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Abstract

The problem of controlling information flow in multithreaded programs remains an
important open challenge. A major difficulty for tracking information flow in concurrent
programs is due to the internal timing covert channel. Information is leaked via this
channel when secrets affect the timing behavior of a thread, which, via the scheduler,
affects the interleaving of public events. This channel is particularly dangerous because,
in contrast to external timing, the attacker does not need to observe the actual execution
time of programs.

This thesis introduces a novel treatment of the interaction between threads and the
scheduler. As a result, a permissive security specification and a compositional security
type system are obtained. The type system guarantees security for a wide class of sched-
ulers and provides a flexible treatment of dynamic thread creation and synchronization.
The approach relies on the modification of the scheduler in the run-time environment.

In some scenarios, the modification of the run-time environment might not be an
acceptable requirement. For such scenarios, the thesis presents two transformations that
eliminate the need for modifying the scheduler while avoiding internal timing leaks. The
first transformation is given for programs running under cooperative schedulers. It states
that threads must not yield control inside of computations that branch on secrets. The
second transformation closes internal timing channel when the scheduler is preemptive
and behaves as round-robin. It spawns dedicated threads, whenever computation may
affect secrets, and carefully synchronizes them.

This dissertation also presents two libraries for information-flow security in Haskell.
The first proposed library supports multithreaded code and evaluates the implementa-
tions of some of the ideas described above to avoid internal timing leaks. This imple-
mentation includes an online-shopping case study. The case study reveals that exploit-
ing concurrency to leak secrets is feasible and dangerous in practice and shows how the
library can help avoiding internal timing leaks. Up to the publication date, this is the first
tool that provides information-flow security in multithreaded programs and the first im-
plementation of a case study that involves concurrency and information-flow policies.
The second library, in constrast, is designed for sequential programs and includes a
novel treatment for inteded release of information (declassification).
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This thesis is based on the work contained in the following papers:

1) The paper Securing Interaction between Threads and the Scheduler, with Andrei
Sabelfeld. In the Special Issue of Journal of Logic and Algebraic Programming
dedicated to the Nordic Workshop on Programming Theory (NWPT’07), Elsevier
Editorial. This chapter is an extension of the paper Securing Interaction between
Threads and the Scheduler, with Andrei Sabelfeld. In Proceedings of the 19th IEEE
Computer Security Foundations Workshop, Venice, Italy, July 5-7, 2006.

2) An extended version of Security of Multithreaded Programs by Compilation, with
Gilles Barth, Tamara Rezk, and Andrei Sabelfeld. In Proceedings of the 10th Eu-
ropean Symposium on Research in Computer Security (ESORICS), Dresden, Ger-
many, September 24-26, 2007, LNCS, Springer-Verlag, September 2007.
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tional Conference on Perspectives of System Informatics, Akademgorodok, Novosi-
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4) Closing Internal Timing Channels by Transformation, with Andrei Sabelfeld, John
Hughes, and David Naumann. In Proceedings of the 11th Annual Asian Computing
Science Conference, Tokyo, Japan, December 6-8, 2006. LNCS, Springer-Verlag.

5) A Library for Secure Multi-threaded Information Flow in Haskell, with Tsa-chung
Tsai, and John Hughes. In Proceedings of the 20th IEEE Computer Security Foun-
dations Symposium, Venice, Italy, July 6-8, 2007. IEEE Computer Society Press.
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My main contributions to these papers are:

1) Formalization of the semantics and the type-system together with my co-author. I
performed the formal proofs and elaboration of the motivation example presented in
the paper as well as the section regarding implementation issues. Contributions to
the Section 3.4 and writing of Section 9.

2) I elaborated most of Section 6. That includes formalization of an assembly concur-
rent language, intermediate high-level typing rules, compilation function, examples,
formal proofs of lemmas and theorems described in Sections 6.2 and 6.3, which are
sections that I wrote.

3) Formalization of the semantics and the type-system together with my co-author. I
performed the formal proofs.

4) Formalization of the transformation. I was also involved in the formalization of the
semantics. I elaborated and wrote Section 5.

5) I did some initial programming of the library. I wrote the whole paper except for
Section 1. I formalized the typing-rules encoded by our library. I proposed how to
preserve the sub-typing invariants required by references, the solution for concurrent
settings, and the case study.

6) I did most of the programming of the library with valuable additions of my co-
authors. I wrote Section 5 and 6. I considerably contributed to the writing of Sec-
tions 2, 3 and 7. I elaborated the semantics, typing rules, and proofs of lemmas and
theorems.
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CHAPTER

1

Introduction

Computer systems are nowadays involved in most of the activities performed by our
modern society. For instance, companies, banks, and governments heavily rely on com-
puters for their everyday tasks. In fact, these activities usually demands moving, and
possibly exchanging, information between components of the same or different com-
puting systems. In some scenarios, when information flows from one place to another,
confidentiality of data is an issue difficult to neglect. For example, after sending our
credit card number to a web site to perform some shopping, such number must not be
publicly available or accessible to unauthorized entities. Likewise, computer frequently
download programs that are obtained from different sources (Internet, Bloothoot, USB
sticks, etc) with no guarantees that our confidential information is preserved as such
when running those programs. For these reasons, it is important that software manu-
factures consider security aspects when designing software as well as mechanism to
enforce them. So far, some solutions to security problems have been provided, e.g anti-
virus programs, network firewalls, program monitors, cryptographic techniques, intru-
sion detection systems, and access control mechanisms. However, they are still unable
to enforce end-to-end [SRC84] security policies as confidentiality of data.

1 Confidentiality of data

Security requirements are often represented as security policies. These policies describe
what are acceptable behaviors of computer systems. Confidentiality of data can be seen
as a particular kind of such policies. Information-flow policies, a particular kind of
confidentiality policies, describe how data is propagated once access is granted.
Information-flow policies can be formalized by attaching security levels to computa-
tional entities and data in the system, and defining how information can flow between
different security levels. For instance, it possible to define the following information-
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Public Data

Secret Medical Records Municipal Secrets

Governmental Secrets

Fig. 1. Security lattice

flow policy: no object can read data from a higher security level and no data can be
written in an object with lower security level. These two conditions are known as “no
reads up” and “no writes down”, respectively [BL73]. To formalize this policy, a lat-
tice on security levels is used [Den76]. This lattice defines what are the valid flows
of information between different security levels. The ordering relation in the lattice,
written v, represents the allowed flows of information. In general, l1 v l2 indicates
that information of security level l1 can flow into entities of security level l2. Figure
1 shows an example of a security lattice with four elements: Governmental Secrets,
Secret Medical Records, Municipal Secrets, and Public Data, where Public Data v Se-
cret Medical Records, Public Data v Municipal Secrets, Secret Medical Records v
Governmental Secrets, and Municipal Secret v Governmental Secrets. The informa-
tion can only flow into higher positions in the lattice. In some cases, it is necessary
to downgrade some information regarding secrets. Declassification policies expresses
downgrading of information in a controlled manner and they are currently subject of
active research [SS05].

2 Language-based information-flow security

Information-flow analysis studies whether an attacker can obtain confidential informa-
tion by observing how the input of a system affect its output. Information can be dis-
closed by different mechanisms or channels. This thesis follows the line of language-
based information-flow security [SM03]. Analysis regarding how information flows in-
side of programs is usually performed statically before programs are run. This analysis
mainly inspects the code of programs in order to determine, or guarantee, that end-to-
end securities policies, as confidentiality, are fulfilled.
Confidentiality policies could be precisely characterized by using program semantics.
Moreover, they can be provably enforced by traditional mechanisms as type systems.
Non-interference is a well known end-to-end property to ensure that confidentiality of
data is preserved by programs. The property establishes that a variation in the confi-
dential input of a program does not produce any variation of its public output. The
attacker model defines what the attacker can observe about the execution of programs.
For the non-interference property, the attacker can only inspect the public input and
output states. Formally, a program starts in an input state s = (sh, sl), where sh and sl
are respectively the values of secret and public variables initialized with some values.
If a program terminates, it results in an output state s′ = (s′h, s

′
l), where s′h and s′l are
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final values for secret and public variables, respectively. The semantics of the program,
written [[C]], is a function [[C]] : S → S ∪ {⊥} that maps input to output states or input
states to⊥ for non-terminating programs. Variations in the input can be captured by the
equivalence relation =L. Two states are low-equivalent, written s =L s

′, iff their public
values are the same, i.e., sl = s′l. The notion of non-interference can then be expressed
as:

∀s1, s2 ∈ S.s1 =L s2 ∧ [[C]]s1 6=⊥ ∧ [[C]]s2 6=⊥⇒ [[C]]s1 =L [[C]]s2 (1)

The definition above ignores non-terminating executions of programs. This kind of def-
inition is known as a termination-insensitive security specification. In some cases, at-
tackers can still deduce confidential information by just observing if a program termi-
nates or not. To consider this kind of leaks due to termination, the definition of non-
interference can be extended as follows:

∀s1, s2 ∈ S.s1 =L s2 ⇒ [[C]]s1 =L [[C]]s2 ∨ ([[C]]s1 =⊥ ∧ [[C]]s2 =⊥) (2)

Observe that either both executions of C diverge or terminate with the same public
output. Security conditions that take into account leaks due to termination are called
termination-sensitive security specifications. Definitions 1 and 2 are respectively re-
ferred as termination-insensitive and termination-sensitive non-interference properties.

2.1 Types of flows

Language-based information-flow techniques deal with mechanisms used by program-
ming languages to convey information. These mechanisms usually include assignments
and branching instructions. Confidentiality of data can be preserved if programs are free
of illegal explicit and implicit flows [DD77]. On one hand, explicit flows can leak infor-
mation by assigning confidential values to public variables. For instance, the program
l := h leaks the secret value of h by assigning it directly to the public variable l. Implicit
flows, on the other hand, use control constructs in the language to leak information. As
an example, the program

if h > 0 then l := 1 else l := 2 (3)

leaks if h > 0 or not by using the construct if-then-else. Even though there is no direct
assignment of secret values into public variables, the final value of l depends on the
secret value h. Indeed, leaks through implicit flows can be magnified in order to leak
whole values of secrets. To illustrate that, we show the following example

b := 0 ;
l := 0 ;
while b < 32 do

if not(h mod 2 = 0) then l := l + 2b else skip ;
b := b+ 1 ;
h := h div 2;

(4)

where h is the only secret value in the program, which is internally represented as a 32-
bits integer. Functions mod and div represent module and division operations between
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integers. Intuitively, the program goes into a loop that inspects each bit of h and leaks,
through an implicit flows, such a bit. Although explicit flows are not present in the
program, the whole value of h has been copied into l.

pc instruction
public if h > 0

secret then l := 1 ;
secret else l := 2 ;
public l′ := 1 ;

Fig. 2. Detection of illegal implicit flows

Prevention of illegal explicit and implicit flows On one hand, explicit flows can be
easily prevented by simply enforcing the “no reads up” policy. One way to do that is by
associating a security level to each variable and, for each assignment of the form v := e,
it is established that the target variable (at the left hand side of the assignment) should
have security level greater than any security level associated with variables appearing in
e. Implicit flows, on the other hand, use the fact that the execution of some instructions
depends on some secret values, which makes their detection more complex. In program
(3), for instance, the execution of instructions l := 1 and l := 2 depends on the value
of h. To deal with these kinds of flows, each instruction in the program is associated
with the highest security level on which the execution of that instruction depends on.
This security level is usually referred as pc since it models the security level of the
program counter. Implicit flows are then avoided by enforcing the security level of
updated variables to be not lower than pc, which can be seen as enforcing the “no
writes down” policy. To illustrate the use of pc, we present an example in Figure 2
similar to (3) but with the addition of the public variable l′ and the security level of
the program counter in each line. The initial security level for the pc is public. Then,
since the conditional depends on h, the pc is raised to the security level secret for every
instruction inside of the construct if-then-else. The pc is set back to public for the last
line in the program since it is executed regardless the value of h. An information-flow
analyzer should then reject the program in Figure 2 because public variable l is updated
under a pc with security level secret.

C ::= skip | x := e | C;C | if e then C else C | while e do C

Fig. 3. Command syntax
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` e : high

h /∈ Vars(e)

` e : low pc ` skip pc ` h := e
` e : low

low ` l := e

` e : pc pc ` C1 pc ` C2

pc ` if e then C1 else C2

` e : pc pc ` C
pc ` while e do C

pc ` C1 pc ` C2

pc ` C1;C2

high ` C
low ` C

Fig. 4. Security type system

The analysis described above can be implemented using a static type system [VSI96].
To demonstrate that, we start by considering the simple imperative language presented
in Figure 3. This language has skip, assignment, sequential composition, conditional,
and while-loop constructs. As with the examples given so far, we assume, for simplic-
ity, only two levels of confidentiality: public (low) and secret (high). More formally,
these two security levels form a two-point lattice where low v high and high 6v low .
As before, we write h and l for variables storing secret and public information, respec-
tively. We assume that expressions e are formed by applying total arithmetic operations
to constants and variables. Adapted from [SM04], Figure 4 presents a type system to
enforce the non-interference policy (the typing rules are, indeed, equivalent to the ones
found in [VSI96]). Expressions type and pc can be either low or high . The typing rules
for expressions establish that any expression (including h and l itself) can have type
high . Expressions e of type low must not contain any occurrence of h in it, which is
captured by the condition h /∈ Vars(e). Commands skip and h := e are typable under
any pc. Command l := e is typable when expression e and pc have type low . Demand-
ing that e has type low enforces the “no reads up” policy, while having a pc that is low
enforces “no writes up”. In fact, [high ] ` C ensures that there are no assignments to
public variables in C, which justifies that the rules for if-then-else and loops establish
the pc as the security level of the guards. Consequently, if an if-then-else (or loop) has a
guard involving h, then the pc is set to high for the commands involving in such control
construct. The rule for sequential composition preserves the pc. The last rule is known
as subsumption rule and establishes that if a command is typable with pc as high , it is
also typable with pc as low. This rule allows to reset the program counter to low after
control constructs whose guards involve h.
The next theorem connects semantics of programs and the described type system in or-
der to show that well typed programs satisfy the termination-insensitive non-interferen-
ce property.

Theorem 1. For any program C, memories s1, s2 ∈ S such that low ` C, s1 =L s2,
[[C]]s1 6=⊥, and [[C]]s2 6=⊥, then [[C]]s1 =L [[C]]s2.

Attackers can still deduce information about secrets through observing the (non) ter-
mination of programs. Well typed programs might include loops whose guards involve
secrets. Clearly, these kind of loops might introduce the possibility for having non-
terminating executions depending on secret data and thus producing leaks. However,
the typing rule for loops in Figure 4 can be modified to exclude such loops as follows.
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b := 0 ;
while b < 32 do

if not(h mod 2 = 0) then sleep(2) else skip ;
b := b+ 1 ;
h := h div 2;

sleep(1);
print(".");

Fig. 5. External timing leaks

` e : low low ` C
low ` while e do C

With this modification in mind, we can prove the termination-sensitive non-interference
property for well typed programs.

Theorem 2. For any program C, memories s1, s2 ∈ S such that low ` C and s1 =L

s2, then [[C]]s1 =L [[C]]s2 or [[C]]s1 =⊥ and [[C]]s2 =⊥.

3 Covert channels

Besides explicit and implicit flows, programming languages can present other mech-
anisms to leak information that were not originally designed for that purpose. These
kinds of mechanisms are referred as covert channels [Lam73]. Which covert channels
are a concern depends on what attackers can observe from programs. For example,
smartcards are commonly inserted into untrusted terminals. Terminals provide the en-
ergy requirements to perform computations inside of the card. Therefore, it might be
possible for such terminals to infer some information about smartcards by monitoring
the supplied power, which clearly constitutes a covert channel [MDS99]. Other exam-
ples regarding covert channels are described below.

3.1 External timing

For this covert channel, we assume that attackers can observe the timing behavior of
programs by using an arbitrarily precise stopwatch. To illustrate how this channel can
be exploited, we provide a program in Figure 5, where variable h stores the only secret
value and there are no public variables. Function sleep(n) makes the program sleep
for n seconds. Observe that the program does not have any explicit or implicit flows.
The program essentially travels bit-by-bit the binary representation of the value stored
in h and prints a dot on the screen. Then, the output of the program is unsurprisingly 32
dots and each dot is associated to a bit of the secret. Although the output of the program
is always the same, the attacker can measure, with an stopwatch, how many seconds
have been elapsed between each printed dot and thus deduce the value of each bit of the
secret. Call to sleep(1) is performed to facilitate the observation when the analyzed bit
is zero. It is worth to remark that function sleep is not essential to produce these kinds
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of leaks. In fact, it is enough to replace sleep(2) and sleep(1) with a sequence of
instructions Ca and Cb such that Ca and Cb takes approximately one and two seconds
to run, respectively.

Transforming out timing leaks Agat [Aga00a] proposes a code transformation that
pads programs with dummy computations in order to close timing leaks. The trans-
formation can be formalized as a type system of the form: C ↪→ C ′ : Sl where C
is the original program, C ′ is the result of the transformation, and Sl is the low slice
of C ′. The low slice Sl is different from C ′ in that commands of C ′ involving se-
cret variables are replaced by dummy commands. The transformation guarantees that
∀s1, s2 ∈ S.[[C ′]]s1 =L [[Sl]]s2 and that commands C ′ and Sl last the same amount of
time when executed. The core rule for the transformation is the following:

C1 ↪→ C ′1 : Sl1 C2 ↪→ C ′2 : Sl2 ` e : high al(Sl1) = al(Sl1) = false

if e then C1 else C2 ↪→ if e then C ′1;Sl2 else Sl1 ;C ′2 : if−skip(Sl1 ;Sl2)

Predicate al (C) is true iff there are assignments to public variables. Since assignments
to public variables present in Ci are also present in Sli , this predicate helps to avoid
implicit flows. Command if−skip(C) acts timing-wise as an if-then-else but only hav-
ing branch C to execute. The rule performs cross-coping of the low slices in order to
balance out the execution time of both branches. This approach has been adapted for
transforming out timing leaks in languages with concurrency [SS00] and with features
as semaphores or message passing [Sab01, SM02].

3.2 Internal timing

The ability of sequential threads to share memory opens up new information channels.
Consider the following thread commands:

C1 : h := 0; l := h C2 : h := secret

where secret is a high variable. Thread C1 is secure because the final value of l is
always 0. Thread C2 is secure because h and secret are at the same security level.
Nevertheless, the parallel composition C1 ‖ C2 of the two threads is not necessarily
secure. The scheduler might schedule C2 after assignment h := 0 and before l := h
is executed in C1. As a result, secret is copied into l. These kinds of leaks can be
prevented by just avoiding explicit flows in concurrent programs as shown in Figure 4.
Unfortunately, there are other covert channels present in concurrent programs.
The internal timing covert channel reveals information about secrets by affecting, de-
pending on secrets, the timing behavior of threads that may affect—via the scheduler—
the interleaving of assignments to public variables. For instance, consider another pair
of thread commands:

C1 : (if h > 0 then sleep(100) else skip); l := 1
C2 : sleep(50); l := 0

(5)
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These threads are clearly secure in isolation because 1 is always the outcome for l in
C1, and 0 is always the outcome for l in C2. However, when C1 and C2 are executed in
parallel, the security of the threadpool is no longer guaranteed. In fact, the program will
leak whether the initial value of hwas positive into l under many reasonable schedulers.
Observe that it is the interleaving of the threads that introduces leaks. To illustrate that,
we assume a scheduler that picks thread C1 first and then proceeds to run a thread for
70 steps before giving the control to another one. If h > 0 then C1 will run for 70
steps and, while being in the middle of sleep(100), the control will be given to thread
C2, which will run till completion. The scheduler will schedule C1 again, and C1 will
finish its execution. The final value of l is clearly 1. On the other hand, if h ≤ 0, C1

will finish within 70 steps and the control will be then given to C2, which will finish its
execution. The final value of l in this case is 0, which demonstrates that the program is
insecure. Differently from external timing leaks, this covert channels can be exploited
by less powerful attackers since it is not necessary for them to have a stopwatch to
deduce secret information.

Primitive protect Existing approaches to specifying and enforcing information-flow
security that deal with internal timing leaks often present non-standard semantics, lack
of compositionality, inability to handle dynamic threads, scheduler dependence, and ef-
ficiency overhead for code that results from security-enforcing transformations. These
drawbacks arise from features of the proposed approaches or by the fact that they con-
sider more powerful attackers, i.e. with stopwatches. Particularly, Volpano and Smith
propose a special primitive called protect in order to remove internal timing leaks
[VS99]. This can be applied to any command that contains no loops. A protected com-
mand protect(c) is executed atomically, by definition of its semantics. Such a primi-
tive can be used to secure program C1 ‖ C2 as:

C1 : protect(if h > 0 then sleep(100) else skip);

l := 1

C2 : sleep(50); l := 0

Internal timing leaks are removed if every computation that branches on secrets is
wrapped by protect() commands. The timing difference is then not visible to the
scheduler because of the atomic semantics of protect. The protect primitive is,
however, non-standard. It is not obvious how such a primitive can be implemented. A
synchronization-based implementation would face some non-trivial challenges. In the
case of programC1 ‖ C2, a possible implementation of protect could attempt locking
all other threads while execution is inside of the if statement. Unfortunately, such an
implementation is insecure. The somewhat subtle reason is that when the execution is
inside of the if statement, the other threads do not become instantly locked. ThreadC2

can still be scheduled, which might result in blocking and updating the waiting list for
the lock related with C2.
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function leak bit(integer h)
array a[SIZE];
t := clock();
for j = 0 to REPEAT

do h1 := 0;
for i = 0 to SIZE − 1
do h1 := h1 + h;

h2 := a[h1];
end

end

return (clock()− t);

function leak(integer h)
for i = 0 to 31
do t0 := leak bit(0);

t1 := leak bit(1);
tb := leak bit(h mod 2);
if (tb + tb > t0 + t1) then l := l + 2i;
h := h div 2;

end

return l;

Fig. 6. Cache attacks

3.3 Cache attacks

As a special case of timing covert channels, the presence of cache might affect the
timing behavior of programs. It is then possible to exploit that in order to leak secrets.
This covert channel has been previously noticed in the setting of operating systems
[Vle90]. Cache attacks are feasible for attacker with or without stopwatches. In other
words, it is possible to write programs that leak information through external or internal
timing covert channels by exploiting how instructions or data are cached.
Function leak bit in Figure 6 shows a data cache attack that reveals one bit of the
argument by an external timing leak. We assume that the argument of the function, h,
is either 0 or 1. Function clock() returns the actual time and provides attackers with
a stopwatch. Constant SIZE depends on the size of the data cache of the underlying
computer architecture. This constant should be bigger than the size of the cache times
the number of bits used to represent integers 1. The attack essentially runs, inside of a
for-loop, an instruction that refers to the same data SIZE times if h is 0. Otherwise, the
loop runs instructions which refer to SIZE different data locations in memory. In order
to do that, variable h1 acquires the value 0 in each iteration of the loop when h is 0 and
values between 0 and SIZE−1 otherwise. Consequently, instruction h2 := a[h1] would
always run h2 := a[0] when h is 0 and h2 := a[0], h2 := a[1], . . . , h2 := a[SIZE− 1],
otherwise. It is possible to deduce the value of h by inspecting the time that takes for the
loop to run. Constant REPEAT just repeats the loop where the cache attack is performed
in order to improve precision when measuring time 2.
The attack presented in function leak bit can be magnified in order to leak, for example,
whole secrets rather than just one bit. Function leak in Figure 6 takes a 32-bit integer
and leaks every bit of it. The function firstly calls leak bit with arguments 1 and 0
in order to determine how much time this function takes for each argument, which are
represented by the variable t0 and t1, respectively. Then, it again calls function leak bit

1 For an AMD 64 3200+ processor running on a Linux machine, the attack succeeds for SIZE =
5000000 and REPEAT = 10.

2 For an AMD 64 3200+ processor running on a Linux machine, the attack succeeds for
REPEAT = 10.
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but with the actual secret h. The leak is produced by comparing t0 and t1 with the time
that leak bit takes to return a value when applied to h.
The presence of instruction cache provides another covert channels to leak secrets. It is
possible to reveal information by executing different parts of a program depending on
some secret data. To demonstrate this, we consider the following piece of code.

call huge method1 ();
if h > 0 then call huge method2 (); else skip ;
call huge method1 ();

We assume that methods huge method and huge method2 contains enough instruc-
tions to fill up the instruction cache in the computer system. Then, if h ≤ 0, the second
call to huge method1 will execute faster than the first one since the instruction are
cached. However, if h > 0, instructions stored in the cache will be replace by instruc-
tion corresponding to huge method2, and therefore the second call to huge method1

will run at approximately the same speed as the first call to that method. This attack
can easily be magnified in order to leak whole secret values. Agat suggests to run in-
terpreted programs instead of compiled ones in order to deal with this covert channel
even though it affects performance [Aga00b]. By doing so, programs are now data for
the interpreter and instruction cache attacks are lifted to data cache attacks.
The presence of cache can also be exploited to leak secrets through internal timing
leaks. To illustrate that, consider the function leak bit′, which contains the same code
as leak bit except for those lines where function clock() is called. We rewrite the attack
shown in (5) as follows.

C1 : (if h > 0 then leak bit′(1) else skip); l := 1

C2 : leak bit′(0); l := 0

As in (5), there are differences in the timing behavior of the treads depending on the
secret. The race to assign the public variable l is determined by h. Observe that function
leak bit′ takes longer when applied to 1 than to 0.

Security via low determinism In general, approaches considering timing leaks usu-
ally model units of time as reduction steps in the semantics [SV98, VS98, Aga00a,
SS00, Sab01, MS01, RS06, RHNS06]. However, one unit of time might not correspond
to one reduction step in the semantics when running programs. One reason for that is
the presence of instruction cache. For instance, depending on the state of the cache, the
number of instructions run by unit of time might change. This subtle difference between
modeling time in the semantics and real computers with cache might compromise con-
fidentiality of data by performing cache attacks.
Inspired by Roscoe’s low-view determinism [Ros95] for security in a CSP setting,
Zdancewic and Myers [ZM03] develop an approach to information flow in concur-
rent systems. According to this approach, a program is secure if its publicly-observably
results are deterministic and unchanged regardless of secret inputs. This avoids refine-
ment attacks from the outset. Specifically, this definition rules out internal timing leaks
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auth l := False;
username l := input();
password l := input();
secreth := get password (username l);
if (secreth == username l) then auth := True ; else auth := False ;

Fig. 7. Code for authentication

and cache attacks. However, low-view determinism security rejects intuitively secure
programs (such as l := 0 ‖ l := 1), and thus introduces the risk of rejecting useful
programs. Analysis enforcing low-view determinism are inherently noncompositional
since the parallel composition with a thread assigning to low variables is not generally
secure. Huisman et al. [HWS06] have suggested a temporal logic-based characterization
of low-view determinism security. This characterization enables high-precision security
enforcement by known model-checking techniques.
Boudol and Castellani [BC01, BC02] propose a type system that rejects assignment to
public variables after branching on secret. Although restrictive, this approach rules out
internal timing leaks as well as cache attacks.

4 Declassification

Non-interference is a security policy that specifies the absence of information flows
from secret to public data. However, some applications release some information as
part of their intended behavior. Consider, for example, the code in Figure 7. It imple-
ments a very simple routine for authentication. The security level for each variable is
indicated with the subindexes l and h for public and secret data, respectively. Vari-
able access l determines if the user is successfully authenticated. Function input asks
the user for an input string. Variables username l and password l store the username
and password provided by the user. Function get password retrieves the password for a
given username. Variable secreth stores the password of the user. The program contains
an illegal implicit flow and therefore it does not satisfy non-interference. Depending on
secreth, the public variable auth l is assigned to True or False . Indeed, the program is
leaking information! Non-interference does not provide means to distinguish between
intended releases of information and those ones produced by malicious code, program-
ming errors, or vulnerability attacks. It is needed to relax the notion of non-interference
to consider declassification policies or intended ways to leak information.
Declassification policies have been recently classified in different dimensions [SS05].
Each dimension represents aspects of declassification. Aspects correspond to what,
when, where, and by whom data is released. In general, type-systems to enforce dif-
ferent declassification policies include different features, e.g rewriting rules, type and
effects, and external analysis [ML00, SM04, CM04].
In the following sections, we briefly illustrate one approach for each dimension of de-
classification. For further information, readers can refer to [SS05].
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if (h = 0) then l := 1 else l := 2

Fig. 8. Secure program

if (h < 0) then l := 1 else l := 2

Fig. 9. Unsecure program

4.1 What dimension

In a series of papers[CHM04, CHM05a, CHM05b], Clark et. al. develop a quantitative
approach to information flow security. Based on information theory [SW63], the authors
introduce definitions to capture the amount of information leaked by a variable inside
of deterministic programs. These definitions are based on the notion of entropy. Before
exposing the insights of this approach, we start by reviewing some basic concepts of
information theory relevant for this section.
A random variableX is a total functionX : D → R, whereD andR are finite sets and
D is equipped with a probability distribution. We note R(X) to the range over the set
of values which X may take. We note p(x) to the probability that X acquires value x.
The entropy of a random variable X is denoted by H(X) and is defined as follows:

H(X) = −
∑

x∈R(X)

p(x) log(
1

p(x)
)

The base of log can be chosen freely but it is conventional to use base 2. If p(x) = 0
then p(x) log( 1

p(x) ) is defined as 0. Intuitively, an event that occurs with a non-zero
probability p has an uncertainty, or surprise value, of log( 1

p ). Observe that uncertainty
is inversely proportional to likelihood.
Conditional entropy, writtenH(X |Y ), measures the uncertainty in X given knowledge
Y , where X and Y are random variables. It is defined as follows.

H(X |Y ) = H(X,Y )−H(Y )

Random variables can be used to represent variables at certain program points. It is then
possible to reason about probabilities that variables acquire certain values at certain
points of the programs. Given a program variable X (or set of program variables),
we respectively write X i and Xo as the random variables corresponding to the initial
and final values of X . We define Li and Lo as the random variables corresponding
to the initial and final values of public variables. Random variable H i corresponds
to the initial values of variables storing secret data. Finally, we define the amount of
information revealed by variable X , written L(X), as follows.

L(X) = H(H i|Li)−H(H i|Xo, Li)

Expression H(H i|Li) captures the uncertainty of knowing secret input by knowing
public inputs. Similarly, expressionH(H i|Xo, Li) captures the uncertainty of knowing
secret inputs by knowing public inputs and the final value ofX . The difference between
these two quantities reveals how much information is leaked by observing the final value
of X . In this setting, programs are defined as non-interferent iff L(L) = 0.
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aBid := getEnvelopA() ;
bBid := getEnvelopB() ;
print("The winner is:") ;
if (aBid ≥ bBid) then print("A");

else print("B");

Fig. 10. Sealed auction example

aBid := getEnvelopA() ;
bBid := aBid + 1 ;
print("The winner is:") ;
if (aBid ≥ bBid) then print("A");

else print("B");

Fig. 11. Unsecure sealed auction example

To illustrate how the definition of L works with programs, we borrow an example by
Clark et. al. [CHM04]. We assume a scenario where the secret is a 4-bit number, stored
in variable h, and the information to be declassified (or revealed intentionally) from h
is only the absolute value of it, which is stored in the public variable l. So, being in a
state where l = abs(h), we have the program in Figure 8. At first glance, it seems to be
an illegal implicit flow. However, to see if the program reveals more than the absolute
value of h, we apply definition L(l) at this point of the program. Assuming a uniform
distribution for h, we have thatL(l) = H(hi|li)−H(hi|lo, li) = 0. This result indicates
that the program does not reveal anything new. Observe that the program reveals if
h is zero or not, which is already revealed when declassifying the absolute value of
h. In contrast, if we have the program shown in Figure 9, we obtain that L(l) = 1,
which clearly indicates that the program reveals one more bit than what is allowed to
be declassified. In fact, the program reveals the sign of h. The authors recently develop
a syntax directed type system that safely approximates the amount of information leak
in programs [CHM07].

4.2 When dimension

As a motivating example for handling this dimension, we can consider the scenario
described in [CM04] of a sealed auction where each bidder submits a single secret
bid in a sealed envelop. Once all bids are submitted, the envelopes are opened and
the bids are compared. The highest bidder wins. One security policy that is important
for this program is that no bidder knows any of the other bids until all the bids have
been submitted. Program in Figure 10 simulates this process for two bidders: A and B.
Functions getEnvelopA and getEnvolepB obtain the bids corresponding to usersA and
B, respectively. It is possible to incorrectly implement the auction protocol by mistake
or intentionally. For instance, in Figure 11, we present a program that does not fulfill
the mentioned security policy. This program inspects user A’s bid (bBid := aBid + 1)
before user B submits his (her) own in order to make user B the winner.
Broberg and Sands [BS06] introduce some sort of boolean flags called flow locks that
determine when information can flow between variables. The idea is that storage loca-
tions, written `, are guarded by flow locks which represent policies related to events or
conditions that must be satisfied in order to have access to the data in `. For instance,
`A∧submittedB⇒B 3 indicates that the value stored in ` can be read by the principalA and

3 The notation here differs from the one presented in [BS06] in the sense that a sequence of flow
lock policies are separated by semicolon instead of the logical operator ∧.



14 Alejandro Russo

aBid := getEnvelopA() ;
bBid := getEnvelopB() ;
print("The winner is:") ;
if (aBid ≥ bBid) then print("A");

else print("B");

function getEnvelopA()
bidA∧submittedB⇒B := readChanA() ;
open submittedA ;
return bid;

function getEnvelopB()
bidB∧submittedA⇒A := readChanB () ;
open submittedB ;
return bid;

Fig. 12. Secure sealed auction example

by the principalB provided that the flow lock submittedB is open. This simple mecha-
nism is able to represent a number of recently proposed information flow paradigms for
declassification. Instructions open and close are provided in order to open and close
flow locks. Programs do not depend on the lock state and a type-system is provided to
statically check that policies specified by flow locks are fulfilled.

In Figure 12, we show a secure implementation of the auction system with flow locks
where functions getEnvelopA and getEnvelopB are slightly changed. The system in-
volves principalsA andB, which represent the users involved in the auction. In function
getEnvelopA, variable bid is annotated withA ∧ submittedB ⇒ B, which makes user
B able to read user A’s bid as long as submittedB is open. In function getEnvelopB ,
instruction open submittedB opens the lock after user B’s bid is obtained. Similarly,
in function getEnvelopB, variable bid is annotated with B ∧ submittedA ⇒ A and
submittedA is open after user A’s bid is obtained. As a result, values stored in aBid and
bBid are accessible only after both users have submitted their bids. In fact, program in
Figure 11 is rejected by Broberg and Sand’s type system since instruction bBid :=
aBid + 1 tries to access the value stored in aBid when the flow lock submittedB is
closed.

To illustrate why flow locks may need to be closed, we take the example one step
further by thinking of a bidding system that allows users to bid more than once. In
this case, functions getEnvelopA and getEnvelopB are called several times inside of a
loop and flow locks related to aBid and bBid must be closed between each iteration.
Otherwise, all the flow locks are open at the second call of those functions, which
allows bids to be released at any time. It is not difficult to imagine this implementation
by considering executing instructions close submittedA and close submittedB in
between each iteration of the loop.

It is still possible to write programs that wrongly implement the auction system. For
instance, we can write a program that makes user A the winner all the time by just
replacing the if-then-else in Figure 12 by print("A"). However, user A is going to
be the winner because the program is not implemented correctly, but not because it does
not fulfill the security policies specified by the flow locks. Correctness of programs are
stronger properties than those ones captured by using flow locks.
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4.3 Who dimension

In the Decentralized Label Model (DLM) [ML97, ML98, ML00] data is labeled with
a set of principals who owns the information and indicate who can read such data.
Labeling of data in this manner makes the approach particularly suitable for scenarios of
mutual distrust. While executing a program, the code is also authorized to act on behalf
of some set of principals known as authority. An example of a label is {uo : u1, u2},
which indicates a security policy where principals uo, u1, and u2 can read the data while
only uo, the owner, can modify it. It is also possible that a piece of data is associated
to several security policies. For instance, label {uo : u1, u2 ;u′o : u′1, u

′
2} indicates

two owners (uo and u′o) and six readers (uo, u1, u2, u
′
o, u
′
1, u
′
2). The intuitive idea of the

approach is that labels must be obeyed as data flows through different parts of programs.
Code can access data when its authority acts for a reader of each of the security policies
indicated by its label.
Data can flow from a source with security label L1 to a sink with security label L2 as
long as L2 is, at least, as restrictive as L1. This relationship between labels is written as
L1 v L2. It is clear that label L2 is, at least, as restrictive as L1 if every policy in L1

is guaranteed to be enforced by L2. To determine that, a sound and complete relabeling
rule is introduced. This rule allows to transform, or relabel, one security policy into
another more restrictive. Then, L1 v L2 iff every policy of L1 can be relabeled into
a policy of L2. Moreover, during computation, values might be derived from different
data sources. Consequently, labels must enforce the security policies for each of these
sources. For instance, if we add two number, the result’s label must be, at least, as
restrictive as the labels of both operands. However, the label of the sum should be the
least restrictive label having this property in order to avoid unnecessary restrictiveness.
The least restrictive set of policies between two given set of policies L1 and L2, written
L1tL2, is just the union of them (L1∪L2). Having defined notions for valid flows and
the least restrictive set of policies, it is then possible to statically check that programs
satisfies the security policies established by labeled data.
Declassification is introduced in this framework by another relabeling rule. Essentially,
declassification is performed by making a copy of the released data and marked it
with the same labels as before the downgrading but excluding those ones appearing
in the authority of the code. As an example, we can assume two principal for the au-
thentication example in Figure 7: system and user. We assume that the code is run
with authority system. We assign label {user : user, system} to username l and
password l and label {system : system} to secreth. According to DLM, the label
of secreth == username l is {user : user, system; system : system}. However,
by declassifying that expression in a piece of code with authority system, the label is
rewritten to {user : user, system}, which allows users to know if they have access to
the system.

5 Information-flow security as a library

Language-based information-flow security aims to guarantee security policies related
with confidentiality and integrity of data. It is commonly achieved by some form of
static or dynamic analysis which rejects programs that would violate such policies. Over
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the years, a great many such systems have been presented, supporting a wide variety of
programming constructs [SM03]. However, the impact on programming practice has
been rather limited.
One possible reason is that most systems are presented in the context of a simple, el-
egant, and minimal language, with a well-defined semantics to make proofs of sound-
ness possible. Such systems cannot immediately be adopted by programmers—they
must first be embedded in a real programming language with a real compiler, which
is a major task in its own right. Two of such languages have been developed—Jif
[Mye99, MZZ+06] (based on Java) and FlowCaml [PS02, Sim03] (based on Caml)
which is unfortunately not maintained anymore.
When a system implementor chooses a programming language, information flow se-
curity is only one factor among many. While Jif or FlowCaml might offer the desired
security guarantees, they may be unsuitable for other reasons, and thus not adopted.
This motivated Li and Zdancewic to propose an alternative approach, whereby infor-
mation flow security is provided via a library in an existing programming language
[LZ06]. Constructing such a library is a much simpler task than designing and imple-
menting a new programming language, and moreover leaves system implementors free
to choose any language for which such a library exists.
Li and Zdancewic showed how to construct such a library for the functional program-
ming language Haskell. The library provides an abstract type of secure programs, which
are composed from underlying Haskell functions using operators that impose informa-
tion-flow constraints. The abstract data type is defined as an arrow [Hug00] and arrows
combinators are accordingly introduced by the library. It is then possible to combine
arrow computations to create more complex functions at the same time that constrains
related to information-flow policies are considered when constructing such functions.
Secure programs must be certified before running. In order to do that, the library checks
that all the collected constraints related to arrow computations are satisfied, before the
underlying functions are invoked—thus guaranteeing information-flow security policies
are fulfilled. While secure programs are a little more awkward to write than ordinary
Haskell functions, Li and Zdancewic argue that typically only a small part of a system
need manipulate secret data—for example, an authentication module—and only this
part need be programmed using their library.
However, Li and Zdancewic’s library does impose quite severe restrictions on what a
secure program fragment may do. In particular, these fragments may have no effects of
any sort, since the library only tracks information flow through the inputs and outputs
of each fragment. While absence of side-effects can be guaranteed in Haskell (via the
type system), this is still a strong restriction.

6 Thesis overview

This thesis mainly proposes techniques to deal with the internal timing covert channel.
It proposes remedies for leaks produced by exploiting scheduler properties through the
timing behavior of threads in order to modify how the public variables are updated.
We distinguish between scenarios where it is possible (or not) to modify the scheduler
in order to be able to guarantee confidentiality policies. Additionally, the dissertation
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proposes techniques to provide information-flow security as a library. Figure 13 shows
a road map of the thesis and describes the scenario considered for each chapter.
The thesis takes a language-based approach to information-flow enforcement. In this
section, we briefly outline the contents of the six chapters.

Fig. 13. Road map of the thesis

Chapter 2: Securing interaction between threads and the scheduler Existing ap-
proaches involving concurrent programs and information flow security often present
non-standard semantics, lack of compositionality, inability to handle dynamic threads,
scheduler dependence, and efficiency overhead for code that results from security-
enforcing transformations. Particularly, Volpano and Smith propose a special primitive
called protect in order to remove internal timing leaks. By definition, protect(c)
takes one atomic step in the semantics with the effect of executing c until termina-
tion. Internal timing leaks are removed if every computation that branches on secrets is
wrapped by protect() commands. However, implementing protect imposes a major
challenge. This chapter suggests a remedy for some of the described shortcomings and a
framework that allows the implementation of a generalized version of protect. More
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precisely, it introduces a novel treatment of the interaction between threads and the
scheduler. A permissive non-interference-like security specification and a security type
system that provably enforces this specification are obtained as a result of such interac-
tion. The type system guarantees security for a wide class of schedulers and provides
a flexible treatment of dynamic thread creation as well as synchronization primitives.
The proposed techniques relies on the modification of the scheduler in the run-time
environment.
This chapter is based on a paper accepted to the special issue of the Journal of Logic

and Algebraic Programming dedicated to the Nordic Workshop on Programming The-
ory ’07 and a paper accepted to the 18th IEEE Computer Security Foundations Work-
shop, Venice, Italy, July 5-7, 2006.

Chapter 3: Security of multithreaded programs by compilation Multithreaded byte-
code is ubiquitous in, for instance, mobile phones scenarios. For example, multithread-
ing is sued for preventing screen lock-up in mobile applications when sending an SMS.
This chapter proposes a framework for enforcing secure information-flow for multi-
threaded low-level programs. The approach presents security-type systems that prov-
ably guarantee non-interference. Inspired by ideas from proof-carrying code, produc-
ers of code can derive security types for low-level programs from security types from
source programs. Consumers then receive these security types and the low-level code in
order to verify that the bytecode satisfies the non-interference property. In this way, our
approach is particularly suitable for scenarios of untrusted mobile code. Moreover, even
if the code is trusted, compilers are often too complex to be part of the trusted computing
base. In this case, the type annotations of compiled programs can be checked directly
at bytecode level, which removes completely compilers from the trusted base. An at-
tractive feature of this approach is that there are no more restrictions on multithreaded
source programs than on sequential ones, and yet we guarantee that their compilations
are provably secure for a wide class of schedulers. This might be counterintuitive since
multithreaded programs may exploit covert channels as, for instance, internal timing.
Indeed, the special primitives described in Chapter I have been adapted in order to con-
trol these channels at low-level code.
This chapter is an extended version of the paper accepted to the 10th European Sym-

posium on Research in Computer Security (ESORICS), Dresden, Germany, September
24-26, 2007

Chapter 4: Security for multithreaded programs under cooperative scheduling In
some scenarios, the modification of the run-time environment might not be an accept-
able requirement. In this light, this chapter presents a transformation that eliminates
the need for protect under cooperative scheduling. In fact, no additional interac-
tions, besides yielding control to a thread, are needed in order to avoid internal tim-
ing leaks. Variations in the transformation can enforce both termination-insensitive and
termination-sensitive security specifications in a language with dynamic thread cre-
ation.
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This chapter is an extended version of the paper accepted to the Andrei Ershov Interna-
tional Conference on Perspectives of System Informatics, Akademgorodok, Novosibirsk,
Russia, June 27-30, 2006.

Chapter 5: Closing internal timing channels by transformation For those scenarios
where the scheduler is preemptive and behaves as round robin, this chapter presents a
transformation that closes the internal timing channel for multithreaded programs. The
transformation is based on spawning dedicated threads, whenever computations may
affect secrets, and carefully synchronizing them. Moreover, the transformation only
rejects programs that have symptoms of illegal flows inherent from sequential settings.
This chapter has been published in the Proceedings of the 11th Annual Asian Comput-
ing Science Conference, Tokyo, Japan, December 6-8, 2006.

