

([U]S ~A)(y = b) = Ayb for (y, b) ∈ 〈S〉

([U]S ~A)(x = d) = |U|S ~A

([U]S ~A)f = [U]Sf ~Af if f is defined on x, J .

The next step is to define the Kan structure on Af where f : I → K.
W.l.o.g. we assume that f = 1 : I → I as otherwise we use the above equations
for the filling. Let ~v be an open box of shape S′ = ((x′, d′); J ′; I) in A = [U]S ~A,
i.e., ~v is given by adjacent-compatible vyb ∈ A(y=b) for (y, b) ∈ 〈S′〉.
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Note that if (y, b) ∈ 〈S′〉 ∩ 〈S〉, we have vyb ∈ A(y=b) = (Ayb)1.

For (y, b) ∈ 〈S′〉 − 〈S〉, we have vyb ∈ A(y=b) = ([U]S(y=b)
~A(y = b))1, and

so vyb = 〈z〉~wyb where ~wyb is an S(y = b)sz open box in ~A(y = b)sz with the

conditions described above. In particular, wybξc ∈ (Aξc)(y=b)sz for (ξ, c) ∈ 〈S〉
with

wybξc(ξ
′ = c′) = wybξ′c′(ξ = c) (4.11)

if also (ξ′, c′) ∈ 〈S〉 with ξ 6= ξ′. Moreover, since ~v is adjacent compatible we
get that vyb(y

′ = b′) = vy′b′(y = b) for both (y, b), (y′, b′) ∈ 〈S′〉 − 〈S〉, and
thus the corresponding entries at position (ξ, c) ∈ 〈S〉 of the vectors ~wyb and
~wy
′b′ coincide, i.e.,

wybξc(y
′ = b′) = wy

′b′

ξc (y = b). (4.12)

Similar to the preceding lemma, for (ξ, c) ∈ 〈S〉 the adjacent-compatible family

(not necessarily open box) of the wybξc ∈ (Aξc)sz(y=b) for y ∈ J ′ − (J, x) and
b ∈ 2 is denoted by aux(ξ, c). Note that aux(ξ, c) is only defined on J ′− (J, x)
and not on 〈S′〉 − 〈S〉.

We want to construct [A1]S′~v = [([U]S ~A)1]S′~v ∈ A1 in a uniform way so
that it satisfies for f : I → K defined on x′, J ′(

[([U]S ~A)1]S′~v
)
f = [([U]S ~A)f ]S′f (~vf)

that is,

(
[([U]S ~A)1]S′~v

)
f =


[(Ayb)(f−y)]S′(~vf) if fy = b for some

(y, b) ∈ {(x, d)} ∪ 〈S〉,
[([U]Sf ~Af)1]S′f (~vf) otherwise.

(4.13)

The element [A1]S′~v will be given by 〈z〉~w with ~w an Ssz open box in ~Asz
with the above provisos. The construction distinguishes several cases where
in each case we assume that the previous cases didn’t apply. We set d̄ = 1− d
and d̄′ = 1− d′.

1. W.l.o.g. x, J ⊆ x′, J ′. For each y ∈ x, J with y /∈ x′, J ′ we extend the
input box ~v with vyb ∈ (Ayb)sz (b ∈ 2) constructed as follows: vyb is the filler
in (Ayb)sz of the open box given by ~v(y = b) of shape S′(y = b) in (Ayb)sz .
The final result will be an open box of shape ((x′, d); J ′∪ ((x, J)− (x′, J ′)); I);
to check that the so added sides indeed are adjacent compatible is similar to
the verification done in the proof of the preceding lemma. Let us illustrate
this in the special case with J = y, J ′ = x, and x′ /∈ x, J (and d = d′ = 1).
We are given the sides enclosed by the solid lines and want to fill the whole
shape:

x′
y

x
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In the picture we are hiding the extra dimension as discussed above. The input
box is extended with the non-principal sides for y by filling the sides indicated
with the double arrows.

2. Case x = x′ and d = d′. Then (x, d̄) ∈ 〈S′〉. A simple special case like
above but with J = J ′ = y can be illustrated by:

1
y

x

Here the algorithm proceeds by first filling along the double arrow labeled “1”,
and then filling along the other arrows taking the side constructed in the first
filling into account as a non-principal side (and where the opposing sides are
the respective degenerates of the indicated points).

2.1. First, we construct wxd̄ ∈ (Axd̄)sz by filling the open box

vxd̄ ∈ (Axd̄)1,

aux(x, d̄).

Note that aux(x, d̄) is defined on the sides of J ′ − (J, x), which is J ′ − J in
this case. Thus the open box has shape ((z, 1); J ′ − J ; (I − x), z).

2.2. Next, we construct wyb ∈ (Ayb)sz for y ∈ J by filling the open box

vyb ∈ A(y=b) = (Ayb)1, (4.14)

vyb(x = d)sz ∈ (Ayb)sz(x=d), (4.15)

vxd̄(y = b) ∈ (Axd̄)sz(y=b) = (Ayb)sz(x=d̄) (4.16)

aux(y, b)

which is of shape ((z, 1);x, (J ′ − J); (I − y), z). Here (4.14) is the principal
side, (4.15) is at the non-principal side (x, d), and (4.16) is at the (x, d̄) side.

2.3. This concludes the construction of ~w.
3. Case x = x′ and d = 1 − d′ = d̄′. Then the element vxd ∈ A(x=d) =

(Axd)1 = (|U|S ~A)1 is of the form vxd = 〈x〉~u where ~u is an S open box in ~A
by definition of the compositions in the previous lemma. In the same special
case as above, the situation can be depicted as:

2
y

x

Now the order of the filling is reversed: first fill the “triangles” as indicated, and
then along the arrow labeled “2”, taking into account the already constructed
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sides.

3.1. First, for each (y, b) ∈ J × 2 we construct wyb by filling

uyb(x = d′)sz, (4.17)

vyb ∈ A(y=b) = (Ayb)1, (4.18)

uyb ∈ (Ayb)1, (4.19)

aux(y, b)

in (Ayb)sz of shape ((x, d̄); z, (J ′ − J); (I − y), z). Here, (4.17) is the principal
face, and (4.18) and (4.19) are the non-principal faces at (z, 0) and (z, 1),
respectively.

3.2. Next, we construct wxd̄ ∈ (Axd̄)sz by filling the open box given by

uxd̄ ∈ (Axd̄)1,

wyb(x = d̄) ∈ (Ayb)sz(x=d̄) for (y, b) ∈ J × 2,

aux(x, d̄) at all sides of J ′ − J

of shape ((z, 0); J ∪ (J ′ − J); (I − x), z) = ((z, 0); J ′; (I − x), z).

3.3. This concludes the construction of ~w.

4. Case x′ /∈ J . As in the previous case, the element vxd ∈ A(x=d) =

(Axd)1 = (|U|S ~A)1 is of the form vxd = 〈x〉~u where ~u is an S-open box in ~A.

Moreover, vx′d̄′ ∈ A(x′=d̄′) = ([U]S ~A)(x′=d̄′) and since x′ /∈ J and x 6= x′, so

(x′, d̄′) ∈ 〈S′〉 − 〈S〉,

([U] ~A)(x′=d̄′) = ([U] ~A(x′ = d̄′))1,

and so vx′d̄′ = 〈z〉~wx′d̄′ with ~wx
′d̄′ an open box in ~A(x′ = d̄′) (of shape S(x′ =

d̄′)sz).