Chapter 6: A library for secure multi-threaded information flow in Haskell Re-
cently, Li and Zdancewic have proposed an approach to provide information-flow se-
curity via a library rather than producing a new language from the scratch. They show
how to implement such a library in Haskell. This chapter presents an extension of Li
and Zdancewic’s library that provides information-flow security for multithreaded pro-
grams. The extension provides reference manipulation, a run-time mechanism to close
internal timing leaks, and a flexible treatment of dynamic thread creation. In order to
provide such features, the library combines some ideas presented in this thesis together
with some other ones taken from literature: type system with effects, singleton types,
projection functions, cooperative round-robin schedulers, and type classes in Haskell.
Moreover, an online-shopping case study has been implemented in order to evaluate the
proposed techniques. The case study reveals that exploiting concurrency to leak secrets
is feasible and dangerous in practice and shows how the library can help to avoid inter-
nal timing leaks. Up to the publication date, this is the first implemented tool to provide
information-flow security in concurrent programs and the first implementation of a case
study that involves concurrency and information-flow policies.
This chapter has been published in the Proceedings of the 20th IEEE Computer Secu-

rity Foundations Symposium, Venice, Italy, July 6-8, 2007.

Chapter 7: A light-weight library for information-flow security in Haskell Rather
than producing a new language from scratch, information-flow security can also be pro-
vided as a library. In previous work, this has been done using the arrow framework. In
this work, we show that arrows are not necessary to design such libraries and that a less
general notion, namely monads, is sufficient to achieve the same goals. We present a
monadic library to provide information-flow security for Haskell programs. The library
introduces mechanisms to protect confidentiality of data for pure computations, that we
then easily, and modularly, extend to include dealing with side-effects. We also present
combinators to dynamically enforce different declassification policies when released of
information is required in a controlled manner. It is possible to enforce policies related
to what, by whom, and when information is released or a combination of them. The
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well-known concept of monads together with the lightweight characteristic of our ap-
proach makes the library suitable to build applications where confidentiality of data is
an issue.
This chapter is an extended version of a paper accepted to the ACM SIGPLAN 2008

Haskell Symposium, Victoria, British Columbia, Canada, September 2008.

References

[Aga00a] J. Agat. Transforming out timing leaks. In Proc. ACM Symp. on Principles of
Programming Languages, pages 40–53, January 2000.

[Aga00b] J. Agat. Type Based Techniques for Covert Channel Elimination and Register Allo-
cation. PhD thesis, Chalmers University of Technology and Gothenburg University,
Gothenburg, Sweden, December 2000.

[BC01] G. Boudol and I. Castellani. Noninterference for concurrent programs. In Proc.
ICALP’01, volume 2076 of LNCS, pages 382–395. Springer-Verlag, July 2001.

[BC02] G. Boudol and I. Castellani. Non-interference for concurrent programs and thread
systems. Theoretical Computer Science, 281(1):109–130, June 2002.

[BL73] D. E. Bell and L. J. LaPadula. Secure computer systems: Mathematical foundations.
Technical Report MTR-2547, Vol. 1, MITRE Corp., Bedford, MA, 1973.

[BS06] N. Broberg and D. Sands. Flow locks: Towards a core calculus for dynamic flow
policies. In Peter Sestoft, editor, Proc. European Symp. on Programming, volume
3924 of Lecture Notes in Computer Science, pages 180–196. Springer, 2006.

[CHM04] David Clark, Sebastian Hunt, and Pasquale Malacaria. Quantified interference:
Information theory and information flow. Presented at Workshop on Issues in the
Theory of Security (WITS’04), April 2004.

[CHM05a] David Clark, Sebastian Hunt, and Pasquale Malacaria. Quantified interference for a
while language. Electronic Notes in Theoretical Computer Science, 112:149–166,
January 2005. Proceedings of the Second Workshop on Quantitative Aspects of
Programming Languages (QAPL 2004).

[CHM05b] David Clark, Sebastian Hunt, and Pasquale Malacaria. Quantitative information
flow, relations and polymorphic types. Journal of Logic and Computation, Special
Issue on Lambda-calculus, type theory and natural language, 18(2):181–199, 2005.

[CHM07] David Clark, Sebastian Hunt, and Pasquale Malacaria. A static analysis for quan-
tifying information flow in a simple imperative language. Journal of Computer
Security, 15(3):321–371, 2007.

[CM04] S. Chong and A. C. Myers. Security policies for downgrading. In ACM Conference
on Computer and Communications Security, pages 198–209, October 2004.

[DD77] D. E. Denning and P. J. Denning. Certification of programs for secure information
flow. Comm. of the ACM, 20(7):504–513, July 1977.

[Den76] D. E. Denning. A lattice model of secure information flow. Comm. of the ACM,
19(5):236–243, May 1976.

[Hug00] John Hughes. Generalising monads to arrows. Science of Computer Programming,
37(1–3):67–111, 2000.

[HWS06] M. Huisman, P. Worah, and K. Sunesen. A temporal logic characterisation of ob-
servational determinism. In Proc. IEEE Computer Security Foundations Workshop,
July 2006.

[Lam73] B. W. Lampson. A note on the confinement problem. Comm. of the ACM,
16(10):613–615, October 1973.



Introduction 21

[LZ06] P. Li and S. Zdancewic. Encoding information flow in haskell. In CSFW ’06:
Proceedings of the 19th IEEE Workshop on Computer Security Foundations. IEEE
Computer Society, 2006.

[MDS99] Thomas S. Messerges, Ezzy A. Dabbish, and Robert H. Sloan. Investigations of
power analysis attacks on smartcards. In WOST’99: Proceedings of the USENIX
Workshop on Smartcard Technology on USENIX Workshop on Smartcard Technol-
ogy, pages 17–17, Berkeley, CA, USA, 1999. USENIX Association.

[ML97] A. C. Myers and B. Liskov. A decentralized model for information flow control. In
Proc. ACM Symp. on Operating System Principles, pages 129–142, October 1997.

[ML98] A. C. Myers and B. Liskov. Complete, safe information flow with decentralized
labels. In Proc. IEEE Symp. on Security and Privacy, pages 186–197, May 1998.

[ML00] A. C. Myers and B. Liskov. Protecting privacy using the decentralized label
model. ACM Transactions on Software Engineering and Methodology, 9(4):410–
442, 2000.

[MS01] H. Mantel and A. Sabelfeld. A generic approach to the security of multi-threaded
programs. In Proc. IEEE Computer Security Foundations Workshop, pages 126–
142, June 2001.

[Mye99] A. C. Myers. JFlow: Practical mostly-static information flow control. In Proc. ACM
Symp. on Principles of Programming Languages, pages 228–241, January 1999.

[MZZ+06] A. C. Myers, L. Zheng, S. Zdancewic, S. Chong, and N. Nystrom. Jif: Java informa-
tion flow. Software release. Located at http://www.cs.cornell.edu/jif,
July 2001–2006.

[PS02] F. Pottier and V. Simonet. Information flow inference for ML. In Proc. ACM Symp.
on Principles of Programming Languages, pages 319–330, January 2002.

[RHNS06] A. Russo, J. Hughes, D. Naumann, and A. Sabelfeld. Closing internal timing chan-
nels by transformation. In Proc. Annual Asian Computing Science Conference,
LNCS, December 2006.

[Ros95] A. W. Roscoe. CSP and determinism in security modeling. In Proc. IEEE Symp.
on Security and Privacy, pages 114–127, May 1995.

[RS06] A. Russo and A. Sabelfeld. Securing interaction between threads and the sched-
uler. In Proc. IEEE Computer Security Foundations Workshop, pages 177–189,
July 2006.

[Sab01] A. Sabelfeld. The impact of synchronisation on secure information flow in concur-
rent programs. In Proc. Andrei Ershov International Conference on Perspectives of
System Informatics, volume 2244 of LNCS, pages 225–239. Springer-Verlag, July
2001.

[Sim03] V. Simonet. Flow caml in a nutshell. In Graham Hutton, editor, Proceedings of the
first APPSEM-II workshop, pages 152–165, March 2003.

[SM02] A. Sabelfeld and H. Mantel. Static confidentiality enforcement for distributed pro-
grams. In Proc. Symp. on Static Analysis, volume 2477 of LNCS, pages 376–394.
Springer-Verlag, September 2002.

[SM03] A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE J.
Selected Areas in Communications, 21(1):5–19, January 2003.

[SM04] A. Sabelfeld and A. C. Myers. A model for delimited information release. In Proc.
International Symp. on Software Security (ISSS’03), volume 3233 of LNCS, pages
174–191. Springer-Verlag, October 2004.

[SRC84] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in system design.
ACM Transactions on Computer Systems, 2(4):277–288, November 1984.

[SS00] A. Sabelfeld and D. Sands. Probabilistic noninterference for multi-threaded pro-
grams. In Proc. IEEE Computer Security Foundations Workshop, pages 200–214,
July 2000.



22 Alejandro Russo

[SS05] Andrei Sabelfeld and David Sands. Dimensions and principles of declassification.
In CSFW ’05: Proceedings of the 18th IEEE Computer Security Foundations Work-
shop (CSFW’05), pages 255–269. IEEE Computer Society, 2005.

[SV98] G. Smith and D. Volpano. Secure information flow in a multi-threaded imperative
language. In Proc. ACM Symp. on Principles of Programming Languages, pages
355–364, January 1998.

[SW63] C. E. Shannon and W. Weaver. The Mathematical Theory of Communication. Uni-
versity of Illinois Press, 1963.

[Vle90] T. V. Vleck. Timing channels, May 1990. Poster session, IEEE TCSP conference,
Oakland CA.

[VS98] D. Volpano and G. Smith. Probabilistic noninterference in a concurrent language.
In Proc. IEEE Computer Security Foundations Workshop, pages 34–43, June 1998.

[VS99] D. Volpano and G. Smith. Probabilistic noninterference in a concurrent language.
J. Computer Security, 7(2–3):231–253, November 1999.

[VSI96] D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow analysis.
J. Computer Security, 4(3):167–187, 1996.

[ZM03] S. Zdancewic and A. C. Myers. Observational determinism for concurrent program
security. In Proc. IEEE Computer Security Foundations Workshop, pages 29–43,
June 2003.



CHAPTER

2 Securing Interaction between
Threads and the Scheduler in Pres-
ence of Synchronization

Extended version of
Securing Interaction between Threads and the Scheduler,

In Proceedings of the 19th IEEE Computer Security Foundations
Workshop, Venice, Italy, July 5-7, 2006. IEEE Computer Society Press.

Chapter published in the Special Issue of Journal of Logic and
Algebraic Programming dedicated to the Nordic Workshop on

Programming Theory (NWPT’07), Elsevier Editorial.





Securing Interaction between Threads and the
Scheduler in the Presence of Synchronization

Alejandro Russo and Andrei Sabelfeld

Department of Computer Science and Engineering
Chalmers University of Technology
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Abstract. The problem of information flow in multithreaded programs remains
an important open challenge. Existing approaches to specifying and enforcing
information-flow security often suffer from over-restrictiveness, relying on non-
standard semantics, lack of compositionality, inability to handle dynamic threads,
inability to handle synchronization, scheduler dependence, and efficiency over-
head for the code that results from security-enforcing transformations. This pa-
per suggests a remedy for some of these shortcomings by developing a novel
treatment of the interaction between threads and the scheduler. As a result, we
present a permissive noninterference-like security specification and a composi-
tional security type system that provably enforces this specification. The type
system guarantees security for a wide class of schedulers and provides a flexible
and efficiency-friendly treatment of dynamic threads.

1 Introduction

The problem of information flow in multithreaded programs remains an important open
challenge [SM03]. While information flow in sequential programs is relatively well
understood, information-flow security specifications and enforcement mechanisms for
sequential programs do not generalize naturally to multithreaded programs [SV98]. In
this light, it is hardly surprising that Jif [MZZ+06] and Flow Caml [Sim03], the main-
stream compilers that enforce secure information flow, lack support for multithreading.
Nevertheless, the need for information flow control in multithreaded programs is press-
ing because concurrency and multithreading are ubiquitous in modern programming
languages. Furthermore, multithreading is essential in security-critical systems because
threads provide an effective mechanism for realizing the separation-of-duties princi-
ple [VM01].
There is a series of properties that are desired of an approach to information flow for
multithreaded programs:

– Permissiveness The presence of multithreading enables new attacks which are not
possible for sequential programs. The challenge is to reject these attacks without
compromising the permissiveness of the model. In other words, information flow
models should accept as many intuitively secure and useful programs as possible.

– Scheduler-independence The security of a given program should not critically de-
pend on a particular scheduler [SS00]. Scheduler-dependent security models suffer
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from the weakness that security guarantees may be destroyed by a slight change in
the scheduler policy. Therefore, we aim at a security condition that is robust with
respect to a wide class of schedulers.

– Realistic semantics Following the philosophy of extensional security [McL90], we
argue for security defined in terms of standard semantics, as opposed to security-
instrumented semantics. If there are some nonstandard primitives that accommo-
date security, they should be clearly and securely implementable.

– Language expressiveness A key to a practical security model is an expressive under-
lying language. In particular, the language should be able to treat dynamic thread
creation, as well as provide possibilities for synchronization.

– Practical enforcement Another practical key is a tractable security enforcement
mechanism. Particularly attractive is compile-time automatic compositional anal-
ysis. Such an analysis should nevertheless be permissive, striving to trade as little
expressiveness and efficiency for security as possible.

This paper develops an approach that is compatible with each of these properties by
a novel treatment of the interaction between threads and the scheduler. We enrich the
language with primitives for raising and lowering the security levels of threads. Threads
with different security levels are treated differently by the scheduler, ensuring that the
interleaving of publicly-observable events may not depend on sensitive data. As a re-
sult, we present a permissive noninterference-like security specification and a compo-
sitional security type system that provably enforces this specification. The type system
guarantees security for a wide class of schedulers and provides a flexible and efficiency-
friendly treatment of dynamic threads.
The main novelty of this paper, compared to a previous workshop version [RS06a], is
the inclusion of synchronization primitives into the underlying language.
In the rest of the paper we present background and related work (Section 2), the un-
derlying language (Section 3), the security specification (Section 4), and the type-based
analysis (Section 5). We discuss an extension to cooperative schedulers (Section 6), an
example (Section 7), implementation issues (Section 8), and present an extension of the
framework with synchronization primitives (Section 9), before we conclude the paper
(Section 10).

2 Motivation and background

This section motivates and exemplifies some key issues with tracking information flow
in multithreaded programs and presents an overview of existing work on addressing
these issues.

2.1 Leaks via scheduler

Assume a partition of variables into high (secret) and low (public). Suppose h and l
are a high and a low variable, respectively. Intuitively, information flow in a program is
secure (or satisfies noninterference [Coh78, GM82, VSI96]) if public outcomes of the
program do not depend on high inputs. Typical leaks in sequential programs arise from
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explicit flows (as in assignment l := h) and implicit [DD77] flows via control flow (as
in conditional if h > 0 then l := 1 else l := 0).
The ability of sequential threads to share memory opens up new information channels.
Consider the following thread commands:

c1 : h := 0; l := h c2 : h := secret

where secret is a high variable. Thread c1 is secure because the final value of l is always
0. Thread c2 is secure because h and secret are at the same security level. Nevertheless,
the parallel composition c1 ‖ c2 of the two threads is not necessarily secure. The sched-
uler might schedule c2 after assignment h := 0 and before l := h is executed in c1. As
a result, secret is copied into l.
Consider another pair of thread commands:

d1 : (if h > 0 then sleep(100) else skip); l := 1

d2 : sleep(50); l := 0

These threads are clearly secure in isolation because 1 is always the outcome for l in
d1, and 0 is always the outcome for l in d2. However, when d1 and d2 are executed in
parallel, the security of the threadpool is no longer guaranteed. In fact, the program will
leak whether the initial value of hwas positive into l under many reasonable schedulers.
We observe that program c1 ‖ c2 can be straightforwardly secured by synchronization.
Assuming the underlying language features locks, we can rewrite the program as

c1 : lock;h := 0; l := h; unlock

c2 : lock; h := secret ; unlock

The lock primitives ensure that the undesired interleaving of c1 and c2 is prevented.
Note that this solution prevents a race condition [SBN+97] in the sense that it is now
impossible for the two threads (where one of them attempts writing) to simultaneously
access variable h.
Unfortunately, synchronization primitives, which are typically used for race-condition
prevention (e.g., [CF07]), offer no general solution. The source of the leak in program
d1 ‖ d2 is internal timing [VS99]. The essence of the problem is that the timing behav-
ior of a thread may affect—via the scheduler—the interleaving of assignments. As we
will see later in this section, securing interleavings from within the program (such as
with synchronization primitives) is a highly delicate matter.
What is the key reason for these flows? Observe that in both cases, it is the interleaving
of the threads that introduces leaks. Hence, it is the scheduler and its interaction with the
threads that needs to be secured in order to prevent undesired information disclosure. In
this paper, we suggest a treatment of schedulers that allows the programmer to ensure
from within the program that undesired interleavings are prevented.
In the rest of this section, we review existing approaches to information flow in mul-
tithreaded programs that are directly related to the paper. We refer to an overview of
language-based information security [SM03] for other, less related, work.
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2.2 Possibilistic security

Smith and Volpano [SV98] explore possibilistic noninterference for a language with
static threads and a purely nondeterministic scheduler. Possibilistic noninterference
states that possible low outputs of a program may not vary as high inputs are varied.
Program d1 ‖ d2 from above is considered secure because possible final values of l are
always 0 and 1, independently of the initial value of h. Because the choice of a sched-
uler affects the security of the program, this demonstrates that this definition is not
scheduler-independent. Generally, possibilistic noninterference is subject to the well
known phenomenon that confidentiality is not preserved by refinement [McC87]. Work
by Honda et al. [HVY00, HY02] and Pottier [Pot02] is focused on type-based tech-
niques for tracking possibilistic information flow in variants of the π calculus. Forms of
noninterference under nondeterministic schedulers have been explored in the context of
CCS (see [FG01] for an overview) and CSP (see [Rya01] for an overview).

2.3 Scheduler-specific security

Volpano and Smith [VS99] have investigated probabilistic noninterference for a lan-
guage with static threads. Probabilities in their multithreaded system come from the
scheduler, which is assumed to select threads uniformly, i.e., each thread can be sched-
uled with the same probability. Volpano and Smith introduce a special primitive in or-
der to help protecting against internal timing leaks. This primitive is called protect,
and it can be applied to any command that contains no loops. A protected command
protect(c) is executed atomically, by definition of its semantics. Such a primitive can
be used to secure program d1 ‖ d2 as:

d1 : protect(if h > 0 then sleep(100) else skip);

l := 1

d2 : sleep(50); l := 0

The timing difference is not visible to the scheduler because of the atomic semantics of
protect. The protect primitive is, however, nonstandard. It is not obvious how such
a primitive can be implemented (unless the scheduler is cooperative [RS06b, TRH07]).
A synchronization-based implementation would face some nontrivial challenges. In the
case of program d1 ‖ d2, a possible implementation of protect could attempt locking
all other threads while execution is inside of the if statement:

d1 : lock; (if h > 0 then sleep(100) else skip);

unlock; lock; l := 1; unlock

d2 : lock; sleep(50); unlock; lock; l := 0; unlock

Although this implementation prevents race conditions related to simultaneous access
of variable l, unfortunately, such an implementation is insecure. The somewhat subtle
reason is that when the execution is inside of the if statement, the other threads do
not become instantly locked. Thread d2 can still be scheduled, which could result in
blocking and updating the wait list for the lock with d2.
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For simplicity, assume that sleep(n) is an abbreviation for n consecutive skip com-
mands. Consider a scheduler that picks thread d1 first and then proceeds to run a thread
for 70 steps before giving the control to the other thread. If h > 0 then d1 will run
for 70 steps and, while being in the middle of sleep(100), the control will be given
to thread d2. Thread d2 will try to acquire the lock but will block, which will result in
d2 being placed as the first thread in the wait list for the lock. The scheduler will then
schedule d1 again, and d1 will release the lock with unlock and try to grab the lock
with lock. However, it will fail because d2 is the first in the wait list. As a result, d1

will be put behind d2 in the wait list. Further, d2 will be scheduled to set l to 0, release
the lock, and finish. Finally, d1 is able to grab the lock and execute l := 1, release the
lock, and finish. The final value of l is 1. If, on the other hand, h ≤ 0 then, clearly,
d1 will finish within 70 steps, and the control will be then given to d2, which will grab
the lock, execute l := 0, release the lock, and finish. The final value of l in this case is
0, which demonstrates that the program is insecure. Generally, under many schedulers,
chances for l := 0 in d2 to execute before l := 1 in d1 are higher if the initial value of
h is positive. Thus, the above implementation fails to remove the internal timing leak.
This example illustrates the need for a tighter interaction with the scheduler. The sched-
uler needs to be able to suspended certain threads instantly. This flexibility motivates
the introduction of the hide and unhide constructs in this paper.
Returning to probabilistic scheduler-specific noninterference, Smith has continued this
line of work [Smi01] to emphasize practical enforcement. In contrast to previous work,
the security type system accepts while loops with high guards when no assignments to
low variables follow such loops. Independently, Boudol and Castellani [BC01, BC02]
provide a type system of similar power and show possibilistic noninterference for ty-
pable programs. This system does not rely on protect-like primitives but winds up
rejecting assignments to low variables that follow conditionals with high guards.
The approaches above do not handle dynamic threads. Smith [Smi03] has suggested that
the language can be extended with dynamic thread creation. The extension is discussed
informally, with no definition for the semantics of fork, the thread creation construct.
A compositional typing rule for fork is given, which allows spawning threads under
conditionals with high guards. However, the uniform scheduler assumption is critical for
such a treatment (as it is also for the treatment of while loops). Consider the following
example:

e1 : l := 0

e2 : l := 1

e3 : if h > 0 then fork(skip, skip) else skip

This program is considered secure according to [Smi03]. Suppose the scheduler hap-
pens to first execute e3 and then schedule the first thread (e1) if the threadpool has more
than three threads and the second thread (e2) otherwise. This results in an information
leak from h to l because the size of the threadpool depends on h. Note that the above
program is insecure for many other schedulers. A minor deviation from the strictly uni-
form probabilistic choice of threads may result in leaking information.
A possible alternative aimed at scheduler-independence is to force threads (created in
branches of ifs with high guards) along with their children to be protected, i.e., to
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disable all other threads until all these threads have terminated (this can be implemented
by, for example, thread priorities). Clearly, this would take a high efficiency tall on
the encouraged programming practice of placing dedicated potentially time-consuming
computation in separate threads. For example, creating a new thread for establishing a
network connection is a much recommended pattern [Knu02, Mah04].
The above discussion is another motivation for a tighter interaction between threads
and the scheduler. A flexible scheduler would accommodate thread creation in a sen-
sitive context by scheduling such threads independently from threads with attacker-
observable assignments. This motivates the introduction of the hfork construct in this
paper.

2.4 Scheduler-independent security

Sabelfeld and Sands [SS00] introduce a scheduler-independent security condition (with
respect to possibly probabilistic schedulers) and suggest a type-based analysis that en-
forces this condition. The condition is, however, concerned with external timing leaks,
which implies that the attacker is powerful enough to observe the actual execution
time. External timing models rely on the underlying operating system and hardware
to preserve the timing properties of a given program. Furthermore, the known padding
techniques (e.g., [Aga00, SS00, KM07]) might arbitrarily change the efficiency of the
resulting code.
In the present work, we assume a weaker attacker and aim for a more permissive secu-
rity condition and analysis. Similarly to much related work (e.g., [VS99, Smi03, ZM03,
HWS06, RS06b, RHNS07, BRRS07]) our attacker model does not permit observations
of the execution time. The attacker may observe public outcomes of a program however,
which is sufficient to launch attacks via internal timing. These attacks are dangerous be-
cause they can be magnified to leak all secrets in a single run (see, e.g., [RHNS07]).

2.5 Security via low determinism

Inspired by Roscoe’s low-view determinism [Ros95] for security in a CSP setting,
Zdancewic and Myers [ZM03] develop an approach to information flow in concurrent
systems. According to this approach, a program is secure if its publicly-observably re-
sults are deterministic and unchanged regardless of secret inputs. This avoids refinement
attacks from the outset. However, low-view determinism security rejects intuitively se-
cure programs (such as l := 0 ‖ l := 1), introducing the risk of rejecting useful
programs. Analysis enforcing low-view determinism are inherently noncompositional
because the parallel composition with a thread assigning to low variables is not gener-
ally secure.
Recently, Huisman et al. [HWS06] have suggested a temporal logic-based characteri-
zation of low-view determinism security. This characterization enables high-precision
security enforcement by known model-checking techniques.
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c ::= stop | skip | v := e | c; c | if b then c else c | while b do c
| hide | unhide | fork(c, ~d) | hfork(c, ~d)

Fig. 1. Command syntax

2.6 Security in the presence of synchronization

Andrews and Reitman [AR80] propose a logic for reasoning about information flow in
a language with semaphores. However, the logic comes with no soundness arguments
or decision algorithms.
External timing-sensitive security has been extended to languages with semaphores
primitives by Sabelfeld [Sab01] and message passing by Sabelfeld and Mantel [SM02].
Although our focus is internal timing, the semantic presentation of semaphores from
the former work serves as a useful starting point for this paper.
Recently, Russo et al. [RHNS07] have proposed a transformation that closes internal
timing leaks by spawning sensitive computation in dedicated threads. Semaphores play
a crucial role for the synchronization of these threads. However, contrary to this work,
the source language for the transformation lacks semaphores.

3 Language

In order to illustrate our approach, we define a simple multithreaded language with dy-
namic thread creation. The syntax of language commands is displayed in Figure 1.
Besides the standard imperative primitives, the language features hiding (hide and
unhide primitives) and dynamic thread creation (fork and hfork primitives).

3.1 Semantics for commands

A command c and a memory m together form a command configuration 〈|c,m|〉. The
semantics of configurations are presented in Figure 2. A small semantic step has the
form 〈|c,m|〉 α⇀ 〈|c′,m′|〉 that updates the command and memory in the presence of a
possible event α. Events range over the set

{
•;,;•, ◦~d, •~d

}
, where ~d is a set of

threads. The sequential composition rule propagates events to the top level. We describe
the meaning of the events in conjunction with the rules that involve the events.
Two kinds of threads are supported by the semantics, low and high threads, partitioning
the threadpool into low and high parts. The intention is to hide—via the scheduler—the
(timing of the) execution of the high threads from the low threads.
The hiding command hidemoves the current thread from the low to the high part of the
threadpool. This is expressed in the semantics by event ;• that communicates to the
scheduler to treat the thread as high (whether or not the thread was already high). The
unhiding command unhide has the dual effect: it communicates to the scheduler by
event •; that the thread should be treated as low. To intuitively illustrate how to utilize
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〈|skip,m|〉⇀ 〈|stop,m|〉 〈|e,m|〉 ↓ n
〈|x := e,m|〉⇀ 〈|stop,m[x 7→ n]|〉

〈|c1,m|〉 α⇀ 〈|stop,m′|〉 α ∈
˘
•;,;•, ◦~d, •~d

¯

〈|c1; c2,m|〉 α⇀ 〈|c2,m′|〉

〈|c1,m|〉 α⇀ 〈|c′1,m′|〉 α ∈
˘
•;,;•, ◦~d, •~d

¯

〈|c1; c2,m|〉 α⇀ 〈|c′1; c2,m′|〉
〈|e,m|〉 ↓ True

〈|if e then c1 else c2,m|〉⇀ 〈|c1,m|〉
〈|e,m|〉 ↓ False

〈|if e then c1 else c2,m|〉⇀ 〈|c2,m|〉
〈|e,m|〉 ↓ True

〈|while e do c,m|〉⇀ 〈|c; while e do c,m|〉
〈|e,m|〉 ↓ False

〈|while e do c,m|〉⇀ 〈|stop,m|〉

〈|hide, m|〉 ;•⇀ 〈|stop,m|〉 〈|unhide,m|〉 •;⇀ 〈|stop,m|〉

〈|fork(c, ~d),m|〉
◦~d⇀ 〈|c,m|〉 〈|hfork(c, ~d),m|〉

•~d⇀ 〈|c,m|〉

Fig. 2. Semantics for commands

try {
if l1 then l2 := 1; hide; c1 else l2 := 0; hide; c2
} catch {unhide; c3}

Fig. 3. An unhide refers to several hide

hide and unhide, we modify the motivating example given in Section 2.1, where we
wrap the branching command around hide and unhide commands as follows:

d1 : hide; (if h > 0 then sleep(100) else skip); unhide; l := 1

d2 : sleep(50); l := 0

Initially, both threads, d1 and d2 are treated as low by the scheduler. After executing
hide, d1 is temporarily considered as a high thread and d2 is not scheduled for exe-
cuting until running the command unhide. As a consequence, the timing differences
introduced by the branching instruction in d1 are not visible to d2 and internal-timing
leaks are thus avoided.
Although hide and unhide commands are nonstandard, we will show that, unlike
protect, they can be straightforwardly implemented.
We define independent commands hide and unhide instead of forcing them to wrap
code blocks syntactically (cf. protect). We expect this choice to be useful when adding
exceptions to the language. For example, consider the program in Figure 3. Command
try determines code blocks that might throw an exception, while command catch

states exception handlers. Variables l1,l2, and l3 are public. Commands c1 and c2 con-
tain branches whose guards involve secrets. Command c3 is part of the exception han-
dler. In this program, the unhide command in the exception handler refers to several
hide primitives under the try statement.
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Commands fork(c, ~d) and hfork(c, ~d) dynamically spawn a collection ~d of threads
(commands) ~d = d1 . . . dn while the current thread runs command c. The difference
between the two primitives is in the generated event. Command fork signals about the
creation of low threads with event ◦~d (where ◦ is read “low”) while hfork indicates
that new threads should be treated as high by event •~d (where • is read “high”).

3.2 Semantics for schedulers

Figure 4 depicts the semantic rules that describe the behavior of the scheduler. A sched-
uler is a program σ (written in a language, not necessarily related to one from Figure 1)
that, together with a memory ν, forms a scheduler configuration 〈|σ, ν|〉. We assume that
the scheduler memory is disjoint from the program memory. The scheduler memory
contains variable q that regulates for how many steps a thread can be scheduled. Live
(i.e., ready to execute) threads are tracked by variable t that consists of low and high
parts. The low part is named by t◦, while the high part is composed of two subpools
named t• and te. Threads in t• are always high, but threads in te were low in the past,
are high at present, and might eventually be low in the future. Threads are moved back
and forth from t◦ to te by executing the hiding and unhiding commands. Variable r rep-
resents the running thread. Variable s regulates whether low threads may be scheduled.
When s is ◦, both low and high threads may be scheduled. However, when s is •, only
high threads may be scheduled, preventing low threads from observing internal timing
information about high threads. In addition, the scheduler might have some internal
variables.
Whenever a scheduler-operation rule handles an event, it either corresponds to pro-
cessing information from the top level (such as threads creation and termination) or to
communicating information to the top level (such as thread selection). The rules allow
to derive steps of the form 〈|σ, ν|〉 α

⇁ 〈|σ′, ν′|〉. By convention, we refer to the variables
in ν as q, t, r and s and variables in ν ′ as q′, t′, r′ and s′. When these variables are
not explicitly mentioned, we adopt the convention that they remain unchanged after the
transition. We assume that besides event-driven transitions, the scheduler might per-
form internal operations that are not visible at the top level (and may not change the
variables above). We abstract away from these transitions, assuming that their event
labels are empty. Although the transition system in Figure 4 is nondeterministic, we
only consider deterministic instances of schedulers for simplicity. We expect a natural
generalization of our results to probabilistic schedulers.
The rules can be viewed as a set of basic assumptions that we expect the scheduler to
satisfy. We abstract away from the actual scheduler implementation—it can be arbitrary,
as long as it satisfies these basic assumptions and runs infinitely long. We discuss an
example of a scheduler that conforms to these assumptions in Section 4.
The rule for event αr~d ensures that the scheduler updates the appropriate part of the

threadpool (low or high, depending on α) with newly created threads. Operation N(~d)

returns thread identifiers for ~d and generates fresh ones when new threads are spawn by
fork or hfork. The rule for event r; keeps track of a nonterminal step of thread r;
as an effect, counter q is decremented. A terminal step of thread r results in a r;×
event, which requires the scheduler to remove thread r from the threadpool. Events
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q > 0 q′ = q − 1 t′α = tα ∪N(~d)

〈|σ, ν|〉
αr~d⇁ 〈|σ′, ν′|〉

α ∈ {•, ◦}

q > 0 q′ = q − 1

〈|σ, ν|〉 r;⇁ 〈|σ′, ν′|〉
q > 0 q′ = 0 ∀α ∈ {•, ◦}.t′α = tα\{r}

〈|σ, ν|〉 r;×⇁ 〈|σ′, ν′|〉

q = 0 s = ◦ q′ > 0 r′ ∈ t◦ ∪ t•
〈|σ, ν|〉 ↑◦r

′
⇁ 〈|σ′, ν′|〉

q = 0 q′ > 0 r′ ∈ t• ∪ te
〈|σ, ν|〉 ↑•r

′
⇁ 〈|σ′, ν′|〉

q > 0 q′ = q − 1 s′ = • t′◦ = t◦\{r} t′e = {r}
〈|σ, ν|〉 r;•⇁ 〈|σ′, ν′|〉

q > 0 q′ = 0 s′ = ◦ t′◦ = t◦ ∪ {r} t′e = ∅
〈|σ, ν|〉 •;r⇁ 〈|σ′, ν′|〉

q > 0 q′ = 0 s′ = • ∀α ∈ {•, ◦}.t′α = tα\{r} t′e = ∅
〈|σ, ν|〉 r;•×⇁ 〈|σ′, ν′|〉

q > 0 q′ = 0 s′ = ◦ ∀α ∈ {•, ◦}.t′α = tα\{r} t′e = ∅
〈|σ, ν|〉 •;r×⇁ 〈|σ′, ν′|〉

Fig. 4. Semantics for schedulers

↑◦ r′ and ↑• r′ are driven by the scheduler’s selection of thread r′. Note the difference
in selecting low and high threads. A low thread can only be selected if the value of s is
◦, as discussed above.
Events r;• and •;r are triggered by the hide and unhide commands, respectively.
The scheduler handles event r;• by moving the current thread from the low to the
high part of the threadpool and setting s′ to •. Upon event •; r, the scheduler moves
the thread back to the low part of the threadpool, setting s′ to ◦.
Events r;•× and •;r× are triggered by hide and unhide, respectively, when they
are the last commands to be executed by a thread.

3.3 Semantics for threadpools

The interaction between threads and the scheduler takes place at the top level, the
level of threadpool configurations. These configurations have the form 〈|~c,m, σ, ν|〉 α→
〈|~c′,m′, σ′, ν′|〉, where α ranges over the same set of events as in the semantics for
schedulers.
The semantics for threadpool configurations is displayed in Figure 5. The dynamic
thread creation rule is triggered when the running thread cr generates a thread creation
event α~d, where α is either • or ◦. This event is synchronized with scheduler event αr~d
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〈|cr,m|〉
α~d⇀ 〈|c′r, m′|〉 〈|σ, ν|〉

αr~d⇁ 〈|σ′, ν′|〉 α ∈ {•, ◦}

〈|c1 . . . cn,m, σ, ν|〉
αr~d→ 〈|c1 . . . cr−1c

′
r
~dcr+1 . . . cn,m

′, σ′, ν′|〉

〈|cr,m|〉⇀ 〈|c′r,m′|〉 〈|σ, ν|〉 r;⇁ 〈|σ′, ν′|〉
〈|c1 . . . cn,m, σ, ν|〉 r;→ 〈|c1 . . . cr−1c

′
rcr+1 . . . cn,m

′, σ′, ν′|〉

〈|cr,m|〉⇀ 〈|stop,m′|〉 〈|σ, ν|〉 r;×⇁ 〈|σ′, ν′|〉
〈|c1 . . . cn,m, σ, ν|〉 r;×→ 〈|c1 . . . cr−1cr+1 . . . cn, m

′, σ′, ν′|〉

〈|cr,m|〉 ;•⇀ 〈|stop,m′|〉 〈|σ, ν|〉 r;•×⇁ 〈|σ′, ν′|〉
〈|c1 . . . cn,m, σ, ν|〉 r;•×→ 〈|c1 . . . cr−1cr+1 . . . cn,m

′, σ′, ν′|〉

〈|cr,m|〉 •;⇀ 〈|stop,m′|〉 〈|σ, ν|〉 •;r×⇁ 〈|σ′, ν′|〉
〈|c1 . . . cn,m, σ, ν|〉 •;r×→ 〈|c1 . . . cr−1cr+1 . . . cn,m

′, σ′, ν′|〉

〈|σ, ν|〉 ↑αr
′

⇁ 〈|σ′, ν′|〉 α ∈ {◦, •}, r′ ∈ {1, . . . , n}

〈|c1 . . . cn,m, σ, ν|〉 ↑αr
′

→ 〈|c1 . . . cn,m, σ′, ν′|〉

〈|cr,m|〉 α⇀ 〈|c′r,m′|〉 〈|σ, ν|〉 α⇁ 〈|σ′, ν′|〉 α ∈ {r ; •, •; r}
〈|c1 . . . cn,m, σ, ν|〉 α→ 〈|c1 . . . cr−1c

′
rcr+1 . . . cn,m

′, σ′, ν′|〉

Fig. 5. Semantics for threadpools

that requests the scheduler to handle the new threads depending on whether α is high
or low.

If cr does not spawn new threads or terminate, then its command rule is synchronized
with scheduler event r;. If cr terminates in a transition without labels, then scheduler
event r;× is required for synchronization in order to update the threadpool informa-
tion in the scheduler memory. If cr terminates with;• (resp., •;) then synchronization
with r;•× (resp., •; r×) is required to record both termination and hiding (resp.,
unhiding).

Scheduler event ↑α r′ triggers a selection of a new thread r′ without affecting the com-
mands in the threadpool or their memory. Finally, entering and exiting the high part of
the threadpool is performed by synchronizing the current thread and the scheduler on
events r;• and •;r.

Let→∗ stand for the transitive and reflexive closure of→ (which is obtained from α→ by
ignoring events). If for some threadpool configuration cfg we have cfg →∗ cfg ′, where
the threadpool of cfg ′ is empty, then cfg terminates in cfg ′, denoted by cfg ⇓ cfg ′.
Recall that schedulers always run infinitely; however, according to the above definition,
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the entire program terminates if there are no threads to schedule. We assume thatm(cfg)
extracts the program memory from threadpool configuration cfg .

3.4 On multi-level extensions

d : forklow (clow );
forkmedium(cmedium);
forkhigh (chigh );
hidemedium ;
if k then h := 3;

else k := 1; k′ := 3;
hidehigh ;
if h then h := 0;

else h := 4; h′ := 3;
unhidehigh ;

k′′ := 5;
unhidemedium ;

Fig. 6. Example of multi-level commands hide`, unhide`, and fork`

Although the semantics accommodates two security levels for threads, extensions to
more levels do not pose significant challenges. Assume a security lattice L, where se-
curity levels are ordered by a partial order v, with the intention to only allow leaks
from data at level `1 to data at level `2 when `1 v `2. The low-and-high policy dis-
cussed above forms a two-level lattice with elements low and high so that low v high
but high 6v low .
In the presence of a general security lattice, the threadpool is partitioned into as many
parts as the number of security levels. Commands hide`, unhide`, and fork` are pa-
rameterized over security level `. Initially, all threads are in the ⊥-threadpool. When-
ever a thread executes a hide` command, it enters `-threadpool. The semantics needs
to ensure that no threads from `′-threadpools, for all `′ such that ` 6v `′ may execute
until the hidden thread reaches unhide`. Naturally, command fork` creates threads in
`-threadpool.
To illustrate the use of commands hide`, unhide`, and fork`, we present the thread
d in Figure 6. We assume three security levels in our lattice: low , medium , and high ,
where low v medium v high . Commands clow , cmedium , and chigh describe low,
medium, and high threads, respectively. Variables l, k, and h (and their prime versions)
are associated with security levels low , medium, and high , respectively. The program
starts by spawning three threads at different security levels. Before the first hide, the
low -threadpool is composed by the threads d and clow , while threads cmedium and chigh

are placed in the medium and high-threadpools, respectively. At this point, any of the
threads can be scheduled. Once executed hidemedium , thread clow is not scheduled for
execution until reaching the command unhidemedium . After executing the first branch-
ing instruction, hidehigh is executing. Then, thread cmedium is not able to run and only
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d and chigh can be executed at that point of the program. After executing unhidehigh ,
thread cmedium can be scheduled to run. Finally, clow can be scheduled to run after
executing unhidemedium .
We will discuss how general multi-level security can be defined and enforced in Sec-
tions 4 and 5, respectively.

4 Security specification

We specify security for programs via noninterference. The attacker’s view of program
memory is defined by a low-equivalence relation =L such thatm1 =L m2 if the projec-
tions of the memories onto the low variables are the samem1|L = m2|L. As formalized
in Definition 4 below, a program is secure under some scheduler if for any two initial
low-equivalent memories, whenever the two runs of the program terminate, then the
resulting memories are also low-equivalent.
We generalize this statement to a class of schedulers, requiring schedulers to comply to
the basic assumptions from Section 3 and also requiring that they themselves are not
leaky, i.e., that schedulers satisfy a form of noninterference.
Scheduler-related events have different distinguishability levels. Events ◦r~d,, r;, r;×,
↑◦ r′, r;•, •; r, r;•×, and •; r× (where r is a low thread and r′ can be either a
low or a high thread) operate on low threads and are therefore low events. On the other
hand, events •r~d , r;, r;×, ↑• r′, r;•, •;r, r;•×, and •;r× (where r and r′ are
high threads) are high.
With the security partition defined on scheduler events, we specify the indistinguisha-
bility of scheduler configurations via low-bisimulation. Because we only consider deter-
ministic schedulers, an equivalent trace-based definition is possible. However, we have
chosen a bisimulation-based definition of indistinguishability because it is both intu-
itive and concise. The intuition behind indistinguishability of scheduler configurations
is this: A candidate relation R is a low-bisimulation if the following conditions hold.
For two configurations that are related by R, if one of them (say the first) can make
a high step to some other configuration then this other configuration will be related to
the second configuration. If none of the configurations can make a high step, but one of
the configurations can make a low step, then the other one should also be able to make
a low step with the same label and the resulting configurations must be related by R.
Formally:

Definition 1. A relation R is a low-bisimulation on scheduler configurations if when-
ever 〈|σ1, ν1|〉 R 〈|σ2, ν2|〉, then

– if 〈|σi, νi|〉 α⇁ 〈|σ′i, ν′i|〉 where α is high and i ∈ {1, 2}, then 〈|σ′i, ν′i|〉 R 〈|σ3−i, ν3−i|〉;
– if the case above cannot be applied and 〈|σi, νi|〉 α

⇁ 〈|σ′i, ν′i|〉 where α is low and
i ∈ {1, 2}, then 〈|σ3−i, ν3−i|〉 α

⇁ 〈|σ′3−i, ν′3−i|〉 and 〈|σ′i, ν′i|〉 R 〈|σ′3−i, ν′3−i|〉.

Note the condition “if the case above cannot be applied”, which corresponds to the case
where none of the configurations can make a high step. Scheduler configurations are
low-indistinguishable if there is a low-bisimulation that relates them:
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t◦ := [c]; t• := []; r := c; s := 0; turn := 0;
while (True) do {
q := M ; run(r);
while (q > 0) do {
receive

◦r~d : t◦ := append(t◦, N(~d));

•r~d : t• := append(t•, N(~d));

r;: skip;
r;× : t◦ := remove(r, t◦); t• := remove(r, t•);

q := 0;
r;• : t◦ := remove(r, t◦); t• := remove(r, t•);

t• := append(t•, [r]); s := 1;
•;r : t◦ := append(t◦, [r]);

t• := remove(r, t•); s := 0; q := 0;
r;•× : t◦ := remove(r, t◦); t• := remove(r, t•);

s := 1; q := 0;
•;r× : t◦ := remove(r, t◦); t• := remove(r, t•);

s := 0; q := 0;
end receive;
q := q − 1
};
turn := (turn + 1) mod 2;
if ((turn = 1) or (s = 1))
then {r := head(t•); t• := append(tail(t•), [r])}
else {r := head(t◦); t◦ := append(tail(t◦), [r])}
}

Fig. 7. Round-robin scheduler

Definition 2. Scheduler configurations 〈|σ1, ν1|〉 and 〈|σ2, ν2|〉 are low-indistinguishable
(written 〈|σ1, ν1|〉 ∼L 〈|σ2, ν2|〉) if there is a low-bisimulation R such that 〈|σ1, ν1|〉 R
〈|σ2, ν2|〉.