Let us again illustrate a special case with J = y and J ′ = x, y. We are
given those sides enclosed by solid lines and the top faces are missing:

x′
y

x

Here the algorithm proceeds by first filling the middle cube along the dashed
double arrow, and then the other two cubes double arrows taking into account
the faces of the constructed middle cube (with opposing non-principle side
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given by degenerates).
4.1. First, we construct wxd̄ ∈ (Axd̄)sz by filling the open box

wx
′d̄′

xd̄ ∈ (Axd̄)(x′=d̄′) as principal side,

vxd̄ ∈ A(x=d̄) = (Axd̄)1 at side (z, 0),

uxd̄ ∈ (Axd̄)1 at side (z, 1),

aux(x, d̄) at all sides of J ′ − (x, J),

which is of shape ((x′, d′); z, (J ′ − (J, x)); (I − x), z).
4.2. Next, we construct the other wyb ∈ (Ayb)sz for (y, b) ∈ J ×2 by filling

wx
′d̄′

yb ∈ (Ayb)(x′=d̄′) as principal side,

vyb ∈ A(y=b) = (Ayb)1 at side (z, 0),

uyb ∈ (Ayb)1 at side (z, 1),

wxd̄(y = b) ∈ (Axd̄)sz(y=b) = (Ayb)sz(x=d̄) at side (x, d̄),

uyb(x = d)sz ∈ (Ayb)sz(x=d) at side (x, d),

aux(y, b) at all sides of J ′ − (x, J)

in (Ayb)sz which is of shape ((x′, d′); z, x, (J ′ − (x, J)); (I − y), z).
4.3. This concludes the construction of ~w.
5. Case x′ ∈ J . As in the previous cases, the element vxd ∈ A(x=d) =

(Axd)1 = (|U|S ~A)1 is of the form vxd = 〈x〉~u where ~u is an S-open box in ~A.
A special case (with J = x′ and J ′ = x, y) of this situation can depicted

as a hollow box where the face indicated with dots is missing:

y
x′

x

Here the algorithm proceeds in three steps: first filling the “prism” opposed to
the dotted square (with principal face being the invisible degenerate square),
then filling the middle cube, and finally filling the prism touching the dotted
square.

5.1. First, we construct wyb ∈ (Ayb)sz for (y, b) ∈ 〈(x′, d′); J −x′〉 by filling
the open box

uyb(x = d)sz ∈ (Ayb)sz(x=d) as principal side (x, d),

vyb ∈ A(y=b) = (Ayb)1 at side (z, 0),

uyb ∈ (Ayb)1 at side (z, 1),

aux(y, b) at all sides of J ′ − (x, J)
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of shape ((x, d̄); z, (J ′ − (x, J)); (I − y), z).
5.2. Second, we construct wxd̄ ∈ (Axd̄)sz by filling the following open box:

the elements constructed so far induce an open box

wyb(x = d̄) ∈ (Ayb)sz(x=d̄) = (Axd̄)sz(y=b)

for (y, b) ∈ 〈(x′, d′); J − x′; z, (I − (x, y))〉

which we extend to an open box by adding the non-principal faces

vxd̄ ∈ A(x=d̄) = (Axd̄)1 at side (z, 0),

uyb ∈ (Ayb)1 at side (z, 1),

aux(y, b) at all sides of J ′ − (x, J),

to obtain an open box in (Axd̄)sz of shape ((x′, d′); (J−x′), z, (J ′−J); (I−x), z).
5.3. Last, we construct the missing wx′d′ ∈ (Ax′d′)sz by filling the open

box given by

ux′d′ ∈ (Ax′d′)1 as principal side at (z, 1),

wxd̄(x
′ = d′) ∈ (Axd̄)sz(x′=d′) = (Ax′d′)sz(x=d̄) at side (x, d̄),

ux′d′(x = d)sz at side (x, d),

aux(x′, d′) at all sides of J ′ − (J, x),

wyb(x
′ = d′) ∈ (Ayb)sz(x′=d′) = (Ax′d′)sz(y=b) for (y, b) with y ∈ J − x′,

which has shape ((z, 0);x, (J ′ − (J, x)), (J − x′); (I − x′), z).
5.4. This concludes the construction of ~w.
The lengthy verification of the uniformity conditions is similar as sketched

in Lemma 4.3 and is omitted.
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Conclusion

Let us conclude this thesis by summarizing what has been done and indicate
future directions of research. We have given a model of dependent types based
on a notion of cubical sets in a constructive meta theory. This model supports
dependent products and sums, identity types, and universes. To give the
interpretation of types we have to require a so-called uniform Kan structure
which is a refinement of Kan’s original extension condition on cubical sets; this
condition is natural given the interpretation of the cubical set operations as
“substitution operations”.

One aspect not discussed in this thesis is the implementation [11] based on
(a nominal variation of) the Kan cubical set model presented here. To sketch
the basic idea, we start with type theory without identity types plus primi-
tive notions such as Id, refl, subst, substEq, isCenter, and funExt. (The
implementation also supports primitives which entail the univalence axiom.)
There is an evaluation of terms (which may dependent on the just mentioned
primitives) into values. Each value depends on finitely many names and there
are the basic operations of cubical sets on values: we can rename a name into
a fresh name or take a face. Values reflect the constructions in the model; e.g.,
there is path abstraction 〈x〉u and filling operations. During evaluation names
are introduced, e.g., refl a is evaluated to 〈x〉u where u is the value of a and
x is a fresh name for u (in the implementation degeneracy maps are implicit).
Moreover, the primitives are evaluated to values like it was described in this
thesis. Naturally, we also have to explain the Kan structure operations for
each type. During type-checking the aforementioned primitives are treated as
uninterpreted constants. But whenever the type-checker has to check for con-
version of two terms this is done by evaluating their two values and comparing
those values.

As we have seen, in the model the usual equation for the J-eliminator holds
only up to propositional equality and not definitional equality. Restricting to
regular Kan types (cf. Section 3.4) allows for definitional equality; this regu-
larity is, however, not closed under function types. In a recent variation [14]
of the cubical set model covered in this thesis, regularity is however preserved
by all type formers. The main difference to the present model is to use a vari-
ation of cubical sets: these are also equipped with the so-called connections
which correspond to operations x ∧ y and x ∨ y on names, satisfying the rules
of a (bounded) distributive lattice; for cubical sets this allows, e.g., given a
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u(x) depending on the name x to form the square (leaving degeneracy maps
implicit):

u(0)

u(0)

u(y)

u(x)

u(x ∧ y)

This square is such that if u degenerate along x the square is (the degenerate
of) u(0). Moreover, this variation of cubical sets also allows taking diagonals,
i.e., if a u depends on a name x there is an operation u(x = y) even if u
itself depends on y! Another difference to the present model is in the Kan
structure: one only requires composition operations satisfying regularity (the
filling operations can be derived from those with the help of connections) but
on more general “open box shapes”. (One can also add symmetries 1−x so that
the structure on names becomes that of a De Morgan algebra.) This model has
also been implemented and extended with an (experimental) implementation
of higher inductive types [11]1.

Another direction of future research is to explore the relations with the
more categorically formulated model constructions using the notion of weak
factorization systems. Since we don’t model the definitional equality of J

here, it is clear that the model presented here has no underlying factorization
system. Ongoing work [41] aims to give a variation of the current model
using algebraic weak factorization system (also in a constructive meta theory).
Especially some aspects of the variation of the model mentioned in the previous
paragraph has a lot of resemblance with the work on path object categories by
van den Berg and Garner [43]; [16] shows that cubical sets with connections
form an instance of such a path object category.

Another direction of work is to formulate a cubical type theory, i.e., a type
theory where one can directly argue about and manipulate the (hyper) cube
structure. In such a theory, names (and related concepts like name/path ab-
straction and application) should be first-class entities, as well as the Kan
structure should be exposed to the users. Such a system formulates typing
rules underlying the values from the implementations mentioned above. The
uninterpreted constants from before, like function extensionality, can then di-
rectly be implemented inside this cubical type theory. Another aspect of di-
rectly being able to manipulate higher-dimensional cubes is that it allows for
simpler proofs when doing synthetic homotopy theory inside type theory [30].
An implementation of such a cubical type theory is ongoing work [12]. A sim-
ilar such “enriched” type theory for internalized parametricity was recently
given in [5] (based on a presheaf model similar to the one considered here).
Similar type theories have been proposed by Altenkirch and Kaposi [1], Polon-
sky [39], and Brunerie and Licata [8].

1On the branch connections dated March 19, 2015
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