Noninterference for schedulers requires low-bisimilarity under any memory:

Definition 3. Scheduler σ is noninterferent if 〈|σ, ν|〉 ∼L 〈|σ, ν|〉 for all ν.

Figure 7 displays an example of a scheduler in pseudocode. This is a round-robin
scheduler that keeps track of two lists of threads: low and high ones. The scheduler
interchangeably chooses between threads from these two lists, when possible. It waits
for events generated by the running thread (expressed by primitive receive). Func-
tions head, tail, remove, and append have the standard semantics for list operations.
Operation N(~d), variables t◦, t•, s, r, and q have the same purpose as described in
Section 3.2. Constant M is a positive natural number. Variable turn encodes the in-
terchangeable choices between low and high threads. Function run(r) launches the
execution of thread r. It is not difficult to show that this schedulers complies to the
assumptions from Section 3.2, and that it is noninterferent.
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Suppose the initial scheduler memory is formed according to νinit = ν[t◦ 7→ {c} , t• 7→
∅, te 7→ ∅, r 7→ 1, s 7→ ◦, q 7→ 0] for some fixed ν. Security for programs is defined as
a form of noninterference:

Definition 4. Program c is secure if for all σ,m1, and m2 where σ is noninterferent
and m1 =L m2, we have

〈|c,m1, σ, νinit |〉 ⇓ cfg1 & 〈|c,m2, σ, νinit |〉 ⇓ cfg2 =⇒
m(cfg1) =L m(cfg2)

A form of scheduler independence is built in the definition by the universal quantifi-
cation over all noninterferent schedulers. Although the universally quantified condition
may appear difficult to guarantee, we will show that the security type system from
Section 5 ensures that any typable program is secure. Note that this security definition
is termination-insensitive [SM03] in that it ignores nonterminating program runs. Our
approach can be applied to termination-sensitive security in a straightforward manner,
although this is beyond the scope of this paper.
As common, noninterference can be expressed for a general security lattice L by quan-
tifying over all security levels ` ∈ L and demanding two-level noninterference between
data at levels `1 such that `1 v ` (acting as low) and data at levels `2 such that `2 6v `
(acting as high).

5 Security type system

This section presents a security type system that enforces the security specification
from the previous section. We proceed by going over the typing rules and stating the
soundness theorem.

5.1 Typing rules

Figure 8 displays the typing rules for expressions and commands. Suppose Γ is a typing
environment which includes security type information for variables (whether they are
low or high) and two variables, pc and hc, ranging over security types (low or high).
By convention, we write Γv for Γ restricted to all variables but v.
Expression typing judgments have the form Γ ` e : τ where τ is low only if all
variables in e (denoted FV(e)) are low. If there exists a high variable that occurs in e
then τ must be high . Expression types make no use of type variables pc and hc.
Command typing judgments have the form Γ ` c : τ . As a starting point, let us see how
the rules track sequential-style information flow. The assignment rule ensures that in-
formation cannot leak explicitly by assigning an expression that contains high variables
into a low variable. Further, implicit flows are prevented by the program-counter mech-
anism [DD77, VSI96]. This mechanism ensures that no assignments to low variables
are allowed in the branches of a control statement (if or while) when the guard of the
control statement has type high . (We call such if’s and while’s high.) This is achieved
by the program-counter type variable pc from the typing context Γ . The intended guar-
antee is that whenever Γpc, pc 7→ high ` c : τ then c may not assign to low variables.
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∀v ∈ FV(e).Γ (v) = low

Γ ` e : low

∃v ∈ FV(e).Γ (v) = high

Γ ` e : high

Γ ` skip : Γ (hc)

Γ ` e : τ τ t Γ (pc) t Γ (hc) v Γ (x)

Γ ` x := e : Γ (hc)

Γ ` c1 : τ1 Γhc, hc 7→ τ1 ` c2 : τ2

Γ ` c1; c2 : τ2

Γpc, pc 7→ high ` c : τ

Γpc, pc 7→ low ` c : τ

Γ ` e : τe τe v Γ (hc) (Γpc, pc 7→ τe t Γ (pc) t Γ (hc) ` ci : Γ (hc))i=1,2

Γ ` if e then c1 else c2 : Γ (hc)

Γ ` e : τe τe v Γ (hc) Γpc, pc 7→ τe t Γ (pc) t Γ (hc) ` c : Γ (hc)

Γ ` while e do c : Γ (hc)

Γ (pc) = low Γ (hc) = low

Γ ` hide : high

Γ (pc) = low Γ (hc) = high

Γ ` unhide : low

Γ ` c : low Γ (hc) = low Γ ` ~d : low

Γ ` fork(c, ~d) : low

Γpc, pc 7→ Γ (hc) ` c : high Γ (hc) = high Γpc, pc 7→ Γ (hc) ` ~d : high

Γ ` hfork(c, ~d) : high

Fig. 8. Security type system

The typing rules ensure that branches of high if’s and while’s may only be typed in a
high pc context.
Security type variables hc (that describes hiding context) and τ (that describes the com-
mand type) help tracking information flow specific to the multithreaded setting. The
main job of these variables is to record whether the current thread is in the high part of
the threadpool (hc = high) or is in the low part (hc = low ). Command type τ reflects
the level of the hiding context after the command execution.
The type rules for hide and unhide raise and lower the level of the thread, respec-
tively. Condition τe v Γ (hc) for typing high if’s and while’s ensures that high control
commands can only be typed under high hc, which enforces the requirement that high
control statements should be executed by high threads.
The type system ensures that there are no fork (but possibly some hfork) commands
in high control statements. This is entailed by the rule for fork, which requires low hc.
By removing the typing rules for hide, unhide, hfork, and the security type variables
hc and τ from Figure 8, we obtain a standard type system for securing information flow
in sequential programs (cf. [VSI96]). This illustrates that our type provides a general
technique for modular extension of systems that track information flow in a sequential
setting.
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Extending the type system to an arbitrary security lattice L is straightforward: the main
modification is that security levels ` in hide`, unhide`, and fork` may be allowed
only if the level of hc is also `.

5.2 Soundness

We enlist some helpful lemmas for proving the soundness of the type system. The proofs
of all lemmas, theorems, and corollaries are reported in the appendix. The first lemma
states that high control commands must be typed with high hc.

Lemma 1. If Γ ` c : τ , where c = if e then c1 else c2 or c = while e do c, and
Γ ` e : high , then Γ (hc) = high .

The following lemma states that commands with high guards and hforks cannot con-
tain hide or unhide commands as part of them.

Lemma 2. If Γhc,pc, pc 7→ high , hc 7→ high ` c : high , then c does not contain hide

and unhide.

The following lemma states that threads in the high part of the threadpool do not update
low variables.

Lemma 3. If Γhc, hc 7→ high ` c : τ and 〈|c,m|〉 α
⇀ 〈|c′,m′|〉, then m =L m′ and

α /∈ {◦,; •}.
The next lemma states that threads created by hfork always remain in the high part of
the threadpool.

Lemma 4. If Γhc,pc, hc 7→ high , pc 7→ high ` c : high and 〈|c,m|〉 α
⇀ 〈|c′,m′|〉 and

c′ 6= stop, then Γhc,pc, hc 7→ high , pc 7→ high ` c′ : high .

As stated by the following lemma, threads that are moved to the low part of the thread-
pool are kept in the high part of it until an unhide instruction is executed.

Lemma 5. If Γhc,pc, pc 7→ τc, hc 7→ high ` c : low for some given τc and 〈|c,m|〉 α
⇀

〈|c′,m′|〉, where c′ 6= stop and α 6= •; r, then Γhc,pc, pc 7→ τc, hc 7→ high ` c′ : low .

The following lemma states that threads in the low part of the threadpool preserve low-
equivalence of memories.

Lemma 6. For a given command c such that Γhc, hc 7→ low ` c : low , memories
m1 and m2 such that m1 =L m2, and 〈|c,m1|〉 α

⇀ 〈|c′,m′1|〉; it holds that 〈|c,m2|〉 α
⇀

〈|c′,m′2|〉 and m′1 =L m
′
2.

The next lemma states that threads remain in the low part of the threadpool as long as
no hide instruction is executed.

Lemma 7. If Γhc,pc, pc 7→ τc, hc 7→ low ` c : low for some given τc and 〈|c,m|〉 α
⇀

〈|c′,m′|〉, where c′ 6= stop and α 6= r ; •, then Γhc,pc, pc 7→ τc, hc 7→ low ` c′ : low .

Another important lemma is that commands hide and unhide are matched in pairs.
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Lemma 8. If Γhc, hc 7→ low ` hide; c : low , then there exist commands c′ and p such
that c ∈ {c′; unhide, unhide, c′; unhide; p, unhide; p}, where c′ has no unhide

commands.

In order to establish the security of typable commands, we need to firstly identify the
following subpools of threads from a given configuration.

Definition 5. Given a scheduler memory ν and a thread pool ~c, we define the fol-
lowing subpools of threads: L(~c, ν) = {ci}i∈t◦∩N(~c), H(~c, ν) = {ci}i∈t•∩N(~c), and
EL(~c, ν) = {ci}i∈te∩N(~c).

These three subpools of threads, L(~c) (low), H(~c) (high) and EL(~c) (eventually low),
behave differently when the overall threadpool is run with low-equivalent initial mem-
ories. Threads from the low subpool match in the two runs, threads from the high sub-
pool do not necessarily match (but they cannot update low memories in any event), and
threads from the eventually low subpool will eventually match. The above intuition is
captured by the following theorem. First, we define what “eventually match” means.

Definition 6. Given a command p, we define the relation eventually low, written∼el,p,
on empty or singleton sets of threads as follows:

– ∅ ∼el,p,∅ ∅;
– {c} ∼el,p,{n} {d} if N(c) = N(d) = n, and there exist commands c′ and d′ with-

out unhide instructions such that c ∈ {c′; unhide, unhide} and d ∈ {d′; unhide,
unhide} or c ∈ {c′; unhide; p, unhide; p} and d ∈ {d′; unhide; p, unhide; p}.

Two traces that start with low-indistinguishable memories might differ on commands
(although keeping the command type). We need to show that this difference will not
affect the sequence of low-observable events and low-observable memory changes. In
order to show this, we define an unwinding [GM84] property, which is similar to the
low-bisimulation property for schedulers. This unwinding property below establishes
an invariant on two configurations that is preserved by low steps in lock-step and is
unchanged by high steps with any of the configurations.

Theorem 1. Given a command p and the multithreaded configurations 〈|~c1,m1, σ1, ν1|〉
and 〈|~c2,m2, σ2, ν2|〉 so that m1 =L m2, written as R1(m1,m2), N(~c1) = H(~c1, ν1)∪
L(~c1, ν1)∪EL(~c1, ν1), written asR2(~c1, ν1),R2(~c2, ν2), setsH(~c1, ν1),L(~c1, ν1), and
EL(~c1, ν1) are disjoint, written as R3(~c1, ν1), R3(~c2, ν2), L(~c1, ν1) = L(~c2, ν2), writ-
ten as R4(~c1, ν1, ~c2, ν2), EL(~c1, ν1) ∼el,p,te1

EL(~c2, ν2), written as R5(~c1, ν1, ~c2, ν2,
p), (Γ [hc 7→ low ] ` ci : low )i∈L(~c1,ν1), written as R6(~c1, ν1), (Γ [hc 7→ high , pc 7→
high ] ` ci : high)i∈H(~c1 ,ν1)∪H(~c2,ν2), written as R7(~c1, ν1, ~c2, ν2), (Γ [hc 7→ high ] `
ci : low )i∈EL(~c1,ν1)∪EL(~c2,ν2), written as R8(~c1, ν1, ~c2, ν2), and 〈|σ1, ν1|〉 ∼L 〈|σ2, ν2|〉,
written as R9(σ1, ν1, σ2, ν2), then:

i) if 〈|~ci,mi, σi, νi|〉 α→ 〈|~c ′i,m′i, σ′i, ν′i|〉 where α is high and i ∈ {1, 2}, then there ex-
ists p′ such that R1(m′i,m3−i), R2(~c ′i, ν

′
i), R2(~c3−i, ν3−i), R3(~c ′i, ν

′
i), R3(~c3−i,

ν3−i), R4(~c ′i, ν
′
i,~c3−i, ν3−i), R5(~c ′i, ν

′
i,~c3−i, ν3−i, p′), R6(~c ′i, ν

′
i), R7(~c ′i, ν

′
i,

~c3−i, ν3−i), R8(~c ′i, ν
′
i,~c3−i, ν3−i), and R9(σ′i, ν

′
i, σ3−i, ν3−i);
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ii) if the above case cannot be applied, and if 〈|~ci,mi, σi, νi|〉 α→ 〈|~c ′i,m′i, σ′i, ν′i|〉 where
α is low and i ∈ {1, 2}, then 〈|~c3−i,m3−i, σ3−i, ν3−i|〉 α→ 〈|~c ′3−i,m′3−i, σ′3−i, ν′3−i|〉
where there exists p′ such thatR1(m′i,m

′
3−i),R2(~c ′i, ν

′
i),R2(~c ′3−i, ν

′
3−i), R3(~c ′i,

ν′i),R3(~c ′3−i, ν
′
3−i),R4(~c ′i, ν

′
i,~c
′
3−i, ν

′
3−i),R5(~c ′i, ν

′
i,~c
′
3−i, ν

′
3−i, p

′),R6(~c ′i, ν
′
i),

R7(~c ′i, ν
′
i, ~c
′
3−i, ν

′
3−i), R8(~c ′i, ν

′
i,~c
′
3−i, ν

′
3−i), and R9(σ′i, ν

′
i, σ
′
3−i, ν

′
3−i).

Corollary 1 (Soundness). If Γhc, hc 7→ low ` c : low then c is secure.

6 Extension to cooperative schedulers

It is possible to extend our model to cooperative schedulers. This is done by a minor
modification of the semantics and type system rules. One can show that the results from
Section 5 are preserved under these modifications.
The language is extended with primitive yield whose semantics is as follows:

〈|yield,m|〉 ;/⇀ 〈|stop,m|〉

The semantics for commands also needs to propagate label 6; in the sequential compo-
sition rules.
Event 6; signals to the scheduler that the current thread yields control. The scheduler
semantics needs to react to such an event by resetting counter q′ to 0:

q > 0 q′ = 0

〈|σ, ν|〉 r;/⇁ 〈|σ′, ν′|〉
q > 0 q′ = 0 ∀α ∈ {•, ◦}.t′α = tα\{r}

〈|σ, ν|〉 r;/×⇁ 〈|σ′, ν′|〉

We need to ensure that the only possibility to schedule another thread is by generating
event 6;. Hence, we add premise q′ = ∞ to the semantics rules for schedulers that
handle events ↑• r′ and ↑◦ r′. Additionally, the last rule in Figure 5 now allows α
to range over {r ; •, •; r, r 6;}, which propagates yielding events 6; from threads
to the scheduler. Similar to scheduler events r;•× and •; r×, a new transition is
added to the threadpool semantics to include the case when yield is executed as the
last command by a thread.
At the type-system level, yielding control while inside a high control command, as well
as inside hide/unhide pairs, is potentially dangerous. These situations are avoided by
a type rule for yield that restricts pc and hc to low:

Γ (pc) = low Γ (hc) = low

Γ ` yield : Γ (hc)

A theorem that implies soundness for the modified type system can be proved similarly
to Theorem 1.
Recently, we have suggested a mechanism for enforcing security under cooperative
scheduling [RS06b]. Besides checking for explicit and implicit flows, the mechanism
ensures that there are no yield commands in high context. Similarly, the rule above
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implies that yield may not appear in high context. On the other hand, the mechanism
from [RS06b] allows no dynamic thread creation in high context. This is improved by
the approach sketched in this section, because it retains the flexibility that is offered by
hfork.

7 Ticket purchase example

In Section 2, we have argued that a flexible treatment of dynamic thread creation is
paramount for a practical security mechanism. We illustrate, by an example, that the
security type system from Section 5 offers such a permissive treatment without com-
promising security.
Consider the code fragment in Figure 9. This fragment is a part of a program that han-
dles a ticket purchase. Variables have subscripts indicating their security levels (l for
low and h for high). Suppose fl contains public data for the flight being booked (in-
cluding the class and seat details), pl contains data for the passenger being processed.
Variable nl is assigned the (public) number of frequent-flier miles for flight fl. Variable
mh is assigned the current number of miles of passenger pl, which is secret. Variable
sh is assigned the (secret) status (e.g., BASIC or GOLD) of passenger pl. The value
of sh is then stored in oh. Variable okl records if the procedure to print a ticket has been
successful.
The next line is a control statement: if the updated number mh + nl of miles exceeds
50000 then a new thread is spawn to perform a status update updateStatus for the
passenger. The status update code involves a computation for extra miles (due to the
passenger status) and might involve a request changeStatus to the status database. As
potentially time-consuming computation, it is arranged in a separate thread. The final
computation in the main thread prints the ticket.
This program creates threads in a high context because the guard of the if in the
main thread depends on mh. Furthermore, the main thread contains an assignment to
a low variable (okl) after the instructions that branches on secrets. Because of this,
the program is rejected by the type systems of Smith [Smi01] as well as Boudol and
Castellani [BC01, BC02]. Nevertheless, a minor modification of the program (which
can be easily automated) by replacing if (mh + nl > 50000) then fork(sh :=
GOLD , updateStatus) with

hide;

if(mh + nl > 50000) then

hfork(sh := GOLD , updateStatus)

else skip;

unhide

results in a typable (and therefore secure) program.
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. . .
nl := computeMilesFor (fl);
mh := miles(pl);
sh := statusOf (pl);
oh := sh;
if (mh + nl > 50000)

then fork(sh := GOLD , updateStatus );
okl := printTicket(pl, fl, dl);
. . .
updateStatus :
if (oh 6= GOLD) then changeStatus (pl,GOLD);
eh := extraMiles(mh, nl, sh);
mh := updateMiles(pl,mh + nl + eh)

Fig. 9. Ticket purchase code

8 Feasibility study of an implementation

As discussed in Section 2, it is important that the proposed security mechanism for
regulating the interaction between threads and the scheduler is feasible to put into effect
in practice.
We have analyzed two well-known thread libraries: the GNU Pth [Eng05] and the NPTL
[DM03] libraries for the cooperative and preemptive concurrent model, respectively.
Generally, the cooperative model has been widely used in, for instance, GUI program-
ming, when few computations are performed, and most of the time the system waits
for events. The preemptive model is popular in operating systems, where preemption
is essential for resource management. We have not analyzed the libraries in full de-
tail, focusing on a feasibility study of the presented interaction between threads and the
scheduler.
The GNU Pth library is well known by its high level of portability and by only using
threads in user space. This library is suitable to implement the primitives hide and
unhide as well as a scheduler based on the round-robin policy from Section 4. Besides
reacting to the commands hide and unhide, the scheduler could be modified to include
one list of threads for each security level, in this case, low and high. Such scheduler
interchangeably chooses between elements of those lists depending on the value of
s (i.e., low and high threads when s = ◦, and only high ones otherwise). Based on
these ideas, the work described in [TRH07] implements the scheduler of a library that
provides information-flow security for multithreaded programs.
On the other hand, the NPTL library is more complex. It maps threads in user space
to threads in kernel space by using low-level primitives in the code. Nevertheless, it
would be possible to apply the similar modifications that we described for the GNU Pth
library. The interaction between threads and the scheduler becomes more subtle in this
model due to the operations performed at the kernel space. The responsiveness of the
kernel for the whole system would depend on temporal properties of code wrapped by
hide and unhide primitives.
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c :: = stop | skip | v := e | c; c
| if b then c else c | while b do c
| hide | unhide | fork(c, ~d) | hfork(c, ~d)

| wait(sem) | signal(sem)

Fig. 10. Extended command syntax

9 Synchronization primitives

Synchronization mechanisms are of fundamental importance to concurrent programs.
We focus on semaphores [Dij02] because they are simple yet widely used synchroniza-
tion primitives. In principle, the language described in Section 3 allows synchronization
of threads by implementing busy waiting algorithms. While making synchronization
possible, these algorithms also introduce performance degradation. Conversely, blocked
waiting, which commonly underlies semaphore implementations, does not have this
drawback. Semaphores, and generally any other mechanism based on blocked waiting,
can potentially affect the security of programs. Therefore, it is important to provide poli-
cies regarding the utilization of such primitives in order to guarantee confidentiality. In
this section, we extend the language, semantics and type system described previously
to include semaphores primitives and provably show that noninterference is preserved
for well-typed programs.

9.1 Extended language

The extended syntax of the language is displayed in Figure 10. A semaphore is a special
variable, written sem , that ranges over nonnegative integers and can only be manipu-
lated by two commands: wait(sem) and signal(sem). We assume, without losing
generality, that every semaphore variable is initialized with 0. The semantics for these
commands (in the line of [Sab01]) is shown in Figure 11. Command wait(sem) blocks

a thread if sem has a value of 0, indicated by event
b(sem)
⇀ , or otherwise decrements its

value by 1. Command signal(sem) triggers event
u(sem)
⇀ .

9.2 Extended semantics for schedulers

Threads that are blocked on semaphore variables cannot be scheduled. Clearly, sched-
ulers need to know when threads are blocked (or not) in order to decide if they can be
chosen to run. For this purpose, we introduce a new scheduler variable tw that stores
the set of blocked threads. The semantic rules involving this variable are shown in Fig-
ure 12. Rules for selecting threads to run, represented by events ↑◦ r′ and ↑• r′, are
adapted to rule out blocked threads. Observe how threads placed in tw are removed
from the possible values of r′. Events br and ura indicate to the scheduler that threads
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〈|sem,m|〉 ↓ 0

〈|wait(sem),m|〉 b(sem)
⇀ 〈|stop,m|〉

〈|sem ,m|〉 ↓ n n > 0

〈|wait(sem),m|〉⇀ 〈|stop, m[sem 7→ n − 1]|〉

〈|signal(sem),m|〉 u(sem)
⇀ 〈|stop,m|〉

Fig. 11. Semantics for wait() and signal()

q = 0 s = ◦ q′ > 0 r′ ∈ (t◦ ∪ t•)\tw
〈|σ, ν|〉 ↑◦r

′
⇁ 〈|σ′, ν′|〉

q = 0 q′ > 0 r′ ∈ (t• ∪ te)\tw
〈|σ, ν|〉 ↑•r

′
⇁ 〈|σ′, ν′|〉

q′ = q′ − 1 t′w = tw ∪ {r}
〈|σ, ν|〉 b

r

⇁ 〈|σ′, ν′|〉

q′ = q′ − 1 t′w = tw\{a}

〈|σ, ν|〉 u
r
a⇁ 〈|σ′, ν′|〉

q′ = q′ − 1 ∀α ∈ {•, ◦}.t′α = tα\{r}
〈|σ, ν|〉 b

r×
⇁ 〈|σ′, ν′|〉

q′ = q′ − 1 t′w = tw\{a} ∀α ∈ {•, ◦}.t′α = tα\{r}

〈|σ, ν|〉 u
r
a×⇁ 〈|σ′, ν′|〉

Fig. 12. Extended semantics for schedulers

r and a have been blocked and unblocked, respectively. Events br× and ura× provide
to the scheduler the same information as events br and ura together with the fact that
thread r has terminated.

9.3 Extended semantics for threadpools

The action of blocking and unblocking threads occurs at the level of threadpool con-
figurations. For that reason, such configurations are extended with FIFO queues of
waiting threads. More precisely, the extended threadpool configurations have the form
〈|~c,m, σ, ν, w|〉 where w is a function from semaphores to a list of blocked threads. Se-
mantic rules in Figure 4 are easily extended to consider w into account and therefore
we omit the details here. Observe that the extended version of those rules do not modify
w since they do not block or unblock threads at all.
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〈|cr,m|〉 b(sem)
⇀ 〈|c′r,m′|〉 〈|σ, ν|〉 b

r

⇁ 〈|σ′, ν′|〉 w(sem) = ~d

〈|c1 . . . cn,m, σ, ν, w|〉
brsem→ 〈|c1 . . . cr−1cr+1 . . . cn,m

′, σ′, ν′, w[sem 7→ ~dc′r]|〉

〈|cr,m|〉 u(sem)
⇀ 〈|c′r,m′|〉 〈|σ, ν|〉 u

r
a⇁ 〈|σ′, ν′|〉 w(sem) = ca ~d

〈|c1 . . . cn, m, σ, ν,w|〉
ursem→ 〈|c1 . . . cr−1c

′
rcr+1 . . . cnca,m

′, σ′, ν′, w[sem 7→ ~d]|〉

〈|cr, m|〉 u(sem)
⇀ 〈|c′r,m′|〉 〈|σ, ν|〉 u

r
r⇁ 〈|σ′, ν′|〉 wsem = 〈〉

〈|c1 . . . cn,m, σ, ν, w|〉
ursem→ 〈|c1 . . . cr−1c

′
rcr+1 . . . cnca,m

′, σ′, ν′, w|〉

〈|cr,m|〉 b(sem)
⇀ 〈|stop,m′|〉 〈|σ, ν|〉 b

r×
⇁ 〈|σ′, ν′|〉

〈|c1 . . . cn,m, σ, ν,w|〉
brsem×→ 〈|c1 . . . cr−1cr+1 . . . cn,m

′, σ′, ν′, w|〉

〈|cr, m|〉 u(sem)
⇀ 〈|stop,m′|〉 〈|σ, ν|〉 u

r
a×⇁ 〈|σ′, ν′|〉 w(sem) = ca ~d

〈|c1 . . . cn, m, σ, ν,w|〉
ursem×→ 〈|c1 . . . cr−1cr+1 . . . cnca,m

′, σ′, ν′, w[sem 7→ ~d]|〉

〈|cr, m|〉 u(sem)
⇀ 〈|stop,m′|〉 〈|σ, ν|〉 u

r
r×⇁ 〈|σ′, ν′|〉 w(sem) = 〈〉

〈|c1 . . . cn,m, σ, ν, w|〉
ursem×→ 〈|c1 . . . cr−1cr+1 . . . cnca,m

′, σ′, ν′, w|〉

Fig. 13. Threadpool semantics for semaphores primitives

Semantic rules for semaphore operations at the level of threadpools are shown in Figure
13. Event brsem is triggered when the top level configuration receives a b(sem) signal
and the blocked thread is placed at the end of the queue associated with sem. When
a u(sem) signal is generated by the running thread, it awakes the first thread in the
queue associated with sem and triggers event ursem . Moreover, it communicates to the
scheduler which thread has been awakened with event ura. In case that the queue asso-
ciated with sem is empty, no thread is awakened and the scheduler is informed about
that by event urr. Events brsem× and ursem× are triggered when threads terminate with
synchronization commands under circumstances similar to brsem and ursem , respectively.

9.4 Attacks using semaphores

Confidentiality of data might be compromised if commands related to semaphores are
freely allowed in programs. To illustrate this, we show an attack in Figure 14. The
program contains semaphore variables s1, s2, p, and f , and variables h and l to store
secret and public data, respectively. The code blocks and unblocks threads that assign
to public variables in an order that depends on h. That is, the execution of l := 1 is
followed by l := 0 when h ≥ 0, and l := 0 is followed by l := 1 otherwise. Observe that
the branching command presents no timing differences. Nevertheless, some information
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fork(skip, wait(s2); l := 0; signal(p); signal(f));
fork(skip, wait(s1); l := 1; signal(p); signal(f));
if h ≥ 0 then signal(s1); wait(p); signal(s2)

else signal(s2); wait(p); signal(s1);
wait(p); wait(f); wait(f);

Fig. 14. Attack using semaphores

about h is revealed. Restrictions on the use of semaphores are needed in order to avoid
such leaks.

9.5 Extended security specification

In Section 4, we state that a program is secure under some scheduler if for any two ini-
tial low-equivalence memories, whenever the two runs of the program terminate, then
the resulting memories are also low-equivalent. Since semaphores variables are stored
in programs memories as any other variables, the low-equivalent relation, as defined
previously, is enough to capture the attacker’s view of memories even in the presence
of semaphores. However, the notion of “configuration cfg terminates in configuration
cfg ′” needs to be adapted. An entire program terminates if there are no blocked threads
and no threads to schedule. More precisely, cfg ⇓ cfg ′ if cfg →∗ cfg ′ where the thread-
pool of cfg ′ is empty and the waiting queue w(sem) is empty for every semaphore
sem.
To maintain the assumption that schedulers are not leaky, it is necessary to extend the
low-bisimulation defined in Section 4 with the events related to synchronization. The
distinguishability level of events brsem , ursem , brsem×, and ursem× is the same as the
security level of thread r. Definitions 1, 2, and 3 can be easily extended to consider
such events and we therefore omit the details here.
We introduce a low-equivalence relation on queues of waiting threads. We define such
relation as =L wherew1 =L w2 if for every low semaphore sem , it holds thatw1(sem) =
w2(sem). We are now in condition to present the extended security specification:

Definition 7. Program c is secure if for all σ,m1, m2, w1, and w2 where σ is noninter-
ferent, m1 =L m2, and w1 =L w2, we have

〈|c,m1, σ, νinit , w1|〉 ⇓ cfg1 & 〈|c,m2, σ, νinit , w2|〉 ⇓ cfg2 =⇒
m(cfg1) =L m(cfg2)

9.6 Extended type system

The type system proposed in Section 5 is extended to enforce secure uses of semaphores.
As for variables, semaphores have security types (low or high) associated with them,
which are included in the typing environmentΓ . Typing rules for semaphore commands
are depicted in Figure 15. The first rule establishes that signals to any semaphore can
be performed in low threads. However, signals to public semaphores cannot be sent
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Γ (hc) v Γ (sem)

Γ ` signal(sem) : Γ (hc)

Γ (sem) = Γ (hc)

Γ ` wait(sem) : Γ (hc)

Fig. 15. Typing rules from synchronization primitives

d1 : signal(sl); if h ≥ 0 then wait(sl) else skip;

d2 : sleep(30); wait(sl); l := 0

d3 : sleep(60); l := 1; signal(sl);

Fig. 16. Waiting on low semaphores in high threads

from high threads. To illustrate why this restriction is imposed, we can think about sig-
nals on low semaphores as updates on low variables, which must be avoided inside of
high threads. The second rule imposes that threads can only wait on semaphores that
matches their security level. Waiting on semaphores at security level ` in threads of
security level `′, where ` 6= `′, might affect the timing behavior of threads at security
level ` and `′. For instance, waiting on high semaphores in low threads might affect
low threads timing behavior depending on some secret data and lead to internal timing
leaks. Moreover, waiting on low semaphores in high threads might affect, also through
internal timing, how assignments to public variables are performed. To illustrate this,
we show an example in Figure 16. The code involves high thread d1, low threads d2

and d3, low semaphore sl, and variables h and l to store secret and public information,
respectively. Let us assume a scheduler that picks thread d1 first and then proceeds to
run threads for 15 steps before yielding the control. In this case, d1 terminates before
yielding. After that, depending on the secret, two scenarios are possible. If h ≥ 0, then
d2 blocks until d3 completes its execution and produces 0 as the final value of l. If
h < 0, on the other hand, d2 is likely to execute l := 0 before d3 runs l := 1. The final
value of l is then 1, which demonstrates that the program is insecure.
The restrictions enforced by the type system are summarized in Figure 17. The first and
second columns describe the use of wait() and signal(), respectively. The first and
second rows describe the use of semaphores in low and high threads, respectively. In
addition, sl (resp., sh) means that low (resp., high) semaphores can be safely used.

9.7 Soundness of the extension

It is straightforward to see that the lemmas in Section 5.2 hold for the extended lan-
guage. In fact, the requirements on their typing rules can be thought as requirements
for assignments of some variables where their security levels have hc as lower bound.
This condition is weaker than the one applied in the typing rule for assignments. Con-
sequently, it is not surprising that every lemma holds considering the synchronization
primitives wait and signal.
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wait() signal()

low thread sl sl, sh
high thread sh sh

Fig. 17. Secure use of semaphores

In order to prove the security of typable commands, we define an operator N(w) that
returns, for every semaphore sem, the thread identifiers in w(sem). We then identify
the following subpools of blocked threads for a given configuration.

Definition 8. Given a scheduler memory ν and a function w from semaphores to a list
of blocked threads, we define the following subpools of blocked threads: BL(w, ν) =
{ci}i∈t◦∩N(w), BH(w, ν) = {ci}i∈t•∩N(w), and BEL(w, ν) = {ci}i∈te∩N(w).

Definition 6 is extended to include the fact that eventually low threads might be blocked
on high semaphores. The notion of “eventually match” is now described in terms of
tuples. The status, blocked or unblocked, of such threads depends on which components
of the tuples they are situated. More precisely, we have the following definition:

Definition 9. Given a command p, we define the relation eventually low, written∼el,p,
on tuples of empty or singleton sets of threads as follows:

– ∅, ∅ ∼el,p,∅ ∅, ∅;
– ∅, {c} ∼el,p,{n} {d}, ∅
– ∅, {c} ∼el,p,{n} ∅, {d}
– {c}, ∅ ∼el,p,{n} {d}, ∅
– {c}, ∅ ∼el,p,{n} ∅, {d}

where N(c) = N(d) = n, and there exist commands c′ and d′ without unhide in-
structions such that c ∈ {c′; unhide, unhide} and d ∈ {d′; unhide, unhide} or c
∈ {c′; unhide; p, unhide; p} and d ∈ {d′; unhide; p, unhide; p}.

The following definition introduces a relation between the list of blocked threads and
the scheduler memory.

Definition 10. Given a typing environment Γ , an scheduler memory ν, and queues of
blocked threads, we define w � v iff for any sem ∈ dom(w) such that w(sem) =
ci1ci2 . . . cik where k ≥ 0, {i1, i2, . . . , ik} ⊆ ν.t• ∪ ν.te whether Γ (sem) = high , and
{i1, i2, . . . , ik} ⊆ ν.t◦ whether Γ (sem) = low .

This leads us to the following soundness theorem, which extends Theorem 1 with in-
variants R10−17 concerning blocked threads.

Theorem 2. Given a command p and the multithreaded configurations 〈|~c1,m1, σ1, ν1

, w1|〉 and 〈|~c2,m2, σ2, ν2, w2|〉 so that m1 =L m2, written as R1(m1,m2), N(~c1) =
H(~c1, ν1) ∪ L(~c1, ν1) ∪ EL(~c1, ν1), written as R2(~c1, ν1), R2(~c2, ν2), sets H(~c1, ν1),
L(~c1, ν1), and EL(~c1, ν1) are disjoint, written as R3(~c1, ν1), R3(~c2, ν2), L(~c1, ν1) =
L(~c2, ν2), written asR4(~c1, ν1, ~c2, ν2),BEL(w1, ν1), EL(~c1, ν1)∼el,p,te1

EL(~c2, ν2),
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BEL(w2, ν2), written as R5 (~c1, w1, ν1, ~c2, w2, ν2, p), (Γ [hc 7→ low ] ` ci : low) i∈
L(~c1,ν1), written as R6(~c1, ν1), (Γ [hc 7→ high , pc 7→ high ] ` ci : high)i∈H(~c1,ν1)

∪H(~c2,ν2), written asR7(~c1, ν1, ~c2, ν2), (Γ [hc 7→ high ] ` ci : low )i∈EL(~c1,ν1)∪EL(~c2,ν2),
written as R8(~c1, ν1, ~c2, ν2), and 〈|σ1, ν1|〉 ∼L 〈|σ2, ν2|〉, written as R9(σ1, ν1, σ2, ν2),
N(w1) = BL(w1, ν1)∪BH (w1, ν1)∪BEL(w1, ν1), writtenR10(w1, ν1),R10(w2, ν2),
sets BH(w1, ν1), BL(w1, ν1), BEL( w1, ν1), andN(~c1) are disjoint, written as R11(
w1, ν1),R11(w2, ν2),BL(w1, ν1) = BL(w2, ν2), written asR12(w1, ν1, w2, ν2), (Γ [hc
7→ low ] ` ci : low )i∈BL(w1,ν1), written as R13(w1, ν1), (Γ [hc 7→ high , pc 7→ high ]
` ci : high)i∈BH(w1 ,ν1)∪BH(w2,ν2), written as R14(w1, ν1, w2, ν2), (Γ [hc 7→ high ] `
ci : low)i∈BEL(w1,ν1)∪BEL(w2,ν1), written as R15(w1, ν1, w2, ν2), w1 =L w2, written
as R16(w1, w2), w1 � ν1, written as R17(w1, ν1), R17(w2, ν2), then:

i) if 〈|~ci,mi, σi, νi, wi|〉 α→ 〈|~c ′i,m′i, σ′i, ν′i, w′i|〉 where α is high and i ∈ {1, 2}, then
there exists p′ such that R1(m′i,m3−i), R2(~c ′i, ν

′
i), R2(~c3−i, ν3−i), R3(~c ′i, ν

′
i),

R3(~c3−i, ν3−i), R4(~c ′i, ν
′
i,~c3−i, ν3−i), R5(~c ′i, w

′
i, ν
′
i,~c3−i, w3−i, ν3−i, p′), R6(

~c ′i, ν
′
i), R7 (~c ′i, ν

′
i, ~c3−i, ν3−i), R8(~c ′i, ν

′
i,~c3−i, ν3−i), and R9(σ′i, ν

′
i, σ3−i, ν3−i),

R10(w′i, ν
′
i), R10(w3−i, ν3−i), R11(w′i, ν

′
i), R11(w3−i, ν3−i), R12(w′i, ν

′
i, w3−i,

ν3−i), R13(w′i , ν
′
i), R14(w′i, ν

′
i, w3−i, ν3−i), R15(w′i, ν

′
i, w3−i, ν3−i), R16(w′i,

w3−i), R17(w′i, ν
′
i), and R17(w3−i, ν3−i);

ii) if the above case cannot be applied, and given 〈|~ci,mi, σi, νi, wi|〉 where BEL(wi
, νi) 6= ∅, then R1(mi,m3−i), R2(~c i, νi), R2(~c3−i, ν3−i), R3(~c i, νi), R3(~c3−i,
ν3−i), R4(~c i, νi,~c3−i, ν3−i), R5(~c i, wi, νi, w3−i,~c3−i, ν3−i, p), R6(~c i, νi), R7

(~c i, νi, ~c3−i, ν3−i),R8(~c i, νi,~c3−i, ν3−i), andR9(σi, νi, σ3−i, ν3−i),R10 (wi, νi),
R10 (w3−i, ν3−i),R11(wi, νi),R11(w3−i, ν3−i), R12(wi, νi, w3−i, ν3−i),R13(wi
, νi),R14(wi, νi, w3−i, ν3−i),R15(wi, νi, w3−i, ν3−i),R16(wi, w3−i),R17(wi, νi),
and R17(w3−i, ν3−i);

iii) if the above cases cannot be applied, and if 〈|~ci,mi, σi, νi, wi|〉 α→ 〈|~c ′i,m′i, σ′i, ν′i, w′i|〉
where α is low and i ∈ {1, 2}, then 〈|~c3−i,m3−i, σ3−i, ν3−i, w3−i|〉 α→ 〈|~c ′3−i,m′3−i,
σ′3−i, ν

′
3−i, w

′
3−i|〉 where there exists p′ such that R1(m′i,m

′
3−i), R2(~c ′i, ν

′
i), R2(

~c ′3−i, ν
′
3−i), R3(~c ′i, ν

′
i), R3(~c ′3−i, ν

′
3−i), R4(~c ′i, ν

′
i,~c
′
3−i, ν

′
3−i), R5(~c ′i, ν

′
i, w
′
i,

~c ′3−i, w
′
3−i, ν

′
3−i, p

′), R6(~c ′i, ν
′
i), R7(~c ′i, ν

′
i, ~c
′
3−i, ν

′
3−i), R8(~c ′i, ν

′
i,~c
′
3−i, ν

′
3−i),

andR9(σ′i, ν
′
i, σ
′
3−i, ν

′
3−i),R10(w′i, ν

′
i),R10(w′3−i, ν

′
3−i),R11(w′i, ν

′
i),R11(w′3−i,

ν′3−i), R12(w′i, ν
′
i, w
′
3−i, ν

′
3−i), R13(w′i, ν

′
i), R14(w′i, ν

′
i, w
′
3−i, ν

′
3−i), R15(w′i, ν

′
i,

w′3−i, ν
′
3−i), R16(w′i, w

′
3−i), R17(w′i, ν

′
i), and R17(w′3−i, ν

′
3−i);

Compared with Theorem 1, Theorem 2 has new invariants, described by R10 − R17,
and applies the extended definition of the eventually low relationship in R5. Intuitively,
invariants R10 and R11 establish that the subpools of blocked threads introduced in
Definition 8 form a partition of the blocked threads found in the configuration. In-
variant R12 determines that the subpools of low blocked threads are the same in both
configurations. InvariantsR13−R15 establish the typing requirements for the subpools
of blocked threads. A subpool of blocked threads at some security level is typed under
the same circumstances that live threads at that security level. Observe the similarities
between R6 − R8 and R13 − R15. Invariant R16 establishes that threads blocked on
low semaphores are the same in both configurations. Invariant R17 determines that the
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blocked threads present in the configuration match the blocked threads registered by the
scheduler.

Corollary 2 (Soundness). If Γhc, hc 7→ low ` c : low then c is secure.

10 Conclusion

We have argued for a tight interaction between threads and the scheduler in order to
guarantee secure information flow in multithreaded programs. In conclusion, we revisit
the goals set in the paper’s introduction and report the degree of success meeting these
goals.

Permissiveness A key improvement over previous approaches is a permissive, yet se-
cure, treatment of dynamic thread creation. Even if threads are created in a sensitive
context, the flexible scheduling mechanism allows these threads to perform useful com-
putation. This is particularly satisfying because it is an encouraged pattern to perform
time-consuming computation (such as establishing network connections) in separate
threads [Knu02, Mah04].

Scheduler-independence In contrast to known approaches to internal timing-sensitive
approaches, the underlying security specification is robust with respect to a wide class
of schedulers. However, the schedulers supported by the definition need to satisfy a
form of noninterference that disallows information transfer from threads created in a
sensitive context to threads with publicly observable effects. Sections 4 and 8 argue that
such scheduler properties are not difficult to achieve.

Realistic semantics The underlying semantics does not appeal to the nonstandard con-
struct protect. The semantics, however, features additional hide, unhide, and hfork

primitives. In contrast to protect, these features are directly implementable, as dis-
cussed in Section 8.

Language expressiveness As discussed earlier, a flexible treatment of dynamic thread
creation is a part of our model. So is synchronization, as elaborated in Section 9. Note
that our typing rules do not force a separated use of low and high semaphores by low and
high threads, respectively. For example, signaling on a high semaphore by a low thread
is allowed. However, input/output primitives are also desirable features. We expect a
natural extension of our model with input/output primitives on channels labeled with
security levels, similarly to semaphores that operate on different security levels. For
the two-point security lattice, we imagine the following extension of the type system.
Low channels would allow low threads to input to low variables and to output low
expressions: similarly to low semaphores s that permit low threads to execute both P(s)
and V(s) operations. High channels would allow high threads to input/output data and
allow low threads to output data: similarly to high semaphores that allow high threads
s to perform both P(s) and V(s) operations and allow low threads to perform V(s).
Formalizing this intuition is subject to our future work.
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Practical enforcement We have demonstrated that security can be enforced for both
cooperative and preemptive schedulers using a compositional type system. The type
system accommodates permissive programming. We have illustrated by an example in
Section 7 that the permissiveness of dynamic thread creation is not majorly restricted
by the type system. The type system does not involve padding to eliminate timing leaks
at the cost of efficiency.
Most recently, together with Barthe and Rezk [BRRS07], we have adapted our type
system to an unstructured assembly language. Our future work plans include handling
richer low-level languages (such as languages with exceptions and bytecode) and facil-
itating tool support for them.
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Appendix

Lemma 1. If Γ ` c : τ , where c = if e then c1 else c2 or c = while e do c, and
Γ ` e : high , then Γ (hc) = high .

Proof. By inspection of the typing rules for if and while. 2

Lemma 2. If Γhc,pc, pc 7→ high , hc 7→ high ` c : high , then c does not contain hide

and unhide.

Proof. By simple induction on the typing derivation. 2
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Lemma 3. If Γhc, hc 7→ high ` c : τ and 〈|c,m|〉 α
⇀ 〈|c′,m′|〉, then m =L m′ and

α /∈ {◦,; •}.
Proof. By induction on the type derivation of c.

skip) It holds trivially since skip does not modify the low memory and it does not
produce any labeled event.

x := e) By the typing rule for assignment, we know that Γ (x) = high . The result
follows from the fact that the assignment does not change the low memory and
produces an unlabeled event.

c1; c2) By the typing derivation for sequential composition, we have that

Γhc, hc 7→ high ` c1 : τ ′ (1)
Γhc, hc 7→ τ ′ ` c2 : τ (2)

for some type τ ′. By the semantic rule for sequential composition, we have two
more cases to consider:

〈|c1,m|〉 α⇀ 〈|stop,m′|〉 (3)

〈|c1,m|〉 α⇀ 〈|c′1,m′|〉 (4)

Both cases are proved similarly. Thus, we only show how to prove the later one. The
result then follows from applying IH on (1) and (4), and thus obtaining m =L m

′

and that α /∈ {◦,; •}.
if e then c1 else c2) It holds trivially since the semantic rule for branchings reduces

the if to c1 or c2 without modifying the memory and without producing any labeled
events.

while e do c) It is proved similarly to the if− then− else.
hfork(c, ~d)) It holds trivially since the semantic rule for hfork reduces to 〈|c,m|〉 and

produces the labeled event α = •~d.

2

Lemma 4. If Γhc,pc, hc 7→ high , pc 7→ high ` c : high and 〈|c,m|〉 α
⇀ 〈|c′,m′|〉 and

c′ 6= stop, then Γhc,pc, hc 7→ high , pc 7→ high ` c′ : high .

Proof. By case analysis on c and inspection of the typing rules. 2

Lemma 5. If Γhc,pc, pc 7→ τc, hc 7→ high ` c : low for some given τc and 〈|c,m|〉 α
⇀

〈|c′,m′|〉, where c′ 6= stop and α 6= •; r, then Γhc,pc, pc 7→ τc, hc 7→ high ` c′ : low .

Proof. By case analysis on c. The only typable command under the hypothesis of the
lemma is the sequential composition. Then, we consider the case when c = c1; c2 for
the given commands c1 and c2. We assume, by associativity of sequential composition,
that c1 consists on a single command. The cases when c1 = skip and c1 = x := e
are proved by just inspecting the typing rules and applying the subsumption rule when
needed. The interesting cases are proved as follows.
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c1 = if e then ct else cf ) The proof proceeds similarly regardless of the boolean
value obtained from evaluating e. Therefore, we only show the case when the guard
is evaluated to True. By inspecting the semantics rules for commands, we know
that 〈|c1; c2,m|〉⇀ 〈|ct,m|〉. By the typing derivation of c1; c2, we know that

Γhc,pc, pc 7→ τe t τc t high , hc 7→ high ` ct : high (5)
Γhc,pc, pc 7→ τc, hc 7→ high ` c2 : low (6)

If τc = high , the result immediately follows from applying the typing rule for
sequential composition to (5) and (6). Otherwise, we can apply the subsumption
rule to (5) to obtain that

Γhc,pc, pc 7→ τc, hc 7→ high ` ct : high (7)

The result follows from applying the typing rule for sequential composition to (7)
and (6).

c1 = while e do cw) It is proved as the conditional case. The result follows by in-
specting the typing derivation of c1; c2, applying the sequential composition and
subsumption typing rules when needed.

c1 = hfork(c, ~d)) By inspecting the semantics rules for commands, we know that
〈|c1; c2,m|〉

•~d⇀ 〈|c; c2,m|〉. By inspecting the typing derivation of c1; c2, we obtain
that

Γhc,pc, pc 7→ high , hc 7→ high ` c : high (8)
Γhc,pc, pc 7→ τc, hc 7→ high ` c2 : low (9)

If τc = high , the result immediately follows from applying the typing rule for
sequential composition to (8) and (9). Otherwise, we can apply the subsumption
rule to (8) to obtain that

Γhc,pc, pc 7→ τc, hc 7→ high ` c : high (10)

The result follows from applying the typing rule for sequential composition to (10)
and (9).

2

Lemma 6. For a given command c such that Γhc, hc 7→ low ` c : low , memories m1

andm2 such thatm1 =L m2, and 〈|c,m1|〉 α⇀ 〈|c′,m′1|〉; it holds that 〈|c,m2|〉 α
⇀ 〈|c′,m′2|〉

and m′1 =L m
′
2.

Proof. By case analysis on c and by exploring its type derivation. 2

Lemma 7. If Γhc,pc, pc 7→ τc, hc 7→ low ` c : low for some given τc and 〈|c,m|〉 α
⇀

〈|c′,m′|〉, where c′ 6= stop and α 6= r ; •, then Γhc,pc, pc 7→ τc, hc 7→ low ` c′ : low .

Proof. By case analysis on c and inspection of the typing rules. 2
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Lemma 8. If Γhc, hc 7→ low ` hide; c : low , then there exist commands c′ and p such
that c ∈ {c′; unhide, unhide, c′; unhide; p, unhide; p}, where c′ has no unhide

commands.

Proof. By induction on the size of command c.

|c| = 1) The only typable command of size 1 is unhide. Thus, the result follows from
taking c = unhide.

|c| > 1) The only typable command which size bigger than 1 is the sequential compo-
sition. In other words, c = c1; c2, for a single command c1 and a command c2.
c1 = skip) We know then that Γhc, hc 7→ high ` skip : high and Γhc, hc 7→

high ` c2 : low . Therefore, we can conclude that

Γhc, hc 7→ low ` hide; c2 : low (11)

By applying IH on (11), we obtain that there exists commands c′2 and p2 such
that c′2 ∈ {c′2; unhide, unhide, c′2; unhide; p, unhide; p} where c′2 has no
unhide commands. The result follows by taking c′ = skip; c′2 and p = p2.

c1 = unhide) The result trivially follows by taking p = c2 and because c =
unhide; p.

c1 = x := e ) This case is proved in a similar way as when c1 = skip.
c = if e then c′1 else c

′
2) By the typing derivation of c, we know that

Γhc, hc 7→ high ` if e then c′1 else c′2; c2 : low (12)

By the type derivation of (12), we also have that

(Γhc, hc 7→ high , pc 7→ high ` c′i : high)i=1,2 (13)
Γhc, hc 7→ high ` if e then c′1 else c′2 : high (14)
Γhc, hc 7→ high ` c2 : low (15)

Therefore, we can conclude that

Γhc, hc 7→ low ` hide; c2 : low (16)

By applying Lemma 2 to (13), commands hide and unhide do not appear in
(c′i)i=1,2. By applying IH on (16), we obtain that there exists commands c′′

and p2 such that c2 ∈ {c′′; unhide, unhide, c′′; unhide; p2, unhide; p2},
where c′′ has no unhide commands. The result follows by taking command
c′ = if e then c′1 else c

′
2; c′′ or c′ = if e then c′1 else c

′
2 (depending on

the form of c2) and p = p2.
c = (while e do c1); c2) In this case, the proof is similar to that when command

c = if e then c′1 else c
′
2.

c = hfork(c, ~d); c2 ) By the type derivation of c, we know that

Γhc,pc, hc 7→ high , pc 7→ high ` c : high (17)

Γhc,pc, hc 7→ high , pc 7→ high ` ~d : high (18)
Γhc, hc 7→ high ` c2 : low (19)
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Therefore, we can conclude that

Γhc, hc 7→ low ` hide; c2 : low (20)

By applying Lemma 2 to (17) and (18), we obtain that c and ~d contains no hide
or unhide. By applying IH on (20), we obtain that there exists commands c′′

and p2 such that c2 ∈ {c′′; unhide, unhide, c′′; unhide; p2, unhide; p2},
where c′′ has no unhide. The result follows by taking c′ = hfork(c, ~d); c′′ or
c′ = hfork(c, ~d) (depending on the form of c2) and p = p2.

2

Theorem 1. Given a command p and the multithreaded configurations 〈|~c1,m1, σ1, ν1|〉
and 〈|~c2,m2, σ2, ν2|〉 so that m1 =L m2, written as R1(m1,m2), N(~c1) = H(~c1, ν1) ∪
L(~c1, ν1)∪EL(~c1, ν1), written asR2(~c1, ν1),R2(~c2, ν2), setsH(~c1, ν1),L(~c1, ν1), and
EL(~c1, ν1) are disjoint, written as R3(~c1, ν1), R3(~c2, ν2), L(~c1, ν1) = L(~c2, ν2), writ-
ten as R4(~c1, ν1, ~c2, ν2), EL(~c1, ν1) ∼el,p,te1

EL(~c2, ν2), written as R5(~c1, ν1, ~c2, ν2,
p), (Γ [hc 7→ low ] ` ci : low )i∈L(~c1,ν1), written as R6(~c1, ν1), (Γ [hc 7→ high , pc 7→
high ] ` ci : high)i∈H(~c1,ν1)∪H(~c2,ν2), written as R7(~c1, ν1, ~c2, ν2), (Γ [hc 7→ high ] `
ci : low )i∈EL(~c1,ν1)∪EL(~c2,ν2), written as R8(~c1, ν1, ~c2, ν2), and 〈|σ1, ν1|〉 ∼L 〈|σ2, ν2|〉,
written as R9(σ1, ν1, σ2, ν2), then:

i) if 〈|~ci,mi, σi, νi|〉 α→ 〈|~c ′i,m′i, σ′i, ν′i|〉 where α is high and i ∈ {1, 2}, then there ex-
ists p′ such that R1(m′i,m3−i), R2(~c ′i, ν

′
i), R2(~c3−i, ν3−i), R3(~c ′i, ν

′
i), R3(~c3−i,

ν3−i), R4(~c ′i, ν
′
i,~c3−i, ν3−i), R5(~c ′i, ν

′
i,~c3−i, ν3−i, p′), R6(~c ′i, ν

′
i), R7(~c ′i, ν

′
i,

~c3−i, ν3−i), R8(~c ′i, ν
′
i,~c3−i, ν3−i), and R9(σ′i, ν

′
i, σ3−i, ν3−i);

ii) if the above case cannot be applied, and if 〈|~ci,mi, σi, νi|〉 α→ 〈|~c ′i,m′i, σ′i, ν′i|〉where
α is low and i ∈ {1, 2}, then 〈|~c3−i,m3−i, σ3−i, ν3−i|〉 α→ 〈|~c ′3−i,m′3−i, σ′3−i, ν′3−i|〉
where there exists p′ such thatR1(m′i,m

′
3−i),R2(~c ′i, ν

′
i),R2(~c ′3−i, ν

′
3−i), R3(~c ′i,

ν′i),R3(~c ′3−i, ν
′
3−i),R4(~c ′i, ν

′
i,~c
′
3−i, ν

′
3−i),R5(~c ′i, ν

′
i,~c
′
3−i, ν

′
3−i, p

′),R6(~c ′i, ν
′
i),

R7(~c ′i, ν
′
i, ~c
′
3−i, ν

′
3−i), R8(~c ′i, ν

′
i,~c
′
3−i, ν

′
3−i), and R9(σ′i, ν

′
i, σ
′
3−i, ν

′
3−i).

Proof. By case analysis on command/scheduler steps. We are only going to show the
proofs for the mentioned commands when the configuration 〈|~c1,m1, σ1, ν1|〉 makes
some progress. We assume that the thread cr belongs to ~c1 . Analogous proofs are
obtained when 〈|~c2,m2, σ2, ν2|〉 makes progress instead. We make a distinction if the
system performs an step that produces a low or a high event.

i) High events •r~d , r;, r;×, and ↑• r′ (where {r, r′} ⊆ H(~c1, ν1) ∪ EL(~c1, ν1)).

α1 = •r~d ) By inspecting the semantics for threadpools and the scheduler, we know

that cr ∈ H(~c1, ν1) or cr ∈ EL(~c1, ν1) and that H(~c′1, ν
′
1) = H(~c1, ν1) ∪N(~d).

R1(m′1,m
′
2) holds trivially since hfork has no changed the memories.R2(~c1

′, ν′1),
R2(~c2, ν2), R3(~c1

′, ν′1), and R3(~c2, ν2), hold since R2(~c1, ν1), R2(~c2, ν2), R3(~c1,
ν1), and R3(~c2, ν2) hold, and by inspecting the semantics for the scheduler to-
gether with the fact that N(~d) are fresh names for threads.R4(~c1

′, ν′1, ~c2, ν2) holds



Securing the Interaction between Threads and the Scheduler 61

since R4(~c1, ν1, ~c2, ν2) holds and because the transition α1 does not affect the low
threads (only high threads were created). For a similar reason, R6(~c1

′, ν′1) also
holds. R9(σ′1, ν

′
1, σ2, ν2) holds since R9(σ1, ν1, σ2, ν2) holds and by applying the

definition of ∼L.
In order to prove R5(~c1

′, ν′1, ~c2, ν2, p
′), R7(~c1

′, ν′1, ~c2, ν2), and R8(~c1
′, ν′1, ~c2, ν2),

we need to split the proof in two more cases: cr ∈ H(~c1, ν1) and cr ∈ EL(~c1, ν1).
cr ∈ H(~c1, ν1)) By taking p′ = p, we have that R5(~c′1, ν

′
1, ~c2, ν2, p) and proposi-

tionR8(~c′1, ν
′
1, ~c2, ν2) hold becauseR5(~c1, ν1, ~c2, ν2, p), andR8(~c1, ν1, ~c2, ν2)

hold; and because the eventually low thread, if there exists one, has made no
progress. Finally,R7(~c′1, ν

′
1, ~c2, ν2) holds since R7(~c1, ν1, ~c2, ν2) holds and by

applying Lemma 4 to cr.
cr ∈ EL(~c1, ν1)) Since R5(~c1, ν1, ~c2, ν2, p) holds, we know that the thread with

name r belongs to the threadpool ~c2. Moreover, we know that cr =hfork(c, ~d);

c′; unhide, cr = hfork(c, ~d); unhide, cr = hfork(c, ~d); c′; unhide; p, or cr
= hfork(c, ~d); unhide; p, where c′ has no unhide commands. Then, R5(~c′1
, ν′1, ~c2, ν2, p

′) holds by taking p′ = p. R8(~c′1, ν
′
1, ~c2, ν2) holds by Lemma 5.

Finally,R7(~c′1, ν
′
1, ~c2, ν2) holds sinceR7(~c1, ν1, ~c2, ν2) holds and because high

threads have made no progress.
α1 = r; ) We split the proof in two more cases: cr ∈ H(~c1, ν1) and cr ∈ EL(~c1, ν1).

cr ∈ H(~c1, ν1)) R1(m′1,m2) holds by applying Lemma 3.R2(~c1
′, ν′1),R2(~c2, ν2),

R3(~c1
′, ν′1), andR3(~c2, ν2), hold sinceR2(~c1, ν1), R2(~c2, ν2), R3(~c1, ν1), and

R3(~c2, ν2) hold, and by inspecting the semantics for the scheduler. R4(~c1
′, ν′1,

~c2, ν2) holds since R4(~c1, ν1, ~c2, ν2) holds and because the transition α1 does
not affect the low threads. For a similar reason, R6(~c1

′, ν′1) also holds. R7(~c′1,
ν′1, ~c2, ν2) holds since R7(~c1, ν1, ~c2, ν2) holds and by applying Lemma 4. By
taking p′ = p, we have thatR5(~c′1, ν

′
1, ~c2, ν2, p

′) andR8(~c′1, ν
′
1, ~c2, ν2) hold be-

cause R5(~c1, ν1, ~c2, ν2, p), and R8(~c1, ν1, ~c2, ν2) hold; and because the even-
tually low thread, if there exists one, has made no progress. R9(σ′1, ν

′
1, σ2, ν2)

holds since R9(σ1, ν1, σ2, ν2) holds and by applying the definition of ∼L.
cr ∈ EL(~c1, ν1)) R1(m′1,m2) holds by applying Lemma 5. R2(~c1

′, ν′1), R2(~c2,
ν2),R3(~c1

′, ν′1), andR3(~c2, ν2), hold sinceR2(~c1, ν1),R2(~c2, ν2),R3(~c1, ν1),
andR3(~c2, ν2) hold, and by inspecting the semantics for the scheduler.R4(~c1

′,
ν′1, ~c2, ν2) holds since R4(~c1, ν1, ~c2, ν2) holds and because the transition α1

does not affect the low threads. For a similar reason, R6(~c1
′, ν′1) also holds.

SinceR5(~c1, ν1, ~c2, ν2, p) holds, we know that cr = c′; unhide , cr = unhide,
cr = c′; unhide; p, or cr = unhide; p for some command c′ without unhide
instructions. However, cr 6= unhide; p and cr 6= unhide since α1 = r ;.
The proof proceeds similarly when cr = c′; unhide or cr = c′; unhide; p.
Therefore, we only show the latter case. By inspecting the semantics for com-
mands, we know that 〈|cr,m1|〉 ⇀ 〈|c′r,m′1|〉, where c′r = c′′; unhide; p where
〈|c′,m1|〉⇀ 〈|c′′,m′1|〉 and c′′ 6= stop or c′r = unhide; p. By taking p′ = p, we
can conclude thatR5(~c′1, ν

′
1, ~c2, ν2, p

′) holds by Definition 6.R7(~c′1, ν
′
1, ~c2, ν2)

holds since R7(~c1, ν1, ~c2, ν2) holds and because the transition α1 does not in-
volve high threads.R8(~c′1, ν

′
1, ~c2, ν2) hold by applying Lemma 5 to cr. R9(σ′1,
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ν′1, σ2, ν2) holds since R9(σ1, ν1, σ2, ν2) holds and by applying the definition
of ∼L.

α1 = r;× ) We need to split the proof in two more cases: cr ∈ H(~c1, ν1) and cr ∈
EL(~c1, ν1).
cr ∈ H(~c1, ν1)) R1(m′1,m2) holds by applying Lemma 3.R2(~c1

′, ν′1),R2(~c2, ν2),
R3(~c1

′, ν′1), andR3(~c2, ν2), hold sinceR2(~c1, ν1), R2(~c2, ν2), R3(~c1, ν1), and
R3(~c2, ν2) hold, and by inspecting the semantics for the scheduler. R4(~c1

′, ν′1,
~c2, ν2) holds since R4(~c1, ν1, ~c2, ν2) holds and because the transition α1 does
not affect the low threads. For a similar reason, R6(~c1

′, ν′1) also holds. R7(~c′1,
ν′1, ~c2, ν2) holds since R7(~c1, ν1, ~c2, ν2) holds and because the thread cr has
finished. By taking p′ = p, we have thatR5(~c′1, ν

′
1, ~c2, ν2, p) andR8(~c′1, ν

′
1, ~c2,

ν2) hold becauseR5(~c1, ν1, ~c2, ν2, p), andR8(~c1, ν1, ~c2, ν2) hold; and because
the eventually low thread, if there exists one, has made no progress.R9(σ′1, ν

′
1,

σ2, ν2) holds since R9(σ1, ν1, σ2, ν2) holds and by applying the definition of
∼L.

cr ∈ EL(~c1, ν1)) The eventually low thread cannot make progress and finishes
immediately. Observe that cr must be typable as Γ [hc 7→ high ] ` cr : low and
it must terminate in one step. Therefore, cr = unhide but this cannot occur
since α1 = r;×.

α1 =↑• r′ ) By taking p′ = p, we have that R1(m′1,m2), R2(~c1
′, ν′1), R2(~c2, ν2),

R3(~c1
′, ν′1), R3(~c2, ν2), R4(~c1

′, ν′1, ~c2, ν2), R5(~c′1, ν
′
1, ~c2, ν2, p

′), R6(~c1
′, ν′1), R7

(~c′1, ν
′
1, ~c2, ν2), and R8(~c′1, ν

′
1, ~c2, ν2) holds since R1(m1,m2), R2(~c1, ν1), R2(~c2,

ν2), R3(~c1, ν1),R3(~c2, ν2), R4(~c1, ν1, ~c2, ν2),R5(~c1, ν1, ~c2, ν2, p),R6(~c1, ν1), R7

(~c1, ν1, ~c2, ν2) andR8(~c1, ν1, ~c2, ν2) hold and because the transition has only mod-
ified the variable tr in the scheduler. R9(σ′1, ν

′
1, σ2, ν2) holds since R9(σ1, ν1, σ2,

ν2) holds and by applying the definition of ∼L.

ii) Low events : ◦r~d , r;, r;×, ↑◦ r′, r;•, •; re, r;•×, and •; re× (where
{r, r′} ⊆ L(~c1, ν1) and re ∈ te1EL(~c1, ν1)).

α1 = ◦r~d ) By inspecting the semantics for threadpools, the scheduler, and commands,

we have that cr ∈ L(~c1, ν1), and that cr = fork(c, ~d) or cr = fork(c, ~d); c∗ for
some commands c and c∗. We are only going to show the proof for the case when
cr = fork(c, ~d); c∗ since the proof for cr = fork(c, ~d) proceeds in a similar way.
By inspecting the semantics for threadpools and commands, we have the transi-

tion 〈|cr,m1|〉
◦~d⇀ 〈|c; c∗,m1|〉, and that 〈|σ1, ν1|〉

◦r~d⇁ 〈|σ′1, ν′1|〉. Because 〈|σ1, ν1|〉 ∼L
〈|σ2, ν2|〉 and α1 is low, we also have that 〈|σ2, ν2|〉

◦r~d⇁ 〈|σ′2, ν′2|〉. In addition to that,
we also know that cr ∈ L(~c2, ν2) sinceL(~c2, ν2) = L(~c1, ν1), and that 〈|cr,m2|〉

◦~d⇀

〈|c; c∗,m2|〉. We can therefore conclude that 〈|~c2,m2, σ2, ν2|〉
◦r~d⇀ 〈|~c2′,m′2, σ′2, ν′2|〉.

R1(m′1,m
′
2) holds by applying Lemma 6. R2(~c1

′, ν′1), R2(~c2
′, ν′2), R3(~c1

′, ν′1),
and R3(~c2

′, ν′2) hold since propositions R2(~c1, ν1), R2(~c2, ν2), R3(~c1, ν1), and
R3(~c2, ν2) holds, and by inspecting the semantics for the scheduler together with
the fact that N(~d) are fresh names for threads. R4(~c1

′, ν′1, ~c2
′, ν′2) holds since
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R4(~c1, ν1, ~c2, ν2) holds and because the transition α1 added the same new low
threads to both configurations. By taking p′ = p, we have thatR5(~c1

′, ν′1, ~c2
′, ν′2, p)

holds since proposition R5(~c1, ν1, ~c2, ν2, p) holds and because the eventually low
thread, if exists one, has made no progress.R6(~c1

′, ν′1) holds sinceR6(~c1, ν1) holds
and by inspecting the Lemma 7. R7(~c1

′, ν′1, ~c2
′, ν′2) holds R7(~c1, ν1, ~c2, ν2) holds

and because high threads have been not modified by the low stepα1.R8(~c1
′, ν′1, ~c2

′,
ν′2) holds R8(~c1, ν1, ~c2, ν2) holds and because the eventually low threads in both
configurations, if they exists, have been not modified by the step α1. Finally, propo-
sition R9(σ′1, ν

′
1, σ
′
2, ν
′
2) holds since R9(σ1, ν1, σ2, ν2) holds and by applying the

definition of ∼L.
α1 = r; ) By inspecting the semantics rules for threadpools, the scheduler, and com-

mands, we have that cr ∈ L(~c1, ν1), 〈|cr,m1|〉 ⇀ 〈|c′,m′1|〉, and that 〈|σ1, ν1|〉 r;⇁
〈|σ′1, ν′1|〉. Because 〈|σ1, ν1|〉 ∼L 〈|σ2, ν2|〉 andα1 is low, we also have that 〈|σ2, ν2|〉 r;⇀
〈|σ′2, ν′2|〉. In addition to that, we also know that cr ∈ L(~c2, ν2) since L(~c2, ν2) =
L(~c1, ν1), and that 〈|cr,m2|〉⇀ 〈|c′,m2|〉. Therefore, we can conclude that the tran-
sition 〈|~c2,m2, σ2, ν2|〉 r;⇀ 〈|~c2′,m′2, σ′2, ν′2|〉 holds.
R1(m′1,m

′
2) holds by applying Lemma 6 to cr. R2(~c1

′, ν′1), R2(~c2
′, ν′2), R3(~c1

′,
ν′1), and R3(~c2

′, ν′2) hold since R2(~c1, ν1), R2(~c2, ν2), R3(~c1, ν1), and R3(~c2, ν2)
holds, and by inspecting the semantics for the scheduler. R4(~c1

′, ν′1, ~c2
′, ν′2) holds

sinceR4(~c1, ν1, ~c2, ν2) holds and by applying Lemma 6 to cr. By taking p′ = p, we
have that R5(~c1

′, ν′1, ~c2
′, ν′2, p) holds since R5(~c1, ν1, ~c2, ν2, p) holds and because

the eventually low threads, if they exist, have made no progress. R6(~c1
′, ν′1) holds

since R6(~c1, ν1) holds and by applying Lemma 7 to cr. R7(~c1
′, ν′1, ~c2

′, ν′2) holds
since R7(~c1, ν1, ~c2, ν2) and because high threads have been not modified by the
transition α1. R8(~c1

′, ν′1, ~c2
′, ν′2) holds since R8(~c1, ν1, ~c2, ν2) holds and because

the eventually low threads in both configurations, if they exist, have been not mod-
ified by the transition α1. Finally, R9(σ′1, ν

′
1, σ
′
2, ν
′
2) holds since R9(σ1, ν1, σ2, ν2)

holds and by applying the definition of ∼L.
α1 = r;× ) By inspecting the semantics for threadpools, the scheduler, and com-

mands, we have that cr ∈ L(~c1, ν1), 〈|cr,m1|〉⇀ 〈|stop,m′1|〉, and that 〈|σ1, ν1|〉 r;×⇁
〈|σ′1, ν′1|〉. Because 〈|σ1, ν1|〉 ∼L 〈|σ2, ν2|〉 and α1 is low, we also have that 〈|σ2, ν2|〉
r;×
⇀ 〈|σ′2, ν′2|〉. In addition to that, we also know that cr ∈ L(~c2, ν2) since L(~c2, ν2)

= L(~c1, ν1), and that 〈|cr,m2|〉 ⇀ 〈|stop,m2|〉. We can therefore conclude that the
transition 〈|~c2,m2, σ2, ν2|〉 r;×⇀ 〈|~c2′,m′2, σ′2, ν′2|〉 holds.
R1(m′1,m

′
2) holds by applying Lemma 6 to cr. R2(~c1

′, ν′1), R2(~c2
′, ν′2), R3(~c1

′,
ν′1), and R3(~c2

′, ν′2) hold since R2(~c1, ν1), R2(~c2, ν2), R3(~c1, ν1), and R3(~c2, ν2)
hold, and by inspecting the semantics for the scheduler (observe that the thread
cr has just terminated).R4(~c1

′, ν′1, ~c2
′, ν′2) holds since R4(~c1, ν1, ~c2, ν2) holds and

by applying Lemma 6 to cr. By taking p′ = p, we have that R5(~c1
′, ν′1, ~c2

′, ν′2, p)
holds since R5(~c1, ν1, ~c2, ν2, p) holds and because the eventually low threads, if
they exist, have made no progress. R6(~c1

′, ν′1) holds since R6(~c1, ν1) holds and
cr /∈ L(~c ′1, ν

′
1). R7(~c1

′, ν′1, ~c2
′, ν′2) holds since R7(~c1, ν1, ~c2, ν2) holds and be-

cause high threads have been not modified by the transition α1. R8(~c1
′, ν′1, ~c2

′, ν′2)
holds since R8(~c1, ν1, ~c2, ν2) holds and because the eventually low threads in both
configurations, if they exists, have been not modified by the transition α1. Finally,
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R9(σ′1, ν
′
1, σ
′
2, ν
′
2) holds since R9(σ1, ν1, σ2, ν2) holds and by applying the defini-

tion of ∼L.
α1 =↑◦ r′) By inspecting the semantics for threadpools and the scheduler, we have

that 〈|σ1, ν1|〉 ↑◦r
′

⇁ 〈|σ′1, ν′1|〉. Because 〈|σ1, ν1|〉 ∼L 〈|σ2, ν2|〉 and α1 is low, we also

have that 〈|σ2, ν2|〉 ↑◦r
′

⇀ 〈|σ′2, ν′2|〉. We can therefore conclude that the transition

〈|~c2,m2, σ2, ν2|〉 ↑◦r
′

⇀ 〈|~c2′,m′2, σ′2, ν′2|〉 holds.
Let us take p′ = p. Then, we have that R1(m′1,m

′
2), R2(~c1

′, ν′1), R2(~c2
′, ν′2),

R3(~c1
′, ν′1),R3(~c2

′, ν′2),R4(~c1
′, ν′1, ~c2

′, ν′2),R5(~c1
′, ν′1, ~c2

′, ν′2, p
′),R6(~c1

′, ν′1),R7

(~c1
′, ν′1, ~c2

′, ν′2), R8(~c1
′, ν′1, ~c2

′, ν′2) holds since R1(m1,m2), R2(~c1, ν1), R2(~c2,
ν2), R3(~c1, ν1),R3(~c2, ν2), R4(~c1, ν1, ~c2, ν2),R5(~c1, ν1, ~c2, ν2, p),R6(~c1, ν1), R7

(~c1, ν1, ~c2, ν2), R8(~c1, ν1, ~c2, ν2) holds and because the transition has only modi-
fied the variable tr in the scheduler. R9(σ′1, ν

′
1, σ
′
2, ν
′
2) holds since R9(σ1, ν1, σ2,

ν2) holds and by applying the definition of ∼L.
α1 = r ; •) By inspecting the semantics for threadpools, the scheduler, and com-

mands, we have that cr = hide; c∗ for some command c∗, 〈|cr,m1|〉 ;•⇀ 〈|c′r,m1|〉,
and that 〈|σ1, ν1|〉 r;•⇁ 〈|σ′1, ν′1|〉. We also know that 〈|cr,m2|〉 ;•⇀ 〈|c′r,m2|〉 since
L(~c1) = L(~c2). Moreover, we know that 〈|σ1, ν1|〉 ∼L 〈|σ2, ν2|〉 and α1 is low,
we also have that 〈|σ2, ν2|〉 r;•⇁ 〈|σ′2, ν′2|〉. We can thus conclude that the transition
〈|~c2,m2, σ2, ν2|〉 r;•⇀ 〈|~c2′,m′2, σ′2, ν′2|〉 holds.
We know that EL(~c1) = ∅ because a low thread was scheduled to produce the
event r ; •. Then, EL(~c2) = ∅ since R5(~c1, ν1, ~c2, ν2, p) holds. By applying
Lemma 8 to cr, we know that c∗ = c′; unhide, c∗ = unhide, c∗ = c′; unhide; p∗,
or c∗ = unhide; p∗, where c′ has no unhide.
R1(m′1,m

′
2) holds since m′1 = m1 and m′2 = m2. R2(~c1

′, ν′1), R2(~c2
′, ν′2),

R3(~c1
′, ν′1), R3(~c2

′, ν′2), and R4(~c1
′, ν′1, ~c2

′, ν′2) hold since the following equali-
ties EL(~c1, ν1) = EL(~c2, ν2) = ∅ hold, (L(~ci

′, ν′i) = L(~ci, νi)\{cr})i=1,2, and
(EL(~ci

′, ν′i) = {cr})i=1,2 hold by inspecting the semantics for threadpools and the
scheduler.
In the cases where c∗ = c′; unhide or c∗ = unhide, R5(~c1

′, ν′1, ~c2
′, ν′2, p

′) holds
by taking p′ = skip (see Definition 6). On the other cases, by taking p′ = p∗, we
know thatR5(~c1

′, ν′1, ~c2
′, ν′2, p

∗) holds because the application of Lemma 8 gave us
the appropriate p∗ that satisfies Definition 6. R6(~c1

′, ν′1) holds since L(~c1
′, ν′1) =

L(~c1, ν1)\{cr} and R6(~c1, ν1) hold. R7(~c1
′, ν′1, ~c2

′, ν′2) holds since proposition
R7(~c1, ν1, ~c2, ν2) holds and because high threads have been not modified by the
transition α1. R8(~c1

′, ν′1, ~c2
′, ν′2) holds since R8(~c1, ν1, ~c2, ν2) holds and by in-

specting the type derivation of cr. Finally, proposition R9(σ′1, ν
′
1, σ
′
2, ν
′
2) holds

since R9(σ1, ν1, σ2, ν2) holds and by applying the definition of ∼L.
α1 = •; re) We know that re ∈ te1 . By inspecting the semantics for threadpools,

the scheduler, and commands, we have that cre = unhide; c∗ or cre = unhide for
some command c∗, cre ∈ EL(~c1, ν1), 〈|cre ,m1|〉 •;⇀ 〈|c∗,m1|〉, and that 〈|σ1, ν1|〉 •;re⇁
〈|σ′1, ν′1|〉. We are only going to consider the case when cre = unhide; c∗ since
the proof for cre = unhide is analogous. Therefore, we omit the proof when
α1 = •; re×.
Because 〈|σ1, ν1|〉 ∼L 〈|σ2, ν2|〉 and α1 is low, we also have that 〈|σ2, ν2|〉 •;re⇁
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〈|σ′2, ν′2|〉. Because R5(~c1, ν1, ~c2, ν2, p) holds, we know that c∗ = p and that the
thread with name re belongs to the threadpool ~c2 as well. Let us call it c2re . Since
R5(~c1, ν1, ~c2, ν2, p) holds and it is not possible for a thread to make progress by a
high computation, we have that c2

re = unhide; p. As a consequence of that, it holds
that 〈|c2re ,m2|〉 •;⇀ 〈|p,m2|〉. Thus, transition 〈|~c2,m2, σ2, ν2|〉 •;re⇀ 〈|~c2′,m′2, σ′2, ν′2|〉
holds.
R1(m′1,m

′
2) holds trivially since unhide has no changed the memories. R2(~c1

′,
ν′1), R2(~c2

′, ν′2), R3(~c1
′, ν′1), and R3(~c2

′, ν′2) hold since R2(~c1, ν1), R2(~c2, ν2),
R3(~c1, ν1), and R3(~c2, ν2) holds; and by inspecting the semantics for the sched-
uler. R4(~c1

′, ν′1, ~c2
′, ν′2) holds since R4(~c1, ν1, ~c2, ν2) holds and because after the

transition α1, the threads cre and c2re become the thread p. By inspecting the seman-
tics for the scheduler, we have that EL(~c′1, ν

′
1) = EL(~c′2, ν

′
2) = ∅. Then, by taking

p′ = skip, it trivially holds that R5(~c1
′, ν′1, ~c2

′, ν′2, skip). R6(~c1
′, ν′1) holds since

R5(~c1, ν1, ~c2, ν2, p) and R7(~c1, ν1, ~c2, ν2, p) holds ; and by inspecting the type
derivation of cre . R7(~c1

′, ν′1, ~c2
′, ν′2) holds since R7(~c1, ν1, ~c2, ν2) holds and be-

cause high threads have been not modified by the transition α1. R8(~c1
′, ν′1, ~c2

′, ν′2)
holds sinceEL(~c1

′, ν′1) = EL(~c2
′, ν′2) = ∅. Finally,R9(σ′1, ν

′
1, σ
′
2, ν
′
2) holds since

R9(σ1, ν1, σ2, ν2) holds and by applying the definition of ∼L.
α1 = r;•×) We know that r ∈ t◦1 . The hypothesis in the theorem state that cr must

be typable as Γ [hc 7→ low ] ` cr : low byR6(~c1, ν1). Observe that when cr = hide

this requirement is violated. Therefore, this event can never occur under the given
hypothesis.

2

Corollary 1 (Soundness). If Γhc, hc 7→ low ` c : low then c is secure.

Proof. For arbitrary σ,m1, and m2 so that m1 =L m2 and σ is noninterferent, assume
〈|c,m1, σ, νinit |〉 ⇓ cfg1 & 〈|c,m2, σ, νinit |〉 ⇓ cfg2. By inductive (in the number of
transition steps of the above configurations) application of Theorem 1, we propagate
invariant m1 =L m2 to the terminating configurations. 2

Theorem 2. Given a command p and the multithreaded configurations 〈|~c1,m1, σ1, ν1

, w1|〉 and 〈|~c2,m2, σ2, ν2, w2|〉 so that m1 =L m2, written as R1(m1,m2), N(~c1) =
H(~c1, ν1) ∪ L(~c1, ν1) ∪ EL(~c1, ν1), written as R2(~c1, ν1), R2(~c2, ν2), sets H(~c1, ν1),
L(~c1, ν1), and EL(~c1, ν1) are disjoint, written as R3(~c1, ν1), R3(~c2, ν2), L(~c1, ν1) =
L(~c2, ν2), written asR4(~c1, ν1, ~c2, ν2),BEL(w1, ν1), EL(~c1, ν1)∼el,p,te1

EL(~c2, ν2),
BEL(w2, ν2), written as R5 (~c1, w1, ν1, ~c2, w2, ν2, p), (Γ [hc 7→ low ] ` ci : low ) i∈
L(~c1,ν1), written as R6(~c1, ν1), (Γ [hc 7→ high , pc 7→ high ] ` ci : high)i∈H(~c1,ν1)

∪H(~c2,ν2), written asR7(~c1, ν1, ~c2, ν2), (Γ [hc 7→ high ] ` ci : low )i∈EL(~c1,ν1)∪EL(~c2,ν2),
written as R8(~c1, ν1, ~c2, ν2), and 〈|σ1, ν1|〉 ∼L 〈|σ2, ν2|〉, written as R9(σ1, ν1, σ2, ν2),
N(w1) = BL(w1, ν1)∪BH(w1, ν1)∪BEL(w1, ν1), writtenR10(w1, ν1),R10(w2, ν2),
sets BH(w1, ν1), BL(w1, ν1), BEL( w1, ν1), and N(~c1) are disjoint, written as R11(
w1, ν1),R11(w2, ν2),BL(w1, ν1) = BL(w2, ν2), written asR12(w1, ν1, w2, ν2), (Γ [hc
7→ low ] ` ci : low )i∈BL(w1,ν1), written as R13(w1, ν1), (Γ [hc 7→ high , pc 7→ high ]
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` ci : high)i∈BH(w1,ν1)∪BH(w2,ν2), written as R14(w1, ν1, w2, ν2), (Γ [hc 7→ high ] `
ci : low )i∈BEL(w1,ν1)∪BEL(w2,ν1), written as R15(w1, ν1, w2, ν2), w1 =L w2, written
as R16(w1, w2), w1 � ν1, written as R17(w1, ν1), R17(w2, ν2), then:

i) if 〈|~ci,mi, σi, νi, wi|〉 α→ 〈|~c ′i,m′i, σ′i, ν′i, w′i|〉 where α is high and i ∈ {1, 2}, then
there exists p′ such that R1(m′i,m3−i), R2(~c ′i, ν

′
i), R2(~c3−i, ν3−i), R3(~c ′i, ν

′
i),

R3(~c3−i, ν3−i), R4(~c ′i, ν
′
i,~c3−i, ν3−i), R5(~c ′i, w

′
i, ν
′
i,~c3−i, w3−i, ν3−i, p′), R6(

~c ′i, ν
′
i), R7 (~c ′i, ν

′
i, ~c3−i, ν3−i), R8(~c ′i, ν

′
i,~c3−i, ν3−i), and R9(σ′i, ν

′
i, σ3−i, ν3−i),

R10(w′i, ν
′
i), R10(w3−i, ν3−i), R11(w′i, ν

′
i), R11(w3−i, ν3−i), R12(w′i, ν

′
i, w3−i,

ν3−i), R13(w′i , ν
′
i), R14(w′i, ν

′
i, w3−i, ν3−i), R15(w′i, ν

′
i, w3−i, ν3−i), R16(w′i,

w3−i), R17(w′i, ν
′
i), and R17(w3−i, ν3−i);

ii) if the above case cannot be applied, and given 〈|~ci,mi, σi, νi, wi|〉 where BEL(wi
, νi) 6= ∅, then R1(mi,m3−i), R2(~c i, νi), R2(~c3−i, ν3−i), R3(~c i, νi), R3(~c3−i,
ν3−i), R4(~c i, νi,~c3−i, ν3−i), R5(~c i, wi, νi, w3−i,~c3−i, ν3−i, p), R6(~c i, νi), R7

(~c i, νi, ~c3−i, ν3−i),R8(~c i, νi,~c3−i, ν3−i), andR9(σi, νi, σ3−i, ν3−i),R10 (wi, νi),
R10 (w3−i, ν3−i),R11(wi, νi),R11(w3−i, ν3−i),R12(wi, νi, w3−i, ν3−i),R13(wi
, νi),R14(wi, νi, w3−i, ν3−i),R15(wi, νi, w3−i, ν3−i),R16(wi, w3−i),R17(wi, νi),
and R17(w3−i, ν3−i);

iii) if the above cases cannot be applied, and if 〈|~ci,mi, σi, νi, wi|〉 α→ 〈|~c ′i,m′i, σ′i, ν′i, w′i|〉
whereα is low and i ∈ {1, 2}, then 〈|~c3−i,m3−i, σ3−i, ν3−i, w3−i|〉 α→ 〈|~c ′3−i,m′3−i,
σ′3−i, ν

′
3−i, w

′
3−i|〉 where there exists p′ such that R1(m′i,m

′
3−i), R2(~c ′i, ν

′
i), R2(

~c ′3−i, ν
′
3−i), R3(~c ′i, ν

′
i), R3(~c ′3−i, ν

′
3−i), R4(~c ′i, ν

′
i,~c
′
3−i, ν

′
3−i), R5(~c ′i, ν

′
i, w
′
i,

~c ′3−i, w
′
3−i, ν

′
3−i, p

′), R6(~c ′i, ν
′
i), R7(~c ′i, ν

′
i, ~c
′
3−i, ν

′
3−i), R8(~c ′i, ν

′
i,~c
′
3−i, ν

′
3−i),

andR9(σ′i, ν
′
i, σ
′
3−i, ν

′
3−i),R10(w′i, ν

′
i),R10(w′3−i, ν

′
3−i),R11(w′i, ν

′
i),R11(w′3−i,

ν′3−i), R12(w′i, ν
′
i, w
′
3−i, ν

′
3−i), R13(w′i, ν

′
i), R14(w′i, ν

′
i, w
′
3−i, ν

′
3−i), R15(w′i, ν

′
i,

w′3−i, ν
′
3−i), R16(w′i, w

′
3−i), R17(w′i, ν

′
i), and R17(w′3−i, ν

′
3−i);

Proof. By case analysis on command/scheduler steps. We are only going to show the
proofs for commands related to synchronization and unhide when the configuration
〈|~c1,m1, σ1, ν1|〉 makes some progress. The proof for other commands proceeds simi-
larly as in Theorem 1. We assume that the thread cr belongs to ~c1 . Analogous proofs
are obtained when 〈|~c2,m2, σ2, ν2|〉 makes progress instead.

i) High events related to synchronization : brsem , brsem×, ursem , and ursem× (where
r ∈ H(~c1, ν1) ∪ EL(~c1, ν1)).

α1 = brsem )
cr ∈ H(~c1, ν1))

R1(m′1,m2) holds by inspecting the semantics of threadpools and applying
Lemma 3 to cr. By inspecting the threadpool semantics and since cr has been
blocked, we have thatN(~c1

′) = N(~c1)\{cr}. Moreover, we have thatN(~c ′1) =
H(~c1, ν1) ∪ L(~c1, ν1) ∪ EL(~c1, ν1) \ {cr}. We also know that H(~c1

′, ν′1) =
H(~c1, ν1) \ {cr} since r ∈ t•1 and cr has been blocked. By this last fact and
R3(~c1, ν1), it holds R2(~c1

′, ν′1) as expected. R2(~c2, ν2) holds since it already
holds by hypothesis.R3(~c1

′, ν′1) holds sinceR3(~c1, ν1) holds andH(~c1
′, ν′1) =

H(~c1, ν1)\{cr}.R3(~c2, ν2) holds since it already holds by hypothesis.R4(~c ′1,
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ν′1,~c 2, ν2) holds since low threads are not affected by the transition α1. By tak-
ing p′ = p, we have that R5(~c ′1, w

′
1, ν
′
1, ~c2, w2, ν2, p

′) holds since R5(~c 1, w1,
ν1, ~c2, w2, ν2, p) holds and because the eventually low thread, if it exists, has
made no progress. R6(~c1

′, ν′1) holds since R6(~c1, ν1) holds and low threads
have made no progress.R7(~c ′1, ν

′
1, ~c2, ν2) holds sinceR7(~c 1, ν1, ~c2, ν2) holds

and H(~c ′1, ν
′
1) = H(~c 1, ν1) \ {cr}. PropositionR8(~c1

′, ν′1, ~c2, ν2) holds since
R8(~c1, ν1, ~c2, ν2) holds and because the eventually low thread, if exists one, has
made no progress. PropositionR9(σ′1, ν

′
1, σ2, ν2) holds sinceR9(σ1, ν1, σ2, ν2)

holds and by applying the definition of ∼L. By inspecting the semantics of
threadpools, we have that N(w′1) = N(w1) ∪ {cr}. By rewriting N(w) ac-
cording to R10(w1, ν1), we know that N(w′1) = BL(w1, ν1) ∪BH(w1, ν1) ∪
BEL(w1, ν1)∪{cr}. Since r ∈ t•1 , we also know that BH (w′1, ν

′
1) = BH(w1,

ν1) ∪ {cr}. Consequently, R10(w′1, ν
′
1) holds. Proposition R10(w2, ν2) holds

since it already holds by hypothesis. PropositionR11(w′1, ν
′
1) holds sinceR11(

w1, ν1) holds and because BH (w′1, ν
′
1) = BH(w1, ν1) ∪ {cr}. Proposition

R11( w2, ν2) holds since it holds by hypothesis. Propositions R12(w′1, ν
′
1,

w2, ν2) and R13(w′1, ν
′
1) hold since R12(w1, ν1, w2, ν2) and R13(w1, ν1) hold

and because no blocked low threads are affected by the transition α1. By
R7(~c1, ν1, ~c2, ν2), R14(w1, ν1, w2, ν2), Lemma 4 applied to cr, and the fact
that BH (w′1, ν

′
1) = BH(w1, ν1) ∪ {cr}, we obtain that R14(w′1, ν

′
1, w2, ν2)

holds. PropositionR15(w′1, ν
′
1, w2, ν2) andR16(w′1, w2) hold sinceR15(w1, ν1,

w2, ν2) and R16(w1, w2) hold and because no low semaphores or the eventu-
ally low thread, if exists one, are affected by the transition α1. By inspecting
the semantics, cr ∈ H(~c1, ν1), and R7(~c1, ν1, ~c2, ν2), we have that Γ (sem) =
high and r ∈ t•1 . By these last facts and R17(w1, ν1), we obtain that R17(w′1,
ν′1) holds. R17(w2, ν2) holds since it already holds by hypothesis.

cr ∈ EL(~c1, ν1))
Propositions R1−4 can be proved in a similar way as when cr ∈ H(~c1, ν1).
By hypothesis, we know that BEL(w1, ν1), EL(~c1, ν1) ∼el,p,te1

EL(~c2, ν2),
BEL(w2, ν2). By inspecting the semantics, we also know that te1 = {cr}. By
inspecting Definition 9, we have that ∅, {cr} ∼el,p,te1

EL(~c2, ν2), BEL(w2,
ν2). We need to do case analysis to determine if EL(~c2, ν2) = ∅ or BEL(w2,
ν2) = ∅. Both cases proceed in a similar way and therefore we omit when
BEL(w2, ν2) = ∅. Consequently, we have that ∅, {cr} ∼el,p,te1

∅, {dr} where
there exist commands c′ and d′ without unhide instructions such that cr ∈
{c′; unhide, unhide} and dr ∈ {d′; unhide, unhide} or cr ∈ {c′; unhide; p,
unhide; p} and dr ∈ {d′; unhide; p, unhide; p}. Since the triggered event
is brsem , we can deduce that cr ∈ {c′; unhide} or cr ∈ {c′; unhide; p}. By

inspecting the threadpool semantics, we have that 〈|cr,m1|〉
b(sem)
⇀ 〈|c′r,m′1|〉,

where c′r 6= stop. Consequently, we know that c′r ∈ {c′′; unhide, unhide} or

c′r ∈ {c′′; unhide; p, unhide; p} where 〈|c′,m1|〉
b(sem)
⇀ 〈|c′′,m′1|〉. Let us take

p′ = p. Since t′w1
= tw1 ∪ {r} and te1 = {r}, we have that BEL(w′1, ν

′
1) =

{c′r}, EL(~c1
′, ν′1) = ∅, and that {c′r}, ∅ ∼el,p′,te1 ∅, {dr} holds. Therefore,

R5(~c1
′, w′1, ν

′
1, ~c2, ν2, w2, p

′) holds. Propositions R6(~c1
′, ν′1) and R7(~c1

′, ν′1,
~c2, ν2) hold since R6(~c1, ν1) and R7(~c1, ν1, ~c2, ν2) hold and because low and
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high threads have made no progress. PropositionR8(~c1
′, ν′1, ~c2, ν2) holds since

R8(~c1, ν1, ~c2, ν2) holds and EL(~c1
′, ν′1) = ∅. Propositions R9−13 are proved

similarly as when cr ∈ H(~c1, ν1). PropositionR14(w′1, ν
′
1, w2, ν2) holds since

R14(w1, ν1, w2, ν2) holds and because high threads have made no progress.
By R8(~c1, ν1, ~c2, ν2), applying Lemma 5 to cr, and R15(w1, ν1, w2, ν2), we
obtain that R15(w′1, ν

′
1, w2, ν2) holds. Proposition R16(w′1, w2) holds since

R16(w1, w2) holds and because no low semaphores or the eventually low thread,
if it exists, are affected by the transition. By inspecting the semantics, cr ∈
EL(~c1, ν1), and R7(~c1, ν1, ~c2, ν2), we have that Γ (sem) = high and r ∈ te1 .
By these last facts and R17(w1, ν1), we obtain that R17(w′1, ν

′
1) holds. Propo-

sition R17(w2, ν2) holds since it already holds by hypothesis.
α1 = brsem× )

The proof proceeds similarly as when α1 = brsem .
α1 = ursem )

By inspecting the semantics of threadpools, this event can be produced by two
rules in Figure 13. Which rule is applied depends on the existence of threads on the
waiting list w1(sem) when executing signal, which is captured by the scheduler
events urr and ura. The proof proceeds similarly in both cases. Therefore, we omit
the case when the scheduler triggers the event urr.
cr ∈ H(~c1, ν1))

R1(m′1,m2) holds by inspecting the semantics of threadpools and applying
Lemma 3 to cr. By semantics, the thread ca has been awakened and place into
the threadpool. Since R17(w1, ν1) holds and Γ (sem) = high by R7(~c1, ν1,
~c2, ν2), we have that a ∈ t•1 ∪ te1 and consequentlyR2(~c ′1, ν

′
1) holds. Propo-

sition R2(~c2, ν2) holds since it holds by hypothesis. Proposition R3(~c ′1, ν
′
1)

holds by R3(~c1, ν1) and R11(w1, ν1). Proposition R3(~c2, ν2) holds since it
holds already by hypothesis. Propositions R4−6 can be proved in a similar
way as when α1 = brsem . To prove proposition R7(~c1

′, ν′1, ~c2, ν2), we need
to consider if a ∈ t•1 . If that is the case, it is proved by R7(~c1, ν1, ~c2, ν2)
and R14(w1, ν1, w2, ν2). Otherwise, it holds since it already holds by hypoth-
esis. To prove proposition R8(~c1

′, ν′1, ~c2, ν2), we need to consider if a ∈ te1 .
If that is the case, it is proved by R8(~c1, ν1, ~c2, ν2) and R15(w1, ν1, w2, ν2).
Otherwise, it holds since it already holds by hypothesis. By inspecting the se-
mantics, we know that N(w′1) = N(w1) \ {ca} and that, depending if a ∈ t•1
or a ∈ te1 , we have that BH (w′1, ν

′
1) = BH(w1, ν1)\{ca} or BEL(w′1, ν

′
1) =

BEL(w1, ν1) \ {ca}, respectively. Consequently, we obtain that R10(w′1, ν
′
1)

holds. Proposition R10(w2, ν2) since it already holds by hypothesis. Proposi-
tion R11(w′1, ν

′
1) holds since R11(w1, ν1) holds and ca has been move from

one subpool of threads to another. Proposition R12(w2, ν2) holds since it al-
ready holds by hypothesis. Proposition R13(w′1 , ν

′
1) holds since R13(w1, ν1)

holds and no threads have been blocked by the transition α1. Propositions
R14(w′1, ν

′
1, w2, ν2) andR15(w′1, ν

′
1, w2, ν2) hold sinceR14(w1, ν1, w2, ν2) and

R15(w1, ν1, w2, ν2) hold and because ca has been removed from the subpool of
threads BH (w′1, ν

′
1) or BEL(w′1, ν

′
1) by the transition α1. Since R17(w1, ν1)

holds and Γ (sem) = high by R7(~c1, ν1, ~c2, ν2), it holds that w′1 =L w1

and thus R16(w′1, w2) holds. PropositionR17(w′1, ν
′
1) holds since R17(w1, ν1)
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holds and ca has been removed from the waiting list of sem. Proposition
R17(w2, ν2) holds since it already holds by hypothesis.

cr ∈ EL(~c1, ν1))
The proof ofR1−4 proceeds as when cr ∈ H(~c1, ν1). PropositionR5 is proved
as when α1 = brsem and cr ∈ EL(~c1, ν1). The rest of the propositions are
proved similarly as when cr ∈ H(~c1, ν1).

α1 = ursem× )
The proof proceeds similarly as when α1 = ursem .

ii) In this case, all the propositions are valid since they are valid already by hypothesis.
Observe that no step in the semantics is performed.

iii) Low events related to synchronization : brsem , brsem×, ursem , and ursem× (where
r ∈ L(~c1, ν1) and re ∈ EL(~c1, ν1)).

α1 = brsem ) By inspecting the semantics for threadpools, the scheduler, and com-
mands, we have that cr ∈ L(~c1, ν1), and that cr = wait(sem); c′ for some com-
mand c′. By inspecting the semantics for threadpools and commands, we have

the transition 〈|cr,m1|〉
b(sem)
⇀ 〈|c′r,m1|〉, and that 〈|σ1, ν1|〉 br

⇁ 〈|σ′1, ν′1|〉. Because

〈|σ1, ν1|〉 ∼L 〈|σ2, ν2|〉 and α1 is low, we also have that 〈|σ2, ν2|〉 b
sem

⇁ 〈|σ′2, ν′2|〉. In
addition to that, we also know that cr ∈ L(~c2, ν2) since L(~c2, ν2) = L(~c1, ν1), and

that 〈|cr,m2|〉
b(sem)
⇀ 〈|c′r,m2|〉. We can therefore conclude that 〈|~c2,m2, σ2, ν2, w2|〉

brsem→ 〈|~c2′,m′2, σ′2, ν′2, w′2|〉. R1(m′1,m
′
2) holds by applying Lemma 6 to cr. Propo-

sitions R2(~c1
′, ν′1), R2(~c2

′, ν′2), R3(~c1
′, ν′1), and R3(~c2

′, ν′2) hold since proposi-
tions R2(~c1, ν1), R2(~c2, ν2), R3(~c1, ν1), R3(~c2, ν2), R10(w1, ν1) and R10(w2, ν2)
hold and since L(~c ′1, ν

′
1) = L(~c1, ν1) \ {c′r} by inspecting the semantics for

threadpools. Proposition R4(~c1
′, ν′1, ~c2

′, ν′2) holds since R4(~c1, ν1, ~c2, ν2) holds
and because the transition α1 block the same low thread on both configurations.
By taking p′ = p, we have that R5(~c1

′, w′1, ν
′
1, ~c2

′, w′2, ν
′
2, p) holds since proposi-

tion R5(~c1, w1, ν1, ~c2, ν2, w2, p) holds and because the eventually low thread, if
exists one, has made no progress. R6(~c1

′, ν′1) holds by R6(~c1, ν1) and the fact
that c′r /∈ L(~c1

′, ν′1). R7(~c1
′, ν′1, ~c2

′, ν′2) holds because R7(~c1, ν1, ~c2, ν2) holds
and because high threads have been not modified by the transition α1. R8(~c1

′, ν′1,
~c2
′, ν′2) holds because R8(~c1, ν1, ~c2, ν2) holds and because the eventually low

threads in both configurations, if they exists, have been not modified by the tran-
sition α1. Proposition R9(σ′1, ν

′
1, σ
′
2, ν
′
2) holds since R9(σ1, ν1, σ2, ν2) holds and

by applying the definition of ∼L. By inspecting the semantics of threadpools,
R4(~c1, ν1, ~c2, ν2), and R12(w1, ν1, w2, ν2), we have that N(w′1) = N(w′2) =
N(w1)∪{c′r},N(~c1

′) = N(~c2
′) = N(~c1)\{cr}, and BL(w′1, ν

′
1) = BL(w′2, ν

′
2) =

BL(w1, ν2) ∪ {c′r}. By these last facts, R10(w1, ν2), R10(w2, ν2), R11(w1, ν1),
R11(w2, ν2), R12(w1, ν1, w2, ν2), we have that it holds R10(w′1, ν

′
2), R10(w′2, ν

′
2),

R11(w′1, ν
′
1), R11(w′2, ν

′
2), R12(w′1, ν

′
1, w

′
2, ν
′
2). R13(w′1, ν

′
1) holds since R13(w1,

ν1) holds and by Lemma 7. Proposition R14(w′1, ν
′
1, w

′
2, ν
′
2) and R15(w′1, ν

′
1, w

′
2,

ν′2) holds since R14(w1, ν1, w2, ν2) and R15(w1, ν1, w2, ν2) holds and because
transition α1 does not affect high and eventually low threads, if they exists. Since
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cr = wait(sem); c′, cr ∈ L(~c1, ν1), R6(~c1, ν1), and typing rules, we have that
Γ (sem) = low . By this fact and R16(w1, w2), By inspecting the semantics, cr ∈
L(~c1, ν1), and R6(~c1, ν1), we have that Γ (sem) = low , r ∈ t◦1 = t◦2 . By
these last facts, R17(w1, ν1), and R17(w2, ν2), we obtain that R17(w′2, ν

′
2) and

R17(w′2, ν
′
2) hold.

α1 = brsem× ) It proceeds in a similar way as when α1 = brsem .
α1 = ursem )

By inspecting the semantics of threadpools, this event can be produced by two rules
in Figure 13. Which rule is applied depends on the waiting list w(sem) when ex-
ecuting signal, which is captured by the scheduler events urr and ura. The proof
proceeds similarly in both cases. Therefore, we omit the case when the scheduler
triggers the event urr.
By inspecting the semantics for threadpools, the scheduler, and commands, we
have that cr ∈ L(~c1, ν1), and that cr = signal(sem); c′ for some command c′.
By inspecting the semantics for threadpools and commands, we have the transi-

tion 〈|cr,m1|〉
u(sem)
⇀ 〈|c′r,m1|〉, and that 〈|σ1, ν1|〉

ura⇁ 〈|σ′1, ν′1|〉 for some a. Because

〈|σ1, ν1|〉 ∼L 〈|σ2, ν2|〉 and α1 is low, we also have that 〈|σ2, ν2|〉
ura⇁ 〈|σ′2, ν′2|〉. In addi-

tion to that, we also know that cr ∈ L(~c2, ν2) since L(~c2, ν2) = L(~c1, ν1), and that

〈|cr,m2|〉
u(sem)
⇀ 〈|c′r,m2|〉. We can therefore conclude that 〈|~c2,m2, σ2, ν2, w2|〉

ursem→
〈|~c2′,m′2, σ′2, ν′2, w′2|〉. Proposition R1(m′1,m

′
2) holds by applying Lemma 6 to cr.

By R4(~c1, ν1, ~c2, ν2) and inspecting the semantics of threadpools and the sched-
uler, we have that L(~c1

′, ν′1) = L(~c2
′, ν′2) = L(~c1, ν1) ∪ {ca}. Therefore, we have

that R4(~c1
′, ν′1, ~c2

′, ν′2) holds. Moreover,R2(~c1
′, ν′1), R2(~c2

′, ν′2), R3(~c1
′, ν′1), and

R3(~c2
′, ν′2) hold sinceR2(~c1, ν1),R2(~c2, ν2),R3(~c1, ν1),R3(~c2, ν2),R11(w1, ν1),

R11(w2, ν2), Γ (sem) = low by typing rules, andR17(w1, ν1) hold. By taking p′ =
p, we have that R5(~c1

′, w′1, ν
′
1, ~c2

′, w′2, ν
′
2, p) holds since proposition R5(~c1, w1,

ν1, ~c2, ν2, w2, p) holds and because the eventually low thread, if exists one, has
made no progress. Proposition R6(~c1

′, ν′1) holds by R6(~c1, ν1), inspecting the se-
mantics of threadpools, and R13(~c1, ν1). R7(~c1

′, ν′1, ~c2
′, ν′2) holds because R7(~c1,

ν1, ~c2, ν2) holds and because high threads have been not modified by the transi-
tion α1. R8(~c1

′, ν′1, ~c2
′, ν′2) holds becauseR8(~c1, ν1, ~c2, ν2) holds and because the

eventually low threads in both configurations, if they exists, have been not modified
by the transition α1. Proposition R9(σ′1, ν

′
1, σ
′
2, ν
′
2) holds since R9(σ1, ν1, σ2, ν2)

holds and by applying the definition of ∼L. Since r ∈ t◦1 and R6(~c1, ν1), we
obtain that Γ (sem) = low . By these facts, R12(~c1, ν1, ~c2, ν2), R16(w1, w2), and
R17(w1, ν1), we can conclude that BL(~c1

′, ν′1) = BL(~c2
′, ν′2) = BL(~c1, ν1) \

{ca}. By applying this fact together with R10(w1, ν1) and R10(w2, ν2), we obtain
that R10(w′1, ν

′
1) and R10(w′2, ν

′
2) hold. Propositions R11(w′1, ν

′
1), R11(w′2, ν

′
2),

and R12(w′1, ν
′
1, w

′
2, ν
′
2) hold since R11(w1, ν1), R11(w2, ν2), and R12(w1, ν1,

w2, ν2) hold and since BL(~c1
′, ν′1) = BL(~c2

′, ν′2) = BL(~c1, ν1)\{ca} by inspect-
ing the semantics of threadpools. R13(w′1, ν

′
1) holds since R13(w1, ν1) holds an a

low thread has been awakened. R14(w′1, ν
′
1, w

′
2, ν
′
2) and R15(w′1, ν

′
1, w

′
2, ν
′
2) holds

since R14(w1, ν1, w2, ν2) and R15(w1, ν1, w2, ν2) holds and because transition α1

does not affect high and eventually low threads, if they exists. R16(w′1, w
′
2) holds

since R16(w1, w2) holds and since w′1(sem) = w1(sem) \ {ca} by inspecting the
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semantics of threadpools.R17(w′1, ν
′
1) andR17(w′2, ν

′
2) hold sinceR17(w1, ν1) and

R17(w2, ν2) hold and because t′w1
= tw1 \ {a} and t′w2

= tw2 \ {a} by semantics
of the scheduler.

α1 = ursem× ) It proceeds in a similar way as when α1 = ursem .
α1 = •; re) We know that re ∈ te1 . By inspecting the semantics for threadpools,

the scheduler, and commands, we have that cre = unhide; c∗ or cre = unhide for
some command c∗, cre ∈ EL(~c1, ν1), 〈|cre ,m1|〉 •;⇀ 〈|c∗,m1|〉, and that 〈|σ1, ν1|〉 •;re⇁
〈|σ′1, ν′1|〉. We are only going to consider the case when cre = unhide; c∗ since
the proof for cre = unhide is analogous. Therefore, we omit the proof when
α1 = •; re×.
Because 〈|σ1, ν1|〉 ∼L 〈|σ2, ν2|〉 and α1 is low, we also have that 〈|σ2, ν2|〉 •;re⇁
〈|σ′2, ν′2|〉. Because R5(~c1, w1, ν1, ~c2, w2, ν2, p) holds, we know that c∗ = p and that
the thread with name re ∈ L(~c2, ν2) or re ∈ BL(w2, ν2). Since ii) cannot be
applied, we obtain that re ∈ L(~c2, ν2). Let us call c2re the thread with name re
in ~c2. Since R5(~c1, w1, ν1, ~c2, w2, ν2, p) holds and it is not possible for a thread
to make progress by a high computation, we have that c2

re = unhide; p. As a
consequence of that, it holds that 〈|c2

re ,m2|〉 •;⇀ 〈|p,m2|〉. Therefore, the transition
〈|~c2,m2, σ2, ν2, w2|〉 •;re⇀ 〈|~c2′,m′2, σ′2, ν′2, w′2|〉 holds.
R1(m′1,m

′
2) holds trivially since unhide has no changed the memories. R2(~c1

′,
ν′1), R2(~c2

′, ν′2), R3(~c1
′, ν′1), and R3(~c2

′, ν′2) hold since R2(~c1, ν1), R2(~c2, ν2),
R3(~c1, ν1), andR3(~c2, ν2) holds; and by inspecting the semantics for the scheduler.
R4(~c1

′, ν′1, ~c2
′, ν′2) holds since R4(~c1, ν1, ~c2, ν2) holds and because after the tran-

sition α1, the threads cre and c2re become the thread p. By inspecting the semantics
for the scheduler, we have that EL(~c′1, ν

′
1) = EL(~c′2, ν

′
2) = ∅. By R5(~c1, w1, ν1,

~c2, w2, ν2, p) and since we cannot apply ii), we also know that BEL(w1, ν1) =
BEL(w2, ν2) = ∅ and consequently BEL(w′1, ν

′
1) = BEL(w′2, ν

′
2) = ∅ since no

thread is blocked by the transition α1. Then, by taking p′ = skip, it trivially holds
that R5(~c1

′, w′1, ν
′
1, ~c2

′, w′2, ν
′
2, skip). R6(~c1

′, ν′1) holds since R5(~c1, w1, ν1, ~c2,
w2, ν2, p) and R7(~c1, ν1, ~c2, ν2, p) holds ; and by inspecting the type derivation
of cre . R7(~c1

′, ν′1, ~c2
′, ν′2) holds since R7(~c1, ν1, ~c2, ν2) holds and because high

threads have been not modified by the transition α1.R8(~c1
′, ν′1, ~c2

′, ν′2) holds since
EL(~c1

′, ν′1) = EL(~c2
′, ν′2) = ∅. Finally, R9(σ′1, ν

′
1, σ
′
2, ν
′
2) holds since R9(σ1, ν1,

σ2, ν2) holds and by applying the definition of∼L. PropositionsR10−17 hold since
they hold already by hypothesis and since transition α1 does not affect blocked
threads.

2

Corollary 2 (Soundness). If Γhc, hc 7→ low ` c : low then c is secure.

Proof. For arbitrary σ,m1, and m2 so that m1 =L m2 and σ is noninterferent, assume
〈|c,m1, σ, νinit |〉 ⇓ cfg1 & 〈|c,m2, σ, νinit |〉 ⇓ cfg2. Observe that, by assuming termi-
nating configurations, it is not possible to apply case ii) of Theorem 2.
By inductive (in the number of transition steps of the above configurations) application
of Theorem 2, we propagate invariantm1 =L m2 to the terminating configurations. 2
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Abstract. Information security is a pressing challenge for mobile code technolo-
gies. In order to claim end-to-end security of mobile code, it is necessary to es-
tablish that the code neither intentionally nor accidentally propagates sensitive
information to an adversary. Although mobile code is commonly multithreaded
low-level code, the literature is lacking enforcement mechanisms that ensure in-
formation security for such programs. This paper offers a modular solution to the
security of multithreaded programs. The modularity is three-fold: we give modu-
lar extensions of sequential semantics, sequential security typing, and sequential
security-type preserving compilation that allow us enforcing security for multi-
threaded programs. Thanks to the modularity, there are no more restrictions on
multithreaded source programs than on sequential ones, and yet we guarantee that
their compilations are provably secure for a wide class of schedulers.

1 Introduction

Information security is a pressing challenge for mobile code technologies. Current se-
curity architectures provide no end-to-end security guarantees for mobile code: such
code may either intentionally or accidentally propagate sensitive information to an ad-
versary. However, recent progress in the area of language-based information-flow secu-
rity [SM03] indicates that insecure flows in mobile code can be prevented by program
analysis.
While much of existing work focuses on source languages, recent work has developed
security analyses for increasingly expressive bytecode and assembly languages [BR05,
GS05, MCB05, BPR07a, BRB07]. Given sensitivity annotations on inputs and outputs,
these analyses provably guarantee noninterference [GM82], a property of programs that
there are no insecure flows from sensitive inputs to public outputs.
It is, however, unsettling that information flow for multithreaded low-level programs
has not been addressed so far. It is especially concerning because multithreaded byte-
code is ubiquitous in mobile code scenarios. For example, multithreading is used for
preventing screen lock-up in mobile applications [Mah04]. In general, creating a new
thread for long and/or potentially blocking computation, such as establishing a network
connection, is a much recommended pattern [Knu02].
This paper is the first to propose a framework for enforcing secure information flow for
multithreaded low-level programs. We present an approach for deriving security-type
systems that provably guarantee noninterference. On the code consumer side, these type
systems can be used for checking the security of programs before running them.
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Our solution goes beyond guarantees offered by security-type checking to code con-
sumers. To this end, we have developed a framework for security-type preserving com-
pilation, which allows code producers to derive security types for low-level programs
from security types for source programs. This makes our solution practical for the sce-
nario of untrusted mobile code. Moreover, even if the code is trusted (and perhaps even
immobile), compilers are often too complex to be a part of the trusted computing base.
Security-type preserving compilation removes the need to trust the compiler, because
the type annotations of compiled programs can be checked directly at bytecode level.
The single most attractive feature of our framework is that security is guaranteed by
source type systems that are no more restrictive than ones for sequential programs. This
might be counterintuitive: there are covert channels in the presence of threads, such as
internal timing channels [VS99], that do not arise in a sequential setting. Indeed, spe-
cial primitives for interacting with the scheduler have been designed (e.g., [RS06a]) in
order to control these channels. The pinnacle of our framework is that such primitives
are automatically introduced in the compilation phase. This means that source-language
programmers do not have to know about their existence and that there are no restric-
tions on dynamic thread creation at the source level. At the target level, the prevention
of internal timing leaks does not introduce unexpected behaviors: the effect of interact-
ing with the scheduler may only result in disallowing certain interleavings. Note that
disallowing interleavings may, in general, affect the liveness properties of a program.
Such a trade-off between between liveness and security is shared with other approaches
(e.g., [SV98, VS99, Smi01, Smi03, RS06a]).
For an example of an internal timing leak, consider a simple two-threaded source-level
program, where hi is a sensitive (high) and lo is a public (low) variable:

if hi {sleep(100)}; lo := 1 ‖ sleep(50); lo := 0

If hi is originally non-zero, the last command to assign to lo is likely to be lo := 1. If
hi is zero, the last command to assign to lo is likely to be lo := 0. Hence, this program
is likely to leak information about hi into lo. In fact, all of hi can be leaked into lo
via the internal timing channel, if the timing difference is magnified by a loop (see,
e.g., [RHNS07]).
In order for the timing difference of the thread that branches on hi not to make a differ-
ence in the interleaving of the assignments to lo, we need to ensure that the scheduler
treats the first thread as “hidden” from the second thread: the second thread should not
be scheduled until the first thread reaches the junction point of the if. We will show
that the compiler enforces such a discipline for the target code so that the compilation
of such source programs as above is free of internal timing leaks.
Our work benefits from modularity, which is three-fold. First, the framework has the
ability to modularly extend sequential semantics. This grants us with language-indepen-
dence from the sequential part. Further, the framework allows modular extensions of
sequential security type systems. Finally, security type preserving compilation is also a
modular extension of the sequential counterpart.
To illustrate the applicability of the framework, we instantiate it with some scheduler
examples. These examples clarify what is expected of a scheduler to prevent internal
timing leaks. Also, we give an instantiation of our framework for a simple assembly
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language that features an operand stack, conditions, and jumps. This instantiation is
for illustration only, and we expect our results to apply to Java bytecode, for which
mechanisms for tracking information flow by security-type systems were recently de-
veloped [BPR07a]. Being compatible with bytecode verification, our approach pushes
the feasibility of replacing trust assumptions by type checking for mobile-code security
one step further.
Figure 1 describes the process of producing and verifying a secure application, and il-
lustrates that there is no need to trust the compiler nor the source type system. On the
left of the figure, the code producer writes an application that is typable with respect to
an information-flow type system, which needs to make no special provision for concur-
rency. The application is then transformed to bytecode thanks to an extended compiler
that also produces a security environment, that assigns a security level to each program
point, and additional information about the control structure of the program—in earlier
works, we used control dependence regions for describing the control-flow informa-
tion; here we use a more abstract representation, in the form of a next function. The
consumer receives the compiled application, together with the security environment,
the next function, and a type, and verifies that the next function satisfies some prop-
erties that are required for soundness, and that the program is typable w.r.t. the type
system. If both verifications succeed, the execution of the program will not reveal in-
formation when executed with a secure scheduler. Thus, the TCB consists of the next
checker, of the type system, and of the scheduler. Note that the next checker and the
type system are not restricted to compiled programs; however, type-preserving compi-
lation ensures that typable source programs are compiled into typable programs, and
that the next function that is generated by the compiler is accepted by the next checker.
This paper revises and extends an earlier conference version [BRRS07] with proofs,
explanations, and examples. The proofs that we have to exclude due to the lack of space
can be found in the full electronic version [BRRS08].

control flow
checker

Runtime environment

Secure scheduler

information

flow checker

Security environment

Control flow information

Program

Policy

Program

Policy

Fig. 1. Information-flow scenario
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2 Syntax and semantics of multithreaded programs

This section sets the scene by defining the syntax and semantics for multithreaded pro-
grams. We introduce the notion of secure schedulers that help dealing with covert chan-
nels in the presence of multithreading.

Syntax and program structure Assume we have a set Thread of thread identifiers, a
partially ordered set Level of security levels, a set LocState of local states and a set
GMemory of global memories. The definition of programs is parameterized by a set of
sequential instructions SeqIns. The set of all instructions extends SeqIns by a dynamic
thread creation primitive start pc that spawns a new thread with a start instruction at
program point pc.

Definition 1 (Program). A program P consists of a set of program points P , with a
distinguished entry point 1 and a distinguished exit point exit, and an instruction map
insmapP : P \ {exit} → Ins, where Ins = SeqIns ∪ {start pc} with pc ∈ P \ {exit}.
We sometimes write P [i] instead of insmapP i.

Each program has an associated successor relation 7→⊆ P × P . The successor relation
describes possible successor instructions in an execution. We assume that exit is the
only program point without successors, and that any program point i s.t. P [i] = start pc
is not branching, and has a single successor, denoted by i+ 1 (if it exists); in particular,
we do not require that i 7→ pc. As common, we let 7→? denote the reflexive and transitive
closure of the relation 7→ (similar notation is used for other relations).

Definition 2 (Initial program points). The set Pinit of initial program points is de-
fined as: {i ∈ P | ∃j ∈ P , P [j] = start i} ∪ {1}.

We assume the attacker level k ∈ Level partitions all elements of Level into low and
high elements. Low elements are no more sensitive than k: an element ` is low if ` ≤ k.
All other elements (including incomparable ones) are high. We assume that the set of
high elements is not empty. This partition reduces the set Level to a two-element set
{low , high}, where low < high , which we will adopt without loss of generality.
Programs come equipped with a security environment [BRB07] that assigns a security
level to each program point and is used to prevent implicit flows [DD77]. The security
environment is also used by the scheduler to select the thread to execute.

Definition 3 (Security environment, low, high, and always high program points).

1. A security environment is a function se : P → Level.
2. A program point i ∈ P is low, written L(i), if se(i) = low ; high, written H(i),

if se(i) = high; and always high, written AH (i), if se(j) = high for all points j
such that i 7→? j.

Semantics The operational semantics for multithreaded programs is built from an op-
erational semantics for sequential programs and a scheduling function that picks the
thread to be executed among the currently active threads. The scheduling function takes
as parameters the current state, the execution history, and the security environment.
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Definition 4 (State).

1. The set SeqState of sequential states is a product LocState×GMemory of the local
state LocState and global memory GMemory sets.

2. The set ConcState of concurrent states is a product (Thread ⇀ LocState) ×
GMemory of the partial-function space (Thread ⇀ LocState), mapping thread
identifiers to local states, and the set GMemory of global memories.

It is convenient to use accessors to extract components from states: we use s.lst and
s.gmem to denote the first and second components of a state s. Then, we use s.act to
denote the set of active threads, i.e., s.act = Dom(s.lst). We sometimes write s(tid)
instead of s.lst(tid) for tid ∈ s.act. Furthermore, we assume given an accessor pc that
extracts the program counter for a given thread from a local state.
We follow a concurrency model [RS06a] that lets the scheduler distinguish between
different types of threads. A thread is low (resp., high) if the security environment marks
its program counter as low (resp., high). A high thread is always high if the program
point corresponding to the program counter is always high. A high thread is hidden if
it is high but not always high. (Intuitively, the thread is hidden in the sense that the
scheduler will, independently from the hidden thread, pick the following low threads.)
Formally, we have the following definitions:

s.lowT = {tid ∈ s.act | L(s.pc(tid))}
s.highT = {tid ∈ s.act | H(s.pc(tid))}
s.ahighT = {tid ∈ s.act | AH (s.pc(tid))}
s.hidT = {tid ∈ s.act | H(s.pc(tid)) ∧ ¬AH (s.pc(tid))}

A scheduler treats different classes of threads differently. To see what guarantees are
provided by the scheduler, it is helpful to foresee what discipline a type system would
enforce for each kind of threads. From the point of view of the type system, a low
thread becomes high while being inside of a branch of a conditional (or a body of a
loop) with a high guard. Until reaching the respective junction point, the thread may
not have any low side effects. In addition, until reaching the respective junction point,
the high thread must be hidden by the scheduler: no low threads may be scheduled while
the hidden thread is alive. This prevents the timing of the hidden thread from affecting
the interleaving of low side effects in low threads. In addition, there are threads that are
spawned inside of a branch of a conditional (or a body of a loop) with a high guard.
These threads are always high: they may not have any low side effects. On the other
hand, such threads do not have to be hidden in the same way: they can be interleaved
with both low and high threads. Recall the example from Section 1. The intention is
that the scheduler treats the first thread (which is high while it is inside the branch) as
“hidden” from the second (low) thread: the second thread should not be scheduled until
the first thread reaches the junction point of the if.
We proceed to defining computation history and secure schedulers, which operate on
histories as parameters.

Definition 5 (History).

1. A history is a list of pairs (tid, `) where tid ∈ Thread and ` ∈ Level. We denote
the empty history by εH ist.
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2. Two histories h and h′ are indistinguishable, written h Hist∼ h′, if h|low = h′|low ,
where h|low is obtained from h by projecting out pairs with the high level in the
second component.

We denote the set of histories by History. We now turn to the definition of a secure
scheduler. The definition below is of a more algebraic nature than that of [RS06a], but
captures the same intuition, namely that a secure scheduler: i) always picks an active
thread; ii) chooses a high thread whenever there is one hidden thread; and iii) only uses
the names and levels of low and the low part of histories to pick a low thread.

Definition 6 (Secure scheduler). A secure scheduler is a function pickt : ConcState×
History ⇀ Thread, subject to the following constraints, where s, s′ ∈ ConcState and
h, h′ ∈ History:

1. for every s such that s.lowT∪ s.highT 6= ∅, pickt(s, h) is defined, and pickt(s, h) ∈
s.act;

2. if s.hidT 6= ∅, then pickt(s, h) ∈ s.highT; and

3. if h Hist∼ h′ and s.lowT = s′.lowT, then 〈pickt(s, h), `〉 :: h
Hist∼ 〈pickt(s′, h′), `′〉 ::

h′, where ` = se(s.pc(pickt(s, h))) and `′ = se(s′.pc(pickt(s′, h′))).

Example 1. Consider a round-robin policy: pickt(s, h) = rr(AT , last(h)), where AT =
s.act, and the partial function last(h) returns the identity of the most recently picked
thread recorded in h (if it exists). Given a set of thread ids, an auxiliary function rr
returns the next thread id to pick according to a round-robin policy. This scheduler is
insecure because low threads can be scheduled even if a hidden thread is present, which
violates req. 2 above.

Example 2. An example of a secure round-robin scheduler is defined below. The sched-
uler takes turns in picking high and low threads.

pickt(s, h) =





rr(AT L, lastL(h)),
if h = εH ist or
h = (tid,L).h′ and AT H = ∅ and AT L 6= ∅ or
h = (tid,H ).h′ and hidT = ∅ and AT L 6= ∅

rr(AT H , lastH (h)),
if hidT 6= ∅ or
h = (tid,H ).h′ and AT L = ∅ and AT H 6= ∅ or
h = (tid,L).h′ and AT H 6= ∅

We assume that AT L and AT H are functions of s that extract the set of identifiers of
low and high threads, respectively, and the partial function last ` returns the identity of
the most recently picked thread at level ` recorded in h, if it exists. The scheduler may
only pick active threads (cf. req. 1). In addition to the alternation between high and
low threads, the scheduler may only pick a low thread if there are no hidden threads
(cf. req. 2). The separation into high and low threads ensures that for low-equivalent
histories, the observable choices of the scheduler are the same (cf. req. 3). For simplic-
ity, we have described a one-step secure scheduler. However, the definition above can
be easily extended to schedulers where threads are scheduled for some fixed number of
steps.
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pickt(s, h) = ctid s.pc(ctid) = i P [i] ∈ SeqIns
〈s(ctid), s.gmem〉;seq σ, µ σ.pc 6= exit

s, h;conc s.[lst(ctid) := σ, gmem := µ], 〈ctid , se(i)〉 :: h

pickt(s, h) = ctid s.pc(ctid) = i P [i] ∈ SeqIns
〈s(ctid), s.gmem〉;seq σ, µ σ.pc = exit

s, h;conc s.[lst := lst \ ctid , gmem := µ], 〈ctid , se(i)〉 :: h

pickt(s, h) = ctid s.pc(ctid) = i P [i] = start pc
freshtse(i)(s) = ntid s(ctid).[pc := i + 1] = σ′

s, h;conc s.[lst(ctid) := σ′, lst(ntid) := λinit(pc)], 〈ctid , se(i)〉 :: h

Fig. 2. Semantics of multithreaded programs

P [i] ∈ SeqIns i `seq S ⇒ T

se, i ` S ⇒ T

P [i] = start pc se(i) ≤ se(pc)
se, i ` S ⇒ S

Fig. 3. Typing rules

To define the execution of multithreaded programs, we assume given a (deterministic)
sequential execution relation;seq⊆ SeqState× SeqState that takes as input a current
state and returns a new state, provided the current instruction is sequential.
We assume given a function λinit : P → LocState that takes a program point and
produces an initial state with program pointer pointing to pc. We also assume given a
family of functions fresht` that takes as input a set of thread identifiers and generates
a new thread identifier at level `. We assume that the ranges of fresht` and fresht`′ are
disjoint whenever ` 6= `′. We sometimes use fresht` as a function from states to Thread.

Definition 7 (Multithreaded execution). One step execution ;conc⊆ (ConcState ×
History)×(ConcState×History) is defined by the rules of Figure 2. We write s, h;conc

s′, h′ when executing s with history h leads to state s′ and history h′.

The first two rules of Figure 2 correspond to non-terminating and terminating sequential
steps. In the case of termination, the current thread is removed from the domain of lst.
The last rule describes dynamic thread creation caused by the instruction start pc. A
new thread receives a fresh name ntid from freshtse(i) where se(i) records the security
environment at the point of creation. This thread is added to the pool of threads under
the name ntid . All rules update the history with the current thread id and the security
environment of the current instruction. The evaluation semantics of programs can be
derived from the small-step semantics in the usual way. We let main be the identity of
the main thread.

Definition 8 (Evaluation semantics). The evaluation relation ⇓conc⊆ (ConcState×
History) × GMemory is defined by the clause s, h ⇓conc µ iff ∃s′, h′. s, h ;?

conc

s′, h′ ∧ s′.act = ∅ ∧ s′.gmem = µ. We write P, µ ⇓conc µ′ as a shorthand for
〈f, µ〉, εH ist ⇓conc µ

′, where f is the function {〈main , λinit(1)〉}.
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3 Security policy

Noninterference is defined relative to a notion of indistinguishability between global
memories. For the purpose of this paper, it is not necessary to specify the definition of
memory indistinguishability.

Definition 9 (Noninterfering program). Let ∼g be an indistinguishability relation
on global memories. A program P is noninterfering if for all memories µ1, µ2, µ

′
1, µ
′
2:

µ1 ∼g µ2 and P, µ1 ⇓ µ′1 and P, µ2 ⇓ µ′2 implies µ′1 ∼g µ′2

4 Type system

This section introduces a type system for multithreaded programs as an extension of a
type system for noninterference for sequential programs. In Section 5, we show that the
type system is sound for multithreaded programs, in that it enforces the noninterference
property defined in the previous section. In Section 6, we instantiate the framework to
a simple assembly language.

4.1 Assumptions on type system for sequential programs

We assume given a set LType of local types for typing local states, with a distinguished
local type Tinit to type initial states, and a partial order ≤ on local types. Typing judg-
ments in the sequential type system are of the form se, i `seq S ⇒ T, where se is a
security environment, i is a program point in program P , and S and T are local types.
Typing rules are used to establish a notion of typable program 4, which ensures that runs
of typable programs verify at each step the constraints imposed by the typing rules.

Definition 10 (Typable sequential program). A sequential program P is typable w.r.t.
type S : P → LType and security environment se, written se,S ` P if

1. S1 = Tinit (the initial program point is mapped to the initial local type); and
2. for all i ∈ P and j ∈ P i 7→ j implies that there exists S ∈ LType such that
se, i `seq Si ⇒ S and Sj ≤ S,

where we write Si instead of S(i).

The sequential type system is assumed to satisfy further properties e.g. unwinding lem-
mas, that have already been established for some specific languages and that are formu-
lated precisely in Section 5.

4 The notion of typable sequential program is the same as typable multithreaded program, for-
mally given later in this section.
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4.2 Type system for multithreaded programs

The typing rules for the concurrent type system have the same form as those of the
sequential type system and are given in Figure 3.

Definition 11 (Typable multithreaded program). A concurrent program P is typable
w.r.t. type S : P → LType and security environment se, written se,S ` P , if

1. Si = Tinit for all initial program points i of P (initial program point of main
threads or spawn threads); and

2. for all i ∈ P and j ∈ P: i 7→ j implies that there exists S ∈ LType such that
se, i ` Si ⇒ S and Sj ≤ S.

5 Soundness

The purpose of this section is to prove, under sufficient hypotheses on the sequential
type system and assuming that the scheduler is secure, that typable programs are nonin-
terfering. Formally, we want to prove that under suitable hypotheses (detailed below),
the following theorem holds:

Theorem 1. If the scheduler is secure and se,S ` P , then P is noninterfering, pro-
vided Hypotheses 1-6 hold.

Throughout this section, we assume that P is a typable program, i.e., se,S ` P , and
that the scheduler is secure. Moreover, we state some general hypotheses that are used
in the soundness proofs. We revisit these hypotheses in Section 6 and show how they
can be fulfilled.

State equivalence In order to prove noninterference, we rely on a notion of state equiva-
lence. The definition is modular, in that it is derived from an equivalence between global
memories ∼g and a partial equivalence relation ∼l between local states. (Intuitively,
partial equivalence relations on local and global memories represent the observational
power of the adversary.) In comparison to [BPR07a], equivalence between local states
(operand stacks and program counters for the JVM) is not indexed by local types, since
these can be retrieved from the program counter and the global type of the program.

Definition 12 (State equivalence). Two concurrent states s and t are:

1. equivalent w.r.t. local states, written s lmem∼ t, iff s.lowT = t.lowT and for every
tid ∈ s.lowT, we have s(tid) ∼l t(tid).

2. equivalent w.r.t. global memories, written s
gmem∼ t, iff s.gmem ∼g t.gmem.

3. equivalent, written s ∼ t, iff s
gmem∼ t and s lmem∼ t.

In order to carry out the proofs, we also need a notion of program counter equivalence
between two states.

Definition 13. Two states s and s′ are pc-equivalent, written, s
pc∼ s′ iff s.lowT =

t.lowT and for every tid ∈ s.lowT, we have s.pc(tid) = t.pc(tid).
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Unwinding lemmas In this section, we formulate unwinding hypotheses for sequential
instructions and extend them to a concurrent setting. Two kinds of unwinding statements
are considered: a locally respects unwinding result, which involves two executions and
is used to deal with execution in low environments, and a step consistent unwinding
result, which involves one execution and is used to deal with execution in high en-
vironments. From now on, we refer to local states and global memories as λ and µ,
respectively.

Hypothesis 1 (Sequential locally respects unwinding). Assume λ1 ∼l λ2 and µ1 ∼g
µ2 and λ1.pc = λ2.pc. If 〈λ1, µ1〉 ;seq 〈λ′1, µ′1〉 and 〈λ2, µ2〉 ;seq 〈λ′2, µ′2〉, then
λ′1 ∼l λ′2 and µ′1 ∼g µ′2.

In addition, we also need a hypothesis on the indistinguishability of initial local states.

Hypothesis 2 (Equivalence of local initial states). For every initial program point i,
we have λinit(i) ∼l λinit(i).

We now extend the unwinding statement to concurrent states; note that the hypothesis
s′.lowT = t′.lowT is required for the lemma to hold. This excludes the case of a thread
becoming hidden in an execution and not another (i.e., a high while loop).

Lemma 1 (Concurrent locally respects unwinding). Assume s ∼ t and hs
Hist∼ ht

and pickt(s, hs) = pickt(t, ht) = ctid and s.pc(ctid) = t.pc(ctid). If s, hs ;conc

s′, hs′ and t, ht ;conc t
′, ht′ , and s′.lowT = t′.lowT, then s′ ∼ t′ and hs′

Hist∼ ht′ .

We now turn to the second, so-called step consistent, unwinding lemma. The lemma
relies on the hypothesis that the current local memory is high, i.e., invisible by the
attacker. Formally, highness is captured by a predicate High lmem(λ) where λ is a local
state.

Hypothesis 3 (Sequential step consistent unwinding). Assume λ1 ∼l λ2 and µ1 ∼g
µ2. Let λ1.pc = i. If 〈λ1, µ1〉 ;seq 〈λ′1, µ′1〉 and High lmem(λ1) and H(i), then λ′1 ∼l
λ2 and µ′1 ∼g µ2.

Lemma 2 (Concurrent step consistent unwinding). Assume s ∼ t and hs
Hist∼ ht and

pickt(s, h) = ctid and s.pc(ctid) = i and High lmem(s(ctid )) andH(i). If s, hs ;conc

s′, hs′ and s′.lowT = t.lowT, then s′ ∼ t and hs′
Hist∼ ht.

The proofs of the unwinding lemmas are by a case analysis on the semantics of concur-
rent programs.
In addition to the above assumptions, we also need another hypothesis stating that,
under the assumptions of the concurrent locally respects unwinding lemma, either the
executed instruction is a low instruction, in which case the program counter of the
active thread remains equal after one step of execution, or that the executed instruction
is a high instruction, in which case the active thread is hidden in one execution (high
loop) or both (high conditional).
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Hypothesis 4 (Preservation of pc equality). Assume s ∼ t; pickt(s, hs) = pickt(t, ht)
= ctid ; s(ctid ).pc = t(ctid ).pc; s, hs ;conc s

′, hs′ ; and t, ht ;conc t
′, ht′ . Then,

s′(ctid ).pc = t′(ctid ).pc; or H(s′(ctid ).pc); or H(t′(ctid).pc).

Note that the hypothesis is formulated w.r.t. concurrent states and concurrent execution.
However, it is immediate to derive the above hypothesis from its restriction to sequential
states and sequential execution.
We also need an hypothesis about visibility by the attacker:

Hypothesis 5 (High hypotheses).

1. For every program point i, we have High lmem(λinit(i)).
2. If 〈λ, µ〉;seq 〈λ′, µ′〉 and High lmem(λ) and H(λ.pc) then High lmem(λ′).
3. If High lmem(λ1) and High lmem(λ2) then λ1 ∼l λ2.

The next function Finally, the soundness proof relies on the existence of a function
next that satisfies several properties. Intuitively, next computes for any high program
point its minimal observable successor, i.e., the first program point with a low security
level reachable from it. If executing the instruction at program point i can result in a
hidden thread (high if or high while), then next(i) is the first program point such that
i 7→? next(i) and the thread becomes visible again. The existence of the next function
is closely related to control dependence regions, which are discussed in Section 6.1.

Hypothesis 6 (Existence of next function). There exists a function next : P ⇀ P
such that the next properties (NeP) hold:

NePd) Dom(next) = {i ∈ P|H(i) ∧ ∃j ∈ P. i 7→? j ∧ ¬H(j)}
NeP1) i, j ∈ Dom(next) ∧ i 7→ j ⇒ next(i) = next(j)
NeP2) i ∈ Dom(next) ∧ j 6∈ Dom(next) ∧ i 7→ j ⇒ next(i) = j
NeP3) j, k ∈ Dom(next) ∧ i 6∈ Dom(next) ∧ i 7→ j ∧ i 7→ k ∧ j 6= k ⇒ next(j) = next(k)
NeP4) i, j ∈ Dom(next) ∧ k 6∈ Dom(next) ∧ i 7→ j ∧ i 7→ k ∧ j 6= k⇒ next(j) = k

Intuitively, properties NeP1, NeP2, and NeP3 ensure that the next of instructions within
an outermost high conditional statement coincides with the junction point of the con-
ditional; in addition, properties NeP1, NeP2, and NeP4 ensure that the next of instruc-
tions within an outermost high loop coincides with the exit point of the loop.

6 Instantiation

In this section, we apply our main results to a simple assembly language with condi-
tional jumps and dynamic thread creation. We present the assembly language with a
semantics and a type system for noninterference but without considering concurrent
primitives and plug these definitions into the framework for multithreading. Then, we
present a compilation function from a simple while-language with dynamic thread cre-
ation into assembly code. The source and target languages are defined in Figure 4. The
compilation function allows us to easily define control dependence regions and junction
points in the target code. Function next is then defined using that information. More-
over, we prove that the obtained definition of next satisfies the properties required in
Section 5. Finally, we conclude with a discussion about how a similar instantiation can
be done for the JVM.
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e ::= x | n | e op e c ::= x := e | c; c | if e then c else c | while e do c | fork(c)

instr ::= binop op binary operation on stack
| push n push value on top of stack
| load x load value of x on stack
| store x store top of stack in variable x
| ifeq j conditional jump
| goto j unconditional jump
| start j creation of a thread

where op ∈ {+,−,×, /}, n ∈ Z, x ∈ X , and j ∈ P .

Fig. 4. Source and target language

P [i] = push n

se , i `seq st⇒ se(i) :: st

P [i] = binop op

se, i `seq k1 :: k2 :: st⇒ (k1 t k2 t se(i)) :: st

P [i] = store x se(i) t k ≤ Γ (x)

se, i `seq k :: st⇒ st

P [i] = load x

se, i `seq st⇒ (Γ (x)t se(i)) :: st

P [i] = goto j

se, i `seq st⇒ st

P [i] = ifeq j ∀j′ ∈ reg(i), k ≤ se(j′)
se , i `seq k :: st⇒ liftk(st)

Fig. 5. Transfer rules

6.1 Sequential part of the language

The instantiation requires us to define the semantics and a type system to enforce non-
interference for the sequential primitives of the language. On the semantics side, we
assume that a local state is a pair 〈os, pc〉 where os is an operand stack, i.e., a stack of
values, and pc is a program counter, whereas a global state µ is a map from variables to
values. The operational semantics is standard and therefore we omit it. We also define
λinit(pc) to be the local state 〈ε, pc〉, where ε is the empty operand stack.

The enforcement mechanism consists of local types which are stacks of security levels,
i.e., LType = Stack(Level); we let Tinit be the empty stack of security levels. Typing
rules are summarized in Figure 5, where liftk(st) denotes the point-wise extension of
λk′. k t k′ to stacks of security levels, and reg : P ⇀ ℘(P) denotes the region of
branching points. We express the chosen security policy by assigning a security level
Γ (x) to each variable x.

The definition of state equivalence is inspired from [BR05]: two global memories are in-
distinguishable iff they coincide on all low variables. Equivalence between local mem-
ories is defined relative to a mapping of program points to stack types, using the notion
of operand stack indistinguishability used in [BR05]. Formally, we instantiate the defi-
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nitions of local and global state equivalence, and of high stacks as follows:

〈os, pc〉 ∼l 〈os′, pc′〉 ⇐⇒ os
os∼S(pc),S(pc′) os

′

µ1 ∼g µ′1 ⇐⇒ µ1
vmap∼ µ′1

High lmem(〈os, pc〉) ⇐⇒ highos(os, S(pc))

where os∼,
vmap∼ , and highos are defined as in [BR05]:

– µ1
vmap∼ µ′1 iff µ1(x) = µ′1(x) for all x ∈ V such that Γ (x) ≤ k

– highos(os, S) iff os and S have the same length n, and S(i) 6≤ k for all 1 ≤ i ≤ n
– s

os∼S,S′ s
′ is defined by the clauses

highos (s, S) highos (s′, S′)

s
os∼S,S′ s

′

s
os∼S,S′ s′ v ∼k v′

v :: s
os∼k::S,k::S′ v′ :: s′

– state equivalence s •∼S,S′ s′ is defined as

os
os∼S,S′ os′ ∧ µ vmap∼ µ′

assuming s = 〈〈os, i〉, µ〉 and s′ = 〈〈os′, i′〉, µ′〉.

We conclude this section by showing that all hypotheses, except Hypotheses 6, follow
immediately from definitions, or from the results of [BR05]. Note that the latter rely
on some assumptions about control dependence regions in programs. Essentially, these
regions represent an over-approximation of the range of branching points. This concept
is formally introduced by the functions reg : P ⇀ ℘(P) and jun : P ⇀ P , which
respectively compute the control dependence region and the junction point for a given
instruction. Both functions need to satisfy some properties in order to guarantee nonin-
terference in typable programs. These properties, which are known as SOAP properties
[BR05], are given in the Appendix, and can be guaranteed by compilation.

Lemma 3. Hypotheses 1, 2, 3, 4 and 5 hold for all typable programs.

6.2 Concurrent extension

As shown in Definition 7, the concurrent semantics is obtained from the semantics for
sequential commands together with a transition for the instruction start. Moreover, the
sequential type system in Figure 5 is extended by the typing rules presented in Figure 3
to consider concurrent programs.
The proof of noninterference for concurrent programs relies on the existence of the
function next. Similarly to the technique of [BRN06], we name program points where
control flow can branch or writes can occur. We add natural number labels to the source
language as follows:

c ::= [x := e]n | c; c | [if e then c else c]n | [while e do c]n | [fork(c)]n
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E(x) = load x E(n) = push n E(e op e′) = E(e) :: E(e′) :: binop op

S(x := e, T ) = (E(e) :: store x, T )

S(c1; c2, T ) = let (lc1, T1) = S(c1, T ); (lc2, T2) = S(c2, T1);
in (lc1 :: lc2, T2)

S(while e do c, T ) = let le = E(e); (lc, T ′) = S(c, T );
in (goto (pc+ #lc + 1) :: lc :: le :: ifeq (pc−#lc−#le),

T ′)
S(if e then c1 else c2, T ) = let le = E(e); (lc1, T1) = S(c1, T ); (lc2, T2) = S(c2, T1);

in (le :: ifeq (pc+ #lc2 + 2) :: lc2 :: goto (pc+ #lc1 + 1) ::

lc1, T2)
S(fork(c), T ) = let (lc, T ′) = S(c, T ); in (start (#T ′ + 2), T ′ :: lc :: return)

C(c) = let (lc, T ) = S(c, []); in goto (#T + 2) :: T :: lc :: return

Fig. 6. Compilation function

This labeling allows us to define control dependence regions for the source code and
use this information to derive control dependence regions for the assembly code. We
introduce two functions, sregion and tregion, to deal with control dependence regions
in the source and target code, respectively.

Definition 14 (function sregion). For each branching command [c]n, sregion(n) is
defined as the set of labels that are inside of the command c except for those ones that
are inside of fork commands.

As in [BRN06], control dependence regions for low-level code are defined based on
the function sregion and a compilation function. For a complete source program c, we
define the compilation C(c) in Figure 6. We use symbol # to compute the length of
lists. Symbol :: is used to insert one element to a list or to concatenate two existing
lists. The current program point in a program is represented by pc. The function C(c)
calls the auxiliary function S which returns a pair of programs. The first component of
that pair stores the compiled code of the main program, while the second one stores the
compilation code of spawned threads. We now define control dependence regions for
assembly code and respective junction points.

Definition 15 (function tregion). For a branching instruction [c]n in the source code,
tregion(n) is defined as the set of instructions obtained by compiling the commands
[c′]n

′
, where n′ ∈ sregion(n). Moreover, if c is a while loop, then n ∈ tregion(n) as

well as the instructions obtained from compiling the guard of the loop. Otherwise, the
goto instruction after the compilation of the else-branch also belongs to tregion(n).

Junction points are computed by the function jun. The domain of this function consist
of every branching point in the program. We define jun as follows:

Definition 16 (junction points). For every branching point [c]n in the source program,
we define jun(n) = max{i|i ∈ tregion(n)}+ 1.
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` e : L `α c : E E(n) = F (n) = φ(α)

`α [while e do c]nα : E,F

` e : L `α c : E,F `α c′ : E,F E(n) = F (n) = φ(α)

`α [if e then c else c′]nα : E,F

` e : H `• c : E,F E(n) = F (n) = H

`• [while e do c]n• : E,F

` e : H `• c : E,F `• c′ : E,F E(n) = F (n) = H

`• [if e then c else c′]n• : E,F

`α c : E,F `α c′ : E,F

`α c ; c′ : E,F

`α c : E,F E(n) = F (n) = φ(α)

`α [fork(c)]nα : E,F

ASSIGN
` e : k k t E(n) ≤ Γ (x) E(n) = F (n) = φ(α)

`α [x := e]nα : E,F

TOP-H-WHILE
` e : H `• c : E,F E(n) = L F (n) = H

`◦ [while e do c]n• : E

TOP-H-COND
` e : H `• c : E,F `• c′ : E,F E(n) = L F (n) = H

`◦ [if e then c else c′]n• : E,F

Fig. 7. Intermediate typing rules for high-level language commands

Having defined control dependence regions and junction points for low-level code, we
proceed to defining next. Intuitively, next is only defined for instructions that belong
to regions corresponding to the outermost branching points whose guards involved se-
crets. For every instruction i inside of an outermost branching point [c]n, we define
next(i) = jun(n). Observe that this definition captures the intuition about next given
in the beginning of Section 5. However, it is necessary to know, for a given program,
what are the outermost branching points whose guards involved secrets. With this in
mind, we extend one of the type systems given in [BRN06] to identify such points. We
add some rules for outermost branching points that involved secrets together with some
extra notations to know when a command is inside of one of those points or not.
A source program c is typable, written `◦ c : E,F , if its command part is typable with
respect to E and F according to the rules given in Figure 7. The typing judgment has
the form `α [c]nα′ : E,F , where E and F are functions from labels to security lev-
els. Function E and F play the role of security environment for the source code which
easily allows to define the security environment for the target code (see Definition 24
in Appendix). Specifically, functions E and F help to determine the security environ-



90 Gilles Barthe, Tamara Rezk, Alejandro Russo, and Andrei Sabelfeld

ment for the guards and commands involved in branching points, respectively. We then
omit writing E and F in type judgments when expressing properties only related with
source code. Variable α denotes if c is part of a branching instruction that branches on
secrets (•) or public data (◦). Variable α′ represents the level of the guards in branching
instructions. Function φ is defined as follows: φ(•) = H and φ(◦) = L. The most inter-
esting rules are TOP−H−COND and TOP−H−WHILE . These rules can be only
applied when the branching commands are the outermost ones and when they branch
on secrets. Observe that such commands are the only ones that are typable consider-
ing α = ◦ and α′ = •. Moreover, the type system prevents explicit (via assignment)
and implicit (via control) flows [DD77]. To this end, the type system enforces the same
constraints as standard security type systems for sequential languages (e.g., [VSI96]).
Explicit flows are prevented by rule ASSIGN , while implicit flows are ruled out by de-
manding a security environment of level H inside of commands that branch on secrets.
The type system guarantees information-flow security at the same time as it identifies
the outermost commands that branch on secrets. Function next is defined as follows:

Definition 17 (function next). For every branching point c in the source program such
that `◦ [c]n• , we have that ∀k ∈ tregion(n).next(k) = jun(n).

This definition satisfies the properties from Section 5, as shown by the following lemma.

Theorem 2. Definition 17 satisfies properties NePd and NeP1–4.

Notice that one does not need to trust the compiler in order to verify that properties
NePd and NeP1–4 are satisfied. Indeed, these properties are intended to be checked
independently from the compiler by code consumers. We are now in condition to show
the soundness of the instantiation.

Corollary 1 (Soundness of the instantiation). The derived type system guarantees
noninterference for multithreaded assembly programs.

6.3 Compilation example

In this section, we illustrate our approach through an example. Specifically, we show
the steps that need to be taken by code producers before they hand over the code to
consumers for security type checking.
Section 1 has an example of internal-timing leaks by a command that branches on se-
crets and, depending on which branch is taken, takes different timing behavior. Based
on this example, consider the following program:

fork(hi ′ := 0; hi ′ := 0; lo := 0);
if hi then hi ′ := 0; hi ′ := 0; hi ′ := 0 else hi ′ := 0;
lo := 1

Variables hi and hi ′ store secret data while lo stores public information. Assuming a
one-step round-robin scheduler, the last command to assign lo is lo := 1 when hi is
true; and lo := 0 when hi is false. As the example in Section 1, this program suffers
from internal-timing leaks. We show how our approach prevents them.
Firstly, the producer compiles the program by applying the compilation function C in
Figure 6 to obtain:
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1 goto 9
2 push 0
3 store hi’
4 push 0
5 store hi’
6 push 0
7 store lo
8 return

9 start 2
10 load hi
11 ifeq 15
12 push 0
13 store hi’
14 goto 21
15 push 0
16 store hi’

17 push 0
18 store hi’
19 push 0
20 store hi’
21 push 1
22 store lo
23 return

Instructions 2–8 result from compiling the body of the fork command, while instruc-
tions 10–22 are obtained by compiling the main thread. Instructions 1, 9, and 23 prop-
erly plug together the code corresponding to the generated threads.
Secondly, the producer labels the source code in such a way that primary instructions
[BRN06], which are underlined in the compiled code, match the instruction that gener-
ated them at the source level. More specifically, the source code is labeled as follows:

[fork([hi ′ := 0]3; [hi ′ := 0]5; [lo := 0]7)]9;
[if hi then [hi ′ := 0]16; [hi ′ := 0]18; [hi ′ := 0]20 else [hi ′ := 0]13]11;
[lo := 1]22

The program has only one branching point. The producer consequently obtains that
sregion(11) = {16, 18, 20, 13}, tregion(11) = {12, 13, 14, 15, 16, 17, 18, 19, 20}, and
jun(11) = 21 by applying Definitions 14, 15, and 16, respectively.
Thirdly, the producer applies the intermediate type system in Figure 7 to the labeled
source code in order to obtain the following definitions for functionsE and F :

labels E F

3 L L
5 L L
7 L L

labels E F

9 L L
11 L H
13 H H

labels E F

16 H H
18 H H
20 H H

labels E F

12 L L

By Definition 24 (see Appendix), the security environment se for the compiled code is
determined as follows.

instr. se

1 L
2 E(3)
3 E(3)
4 E(4)
5 E(4)
6 E(7)

instr. se

7 E(7)
8 L
9 E(9)

10 E(11)
11 E(11)
12 E(13)

instr. se

13 E(13)
14 F (11)
15 E(16)
16 E(16)
17 E(18)
18 E(18)

instr. se

19 E(20)
20 E(20)
21 E(22)
22 E(22)
23 L

Observe that the instructions inside of the if-then-else command have H as their
security environment. To illustrate it, we show the compiled code where instructions
with H as their security environment are marked with gray. Unmarked instructions
have security environment defined as L.
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1 goto 9
2 push 0
3 store hi’
4 push 0
5 store hi’
6 push 0

7 store lo
8 return
9 start 2
10 load hi
11 ifeq 15
12 push 0

13 store hi’
14 goto 21
15 push 0
16 store hi’
17 push 0
18 store hi’

19 push 0
20 store hi’
21 push 1
22 store lo
23 return

Fourthly and lastly, the producer obtains function next by applying Definition 17. Speci-
fically, ∀k ∈ tregion(11).next(k) = jun(11) = 21 since `◦ [if hi then hi ′ :=
0; hi ′ := 0; hi ′ := 0 else hi ′ := 0; ]11

• by the type derivation of the program on the
intermediate type system.
At this point, the producer obtains all the necessary information to accompany the code
for the consumer: the compiled code, se, and next. Then, the consumer proceeds to
check that the compiled code type-checks with respect to se and that the next satisfies
the properties described in Hypothesis 6. If the producer generates se and next fol-
lowing the described approach, then the consumer will succeed with the consumer-side
checks (see Corollary 1).

6.4 Type preserving compilation

The compilation of sequential programs is type-preserving, as shown in previous work
[BRN06]. Our framework allows extending type-preservation to multithreading. More-
over, it enables us to obtain a key non-restrictiveness result: although the source-level
type system is no more restrictive than a typical type system for a sequential language
(e.g., [VSI96]), the compilation of (possibly multithreaded) typable programs is guar-
anteed to be typable at low-level. Due to the lack of space, we only give an instantiation
of this result to the source and target languages of this section:

Theorem 3. For a given source-level program c, assume nf (c) is obtained from c by
replacing all occurrences of fork(d) by d. If command nf (c) is typable under the
Volpano-Smith-Irvine type system [VSI96] then se,S ` C(c) for some se and S.

This theorem and Theorem 1 entail the following corollary:

Corollary 2. If command nf (c) is typable under the Volpano-Smith-Irvine type sys-
tem [VSI96] then C(c) is secure.

Java Virtual Machine The modular proof technique developed in the previous section
is applicable to a Java-like language. If the sequential type system is compatible with
bytecode verification, then the concurrent type system is also compatible with it. This
implies that Java bytecode verification can be extended to perform security type check-
ing. Note that the definition of a secure scheduler is compatible with the JVM, where
the scheduler is mostly left unspecified. Moreover, it is possible to, in effect, override
an arbitrary scheduler from any particular implementation of JVM with a secure sched-
uler that keeps track of high and low threads as a part of an application’s own state
(cf. [TRH07]).
However, some issues arise in the definition of a concurrent JVM: in particular, we
cannot adapt the semantics and results of [BPR07a] directly, because the semantics of
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method calls is big-step. Instead, we must rely on a more standard semantics where
states include stack frames, and prove unwinding lemmas for such a semantics; fortu-
nately, the technical details in [BR05] took this route, and the same techniques can be
used here.
Another point is that the semantics of the multithreaded JVM obtained by the method
described in Section 2 only partially reflects the JVM specification. In particular, it
ignores object locks, which are used to perform synchronization throughout program
execution. Dealing with synchronization is a worthwhile topic for future work.

7 Related work

Information-flow type systems for low-level languages, including JVML, and their rela-
tion to information-flow type systems for structured source languages, have been stud-
ied by several authors [BR05, GS05, MCB05, BRN06, BPR07a, BRB07]. Nevertheless,
the present work provides, to the best of our knowledge, the first proof of noninterfer-
ence for a concurrent low-level language, and the first proof of type-preserving compi-
lation for languages with concurrency.
This work exploits recent results on interaction between the threads and the sched-
uler [RS06a] in order to control internal timing leaks. The interaction is modeled by
hide and unhide primitives that communicate to the scheduler whether a thread’s timing
behavior should be “hidden”. In this paper, there is no need for explicit hide/unhide
primitives because scheduler is driven by the security environment. If a thread is inside
of a conditional with a high guard, then it executes in a high security environment and
thus its timing behavior is automatically hidden from threads that run in a low security
environment.
Other approaches [SV98, VS99, Smi01, Smi03] to handling internal timing rely on
protect(c) which, by definition, hides the internal timing of command c. It is not
clear how to implement protect() without modifying the scheduler (unless the sched-
uler is cooperative [RS06b, TRH07]). It is possible to prevent internal timing leaks by
spawning dedicated threads for computations that involve secrets and carefully syn-
chronizing the resulting threads [RHNS07]. However, this implies high synchroniza-
tion costs. Yet other approaches prevent internal timing leaks in code by disallowing
any races on public data [ZM03, HWS06, Ter08]. However, they wind up rejecting
such innocent programs as lo := 0 ‖ lo := 1 where lo is a public variable. Still other
approaches prevent internal timing by disallowing low assignments after high branch-
ing [BC02, Alm06]. Less related work [Aga00, SS00, Sab01, SM02, KM06] considers
external timing, where an attacker can use a stopwatch to measure computation time.
This work considers a more powerful attacker, and, as a price paid for security, disal-
lows loops branching on secrets.
Further afield, different flavors of possibilistic noninterference have been explored in
process-calculus settings [HVY00, FG01, Rya01, HY02, Pot02], but without consider-
ing the impact of scheduling. Most recently, van der Meyden and Zhang [vZ08] have
investigated how the choice of a scheduler can affect security definitions in an abstract
automata-based setting. However, they leave enforcement mechanisms and treatment
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of dynamic thread creation unaddressed. For additional related work, we refer to an
overview of language-based information-flow security [SM03].

8 Conclusions

We have presented a framework for controlling information flow in multithreaded low-
level code. Thanks to its modularity and language-independence, we have been able
to reuse several results for sequential languages. An appealing feature enjoyed by the
framework is that security-type preserving compilation is no more restrictive for pro-
grams with dynamic thread creation than it is for sequential programs. Primitives for
interacting with the scheduler are introduced by the compiler behind the scenes, and in
such a way that internal timing leaks are prevented.
We have demonstrated an instantiation of the framework to a simple imperative lan-
guage and have argued that our approach is amenable to extensions to object-oriented
languages. The compatibility with bytecode verification makes our framework a promi-
sing candidate for establishing mobile-code security via type checking.
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9 Appendix

Proof of soundness of concurrent type system

Proofs of unwinding lemmas

Lemma 1 (Concurrent locally respects unwinding). Assume s ∼ t and hs
Hist∼ ht

and pickt(s, hs) = pickt(t, ht) = ctid and s.pc(ctid ) = .pc(t)ctid . If s, hs ;conc

s′, hs′ and t, ht ;conc t
′, ht′ , and s′.lowT = t′.lowT, then s′ ∼ t′ and hs′

Hist∼ ht′ .

Proof. We only prove that s′ ∼ t′, since hs′
Hist∼ ht′ is a direct consequence of the

hypotheses and of the definition of secure scheduler. We distinguish two cases:

1. The instruction to be executed is a sequential instruction. By definition of the se-
mantics: 〈s(ctid ), s.gmem〉;seq 〈s′(ctid ), s′.gmem〉 and 〈t(ctid ), t.gmem〉;seq

〈t′(ctid), t′.gmem〉. By hypothesis, we have s
gmem∼ t and s(ctid ) ∼l t(ctid ). Thus
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by the sequential LR unwinding hypothesis, we have s′
gmem∼ t′ and s′(ctid) ∼l

t′(ctid ). Since s′.lowT = t′.lowT, we conclude that s′ lmem∼ t′ and hence s′ ∼ t′ by
definition of state equivalence.

2. The instruction to be executed is of the form start pc. By the hypotheses and the def-
inition of state equivalence, it is sufficient to show that freshtσ(s) = freshtσ(t) =
ntid , where se(pc) = σ and λinit(pc) ∼l λinit(pc). This follows from equivalence
of local initial states.

2

Lemma 2 (Concurrent step consistent unwinding). Assume s ∼ t and hs
Hist∼ ht and

pickt(s, h) = ctid and s.pc(ctid) = i and High lmem(s(ctid )) andH(i). If s, hs ;conc

s′, hs′ and s′.lowT = t.lowT, then s′ ∼ t and hs′
Hist∼ ht.

Proof. We only prove that s′ ∼ t′, since hs′
Hist∼ ht′ is a direct consequence of the

hypotheses and of the definition of secure scheduler. We distinguish two cases:

1. The instruction to be executed is a sequential instruction. By definition of the se-
mantics: 〈s(ctid ), s.gmem〉 ;seq 〈s′(ctid), s′.gmem〉. By hypothesis, we have
s

gmem∼ t and s(ctid ) ∼l t(ctid ). Thus by the sequential SC unwinding hypothesis,
we have s′

gmem∼ t and s′(ctid) ∼l t(ctid ). We conclude from s
lmem∼ t and from

s′.lowT = t.lowT that s′ lmem∼ t, and that s′ ∼g t by definition of state equivalence.
2. The instruction to be executed is of the form start pc. By the hypotheses and the

definition of state equivalence, it is sufficient to notice that the created thread is not
observable, i.e.,H(pc) which follows from se(i) ≤ se(pc) by typability, andH(i).

2

Lemma 3. Hypotheses 1, 2, 3, 4 and 5 hold for all typable programs.

Proof. Hypothesis 1 is an instance of the low lemma of [BR05]. The lemma can be
formulated as:

s
•∼S,S′ s′
s;seq t
s′ ;seq t

′

s.pc = s′.pc = i
i ` S ⇒ T
i ` S′ ⇒ T ′





⇒ t
•∼T,T ′ t′ ∧ (t.pc = t′.pc ∨ Φt,t′,T,T ′)

where

Φt,t′,T,T ′ = highos(t, T ) ∧ highos(t′, T ′) ∧ (H(t.pc) ∨H(t′.pc))

Indeed, assume that se,S ` P and define S = S ′ = Si. Applying the lemma, we
conclude that t •∼T,T ′ t′ for T ≤ Sj and T ′ ≤ Sj′ where j = t.pc and j ′ = t.pc′.
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There are two cases to consider: either j = j ′, in which case we can apply the
double monotony lemma, see [BPR07b], to conclude, or j 6= j ′, in which case
Sj and Sj′ are high, in which case we conclude by definition of operand stack
indistinguishability.

Hypothesis 2 is a trivial consequence of the definition of λinit(i) = 〈ε, i〉 and of the
fact that stack types should be empty at initial program points.

Hypothesis 3 is an instance of the high lemma of [BR05]. The lemma can be formu-
lated as:

s
•∼S,S′ s′
s;seq t

highos(s, S)
H(s.pc)

s.pc ` S ⇒ T




⇒ t

•∼T,S′ s′ ∧ highos(t, T )

Indeed, assume that se,S ` P and define S = Si. Applying the lemma, we con-
clude that t •∼T,S′ s′ for T ≤ Sj where j = t.pc. We can apply the single monotony
lemma, see [BPR07b], to conclude.

Hypothesis 4 follows from unfolding the definition and from the low lemma. Indeed,
we have to show that one of the following holds: either s′(ctid).pc = t′(ctid).pc,
or H(s′(ctid).pc) or H(t′(ctid).pc). By the low lemma, we conclude.

Hypothesis 5 (1) and (3) are immediate consequences of the definition of initial states
and operand stack indistinguishability. Item (2) follows from a simple analysis of
the type system.

2

Execution traces To conclude the proof of noninterference, we introduce an auxiliary
function ;vis

conc that collapses execution steps on hidden threads: intuitively, s ;vis
conc

s′ iff neither s or s′ have a hidden thread, and s ;conc s′ or s ;?
conc s′ and all

intermediate states have a hidden state. The formal definition of s ;vis
conc s

′ is given
in Figure 8; the definition relies on the following four predicates on concurrent states,
where #X denotes the cardinal of X :

GH(s)⇔ ∀tid ∈ s.highT. High lmem(s(tid))
GH≤1(s)⇔ GH(s) ∧#(s.hidT) ≤ 1

GH1(s)⇔ GH(s) ∧#(s.hidT) = 1
GH0(s)⇔ GH(s) ∧#(s.hidT) = 0

and two execution relations ;vis
conc and ;hid

conc defined by the clauses of Figure 8;
informally, s ;vis

conc s
′ iff s ;?

conc s
′ and GH0(s) and GH0(s′), and all intermediate

steps si verify GH1(si).

Lemma 4. IfP, µ1 ⇓ µ′1, then sinit(µ1), εH ist(;vis
conc)

?swith s.lowT = ∅ and s.gmem
= µ′1.

Proof. First, we prove that GH≤1 is an invariant of program execution, using the GH
hypotheses and the hypothesis that the scheduler is secure. Then, we prove that final
states must verify GH0. It is then easy to conclude. 2
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s, h;conc s
′, h′ GH0(s) GH0(s′)

s, h;vis
conc s

′, h′

s, h;conc s
′, h′ GH1(s) GH1(s′)

s, h;hid
conc s

′, h′
s, h;hid

conc s
′, h′ s′, h′ ;hid

conc s
′′, h′′

s, h;hid
conc s

′′, h′′

s, h;conc s
′, h′ s′, h′ ;hid

conc s
′′, h′′ s′′, h′′ ;conc s

′′′, h′′′ GH0(s) GH0(s′′′)

s, h;vis
conc s

′′′, h′′′

Fig. 8. Auxiliary execution relations

Next, we prove the invariance of next under high steps in presence of a hidden thread.
Below, we extend next as a function to states s such that GH1(s), and define next(s) as
s.pc(tid), where s.hidT = {tid}.

Lemma 5. If s, hs ;hid
conc s

′, hs′ and s ∼ t and s
pc∼ t then s′ ∼ t and hs

Hist∼ hs′ , and
s′

pc∼ t, and next(s) = next(s′).

Proof. The proof proceeds by induction over the derivation of s, hs ;hid
conc s

′, hs′ and
uses the fact that the scheduler is secure, and that by definition of ;hid

conc, GH1(s) and
GH1(s′).

– If s, h;conc s
′, h′. Since s, hs ;hid

conc s
′, hs′ , we have s.lowT = s′.lowT; besides,

s.lowT = t.lowT as s
pc∼ t. Hence s′.lowT = t.lowT. Let pickt(s, hs) = ctid

and s.pc(ctid) = i. As GH1(s), we have H(i) (since the scheduler is secure), and
thus High lmem(s(ctid )). Item i) follows from the concurrent SC unwinding lemma
(Lemma 2). Item ii) follows from the fact that s

pc∼ s′, and item iii) follows from the
observation that if i ∈ Dom(next), i.e., s.hidT = {ctid}, then s′.pc(ctid ) = i′ ∈
Dom(next), and hence by NeP1, next(i) = next(i′), hence next(s) = next(s′);
otherwise, if i 6∈ Dom(next), then next(s) = next(s′) holds trivially.

– If s, h ;hid
conc s0, h0 and s0, h0 ;hid

conc s
′, hs′ , then we can apply the induction hy-

pothesis to both reduction sequences, using the conclusions of the first application
of the induction hypothesis to apply the second one, to conclude that s0 ∼ t and
h
Hist∼ h0 and s0

pc∼ t and next(s) = next(s0) and s′ ∼ t and h0
Hist∼ hs′ and

s′
pc∼ t and next(s0) = next(s′). We are done by transitivity of history equivalence

and pc equivalence and equality.

2

Next, we prove a locally respects lemma for;vis
conc by using Lemma 5.

Lemma 6. If s, hs ;vis
conc s

′, hs′ and t, ht ;vis
conc t

′, ht′ and s ∼ t and s
pc∼ t and

hs
Hist∼ ht then s′ ∼ t′ and s′

pc∼ t′ and h′s
Hist∼ h′t.
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Proof. Let ks = se(is), where is = s(ctid s).pc and ctid s = pickt(s, hs) and kt =
se(it) where it = t(ctid t).pc and ctid t = pickt(t, ht). By definition of ;vis

conc, there
are four cases to treat; we only consider two cases:

– if s, hs ;conc s
′, hs′ and t, ht ;conc t

′, ht′ . Note that s.lowT = t.lowT follows
from s

pc∼ t. Hence, by definition of secure scheduler, there are two cases to treat:
either ctid s = ctid t and ks = kt, or else ks 6≤ k and kt 6≤ k.
In the first case, observe that necessarily s′.lowT = s.lowT and t′.lowT = t.lowT,
and thus s′.lowT = t′.lowT. Furthermore, is = it. Item i) follows by Lemma 1;
item ii) follows from Hypothesis 4; item iii) follows from the fact that hs′ =
〈ctid s, ks〉 :: hs and ht′ = 〈ctid t, kt〉 :: ht.
In the second case, the result is a direct consequence of the definitions.

– if s, hs ;conc s1, hs1 ;hid
conc s2, hs2 ;conc s

′, hs′ and t, ht ;conc t1, ht1 ;hid
conc

t2, ht2 ;conc t
′, ht′ . In this case, we must have ctid s = ctid t (so we drop sub-

scripts) and ks = kt, and furthermore s1.lowT = t1.lowT and is = it. We apply
Lemma 1 to s and t to conclude that s1 ∼ t1 and hs1

Hist∼ ht1 . Furthermore,
s1

pc∼ t1, and by NeP3, next(s1) = next(t1).
By applying Lemma 5 to s1, s2 and t1, we conclude that s2 ∼ t1, and hs1

Hist∼ hs2 ,
and s2

pc∼ t1, and next(s1) = next(s2). Using these facts and by applying Lemma 5
on t1, t2 and s2, we conclude that t2 ∼ s2, and ht1

Hist∼ ht2 , and t2
pc∼ s2, and

next(t1) = next(t2).
To prove that s′ ∼ t′, we apply Hypothesis 3 to conclude that s2(ctid) ∼l s′(ctid )

and s2
gmem∼ s′. Likewise, t2(ctid ) ∼l t′(ctid ) and t2

gmem∼ t′. By Hypothesis 5,
we also have s2(ctid ) ∼l t2(ctid), and hence s′(ctid) ∼l t′(ctid ), from which it
is easy to conclude.
To conclude that s′

pc∼ t′, we use the fact that next(s2) = next(t2) and apply NeP2.
To conclude that hs′

Hist∼ ht′ , we use the fact that hs1
Hist∼ ht1 and that hs1

Hist∼ hs′

and ht1
Hist∼ ht′ .

2
We can now conclude the proof of soundness (Theorem 1) by repeatedly applying
Lemma 6, and by Lemma 4.

Soundness of the instantiation

Definition 18 (Source labels and control flows). Natural numbers are added as la-
bels to the source syntax to identify program points where control flow can branch.
Therefore, commands are described by the following grammar:

c ::= [x := e]n | c; c | [if e then c else c]n | [while e do c]n | [fork(c)]n

Definition 19 (Branching commands). The branching commands are those of the
form if e then c else c and while e do c . The set LL# consists on all the la-
bels of branching commands in the program.
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We define a notion of contexts to refer to instructions inside of programs.

Definition 20 (Contexts). A context C for commands is defined as an element of the
following grammar:

C ::=• | [x := e]n | [if e then c else C]n | [if e then C else c]n |
[while e do C]n | c;C | C ; c | [fork(C)]n

where e is an expression, c is a command, c is a single command, and C is a context
denoting a single command.

The definition of contexts for unlabeled commands is very similar to Definition 20.
Therefore, we abuse of notation and denote C as contexts for labeled or unlabeled
commands. We define the size of context as follows.
Our compilation function S takes two arguments: the code to compiled and the com-
piled code belonging to different threads. For technical reasons, it is necessary to iden-
tify what is the value of the second argument when the compilation of commands are
performed. We then introduce the following judgment.

Definition 21. Given commands c and c′, and sequences of compiled instructions T ,
and T ′, the judgment S(c, T ) ::` S(c′, T ′) is defined by the following rules.

S(c, T ) ::` S(c, T )
[REFL]

S(c1, T ) ::` S(c′, T ′)

S(c1; c2, T ) ::` S(c′, T ′)
[SEQ1]

(lc1, T1) = S(c1, T ) S(c2, T1) ::` S(c′, T ′)

S(c1; c2, T ) ::` S(c′, T ′)
[SEQ2]

S(c1, T ) ::` S(c, T )

S([if e then c1 else c2]n, T ) ::` S(c, T )
[IF1]

(lc1, T1) = S(c1, T ) S(c2, T1) ::` S(c, T )

S([if e then c1 else c2]n, T ) ::` S(c, T )
[IF2]

S(c, T ) ::` S(c′, T ′)

S([while e do c]n, T ) ::` S(c′, T ′)
[WHL]

S(c, T ) ::` S(c′, T ′)

S(fork(c), T ) ::` S(c′, T ′)
[FRK]

S(c, T ) ::` S(c′, T ′) S(c′, T ′) ::` S(c′′, T ′′)

S(c, T ) ::` S(c′′, T ′′)
[TRANS]

Intuitively, S(c, T ) ::` S(c′, T ′) denotes the fact that when compiling the command c,
the function S receives T ′ as a second argument when compiling c′. For simplicity, we
write S(c, []) ::` S(c′, T ′) as C(c) ::` S(c′, T ′).
We assume that two instructions are the same iff they are located in the same position
of in the compiled code. The following function is useful to define regions at the target
code.
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Definition 22 (Function �). Given a program P and its compilation lp = C(P ), the
function � :: lp → [1..#lp] is defined as �(i) = the position of the instruction i in the
sequence lp.

We then define regions in the target code.

Definition 23 (Compiler regions). Given a branching command [c]n in a source pro-
gram P . Then, we define tregion(n) as follow:

[c]n = [if e then c1 else c2]n)

tregion(n) = (
[

n′∈sregion(n)

{�i |∃T. i ∈ fst(S([c′]n
′
, T )), C(P ) ::` S([c′]n

′
, T )})

[
{�gotonelse}

where gotonelse denotes the goto instructions placed after the compilation of com-
mand c2 – see Figure 6.

[c]n = [while e do c]n)

tregion(n) = (
S
n′∈sregion(n){�i |∃T. i ∈ fst(S([c′]n

′
, T )),C(P ) ::` S([c′]n

′
, T )})S{�(ifeqnw )}S{�i|i ∈ enw}

where enw and ifeqnw denote the sequence of instructions obtaining by compil-
ing the guard e and the ifeq instruction generated by compiling the while itself,
respectively – see Figure 6.

We indicate how to determine security environment se from the functions E and F
described in Figure 7.

Definition 24 (se determined by E and F ). Given a program P and an instruction
i ∈ C(P ), we define se(�(i)) as follows:

– If i = start and �(i) = 1, then se(�(i)) = L.
– If i = return and�(i) = #C(P ), then se(�(i)) = L.
– If i = return and [fork(c)]n is the smallest fork such that i ∈ snd(S([fork(c)]n, T

)) and C(P ) ::` S([fork(c)]n, T ), then se(�(i)) = E(n).
– If i = gotonelse , then se(�(i)) = F (n).
– If i = ifeqnw , then se(�(i)) = F (n).
– If i ∈ enw , then se(�(i)) = F (n).
– Otherwise, se(�(i)) = E(n), where [c]n is the smallest command in P such that
i ∈ fst(S([c]n, T )) and C(P ) ::` S([c]n, T ).

The following two lemmas are important to prove NePd. The first one indicates that it
is always possible to reach a low instruction after getting out of a conditional whose
guard contains secrets.

Lemma 7. Given se obtained as described in Definition 24, program P , a context C, a
branching command [c]n such that P = C[[c]n], `◦ P , `◦ [c]n• is in the type derivation
of P , lp = C(P ), i ∈ tregion(n); then ∃j ∈ lp.i 7→∗ �(j) ∧ se(�(j)) = L

The next lemma indicates that instructions, which their security environment is high,
are placed inside of high branches.
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Lemma 8 (From inside of top-level-branches). Given commands d and c, and label
n such that `◦ d, `• [c]n• is in the type derivation of `◦ d and n ∈ labels(d), then
there exists a command c′ and a label k such that k ∈ labels(d), `◦ [c′]k• is in the type
derivation of `◦ d, and n ∈ labels(c′).

Theorem 4 (NePd). Dom(next) = {i ∈ P|H(i) ∧ ∃j ∈ P . i 7→? j ∧ ¬H(j)}

Proof. In order to prove this equality, we need to prove inclusion of sets. Firstly,
Dom(next) ⊆ {i ∈ P|H(i)∧∃j ∈ P . i 7→? j∧¬H(j)}) is proved by inspecting Defini-
tion 17, and Lemma 7. Lastly, {i ∈ P|H(i)∧∃j ∈ P . i 7→? j∧¬H(j)} ⊆ Dom(next))
is proved by contradiction. We assume that k ∈ {i ∈ P|H(i) ∧ ∃j ∈ P . i 7→?

j ∧ ¬H(j)} ∧ k /∈ Dom(next). Then, we do case analysis on the command which
compilation generated the instruction i such that �(k) = i, and based on Lemma 8,
contradictions are obtained. 2
We show a property regarding next that is important to prove NeP1.

Lemma 9 (next is not defined for join points). Given a branching point [c]n in the
typable source program `◦ P such that `◦ [c]n• , then next(jun(n)) is undefined.

Proof. By contradiction. 2
Theorem 5 (NeP1). i, j ∈ Dom(next) ∧ i 7→ j ⇒ next(i) = next(j)

Proof. Since i ∈ Dom(next), there exists a command ci and a number ni such that
`◦ [ci]

ni• and ∀k ∈ tregion(ni).next(k) = jun(ni). On the other hand, since j ∈
Dom(next), there exists another command cj and a number nj such that `◦ [cj ]

nj
• and

∀k ∈ tregion(nj).next(k) = jun(nj). By instantiating SOAP 1 with i and j, we have
that i 7→ j ∧(i = ni ∨ i ∈ tregion(ni))⇒ j ∈ tregion(ni) ∨j = jun(ni), which we
split into:

i 7→ j ∧ i = ni ⇒ j ∈ tregion(ni) ∨ j = jun(ni) ∨ (1)
i 7→ j ∧ i ∈ tregion(ni)⇒ j ∈ tregion(ni) ∨ j = jun(ni) (2)

Since i ∈ Dom(next), we have that i ∈ tregion(ni). We proceed by doing case analysis
on i.

i = ni) Observe that this can happen when ci is a while-loop. By (1), we have that
j ∈ tregion(ni) ∨ j = jun(ni).
j ∈ tregion(ni)) By definition of tregion(ni), we have that next(j) = jun(ni),

which implies that next(i) = next(j).
j = jun(ni)) By Lemma 9, next(j) is undefined. However, j ∈ Dom(next) by

Hypothesis, which implies that next(j) is defined. Contradiction.
i ∈ tregion(ni)) By (2), we have that j ∈ tregion(ni) ∨ j = jun(ni).

j ∈ tregion(ni)) By definition of tregion(ni), we have that next(j) = jun(ni),
which implies that next(i) = next(j).

j = jun(ni)) By Lemma 9, next(j) is undefined. However, j ∈ Dom(next) by
Hypothesis, which implies that next(j) is defined. Contradiction.
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2

Theorem 6 (NeP2). i ∈ Dom(next) ∧ j 6∈ Dom(next) ∧ i 7→ j ⇒ next(i) = j

Proof. Since i ∈ Dom(next), there exists a command c and a number n such that
`◦ [c]n• and ∀k ∈ tregion(n).next(k) = jun(n). We also know that i ∈ tregion(n).
By instantiating SOAP 1 with i and j, we have that i 7→ j ∧(i = n ∨ i ∈ tregion(n))
⇒ j ∈ tregion(n) ∨ j = jun(n), which we split into:

i 7→ j ∧ i = n⇒ j ∈ tregion(n) ∨ j = jun(ni) ∨ (3)
i 7→ j ∧ i ∈ tregion(n)⇒ j ∈ tregion(n) ∨ j = jun(n) (4)

We proceed by doing case analysis on i.

i = ni) Observe that this can happen when ci is a while-loop. By (3), we have that
j ∈ tregion(n) ∨ j = jun(n).
j ∈ tregion(n)) It cannot happen. Observe that we assume that j /∈ tregion(n) by

Hypothesis.
j = jun(n)) Since i ∈ tregion(n), we know that next(i) = jun(n) and j = jun(n),

which implies that next(i) = j as expected.
i ∈ tregion(ni)) It proceeds similarly as when i = ni but applying (4) instead.

2

In order to prove NeP3, we firstly need to show that the compilation function in Figure
6 preserves inclusion of regions. More precisely, we have that

Lemma 10. Given a command cp with two branching instructions [c1]n1 [c2]n2 , where
n1 6= n2, and two contexts C1 and C2 with only a hole each one. If cp = C1[[c1]n1 ]
and cp = C2[[c2]n2 ], then

– If sregion(n1) ⊂ sregion(n2), then tregion(n1) ⊂ tregion(n2).
– If sregion(n2) ⊂ sregion(n1), then tregion(n2) ⊂ tregion(n1).
– If sregion(n1) ∩ sregion(n2) = ∅, then tregion(n1) ∩ tregion(n2) = ∅.

The following two lemmas are very similar to the statement of NeP3, but they include
some assumptions about the typing of branching point [c]n.

Lemma 11. Given programP and command [c]i such that `α [c]iα is in the type deriva-
tion of `◦P , j, k ∈ Dom(next), i 6∈ Dom(next), i 7→ j, i 7→ k, and j 6= k, where
α ∈ {◦, •}, then next(k) = next(j).

Proof. It consists on proving that the hypothesis does not hold. To do that, we consider,
based on Lemma 10, how target regions associated to k and i are included. 2

Lemma 12. Given program P and command [c]i such that `◦ [c]i• is in the type deriva-
tion of `◦ P , j, k ∈ Dom(next), i 6∈ Dom(next), i 7→ j, i 7→ k, and j 6= k, then
next(k) = next(j).
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Proof. By case analysis on [c]i. 2
Theorem 7 (NeP3). j, k ∈ Dom(next) ∧ i 6∈ Dom(next) ∧ i 7→ j ∧ i 7→ k ∧ j 6= k ⇒
next(j) = next(k)

Proof. We have that i is a branching command. Consequently, [c]i can be typed as
`◦ [c]i◦, `• [c]i•, or `◦ [c]i• in the type derivation of the program. By case analysis on
the typing of [c]i, the result follows based on Lemmas 11 and 12. 2
Theorem 8 (NeP4). i, j ∈ Dom(next) ∧ k 6∈ Dom(next) ∧ i 7→ j ∧ i 7→ k ∧ j 6= k ⇒
next(j) = k

Proof. By applying Theorem 5 with i and j, we obtain that next(i) = next(j). By
applying Theorem 6 with i and k, we obtain that next(i) = k. Therefore, we have that
next(j) = next(i) = k. 2
Theorem 6.1 Definition 17 satisfies properties NePd and NeP1–4.

Proof. The proof easily follows from Theorems 4, 5, 6, 7, and 8. 2

Typability Preservation

The following lemma claims that a source expression typable compiles to typable target
code. Besides the conclusion of typability for the target code, the lemma also states that
the final security operand stacks are of the form k : st, with k being the type of the
source expression, and st being the initial operand stack used in the transfer rules for
the compiled code. Since the new concurrent features of source and target languages in
this paper do not include new expressions, this lemma is equivalent to previous work
for sequential languages, and a proof can be found in [Rez06].

Lemma 13. Let e be an expression in [c]n such that [c]n is the inner-most command
that encloses e and Γ ` c : E,F and Γ ` e : k, and S(c)[i..j] = E(e). Let se
be the security environment determined by E,F . Then for any sti ∈ ST there exist
sti+1, ..stj such that the following hold:

1. for every l 7→ l′ in i..j then l, se ` stl ⇒ stl′ ;
2. j, se ` stj ⇒ (k t se(i)) :: sti.

Theorem 6.2 For a given source-level program c, assume nf (c) is obtained from c
by replacing all occurrences of fork(d) by d. If command nf (c) is typable under the
Volpano-Smith-Irvine type system [VSI96] then se,S ` C(c) for some se and S.

Proof. First we define how to obtain intermediate typing from the high level typing as
follows: Let D be a typing derivation for a source program SP in the high level type
system. Define security environmentsE and F as follows:

– If n belongs to some region of a branching label n′ of a command c′ in SP such
that the intro judgement for c′ types it with write effectH , thenE(n) and F (n) are
defined as the write level of the intro judgement for [c]n inD. That is, ifD ::` c : H
then F (n) = E(n) = H .
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– Otherwise, E(n) = L. If n is a branching label not contained in any region such
that its intro judgement for types it with write effect H , then F (n) = H .

By induction in the structure of the source commands.
Case: c ≡ [x := e]n. We have to prove that if [x := e]n is typable:

Γ ` e : k k ≤ Γ (x)

Γ ` x := e : Γ (x)

then the constraint k t E(n) ≤ Γ (x) from its corresponding intermediate typing rule
holds. By definition of E above, if Γ (x) = H and n is inside a high region then
E(n) = H . Otherwise E(n) = L. So the constraint k t E(n) ≤ Γ (x) is satisfied
because of the contraint of the (Assign) high level typing rule for, k ≤ Γ (x). By
Definition 24, for all program points j included in the compilation of [x := e]n, then
se(j) = E(n). By Lemma 13, we have that typability of compilation of expression e
leads to an security operand stack of the form (k t se(i)) :: sti. Typability of the store
instruction in n follows by constraint k tE(n) ≤ Γ (x) and the fact that E(n) = se(j)
for all j in n.

Case: c ≡ [if e then c1 else c2]n. In the high level type system:

COND
` e : k ` c1 : k ` c2 : k

` [if e then c else c′]n : k

We need to show that the if command is typable by the intermediate type system with
the definition of E,F given above. We need to show that if ` ci : H then `α ci : E,F .
This follows by inductive hypothesis. Furthermore if n does not belong to any high
region, then we need to show the hypothesis of the TOP − H − COND rule on E,
that is F (n) = L. This follows by definition of F above. To prove that compilation of
command n is typable, recall that by definition of source regions, c1 and c2 are included
in the region of n and then by definition of E above F (n′) = E(n′) = H for all
program points n′ inside a high region. By Definition 24, se(j) = H for all instructions
j inside the high region of n. Thus the constraint of the target typing rule se = liftk(se)
holds. By Lemma 13, we have that typability of compilation of expression e leads to an
security operand stack of the form (k t se(i)) :: ε. By semantics of the if instruction,
the operand stack is empty. Thus the lift of the security operand stack holds and we
conclude.

Case: c ≡ [while e do c1]n. The proof is analog to the if case.
Case: c ≡ c′; c′′. By inductive hypothesis.
Case: c ≡ [fork d]n. By hypothesis, fork d is tranformed into command d. Typability in
the intermediate type system follows by inductive hypothesis. Recall that compilation
of fork d gives a start instruction for the current thread and compilation of d for another
thread. Typability of d follows by the fact that d is typable applying inductive hypothe-
sis. To prove typability of compilation of start, we need to verify the following typing
rule:

P [i] = start pc se(i) ≤ se(pc)
se, i ` st⇒ st
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By Definition 24, se(�(start) = E(n), where n corresponds to a skip command. Since
i belongs to the compilation of n then E(n) = se(i). We have that se(i) ≤ se(pc) and
we conclude. 2
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Abstract. Information flow exhibited by multithreaded programs is subtle be-
cause the attacker may exploit scheduler properties when deducing secret infor-
mation from publicly observable outputs. Volpano and Smith have introduced a
protect command that prevents the scheduler from observing sensitive timing
behavior of protected commands and therefore prevents undesired information
flows. While a useful construct, protect is nonstandard and difficult to imple-
ment. This paper presents a transformation that eliminates the need for protect
under cooperative scheduling. We show that both termination-insensitive and
termination-sensitive security can be enforced by variants of the transformation
in a language with dynamic thread creation.

1 Introduction

Information-flow security specifications and enforcement mechanisms for sequential
programs have been developed for several years. Unfortunately, they do not naturally
generalize to multithreaded programs [SV98]. Information flow in multithreaded pro-
grams remains an important open challenge [SM03]. Furthermore, otherwise significant
efforts (such as Jif [MZZ+06] and Flow Caml [Sim03]) in extending programming lan-
guages (such as Java and Caml) with information flow controls have sidestepped mul-
tithreading issues. Nevertheless, concurrency and multithreading are important in the
context of security because environments of mutual distrust are often concurrent. As
result, the need for controlling information flow in multithreaded programs has become
a necessity.
This paper is focused on preventing attacks that exploit scheduler properties to deduce
secret information from publicly observable outputs. Suppose h is a secret (or high)
variable and l is a public (or low ) one. Consider threads c1 and c2:

c1 : (if h > 0 then sleep(100) else skip); l := 1

c2 : sleep(50); l := 0

Although these threads do not exhibit insecure information flow in isolation (because
1 is always the outcome for l in c1, and 0 is always the outcome for l in c2), there is a
race between assignments l := 1 and l := 0, whose outcome depends on secret h. If h
is originally positive, then—under many schedulers—it is likely that the final value of
l is 1. If h is not positive, then it is likely that the final value of l is 0. It is the timing
behavior of thread c1 that leaks—via the scheduler—secret information into l. This
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〈|ci, m|〉 α⇀ 〈|c′i,m′|〉 α ∈ {ε, ~d} σ = i

〈|σ, 〈c1 . . . cn〉,m|〉 → 〈|σ, 〈c1 . . . ci−1c
′
iαci+1 . . . cn〉,m′|〉

〈|ci,m|〉 α⇀ 〈|stop,m′|〉 σ = i

〈|σ, 〈c1 . . . cn〉,m|〉 → 〈|σ, 〈c1 . . . ci−1ci+1 . . . cn〉,m′|〉

〈|ci,m|〉 6;⇀ 〈|c′i,m|〉 σ = i σ′ = (i mod n) + 1 c′i 6= stop

〈|σ, 〈c1 . . . cn〉,m|〉 → 〈|σ′, 〈c1 . . . ci−1c
′
ici+1 . . . cn〉,m|〉

Fig. 1. Semantics for threadpools

phenomenon is due to internal timing, i.e., timing that is observable to the scheduler.
As in [SV98, VS99, Smi01, BC02, Smi03, RS06], we do not consider external timing,
i.e., timing behavior visible to an attacker with a stopwatch.
Volpano and Smith have introduced a protect command that prevents the scheduler
from observing the timing behavior of the protected command and therefore prevents
undesired information flows. A protected command is executed atomically by defini-
tion. Although it has been acknowledged [SS00, RS06] that protect is hard to imple-
ment, no implementation of protect has been discussed by approaches that rely on
it [VS99, Smi01, Smi03]. This paper presents a transformation that eliminates the need
for protect under cooperative scheduling. This transformation can be integrated into
source-to-source translation that introduces yield commands for cooperative sched-
ulers. We show that both termination-insensitive and termination-sensitive security can
be enforced by variants of the transformation in a language with dynamic thread cre-
ation.

2 Language

We consider a simple imperative language that includes skip, assignment, sequen-
tial composition, conditionals, and while-loops. Its sequential semantics is standard
[Win93]. The language also includes dynamic thread creation and a yield command.
A command configuration 〈|c,m|〉 consists of a command c and memory m. Memories
m : IDs → Vals are finite maps from identifier names IDs to values Vals. Transitions
between configurations have form 〈|c,m|〉 α

⇀ 〈|c′,m′|〉 where α is either ε (empty label),
~d (indicating a sequence of newly spawned threads), or 6;. The latter label is used in
the transition rule for yield:

〈|yield,m|〉 ;/⇀ 〈|stop,m|〉

Labels are then propagated through sequential composition to the threadpool-semantics
level. Dynamic thread creation is performed by command fork:

〈|fork(c, ~d),m|〉 ~d
⇀ 〈|c,m|〉
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This has the effect of continuing with thread c while spawning a sequence of fresh
threads ~d. Threadpool configurations have form 〈|σ, 〈c1 . . . cn〉,m|〉whereσ is the sched-
uler’s running thread number, 〈c1 . . . cn〉 is a threadpool, and m is a shared memory.
Threadpool semantics, describing the behavior of threadpools and their interaction with
the scheduler, are displayed in Figure 1. The rules correspond to normal execution of
thread i from the threadpool, termination of thread i, and yielding by thread i. Note that
due to cooperative scheduling, only termination or a yield by a thread may change the
decision of the scheduler which thread to run next. Although these semantics model a
round-robin scheduler, our approach can be generalized to a wide class of schedulers.
Let cfg →0 cfg , for any configuration cfg , and cfg →v cfg ′, for v > 0, if there is a
configuration cfg ′′ such that cfg → cfg ′′ and cfg ′′ →v−1 cfg ′. Then, cfg →∗ cfg ′ if
cfg →v cfg ′ for some v ≥ 0. Threadpool configuration cfg terminates in memory m
(written cfg ⇓ m) if cfg →∗ 〈|σ, 〈〉,m|〉 for some σ. In particular, cfg ⇓v m is written
when cfg →v 〈|σ, 〈〉,m|〉. If 〈〉 is not finitely reachable from cfg , then cfg diverges
(written cfg ⇑). Termination ⇓ and divergence ⇑ are defined similarly for command
configurations.

3 Security specification

We define two security conditions, termination-insensitive and termination-sensitive
security, both based on noninterference [GM82]. Suppose security environment Γ :
IDs → {high , low} specifies a partitioning of variables into high and low ones. Two
memories m1 and m2 are low-equal (m1 =L m2) if they agree on low variables, i.e.,
∀x ∈ IDs . Γ (x) = low =⇒ m1(x) = m2(x).
Command c satisfies termination-insensitive noninterference if c’s terminating execu-
tions on low-equal inputs produce low-equal results.

Definition 1. Command c satisfies termination-insensitive security if

∀m1,m2.m1 =L m2 & 〈|1, 〈c〉,m1|〉 ⇓ m′1 & 〈|1, 〈c〉,m2|〉 ⇓ m′2 =⇒ m′1 =L m
′
2

Command c satisfies termination-sensitive noninterference if c’s executions on any two
low-equal inputs either both diverge or both terminate in low-equal results.

Definition 2. Command c satisfies termination-sensitive security if

∀m1,m2.m1 =L m2 =⇒
〈|1, 〈c〉,m1|〉⇓ m′1 & 〈|1, 〈c〉,m2|〉⇓ m′2 &m′1 =Lm

′
2 ∨ 〈|1, 〈c〉,m1|〉⇑& 〈|1, 〈c〉,m2|〉⇑

4 Transformation

By performing a simple analysis while injecting yield commands, we are able to auto-
matically enforce both termination-insensitive and termination-sensitive security. The
transformation rules are presented in Figure 2. They have form Γ ` c ↪→ c′, where
command c is transformed into c′ under Γ . In order to rule out explicit flows [DD77]
via assignment, we ensure that expressions assigned to low variables may not depend
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∀v ∈ Vars(e). Γ (v) = low

Γ ` e : low

∃v ∈ Vars(e). Γ (v) = high

Γ ` e : high

(HCTX)
No yield, fork or assignment to l in c

Γ ` c : high

Γ ` skip ↪→ skip; yield Γ ` yield ↪→ yield

Γ ` e : τ τ v Γ (v)

Γ ` v := e ↪→ v := e; yield

Γ ` c1 ↪→ c′1 Γ ` c2 ↪→ c′2
Γ ` c1; c2 ↪→ c′1; c′2

Γ ` e : low Γ ` c1 ↪→ c′1 Γ ` c2 ↪→ c′2
Γ ` if e then c1 else c2 ↪→ if e then (yield; c′1) else (yield; c′2)

(H-IF)
Γ ` e : high Γ ` c1 : high Γ ` c2 : high

Γ ` if e then c1 else c2 ↪→ (if e then c1 else c2); yield

Γ ` e : low Γ ` c ↪→ c′

Γ ` while e do c ↪→ (while e do (yield; c′)); yield

(H-W)
Γ ` e : high Γ ` c : high

Γ ` while e do c ↪→ (while e do c); yield

Γ ` c ↪→ c′ Γ ` d1 ↪→ d′1 . . . Γ ` dn ↪→ d′n
Γ ` fork(c, d1 . . . dn) ↪→ fork(c′, d′1 . . . d

′
n)

Fig. 2. Transformation rules

on high data. This is enforced by demanding the type of the assigned variable to be at
least as restrictive as the type of the expression that is to be assigned. Restrictiveness
relation v on security levels is defined by low v low , high v high , low v high and
high 6v low . In order to reject implicit flows [DD77] via control flow, we guarantee that
if’s and while’s with high guards may not have assignments to low variables in their
bodies. These two techniques are well known [DD77, VSI96] and do not require code
transformation.
The transformation injects yield commands in such a way that threads may not yield
whenever their timing information depends on secret data. This is achieved by a re-
quirement that if’s and while’s with high guards may not contain yield commands.
In addition, such control flow statements may not contain fork. The rationale is that if
secrets influence the number of threads, then it is possible for some schedulers to leak
this difference via races of publicly-observable assignments [SS00, Sab03]. Rules H-IF
and H-W enforce the above requirements. The rest of the transformation injects yield
commands without significant restrictions (but with some obvious liveness guarantees
for commands that do not branch on secrets).
The first lemma shows that commands typed under rule HCTX do not affect the low-
security variables.
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Lemma 1. Given a command c and memories m and m′ so that Γ ` c : high and
〈|c,m|〉⇓vm′, then m =L m

′.

The following theorem states that pools of transformed threads preserve low-equality
on memories:

Theorem 1. Given two (possibly empty) threadpools ~c and ~c ′ of equal size, memories
m1 andm2, and number σ so that Γ ` ci ↪→ c′i where ci ∈ ~c and c′i ∈ ~c ′,m1 =L m2,
〈|σ, 〈~c ′〉,m1|〉⇓vm′1, and 〈|σ, 〈~c ′〉,m2|〉⇓wm′2, then m′1 =L m

′
2.

As desired, the transformation enforces termination-insensitive security:

Corollary 1. If Γ ` c ↪→ c′ then c′ satisfies termination-insensitive security.

The transformation can be adopted to termination-sensitive security in a straightforward
way. We write Γ `TS c ↪→ c′ whenever Γ ` c ↪→ c′ with the modifications that (i) rule
H-W is not used, and (ii) rule HCTX is replaced by:

(HCTX’)
No while, yield, fork or assignment to l in c

Γ `TS c : high

These modifications ensure that loops have low guards and that no loop may appear in
an if statement with a high guard. These requirements are similar to those of Volpano
and Smith [VS99] (except for the requirement on fork, which Volpano and Smith lack):

Lemma 2. Given a command c so that Γ ` c : high cmd for some security environment
Γ in Volpano and Smith’s type system [VS99]; and given command c′ obtained from c
by erasing occurrences of protect, we have Γ `TS c

′ : high .

This allows us to connect the transformation to Volpano and Smith’s type system:

Theorem 2. If command c is typable under security environment Γ in Volpano and
Smith’s type system [VS99], then there exists command c′′ such that Γ `TS c

′ ↪→ c′′,
where c′ is obtained from c by erasing occurrences of protect.

We also achieve termination-sensitive security with the above modifications of the
transformation. We firstly present some auxiliaries lemmas. The following lemma states
that commands typed as high terminate and do not affect the low part of the memory:

Lemma 3. Given a command c and memorym so that Γ `TS c : high , then 〈|c,m|〉⇓m′
and m =L m

′.

In order to show termination-sensitive security, we track the behavior of threadpools
after executing some number of yield and fork commands. We capture this by re-
lation →∗y,f so that cfg →∗1,0 cfg ′ if there is cfg ′′ such that cfg →∗ cfg ′′ where no
yield’s have been executed, cfg ′′ → cfg ′ results from executing a yield command;
and cfg →∗y,f cfg ′ if there is cfg ′′ such that cfg →∗y−1,f cfg ′′ (resp. cfg →∗y,f−1 cfg ′′)
and cfg ′′ → cfg ′ results from executing a yield (resp. fork) command.
The next two lemmas state that low-equivalence between memories is preserved after
executing some number of yield and fork commands:
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Lemma 4. Given two non-empty threadpools ~c and ~c ′ of equal size, memories m1 and
m2, and number σ so that Γ `TS ci ↪→ c′i where ci ∈ ~c and c′i ∈ ~c ′, m1 =L m2, and
〈|σ, 〈~c ′〉,m1|〉 →∗1,0 〈|σ′, 〈~c ′′〉,m′1|〉, then there exists m′2 such that 〈|σ, 〈~c ′〉,m2|〉 →∗1,0
〈|σ′, 〈~c ′′〉,m′2|〉, and m′1 =L m

′
2.

Lemma 5. Given two non-empty threadpools ~c and ~c ′ of equal size, memories m1 and
m2, numbers σ, y, and f so that y + f > 0, Γ `TS ci ↪→ c′i where ci ∈ ~c and c′i ∈ ~c ′,
m1 =L m2, and 〈|σ, 〈~c ′〉,m1|〉 →∗y,f 〈|σ′, 〈~c ′′〉,m′1|〉, then there exists m′2 such that
〈|σ, 〈~c ′〉,m2|〉 →∗y,f 〈|σ′, 〈~c ′′〉,m′2|〉, and m′1 =L m

′
2.

The final theorem shows that the transformation eliminates the need for protect:

Theorem 3. If Γ `TS c ↪→ c′ then c′ satisfies termination-sensitive security.

5 Related work

An general overview of information flow controls for concurrent programs can be found
in [SM03]. We briefly mention most closely related work. External timing-sensitive
information-flow policies have been addressed for a multithreaded language [SS00],
and extended with synchronization [Sab01], message passing [SM02], and declassi-
fication [MS04]. Type systems have been investigated for termination-sensitive flows
in possibilistic [BC02] and probabilistic [VS99, Smi01, Smi03] settings. Recently, we
have presented a type system that guarantees termination-insensitive security with re-
spect to a class of deterministic schedulers [RS06]. Information flow via low determin-
ism, prohibiting races on low variables from the outset, has been addressed in [ZM03,
HWS06].

6 Conclusion

We have presented a transformation that prevents timing leaks via cooperative sched-
ulers. We argue that this technique is general: it applies to a wide class of schedulers
(although only a round-robin scheduler has been considered here for simplicity).
We have experimented with the GNU Pth [Eng05], a portable thread library for threads
in user space. We have modified this library to allow the round-robin scheduling policy
from Section 2. We have successfully applied the transformation for source-to-source
translation of multithreaded programs without yield’s into GNU Pth programs. The
security of this translation is ensured by Theorems 1 and 3.

Acknowledgment This work was funded in part by the Information Society Technolo-
gies program of the European Commission, Future and Emerging Technologies under
the IST-2005-015905 Mobius project.
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Appendix

Lemma 1. Given a command c and memories m and m′ so that Γ ` c : high and
〈|c,m|〉⇓vm′, then m =L m

′.

Proof. By induction on v and case analysis on c. 2

Theorem 1. Given two (possibly empty) threadpools ~c and ~c ′ of equal size, memories
m1 andm2, and number σ so that Γ ` ci ↪→ c′i where ci ∈ ~c and c′i ∈ ~c ′, m1 =L m2,
〈|σ, 〈~c ′〉,m1|〉⇓vm′1, and 〈|σ, 〈~c ′〉,m2|〉⇓wm′2, then m′1 =L m

′
2.

Proof. The proof is done by induction on v + w and case analysis on cσ . Frequently,
we need to identify a thread in a given position σ inside of a threadpool ~c. In order
to do that, we can represent the threadpool ~c = 〈c1, c2, . . . , cσ−1, cσ, cσ+1, . . . , cm〉 as
cσ ⊕ ~cσ , where ~cσ = 〈c1, c2, . . . , cσ−1, cσ+1, . . . , cm〉.

cσ = if e then c1 else c2) When Γ ` e : low , the proof proceeds by applying the
semantic for threadpools to reduce the if construct, and by applying IH afterward.
The interesting case is when Γ ` e : high and 〈|e,m|〉 ↓ b1 and 〈|e,m|〉 ↓ b2, where
b1 6= b2. Without loosing generality, let us suppose b1 = True and b2 = False.
We know that c′σ = (if e then c1 else c2); yield by applying the transformation
to cσ. By inspecting the semantics for threadpools, we know that

〈|σ, c′σ ⊕ ~c ′σ,m1|〉⇀ 〈|σ, (c1; yield)σ ⊕ ~c ′σ ,m1|〉
〈|σ, c′σ ⊕ ~c ′σ,m2|〉⇀ 〈|σ, (c2; yield)σ ⊕ ~c ′σ ,m2|〉

By inspecting the transformation, we know that (Γ ` ci : high)i=1,2. By applying
Lemma 1 to (Γ ` ci : high)i=1,2 and by inspecting the semantics for threadpools,
we have

〈|σ, (c1; yield)⊕ ~c ′σ ,m1|〉⇀∗ 〈|σ, (yield)σ ⊕ ~c ′σ ,m′′1 |〉 (1)
〈|σ, (c2; yield)⊕ ~c ′σ ,m2|〉⇀∗ 〈|σ, (yield)σ ⊕ ~c ′σ ,m′′2 |〉 (2)

where m1 =L m
′′
1 and m2 =L m

′′
2 . Additionally, we know by 1 and 2 that

〈|σ, (yield)σ ⊕ ~c ′σ ,m′′1 |〉⇀ 〈|σ′,~c ′σ ,m′′1 |〉 (3)
〈|σ, (yield)σ ⊕ ~c ′σ ,m′′2 |〉⇀ 〈|σ′,~c ′σ ,m′′2 |〉 (4)

The result follows by applying IH on 3 and 4.
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cσ = while e do c) The interesting case is when Γ ` e : high , and 〈|e,m|〉 ↓ b1

and 〈|e,m|〉 ↓ b2, where b1 6= b2. Without loosing generality, let us suppose b1 =
True and b2 = False. We know that c′σ = (while e do c); yield by applying the
transformation to cσ . By inspecting the semantics for threadpools and by applying
Lemma 1, we have that

〈|σ, c′σ ⊕ ~c ′σ ,m1|〉⇀∗ 〈|σ, c′σ ⊕ ~c ′σ ,m′′1 |〉 (5)

where m′′1 =L m1. The result follows from applying IH to configurations (5) and
〈|σ, c′σ ⊕ ~c ′σ ,m2|〉.

cσ = c1; c2) We assume, by associativity of sequential composition, that c1 is a single
command. Thus, the proof consists on case analysis over c1 and following the same
structure of the proofs for single commands.

2

Corollary 1. If Γ ` c ↪→ c′ then c′ satisfies termination-insensitive security.

Proof. By applying Theorem 1 with ~c = 〈c〉, ~c ′ = 〈c′〉, and σ = 1. 2

Lemma 2. Given a command c so that Γ ` c : high cmd for some security environment
Γ in Volpano and Smith’s type system [VS99]; and given command c′ obtained from c
by erasing occurrences of protect, we have Γ `TS c

′ : high .

Proof. By structural induction on the type derivation of c. 2

Theorem 2. If command c is typable under security environment Γ in Volpano and
Smith’s type system [VS99], then there exists command c′′ such that Γ `TS c

′ ↪→ c′′,
where c′ is obtained from c by erasing occurrences of protect.

Proof. By simple structural induction on the type derivation of c.

c1; c2) We know that Γ ` c1 : τ cmd and Γ ` c2 : τ cmd by the type derivation
of c. By IH, we have that there exists c′1, c

′′
1 , c
′
2, and c′′2 such that Γ `TS c

′
1 ↪→ c′′1

and Γ `TS c
′
2 ↪→ c′′2 , where c′1 and c′2 are respectively obtained from c1 and c2 by

erasing the occurrences of protect. The result follows by taking c′′ = c′′1 ; c′′2 .
protect(cp)) We have that Γ ` cp : τ cmd . By IH, we have that there exists there

exists c′p and c′′p such that Γ `TS c
′
p ↪→ c′′p , where c′p is obtained from cp by erasing

the occurrences of protect. The result follows by taking c′ = c′p and c′′ = c′′p .
(CMD−) rule) We know that

(CMD−)
Γ ` c : τ2 cmd τ1 v τ2

Γ ` c : τ1 cmd

By IH, we know that there exists c′ and c′′ such that Γ `TS c′ ↪→ c′′, where c′

is obtained from c by erasing the occurrences of protect. The result thus holds
trivially.
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(IF ) rule) We know that

(IF)
Γ ` e : τ Γ ` c1 : τ cmd Γ ` c2 : τ cmd

Γ ` if e then c1 else c2 : τ cmd

Here, we have to cases.
τ = L) By IH, we have that By IH, we have that there exists c′1, c

′′
1 , c
′
2, and c′′2

such that Γ `TS c′1 ↪→ c′′1 and Γ `TS c′2 ↪→ c′′2 , where c′1 and c′2 are re-
spectively obtained from c1 and c2 by erasing the occurrences of protect.
Moreover, Γ `TS e : low by our transformation. The result follows by taking
c′′ = if e then (yield; c′′1) else (yield; c′′2).

τ = H) Since the transformation does not have a subtyping rule for expression,
we need to split the proof here in two more cases.
Γ ` e : high) By applying Lemma 2 to c1 and c2, we obtain that Γ `TS c

′
1 :

high and Γ `TS c
′
2 : high , where c′1 and c′2 are respectively obtained from

c1 and c2 by erasing the occurrences of protect. The result follows by
applying (H − IF ) rule in the transformation.

Γ ` e : low ) Thus, the type derivation for the conditional has the following
form.

(SUBTYPE) Γ ` e : L
Γ ` e : H Γ ` c1 : H cmd Γ ` c2 : H cmd

Γ ` if e then c1 else c2 : H cmd

By IH, we have that there exists c′1, c
′′
1 , c
′
2, and c′′2 such that Γ `TS c

′
1 ↪→ c′′1

and Γ `TS c
′
2 ↪→ c′′2 , where c′1 and c′2 are respectively obtained from c1

and c2 by erasing the occurrences of protect. The result follows from
Γ ` e : low and taking c′′ = if e then (yield; c′′1) else (yield; c′′2).

2

Lemma 3. Given a command c and memorym so that Γ `TS c : high , then 〈|c,m|〉⇓m′
and m =L m

′.

Proof. By induction on the size of c. 2

Lemma 4. Given two non-empty threadpools ~c and ~c ′ of equal size, memories m1 and
m2, and number σ so that Γ `TS ci ↪→ c′i where ci ∈ ~c and c′i ∈ ~c ′, m1 =L m2, and
〈|σ, 〈~c ′〉,m1|〉 →∗1,0 〈|σ′, 〈~c ′′〉,m′1|〉, then there exists m′2 such that 〈|σ, 〈~c ′〉,m2|〉 →∗1,0
〈|σ′, 〈~c ′′〉,m′2|〉, and m′1 =L m

′
2.

Proof. By induction on the number of steps of→∗1,0 and case analysis on cσ .

→1
1,0) The only possibilities are that cσ = yield. The lemma trivially holds in this

case.
→v+1

1,0 , v ≥ 1)
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cσ = if e then c1 else c2) When Γ ` e : low , the proof proceeds by applying
the semantic for threadpools to reduce the if construct, and by applying IH
afterwards. The interesting case is when Γ ` e : high and 〈|e,m|〉 ↓ b1 and
〈|e,m|〉 ↓ b2, where b1 6= b2. Without loosing generality, let us suppose b1 =
True and b2 = False. We know that

〈|σ, c′σ ⊕ ~c ′σ ,m1|〉⇀0,0 〈|σ, (c1; yield)σ ⊕ ~c ′σ ,m1|〉 (6)
〈|σ, c′σ ⊕ ~c ′σ ,m2|〉⇀0,0 〈|σ, (c2; yield)σ ⊕ ~c ′σ ,m2|〉 (7)

By H, we know that Γ `TS ci : high . Thus, we can apply Lemma 1 to obtain
that

〈|σ, (c1; yield)σ ⊕ ~c ′σ ,m1|〉⇀∗0,0 〈|σ, (yield)σ ⊕ ~c ′σ ,m∗1|〉 (8)
〈|σ, (c2; yield)σ ⊕ ~c ′σ ,m2|〉⇀∗0,0 〈|σ, (yield)σ ⊕ ~c ′σ ,m∗2|〉 (9)

where m1 =L m∗1 and m2 =L m∗2. By executing yields in (8) and (9) and
by H, we have that

〈|σ′,~c ′σ,m∗1|〉⇀k
1,0 〈|σ′′,~c ′′,m′1|〉 (10)

〈|σ′,~c ′σ,m∗2|〉⇀k
1,0 〈|σ′′,~c ′′,m′2|〉 (11)

where k < v. The result follows from applying IH to (10) and (11) together
with m1 =L m

∗
1 and m2 =L m

∗
2.

cσ = c1; c2) We assume, by associativity of sequential composition, that c1 is a
single command. Thus, the proof consists on case analysis over c1 and follow-
ing the same structure of the proofs for single commands.

2

Lemma 5. Given two non-empty threadpools ~c and ~c ′ of equal size, memories m1 and
m2, numbers σ, y, and f so that y + f > 0, Γ `TS ci ↪→ c′i where ci ∈ ~c and c′i ∈ ~c ′,
m1 =L m2, and 〈|σ, 〈~c ′〉,m1|〉 →∗y,f 〈|σ′, 〈~c ′′〉,m′1|〉, then there exists m′2 such that
〈|σ, 〈~c ′〉,m2|〉 →∗y,f 〈|σ′, 〈~c ′′〉,m′2|〉, and m′1 =L m

′
2.

Proof. By induction on y + f , case analysis on cσ , and by applying Lemmas 3 and 4
when necessary.

y = 1, f = 0) It holds by Lemma 4.
y = 0, f = 1) It cannot happen since executing a fork implies to executed yields.

Observe that the transformation rule for fork inserts at least one yield in c′.
y + f = k + 1, k ≥ 1)

cσ = if e then c1 else c2) When Γ ` e : low , the proof proceeds by applying
the semantic for threadpools to reduce the if construct, and by applying IH
afterwards. The interesting case is when Γ ` e : high and 〈|e,m|〉 ↓ b1 and
〈|e,m|〉 ↓ b2, where b1 6= b2. Without loosing generality, let us suppose b1 =
True and b2 = False. We know that

(〈|σ, c′σ ⊕ ~c ′σ ,mi|〉⇀ 〈|σ, (ci; yield)σ ⊕ ~c ′σ,mi|〉)i=1,2
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By H, we know that (Γ `TS ci : high)i=1,2. Thus, we can apply Lemma 3 to
obtain that

(〈|σ, (ci; yield)σ ⊕ ~c ′σ,mi|〉⇀∗ 〈|σ, (yield)σ ⊕ ~c ′σ ,m∗i |〉)i=1,2

By executing yield, we have that

(〈|σ, (yield)σ ⊕ ~c ′σ ,m∗i |〉⇀ 〈|σ∗,~c ′σ ,m∗i |〉)i=1,2

By H, we know that

〈|σ∗,~c ′σ ,m∗1|〉⇀∗y−1,f 〈|σ′, 〈~c ′′〉,m′1|〉 (12)

The result follows by applying IH on (12), and because (mi =L m
∗
i )i=1,2.

cσ = while e do c) Loops with secrets on guards are not allowed by the transfor-
mation. Thus, the only possible case is when Γ ` e : low . The guard e needs
to be evaluated to True since otherwise yield is executed only once, which
contradicts the hypothesis. The proof for when (〈|e,mi|〉 ↓ True)i=1,2 consists
on reducing the command while once and then apply IH.

cσ = fork(c, ~d)) We know that c′σ = fork(c′, ~d′), where Γ ` c ↪→ c′ and Γ `
~d ↪→ ~d ′. By executing the command fork, we have that

(〈|σ, (fork(c′, ~d ′))σ ⊕ ~c ′σ ,mi|〉⇀ 〈|σ, (c′)σ ⊕ ~c ′σ ⊕ ~d ′,mi|〉) (13)

By H, we also know that

〈|σ, (c′)σ ⊕ ~c ′σ ⊕ ~d ′,m1|〉⇀∗y,f−1 〈|σ′, 〈~c ′′〉,m′1|〉 (14)

The result follows by (13) and by applying IH to (14).
cσ = c1; c2) We assume, by associativity of sequential composition, that c1 is a

single command. Thus, the proof consists on case analysis over c1 and follow-
ing the same structure of the proofs for single commands.

2

Theorem 3. If Γ `TS c ↪→ c′ then c′ satisfies termination-sensitive security.

Proof. By applying Lemma 5 with ~c = 〈c〉, ~c ′ = 〈c′〉, and σ = 1 and observing that a
divergent configuration (originating from c′) performs an infinite number of yield’s.2
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Abstract. A major difficulty for tracking information flow in multithreaded pro-
grams is due to the internal timing covert channel. Information is leaked via this
channel when secrets affect the timing behavior of a thread, which, via the sched-
uler, affects the interleaving of assignments to public variables. This channel is
particularly dangerous because, in contrast to external timing, the attacker does
not need to observe the actual execution time. This paper presents a composi-
tional transformation that closes the internal timing channel for multithreaded
programs (or rejects the program if there are symptoms of other flows). The
transformation is based on spawning dedicated threads, whenever computation
may affect secrets, and carefully synchronizing them. The target language fea-
tures semaphores, which have not been previously considered in the context of
termination-insensitive security.

1 Introduction

An active area of research is focused on information flow controls in multithreaded pro-
grams [SM03]. Multithreading opens new covert channels by which information can be
leaked to an attacker. As a consequence, the machinery for enforcing secure informa-
tion flow in sequential programs is not sufficient for multithreaded languages [SV98].
One particularly dangerous channel is the internal timing covert channel. Information
is leaked via this channel when secrets affect the timing behavior of a thread, which,
via the scheduler, affects the interleaving of assignments to public variables.
Suppose that h is a secret variable, and k and l are public ones. Assuming that ‖ denotes
parallel composition, consider a simple example of an internal timing leak:

if h ≥ k then skip; skip else skip;
l := 1

‖
skip;
skip;
l := 0

(Internal timing leak)

Under a one-step round-robin scheduler (and a wide class of other reasonable sched-
ulers), if h ≥ k then by the time assignment l := 1 is reached in the first thread,
the second thread has terminated. Therefore, the last assignment to execute is l := 1.
On the other hand, if h < k then by the time assignment l := 0 is reached in the
second thread, the first thread has terminated. Therefore, the last assignment to exe-
cute is l := 0. Hence, the truth value of h ≥ k is leaked into l. Programs with dy-
namic thread creation are vulnerable to similar leaks. For example, a direct encoding
of the example above is depicted in Fig. 1 (where fork(c) spawns a new thread c).
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fork(skip; skip; l := 0);
if h ≥ k
then skip; skip else skip;

l := 1

Fig. 1. Internal timing leak with fork

p := 0;
while n ≥ 0 do

k := 2n−1;
fork(skip; skip; l := 0);
if h ≥ k
then skip; skip else skip;

l := 1;
if l = 1
then h := h− k; p := p+ k
else skip;

n := n− 1

Fig. 2. Internal timing leak magnified

This program also leaks whether h ≥ k is true,
under many schedulers. Internal timing leaks
are particularly dangerous because, in contrast
to external timing, the attacker does not need
to observe the actual execution time. Moreover,
leaks similar to those considered so far can be
magnified via loops as shown in Fig. 2 (where
k, l, n, and p are public; and h is an n-bit secret
integer). Each iteration of the loop leaks one bit
of h. As a result, the entire value of h is copied
into p. Although this example assumes a round-
robin scheduler, similar examples can be easily
constructed where secrets are copied into public
variables under any fair scheduler [SV98].

Existing proposals to tackling internal tim-
ing flows heavily rely on the modification of
run-time environment. (A more detailed dis-
cussion of related work is deferred to Sec-
tion 8.) A series of work by Volpano and
Smith [SV98, VS99, Smi01, Smi03] suggests
a special protect(c) statement that, by defi-
nition, takes one atomic computation step with
the effect of running command c to the end. In-
ternal timing leaks are made invisible because
protect()-based security typed systems en-
sure that computation that branches on secrets is wrapped by protect() commands.
However, implementing protect() is a major challenge [SS00, Sab01, RS06a] be-
cause while a thread runs protect(), the other threads must be instantly blocked.
Russo and Sabelfeld argue that standard synchronization primitives are not sufficient
and resort to primitives for direct interaction with scheduler in order to enable instant
blocking [RS06a]. However, a drawback of this approach (and, arguably, any approach
that implements protect() by instant blocking) is that it relies on the modification of
run-time environment: the scheduler must be able to immediately suspend all threads
that might potentially assign to public variables while a protected segment of code is
run, which limits concurrency in the program.

This paper eliminates the need for modifying the run-time environment for a class of
round-robin schedulers. We give a transformation that closes internal timing leaks by
spawning dedicated threads for segments of code that may affect secrets. There are no
internal timing leaks in transformed programs because the timing for reaching assign-
ments to public variables does not depend on secrets. The transformation carefully syn-
chronizes the dedicated threads in order not to introduce undesired interleavings in the
semantics of the original program. Despite the introduced synchronization, threads that
operate on public data are not prevented from progress by threads that operate on secret
data, which gives more concurrency than in [SV98, VS99, Smi01, Smi03, RS06a].
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For a program with internal timing leaks under a particular deterministic scheduler,
the elimination of leaks necessarily changes the interleavings and so possibly the final
result. What thread synchronization allows us to achieve is refinement of results under
nondeterministic scheduling: the result of the transformed program (under round-robin)
is a possible result of the source program under nondeterministic scheduling. Although
an attacker would seek to exploit information about the specific scheduler in use, good
software engineering practice suggests that a program’s functional behavior should not
be dependent on specific properties of a scheduler beyond such properties as fairness.
The transformation does not reject programs unless they have symptoms that would
already reject sequential programs [DD77, VSI96]. The transformation ensures that the
rest of insecurities (due to internal timing) are repaired.
It is seemingly possible to remove internal timing leaks by applying the following naive
transformation. Suppose a command (program) c only has two variables h and l to store
a secret and a public value, respectively. Assume that c does not have insecurities other
than due to internal timing (this can be achieved by disallowing explicit and implicit
flows, defined later in the paper). Then the following program does not leak any infor-
mation about h, while it computes output as intended for c (or diverges):

hi := h; li := l; h := 0; c; bar ; lo := l; h := hi; l := li; c; bar ; l := lo

where bar is a barrier command that ensures that all other threads have terminated be-
fore proceeding. This transformation suffers from at least two drawbacks. Firstly, the
program c is run twice, which is inefficient. Secondly, it is hard to ensure that any kind
of nondeterminism (e.g., due to the scheduler, random number generator, or input chan-
nels) in c is resolved in the same way in both copies. For example, the transformation
does not scale up naturally when c uses input channels. It is not obvious how to com-
municate inputs between the two copies of the program.
Another attempt to remove internal timing leaks could be done by applying slicing
techniques, which can automatically split the original program into low and high parts.
Unfortunately, these techniques in presence of concurrency are not enough to preserve
the semantics of the original program. The reason for that is simple: public variables,
which are updated by threads, might affect the computation of secrets. Therefore, an
explicit communication of public values to the high part is required.

2 Language

Although our technique is applicable to fully-fledged programming languages, we use
a simple imperative language to formalize the transformation. The language includes
a command fork((λ~x.c) @~e), which dynamically creates and runs a new thread with
local variables ~x with initial values given by the expressions ~e. When the list of lo-
cal variables is empty, we sometimes use simpler notation: fork(c). The command c
may also use the program’s global variables. The transformation requires dynamically
allocated semaphores, so these too are included in the language defined in this section.
Without making it precise, we assume that each variable is of type integer or type
semaphore. There are no expressions of type semaphore other than semaphore vari-
ables. A main program is a single command c, in the grammar of Fig. 3. Its free vari-
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c ::= skip | x := e | c; c | if e then c else c | while e do c | fork((λ~x.c) @~e)

| stop | sem := newSem(n) | wait(sem) | signal(sem)

Fig. 3. Command syntax (with x and sem ranging over variables, and n over integer literals)

(~e,m) ↓ ~v
〈|fork((λ~x.d) @~e),m|〉h λ~x.d,~v

⇀ 〈|stop,m|〉h
(sem,m) ↓ r h(r).cnt = 0

〈|wait(sem),m|〉h ⊗r⇀ 〈|stop,m|〉h

(sem,m) ↓ r h(r).cnt > 0 h′ = h[r.cnt := r.cnt− 1]

〈|wait(sem),m|〉h ⇀ 〈|stop,m|〉h′

(sem,m) ↓ r
〈|signal(sem),m|〉h �r⇀ 〈|stop, m|〉h

i = max(dom(h)) + 1 h′ = h ∪ {i 7→ (cnt = n, que = 〈〉)}
〈|s := newSem(n), m|〉h ⇀ 〈|stop, m[s := i]|〉h′

Fig. 4. Commands semantics

ables comprise the globals of the program. The source language is the subset in which
there are no stop commands, no semaphore variables and therefore no semaphore allo-
cations or operations. Moreover, the list of local variables in every fork must be empty.
Locals are needed for the transformation, but locals in source code would complicate
the transformation (because each source thread is split into multiple threads, and locals
are not shared between threads).

3 Semantics

The formal semantics is defined in two levels: individual command and threadpool
semantics. The small-step semantics for sequential commands is standard [Win93], and
we thus omit these rules. The rules for concurrent commands are given in Fig. 4.
Configurations have the form 〈|c,m|〉h, where c is a command, m is a memory (map-
ping variables to their values), and h is a heap for dynamically allocated semaphores.
The expression language does not include dereferencing of semaphore references, so
evaluation of expressions does not depend on the heap. We write (e,m) ↓ n to say that
n is the value of e in memorym. A heap is a finite mapping from semaphore references
(which we take to be naturals) to records of the form (cnt = n, que = ws) where n is a
natural number and ws is the list of blocked thread states.
Let α range over the following events, which label command transitions for use in the
threadpool semantics: �r, to indicate the semaphore at reference r is signaled; ⊗r, to
indicate it is waited; or a pair λ~x.c, ~v where ~v is a sequence of values that match ~x.
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Threadpool configurations have the form 〈|〈(c0,m0) . . . (ci,mi) . . . (cn−1,mn−1)〉, g,
h, j|〉, where each (ci,mi) is the state of thread i which is not blocked, g maps global
variables to their values, h is the heap, j ∈ 0 . . . n − 1 is the index of the thread that
will take the next step. For all i, dom(mi) is disjoint from dom(g). Numbering threads
0 . . . n− 1 slightly simplifies some definitions related to round-robin scheduling.

The threadpool semantics is defined for any scheduler relation SC. We interpret (i, n,
n′, i′) ∈ SC to mean that i is the current thread taking a step, n is the current pool size,
n′ is the size of the pool after that step, and i′ is the next thread chosen by the scheduler.
This model is adequate to define a round-robin scheduler for which thread activation,
suspension, and termination do not affect the interleaving of other threads, and also
to model full nondeterminism. The fully nondeterministic scheduler ND is defined by
(i, n, n′, i′) ∈ ND if and only if 0 ≤ i < n and 0 ≤ i′ < n′.

A little care is needed with round-robin to maintain the order when threads are blocked
or terminated. The definition relies on some details of the threadpool semantics, e.g.,
when a step by thread i removes a thread from the pool (by termination or blocking),
that thread is i itself. Define the round-robin scheduler RR by (i, n, n′, i′) ∈ RR if and
only if 0 ≤ i < n and equation (1) holds.

i′= i, if n′ < n and i < n− 1
= 0, if n′ < n and i = n− 1
= (i+ 1) mod n′, otherwise

(1)

The threadpool semantics is given
in Fig. 5. Note that memories
in command configurations are
disjoint unions mi∪g, where mi

is the thread-local memory, and
g is the global one. We write
h[r.que := (r.que :: (c,m))] to
abbreviate an update of the record
at r in h to change its que field by
appending (c,m) at the tail. Although semaphores are stored in a heap, we streamline
the semantics by not including a null reference. Thus, an initial heap is needed. It is
defined to initialize semaphores to 1, which is an arbitrary choice. The security condi-
tion defined later refers to initial values for all global variables, for simplicity, but only
integer inputs matter.

Definition 1. The initial heap of size k is the mapping hk with domain 1 . . . k that maps
each i to the semaphore state (cnt = 1, que = 〈〉). Suppose that k of the globals have
type semaphore. Given a global memory g, the initial global memory gk agrees with
g on integer variables, and the ith semaphore variable (under some enumeration) is
mapped to i (i ∈ dom(hk)).

Define (c, g) ⇓ g′ if and only if 〈|(c,m), gk, hk|〉0 →∗ 〈|, g′, h′|〉j, for some h′ and j,
where→∗ is the reflexive and transitive closure of the transition relation→, and m is
the empty function (since the initial thread c has no local variables).

Note that the definitions of →∗ and ⇓ depend on the choice of scheduler, but this is
elided in the notation.
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〈|ci,mi∪g|〉h ⇀ 〈|c′i,m′i∪g′|〉h′ (i, n, n, j) ∈ SC
〈| . . . (ci,mi) . . . , g, h|〉i→ 〈| . . . (c′i,m′i) . . . , g′, h′|〉j

ci = stop (i, n, n− 1, j) ∈ SC
〈| . . . (ci,mi) . . . , g, h|〉i→ 〈| . . . (ci−1,mi−1)(ci+1,mi+1) . . . , g, h|〉j

〈|ci,mi∪g|〉h λ~x.d,~v
⇀ 〈|c′i, m′i∪g′|〉h′ m = {~x 7→ ~v} (i, n, n+ 1, j) ∈ SC

〈| . . . (ci, mi) . . . (cn−1,mn−1), g, h|〉i→ 〈| . . . (c′i,m′i) . . . (cn−1,mn−1)(d,m), g′, h′|〉j

〈|ci,mi∪g|〉h ⊗r⇀ 〈|c′i,m′i∪g′|〉h′
h′′ = h′[r.que := (r.que :: (c′i,m

′
i))] (i, n, n − 1, j) ∈ SC

〈| . . . (ci,mi) . . . , g, h|〉i→ 〈| . . . (ci−1,mi−1)(ci+1,mi+1) . . . , g′, h′′|〉j

〈|ci,mi∪g|〉h �r⇀ 〈|c′i,m′i∪g′|〉h′
h′(r).que = (c,m) :: ws h′′ = h′[r.que := ws] (i, n, n+ 1, j) ∈ SC

〈| . . . (ci,mi) . . . (cn−1,mn−1), g, h|〉i→ 〈| . . . (c′i,m′i) . . . (cn−1,mn−1)(c,m), g′, h′′|〉j

〈|ci,mi∪g|〉h �r⇀ 〈|c′i,m′i∪g′|〉h′
h′(r).que = 〈〉 h′′ = h′[r.cnt := r.cnt + 1] (i, n, n, j) ∈ SC

〈| . . . (ci,mi) . . . , g, h|〉i→ 〈| . . . (c′i, m′i) . . . , g′, h′′|〉j

Fig. 5. Threadpool semantics (for scheduler SC)

4 Security specification

Assume that all global non-semaphore variables are labeled with low or high security
levels to represent public and secret data, respectively. We label all semaphore variables
as high in the target code (recall that the source program has no semaphore variables).
To define the security condition, it suffices to define low equality of global memories,
written g1 =L g2, to say that g1(x) = g2(x) for all low variables x.

Definition 2. Program c is secure if for all g1, g2 such that g1 =L g2, if (c, g1) ⇓ g′1
and (c, g2) ⇓ g′2 then g′1 =L g

′
2, where ⇓ refers to the round-robin scheduler RR.

The definition says that low equality of initial global memories implies low equality
of final global memories. Note that this definition is termination-insensitive [SM03], in
the sense that nonterminating runs are ignored.
Observe that the examples from the introduction are rejected by the above definition
because the changes in the final values of low variables break low equality. Consider
another example (where k and l are low; and h is high):

if (h ≥ k) then skip; skip else skip ‖ l := 0 ‖ l := 1

This program is secure because the timing of the first thread does not affect how the
race between assignments in the second and third threads is resolved. This holds for
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round-robin schedulers that run each thread for a fixed number of steps (which covers
the case of a one-step round-robin scheduler RR), machine instructions, or even calls
to the fork primitive. Note, however, that schedulers that are able to change the order
of scheduled threads depending on the number of live threads would not necessarily
guarantee secure execution of the above program. For example, consider a scheduler
that runs the first thread for two steps and then checks the number of live threads. If
this number is two then the second thread is scheduled; otherwise the third thread is
scheduled. This leaks the truth value of h ≥ k into l. Round-robin schedulers are not
only practical but also in this sense more secure, which motivates our choice to adopt
them in the semantics.

5 Transformation

In this section, we give a transformation that rules out explicit and implicit flows [DD77]
and closes internal timing leaks under round-robin schedulers. The transformation rules
have the form Γ ; w , s , a, b,m ` c ↪→ c′, where command c is transformed into c′ under
the security type environment Γ , which maps variables to their security levels, and
special semaphore variables w , s , a, b, and m needed for synchronization. Moreover,
a fresh high variable hx is introduced for each low variable x in the source code. The
transformation comprises the rules presented in Figs. 6 and 7, and the top-level rule:

Γ ; w , s, a, b,m ` c ↪→ c′ w , s fresh

Γ ` c ↪→t m := newSem(1); a := newSem(1); w := newSem(1); ~hl := ~l; c′
(2)

where ~hl := ~l stands for copying all low variables l into fresh high variables hl.
Define low assignments to be assignments to low variables. Explicit flows are prevented
by not allowing high variables to occur in low assignments (see rule L-ASG). Define
high conditionals (loops) to be conditionals (loops) that branch on expressions that
contain high variables. Implicit flows for high conditionals and loops are prevented by
rules of the form Γ ` c# c′, where command c is transformed into c′ under Γ . These
rules guarantee that high if’s and while’s do not have assignments to low variables
in their bodies. These rules for tracking explicit and implicit flows are adopted from
security-type systems for sequential programs [VSI96].
As illustrated by previous examples, internal timing channels are introduced by low as-
signments after high conditionals and loops. To close these channels, the transformation
introduces a forkwhenever the source code branches on high data (see rules (H-IF) and
(H-W)). Since such computations are now spawned in new threads, the number of ex-
ecuted instructions before low assignments does not depend on secrets. However, new
threads open up possibilities for new races between high variables, which can unex-
pectedly change the semantics of the program. To ensure that such races are avoided,
the transformation spawns dedicated threads for all computations that might affect high
data (see rules (H-ASG) and (L-ASG)) and carefully places synchronization primitives
in the transformed program. We will illustrate this, and other interesting aspects of the
transformation, through examples.
Consider the following simple program that suffers from an internal timing leak:

(if h1 then skip; skip else skip); l := 1 ‖ d (3)
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∀v ∈ Vars(e). Γ (v) = low

Γ ` e : low

∃v ∈ Vars(e). Γ (v) = high

Γ ` e : high

Γ ; w , s, a, b,m ` skip ↪→ skip

(Γ ; w , s, a, b,m ` ci ↪→ c′i)i=1,2

Γ ; w , s, a, b,m ` c1; c2 ↪→ c′1; c′2

(H-ASG)
Γ ` e# e′ Γ (x) = high

Γ ; w , s, a, b,m ` x := e ↪→ s := newSem(0);
fork((λŵ ŝ.wait(ŵ);x := e′; signal(ŝ)) @ ws);
w := s

(L-ASG)
Γ ` e : low Γ (x) = low Γ ` e# e′

Γ ; w , s, a, b ` x := e ↪→ s := newSem(0);
wait(m); x := e; b := newSem(0);

fork((λŵ ŝâ b̂.wait(ŵ); wait(â);hx := e′;

signal(b̂); signal(ŝ))@wsab);
a := b; signal(m);
w := s

Γ ` e : low Γ ; w , s, a, b,m ` c ↪→ c′

Γ ; w , s, a, b,m ` while e do c ↪→ while e do c′

Γ ` e : low (Γ ; w , s, a, b,m ` ci ↪→ c′i)i=1,2

Γ ; w , s, a, b,m ` if e then c1 else c2 ↪→ if e then c′1 else c
′
2

(H-IF)

Γ ` e : high Γ ` e# e′

(Γ ` ci # c′i)i=1,2 ct = if e′ then c′1 else c′2

Γ ; w , s, a, b,m `if e then c1 else c2
↪→ s := newSem(0);

fork((λŵ ŝ.wait(ŵ); ct; signal(ŝ)) @ ws);
w := s

(H-W)
Γ ` e : high Γ ` e# e′ Γ ` c# c′ ct = while e′ do c′

Γ ; w , s, a, b,m ` while e do c ↪→ s := newSem(0);
fork((λŵ ŝ .wait(ŵ); ct; signal(ŝ)) @ ws);
w := s

Γ ; w ′, s ′, a, b,m ` d ↪→ d′ w ′, s ′ fresh
ct = fork((λŵ ŝ ŵ ′.wait(ŵ); signal(ŵ); signal(ŝ); signal(ŵ ′)) @ ŵ ŝw ′)

Γ ; w , s, a, b,m ` fork(d) ↪→ s := newSem(0);
fork((λŵ ŝ.w ′ := newSem(0); ct; d

′) @ws);
w := s

Fig. 6. Transformation rules I
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Γ ` e# e[hx/x]Γ (x)=low Γ ` skip# skip

Γ (v) = high Γ ` e# e′

Γ ` v := e# v := e′
(Γ ` ci # c′i)i=1,2

Γ ` c1; c2 # c′1; c′2

Γ ` e# e′ (Γ ` ci # c′i)i=1,2

Γ ` if e then c1 else c2 # if e′ then c′1 else c
′
2

Γ ` d# d′

Γ ` fork(d)# fork(d′)
Γ ` e# e′ Γ ` c# c′

Γ ` while e do c# while e′ do c′

Fig. 7. Transformation rules II

where d abbreviates command skip; skip; l := 0. The assignment l := 1 may be
reached in three or two steps depending on h1. However, by spawning the high condi-
tional in a new thread, the number of instructions to execute it will no longer affect when
l := 1 is reached. More precisely, program (3) can be rewritten as fork(if h1 then

skip; skip; else skip); l := 1 ‖ d, where internal timing leaks are not possible. From
now on, we assume that the initial values of l and h2 are always 0. Suppose now that
we modify program (3) by:

(if h1 then h2 := 2 ∗ h2 + l; skip else skip); l := 1 ‖ d (4)

where the final value of h2 is always 0. This code still suffers from an internal tim-
ing leak. Unfortunately, by putting a fork around the if as before, we introduce 1
as a possible final value for h2, which was not possible in the original code. This
discrepancy originates from an undesired new interleaving of the rewritten program:
l := 1 can be computed before h2 := 2 ∗ h2 + l. To prevent such an interleav-
ing, we introduce fresh high variables for every low variable in the code. We call
this kind of new variables high images of low variables. Since low variables are only
read, and not written, by high conditional and loops, it is possible to replace low vari-
ables inside of high contexts by their corresponding high images. Then, every time that
low variables are updated, their corresponding images will do so but in due course.

w := newSem(1); //initialization from top-level rule (2)
s := newSem(0);
fork((λŵ ŝ.wait(ŵ); (if h1 then h2 := 2 ∗ h2 + hl; skip

else skip); signal(ŝ))
@ws)

w := s
l := 1; s := newSem(0);
fork((λŵ ŝ .wait(ŵ);hl := 1; signal(ŝ)) @ ws)
w := s

(5)

To illustrate this, let us
rewrite the left side of pro-
gram (4) as in (5). Vari-
able hl is the corresponding
high image of low variable
l. Two dedicated threads
are spawned with different
local snapshots of w and
s, written as ŵ and ŝ, re-
spectively. The second ded-
icated thread, which up-
dates the high image of l to
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1, waits (wait(ŵ )) for the first one to finish, and the first one indicates when the second
one should start (signal(ŝ)). By doing so, and by properly updating w and s in the
main thread, the command hl := 1 is never executed before the if statement. Note that
the first dedicated thread does not need to synchronize with previous ones. Hence, the
top-level transformation rule, presented at the beginning of the section, initializes the
semaphore w to 1.
The thread d also needs to be modified to include an update to hl. Let us rewrite d as
follows:

wd := newSem(1); skip; skip;
l := 0; sd := newSem(0);
fork((λŵdŝd.wait(ŵd);hl := 0; signal(ŝd))@wdsd);
wd := sd

(6)

Semaphore variables wd and sd do not play any important role here, since just one
dedicated thread is spawned. Note that if we run programs (5) and (6) in parallel, it
might be possible that the updates of low variables happen in a different order than the
updates of their corresponding high images. In order to avoid this, we introduce three
global semaphores, called a, b, and m. The final transformed code is shown in Fig. 8,
where c′1 runs in parallel with d′1. Semaphore variables a and b ensure that the queuing
processes update high images in the same order as the low assignments occur. Since
a and b are globals, we protect their access with the global semaphore m. As in the
original program, h2 can only have the final value 0. From now on, we assume that the
semaphore a is allocated and initialized with value 1 .
Let us modify program (4) by adding assignments to high and low variables:

(if h1 then h2 := 2 ∗ h2 + l; skip else skip); l := 1;h2 := h2 + 1; l := 3 ‖ d (7)

The final value of h2 is 1. As before, this code still suffers from internal timing leaks.
By putting fork’s around high conditionals and introducing updates for high images as
in program (5), we would introduce 2 as a new possible final value for h2, when h1 is
positive. The new value arises from executing h2 := h2 + 1 before the if statement.
In order to remove this race, we use synchronization to guarantee that computations on
high data are executed in the same order as they appear in the original code. However,
this synchronization should not lead to recreating timing leaks: waiting

c′2 : c′1; s := newSem(0);
fork((λŵ ŝ.wait(ŵ);h2 := h2 + 1; signal(ŝ))

@ws;
w := s;
wait(m); l := 3; b := newSem(0);

fork((λŵ ŝâb̂.wait(ŵ); wait(â);hl := 3;

signal(b̂); signal(ŝ))@wsab);
a := b; signal(m);
‖ d′1

(8)

for the if to finish before ex-
ecuting h2 := h2 + 1; l :=
3 would imply that the timing
of the low assignment l := 3
could depend on h1. We resolve
this problem by spawning dedi-
cated threads for assignments to
high variables and synchronizing,
via semaphores, these threads with
other threads that either read from
or write to high data. The ded-
icated thread to compute h2 :=
h2 + 1 will wait until the last dedicated thread in c′1 finishes. The transformed code
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c′1 : w := newSem(1);
s := newSem(0);
fork((λŵ ŝ.wait(ŵ);

if h1 then h2 := 2 ∗ h2 + hl;
skip;

else skip;
signal(ŝ))@ws);

w := s
s := newSem(0);
wait(m); l := 1; b := newSem(0);

fork((λŵ ŝâb̂.wait(ŵ); wait(â);hl := 1;

signal(b̂); signal(ŝ))@wsab);
a := b; signal(m);
w := s

d′1 : wd := newSem(1);
skip; skip;
sd := newSem(0);
wait(m); l := 0; b := newSem(0);

fork((λŵdŝdâb̂.wait(ŵd); wait(â);

hl := 0; signal(b̂); signal(ŝd))
@wdsdab);

a := b; signal(m);
wd := sd

Fig. 8. Transformed code for program (4)

is shown in (8). Note that spawned dedicated threads are executed in the same order as
they appear in the main thread.
Let us modify program (7) to introduce a fork as follows:

if h1 then h2 := 2 ∗ h2 + l; skip else skip;
l := 1;h2 := h2 + 1; l := 3;
fork(h2 := 5) ‖ d

(9)

The final value of h2 is 5. However, the rewritten program will spawn several dedicated
threads: for the conditional, for updating high images, h2 := h2 + 1, and h2 := 5,
which need to be synchronized. In particular, h2 := 5 cannot be executed before h2 :=
h2 +1 finishes. Thus, we need to synchronize dedicated threads in the main thread with
the dedicated threads from their children. This is addressed by the transformation as
follows:

c′2;
s := newSem(0);
fork((λŵ ŝ .w ′ := newSem(0);

fork((λŵ ŝŵ ′.wait(ŵ); signal(ŵ); signal(ŝ); signal(ŵ ′))@ŵ ŝw ′); d∗) @ws);
w := s; ‖ d′1

(10)
where d∗ spawns a new thread that waits on w ′ to perform h2 := 5. In order to be

able to receive a signal on w ′, it is necessary to firstly receive a signal on ŵ , which
can be only done after computing h2 := h2 + 1. Note that the transformation spawns a
new thread to wait on ŵ in order to avoid recreating timing leaks. When a fork occurs
inside a loop in the source program, there is potentially a number of dynamic threads
that need to wait for the previous computation on high data to finish. This is resolved by
passing-the-baton technique: whichever thread receives a signal first (wait(ŵ )) passes
it to another thread (signal(ŵ )).
The examples above show how to close internal timing leaks by spawning dedicated
threads that perform computation on high data. We have seen that some synchroniza-
tion is needed to avoid producing different outputs than intended in the original pro-



136 Alejandro Russo, John Hughes, David Naumann, Andrei Sabelfeld

hotel l := nextHotel();
hotelLoc l := getHotelLocation(hotel l);
dh := distance(hotelLoc l, userLoch);
closesth := hotel l;
while (moreHotels?()) do

hotel l := nextHotel ();
hotelLoc l := getHotelLocation (hotel l);
d′h := distance(hotelLoc l, userLoch);
if (d′h < dh) then dh := d′h; closesth := hotel l

else skip

ih := 0;

while (moreTypeRooms?(closesth)) do
typeh := nextTypeRoom (closesth);
showTypeRoom(typeh, ih);
ih := ih + 1;

Fig. 9. Geo-localization example

gram. Transformed programs introduce performance overhead related to synchroniza-
tion. This overhead comes as a price for not modifying the run-time environment when
preventing internal timing leaks.

6 Geo-localization example

Inspired by a scenario from mobile computing [Mob06], we give an example of closing
timing leaks in a realistic setting. Modern mobile phones are able to compute their geo-
graphical positions. The widely used MIDP profile [JSR02] for mobile devices includes
API support for obtaining the current position of the handset [JSR03]. Furthermore,
geo-localization can be approximated by using the identity of the current base station
and the power of its signal. It is desirable that such information can only be used by
trusted parties.
Consider the code fragment in Fig. 9. This fragment is part of a program that runs
on a mobile phone. Such a program typically uses dynamic thread creation (which
is supported by MIDP) to perform time-consuming computation (such as establishing
network connections) in separate threads [Knu02, Mah04].
The program searches for the closest hotel in the area where the handset is located.
Once found, it displays the types of available rooms at that hotel. Variables have sub-
scripts indicating their security levels (l for low and h for high). Suppose that hotell
and hotelLocl contain the public name and location for a given hotel, respectively.
The location of the mobile device is stored in the high variable userLoch. Variables
dh and d′h are used to compute the distance to a given hotel. Variable closesth stores
the location of the closest hotel in the area. Variable ih is used to index the type of
rooms at the closest hotel. Variable typeh stores a room type, i.e., single, double, etc.
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Function nextHotel() returns the next available hotel in the area (for simplicity, we as-
sume there is always at least one). Function getHotelLocation() provides the location
of a given hotel, and function distance() computes the distance between two loca-
tions. Function moreHotels?() returns true if there are more hotels for nextHotel() to
retrieve. Function moreTypeRooms?() returns true if there are more room types for
nextTypeRoom(). Function showTypeRoom() displays room types on the screen.
This code may leak information about the location of the mobile phone through the
internal timing covert channel. The source of the problem is a conditional that branches
on secret data, where the then branch performs two assignments while the else branch
only skip. However, internal timing leaks can be closed by the transformation given
in Section 5 (provided the transformed program runs under a round-robin scheduler).
This example highlights the permissiveness of the transformation. For instance, the type
systems by Boudol and Castellani [BC01, BC02] reject the example because both high
conditionals and low assignments appear in the body of a loop. Transformations in
[SS00, KM06] also reject the example due to the presence of a high loop in the code.

7 Soundness

This section shows that transformed programs are secure. It also states that transformed
programs refine source programs in a suitable sense. The details of the proofs for lem-
mas and theorems shown in this section are to appear in an accompanying technical
report.

Security We identify two kinds of threads. High threads are dedicated threads intro-
duced by the transformation and threads in the source program spawned inside a high
conditional or a high loop. Other threads are low threads. We designate high threads
by arranging that they have a distinguished local variable called ~. It is not difficult to
modify the transformation in Section 5 to guarantee this.
In order to prove non-interference under round-robin schedulers, we firstly need to ex-
ploit some properties of programs produced by the transformation.

Definition 3. A command c is syntactically secure provided that (i) there are no ex-
plicit flows, i.e., assignments x := e with high e and low x; (ii) each low thread,
fork((λ~x.c′) @~e), in c satisfies the following: there are no high conditionals or high
loops or signal() or wait() operations related to synchronize high threads, except
inside high threads forked in c′; and (iii) in high threads, there are neither low assign-
ments nor forks of low threads.

Lemma 1. If Γ `t c ↪→ c′ then c′ is syntactically secure.

We let γ and δ range over threadpool configurations. We assume, for convenience in
the notation, that γ = 〈|(c0,m0) . . . , g, h|〉j. We also define γ.pool = 〈(c0,m0) . . .〉,
γ.globals = g, γ.heap = h, and γ.next = j. A program configuration γ is called
syntactically secure if every command in γ.pool and every command in a waiting queue
of γ.heap is syntactically secure.
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A thread configuration (c,m) is low, noted low?(m), if and only if ~ /∈ dom(m).
Define low?(i, γ) if and only if the ith thread in γ.pool is low. Define γL as the subse-
quence of thread configurations (ci,mi) in γ.pool that are low. For each thread config-
uration (ci,mi) ∈ γ that is low, define lowpos(i, γ) (and, for simplicity in the notation,
lowpos(i, γ.pool)) to be the index of the thread but in γL. The key property of a round-
robin scheduler is that the next low thread to be scheduled is independent of the values
of global or local variables, the states of high threads (running or blocked), and even
the number of high threads in the configuration. We can formally capture this property
as follows. Define nextlow(γ) = j mod (#γ.pool ) where j is the least number such
that j ≥ γ.next and low?(j mod (#γ.pool), γ).

Definition 4 (Low equality). Define P =L P
′ for threadpools P = 〈(c1,m1) . . .〉 and

P ′ = 〈(c′1,m′1) . . .〉 (not necessarily the same length) if and only if ci ≡ c′j for all i, j
such that low?(mi), low?(m′j), and lowpos(i, P ) = lowpos(j, P ′). Define γ =L δ if
and only if γ and δ are syntactically secure, γ.globals =L δ.globals, γ.pool =L δ.pool,
lowpos(nextlow(γ), γ) = lowpos(nextlow(δ), δ), and all threads blocked in γ.heap
and δ.heap are high.

Theorem 1. Let γ and δ be configurations such that γ =L δ. If γ →∗ γ′ and δ →∗ δ′
where γ′, δ′ are terminal configurations, then γ ′ =L δ

′. Here→∗ refers to the semantics
using the round-robin scheduler RR.

Corollary 1 (Security). If Γ ` c ↪→t c
′ then c′ is secure under round-robin scheduling.

Refinement For programs produced by our transformation, the result from a round-
robin computation from any initial state is a result from the original program using the
fully nondeterministic scheduler. In fact, any interleaving of the transformed program
matches some interleaving of the original code. Then, we have the following claim:

Claim 1. Suppose Γ ` c ↪→t c
′ and g′1 and g′2 are global memories for c′ such that

(c′, g′1) ⇓ g′2 using the nondeterministic scheduler ND . Let g1 and g2 be the restrictions
of g′1 and g′2 to the globals of c. Then (c, g1) ⇓ g2 using ND .

8 Related work
Variants of possibilistic noninterference have been explored in process-calculus set-
tings [HVY00, FG01, Rya01, HY02, Pot02], but without considering the impact of
scheduling.
As discussed in the introduction, a series of work by Volpano and Smith [SV98, VS99,
Smi01, Smi03] suggests a special protect(c) statement to hide the internal timing of
command c in the semantics. In contrast to this work, we are not dependent on the ran-
domization of the scheduler. To the best of our knowledge, no proposals for protect()
implementation avoid significantly changing the scheduler (unless the scheduler is co-
operative [RS06b]).
Boudol and Castellani [BC01, BC02] suggest explicit modeling of schedulers as pro-
grams. Their type systems, however, reject source programs where assignments to pub-
lic variables follow computation that branches on secrets.
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Smith and Thober [ST06] suggest a transformation to split a program into high and low
components. Jif/split [ZCMZ03] partitions sequential programs into distributed code
on different hosts. However, the main focus is on security when some trusted hosts are
compromised. Neither approach provides any formal notion of security.
A possibility to resolve the internal timing problem is by considering external timing.
Definitions sensitive to external timing consider stronger attackers, namely those that
are able to observe the actual execution time. External timing-sensitive security defini-
tions have been explored for multithreaded languages by Sabelfeld and Sands [SS00]
as well as languages with synchronization [Sab01] by Sabelfeld and message pass-
ing [SM02] by Sabelfeld and Mantel. Typically, padding techniques [Aga00, SS00,
KM06] are used to ensure that the timing behavior of a program is independent of se-
crets. Naturally, a stronger attacker model implies more restrictions on programs. For
example, loops branching on secrets are disallowed in the above approaches. Further,
padding might introduce slow-down and, in the worst case, nontermination.
Another possibility to prevent internal timing leaks in programs is by disallowing any
races on public data, as pursued by Zdancewic and Myers [ZM03] and improved by
Huisman et al. [HWS06]. However, such an approach rejects innocent programs such
as l := 0 ‖ l := 1 where l is a public variable.

9 Conclusion
We have presented a transformation that closes internal timing leaks in programs with
dynamic thread creation. In contrast to existing approaches, we have not appealed to
nonstandard semantics (cf. the discussion on protect()) or to modifying the run-time
environment (cf. the discussion on interaction with schedulers). Importantly, the trans-
formation is not overrestrictive: programs are not rejected unless they have symptoms of
flows inherent to sequential programs. The transformation ensures that the rest of inse-
curities (due to internal timing) are repaired. Our target language includes semaphores,
which have not been considered in the context of termination-insensitive security.
Future work includes introducing synchronization and declassification primitives into
the source language and improving the efficiency of the transformation: instead of dy-
namically spawning dedicated threads, one could refactor the program into high and
low parts and explicitly communicate low data to the high part, when needed (and high
data to the low part, when prescribed by declassification).
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Abstract. Li and Zdancewic have recently proposed an approach to provide
information-flow security via a library rather than producing a new language from
the scratch. They show how to implement such a library in Haskell by using arrow
combinators. However, their approach only works with computations that have
no side-effects. In fact, they leave as an open question how their library, and the
mechanisms in it, need to be modified to consider these kind of effects. Another
absent feature in the library is support for multithreaded programs. Information-
flow in multithreaded programs still remains as a challenge, and no support for
that has been implemented yet. In this light, it is not surprising that the two main
stream compilers that provide information-flow security, Jif and FlowCaml, lack
support for multithreading.
Following ideas taken from literature, this paper presents an extension to Li and
Zdancewic’s library that provides information-flow security in presence of ref-
erence manipulation and multithreaded programs. Moreover, an online-shopping
case study has been implemented to evaluate the proposed techniques. The case
study reveals that exploiting concurrency to leak secrets is feasible and danger-
ous in practice. To the best of our knowledge, this is the first implemented tool to
guarantee information-flow security in concurrent programs and the first imple-
mentation of a case study that involves concurrency and information-flow poli-
cies.

1 Introduction

Language-based information flow security aims to guarantee that programs do not leak
confidential data. It is commonly achieved by some form of static analysis which re-
jects programs that would leak, before they are run. Over the years, a great many such
systems have been presented, supporting a wide variety of programming constructs
[SM03]. However, the impact on programming practice has been rather limited.
One possible reason is that most systems are presented in the context of a simple, el-
egant, and minimal language, with a well-defined semantics to make proofs of sound-
ness possible. Yet such systems cannot immediately be adopted by programmers—they
must first be embedded in a real programming language with a real compiler, which
is a major task in its own right. Only two such languages have been developed—Jif
[Mye99, MZZ+06] (based on Java) and FlowCaml [PS02, Sim03] (based on Caml).
Yet when a system implementor chooses a programming language, information flow
security is only one factor among many. While Jif or FlowCaml might offer the desired
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security guarantees, they may be unsuitable for other reasons, and thus not adopted. This
motivated Li and Zdancewic to propose an alternative approach, whereby information
flow security is provided via a library in an existing programming language [LZ06].
Constructing such a library is a much simpler task than designing and implementing a
new programming language, and moreover leaves system implementors free to choose
any language for which such a library exists.
Li and Zdancewic showed how to construct such a library for the functional program-
ming language Haskell. The library provides an abstract type of secure programs, which
are composed from underlying Haskell functions using operators that impose informa-
tion-flow constraints. Secure programs are certified, by checking that all constraints are
satisfied, before the underlying functions are invoked—thus guaranteeing that no secret
information leaks. While secure programs are a little more awkward to write than or-
dinary Haskell functions, Li and Zdancewic argue that typically only a small part of a
system need manipulate secret data—for example, an authentication module—and only
this part need be programmed using their library.
However, Li and Zdancewic’s library does impose quite severe restrictions on what a
secure program fragment may do. In particular, these fragments may have no effects of
any sort, since the library only tracks information flow through the inputs and outputs
of each fragment. While absence of side-effects can be guaranteed in Haskell (via the
type system), this is still a strong restriction. Our purpose in this paper is to show that
the same idea can be applied to support secure programs with a much richer set of
effects—namely updateable references in the presence of (cooperative) concurrency.
The underlying methods we use—an information-flow type-system for references, a
restriction on the scheduler—are taken from the literature; what we show here is how
to implement them for a real programming language following Li and Zdancewic’s
approach.
The rest of this paper is structured as follows. In the next section we explain Li and
Zdancewic’s approach in more detail. One restriction of their approach is that data-
structures are assigned a single security level—so if any part of the output of a secure
program is secret, then the entire output must be classified as secret. We need to lift
this restriction in our work, allowing data-structures with mixed security levels, and in
Section 3 we show how. This enables us to add references in Section 4. We then intro-
duce concurrency, reviewing approaches to secure information flow in this context in
Section 5, in particular ways to close the internal timing covert channel, and in Section
6 we describe the implementation of our chosen approach. In Section 7 we present a
concurrent case study involving online shopping. With no countermeasures, an attack
based on internal timing leaks can obtain a credit-card number with high probability in
about two minutes. We show that our library successfully defends against this attack.
Finally, in Section 8, we draw our conclusions.

2 Encoding information-flow in Haskell

Li and Zdancewic’s approach represents secure program fragments as arrows in Haskell
[Hug00]. Arrows can be visualised as dataflow networks, mapping inputs on the left to
outputs on the right. Arrows are constructed from Haskell functions using combinators,



A Library for Secure Multithreaded Information-Flow in Haskell 147

f f g
pure f f >>> g

g

f
(b,d)(a,c)

a b

c d

f***g

Fig. 1. Basic arrow combinators.

of which the most important are illustrated in Figure 1—pure converts a Haskell func-
tion to an arrow, (>>>) sequences two arrows, and (***) pairs arrows together. Any
required left-to-right static dataflow can be implemented using these combinators—for
example, an arrow that computes the average of a list could be constructed as

squareA = pure tee >>>
(pure sum *** pure length) >>>
pure divide

where tee x = (x,x)
divide (x,y) = x/y

Its effect is illustrated in Figure 2. To express a dynamic choice between two arrows,
there is an additional combinator f|||g, whose input is of Haskell’s sum type:

data Either a b = Left a | Right b

Its effect is illustrated in Figure 3.
Haskell allows any suitable type to be declared to be an arrow, by providing implemen-
tations for the basic arrow combinators. This is usually used to encapsulate some kind
of effects. For example, we might define an arrow for programming with references,
by declaring ArrowRef a b to be the type of arrows from a to b, implementing the
basic combinators, and then providing arrows

createRefA :: ArrowRef a (Ref a)
readRefA :: ArrowRef (Ref a) a
writeRefA :: ArrowRef (Ref a,a) ()

tee

sum

length

divide

Fig. 2. Average of a list.
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f

g

Either a b

a

b c

Fig. 3. Choice between f and g.

to perform the basic operations on references. With these definitions, we can write side-
effecting programs in a dataflow style. For example, an arrow to increment the contents
of a reference could be programmed as

incrRefA :: ArrowRef (Ref Int) ()
incrRefA =

(pure id &&& (readRefA >>> pure (+1)))
>>> writeRefA
where f &&& g = pure tee >>> (f***g)

Li and Zdancewic found another use for arrows: they realised that, since all the data- and
control-flow in an arrow program is expressed using the arrow combinators, then they
could define a type of flow arrows, whose primitive arrow combinators implement the
type checking of an information flow type system. Their type system assigns a security
label drawn from a suitable lattice, such as

data Label = LOW | MEDIUM | HIGH
deriving (Eq, Ord)

to the input and output of each arrow (where the deriving clause declares that
LOW≤MEDIUM≤HIGH). Their arrows themselves are represented by the Haskell type
FlowArrow l arr a b, which is actually an arrow transformer: the type l is the
security lattice, a and b are the input and output types, and arr is an underlying arrow
type such as ArrowRef. Flow arrows contain arrows of type arr a b, together with
flow information about their inputs and outputs.
In the information flow type system, an arrow is assigned a flow type `1 → `2 under a
set of constraints, where `1 and `2 are security labels. The rules for pure and (>>>)
are given in Figure 4. The FlowArrow type represents not only the underlying com-
putation, but also the information flow typing—it is represented as a record

data FlowArrow l arr a b = FA
{ computation :: arr a b,
flow :: Flow l,

` pure f : `→ `

C1 ` f : `1 → `2 C2 ` g : `3 → `4
C1, C2, `2 v `3 ` f>>>g : `1 → `4

Fig. 4. Typing rules for pure and >>>.
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sL ::= ` | (sL, sL) | (either sL sL )`

Fig. 5. Extended security types

constraints :: [Constraint l]
}

data Flow l = Trans l l | Flat
data Constraint l = LEQ l l

Here the flow component represents either `1 → `2 (Trans l1 l2), or the “poly-
morphic” `→ ` for any ` (Flat), which is needed to give an accurate typing for pure.
The constraints field just collects the constraints on the left of the turnstile. With
this representation, it is easy to implement the typing rules in the arrow combinators. Se-
curity labels are introduced and checked by the arrow tag l, with flow Trans l l,
which forces both its input and output to have the given security label.
Note that the information flow types are quite independent of the Haskell types! More-
over, they are not checked during Haskell type-checking. Rather, when a flow arrow
is constructed during program execution, all the necessary constraints are collected
dynamically—but they are checked before the underlying computation is run. Li and
Zdancewic’s library exports FlowArrow as an abstract type, and the only way to ex-
tract the underlying computation is via a certification function which solves the con-
straints first. If any constraint is not satisfied, then the underlying code is rejected.
Li and Zdancewic also considered declassification, which requires adding the user’s
security level as a context to the typing rules, and a new form of constraint—but we
ignore the details here.

3 Refining security types

Li and Zdancewic’s library uses single security labels as security types. As a conse-
quence, values are classified secrets when they contain, partially or totally, some con-
fidential information. For instance, if one component of a pair is secret, the whole pair
becomes confidential. This design decision might be a potential restriction to build some
applications in practice. With this in mind, we extend Li and Zdancewic’s work to in-
clude security types with more than one security label. The presence of several security
labels in security types allows to develop a more precise, and consequently permissive,
analysis of the information flow inside of a program.

3.1 Security types

We assume a given security lattice L where security levels, denoted by `, are ordered by
a partial order≤. Top and bottom elements are written> and⊥, respectively. Security
types are given in Figure 5 and their subtyping relationship in Figure 6. Security type
(sL, sL) provides security annotations for pair types. Security type (either sL sL )`

provides annotations for type Either. Security type ` decorates any other Haskell
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`1 ≤ `2
`1 v `2

sL1 v sL3 sL2 v sL4
(sL1 , s

L
2) v (sL3 , s

L
4)

`1 v `2 sL1 v sL3 sL2 v sL4
(either sL1 s

L
2)`1 v (either sL3 s

L
4)`2

Fig. 6. Subtyping relationship

type (e.g. Int, Float, [a], etc.). Security types are represented in our library as
follows:

data SecType l
= SecLabel l
| SecPair (SecType l) (SecType l)
| SecEither (SecType l) (SecType l) l

where l implements a lattice of security levels.

3.2 Defining FlowArrowRef

The abstract data type FlowArrowRefdefines our embedded language by implementing
an arrow interface:

data FlowArrowRef l a b c = FARef
{ computation :: a b c
, flow :: Flow (SecType l)
, constraints :: [Constraint (SecType l)] }

This definition is similar to the definition of FlowArrow except for using the type
(SecType l) as type argument for Flow and Constraint. Constructor Flat
needs to be removed from data type Flow as a consequence of dealing with security
types with more than one security label. In FlowArrow, Flat is used to establish that
pure computations have the same input and output security type. Unfortunately, Flat
cannot be used in FlowArrowRef, otherwise secrets might be leaked. For instance,
consider the program pure ( (x,y) -> (y,x) ) that just flips components in
a pair. Assume that x, annotated with security label HIGH, is a secret input and y,
annotated with security label LOW, contains public information. If (HIGH,LOW) is the
input and output security types for that program, the value of x will be immediately
revealed!
Similarly to Li and Zdancewic’s work, FlowArrowRef encodes a typing judgement
to verify information-flow policies. Naturally, our encoding is more complex than that
in FlowArrow. This complexity essentially arises from considering richer security
types. The typing judgment has the form: C ` f : τ1 | sL1 → τ2 | sL2 , where f is a
purely-functional computation, C is a set of constrains that, when satisfied, guarantees
information-flow policies, and τ1 | sL1 → τ2 | sL2 is a flow type, which denotes that
f receives input values of type τ1 with security type sL1 , and produces output values of
type τ2 with security type sL2 . Except for combinator pure, most of the typing rules
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f :: τ1 → τ2

∅ ` pure f : τ1 | sL1 → τ2 | only join(sLl )

Fig. 7. Typing rule for combinator pure

in Li and Zdancewic’s work can be easily rewritten using this typing judgment, and
therefore, we omit them here.

3.3 Security types and combinator pure

Different from Li and Zdancewick’s work, it is not straightforward to determine se-
curity types for computations built with arrow combinators. Basically, the difficulty
comes from deciding the output security type for combinator pure. This combinator
can take any arbitrary Haskell function as its argument. Then, the structure of its out-
put, and consequently its output security type, can be different in every application. For
instance, output security types for pure computations that return numbers and pair of
numbers consist of security labels and pair of security labels, respectively. Moreover,
although the structure of the output security type could be determined, it is also dif-
ficult to establish the security labels appearing in it. To illustrate this point, consider
the computation pure ( \(x,y) -> (x+y, y) ), where inputs x and y have
security labels LOW and HIGH, respectively. It is clear that the output security type for
this example is (HIGH,HIGH). However, in order to determine that, it is necessary to
know how the input is used to build the output. This input-output dependency might be
difficult to track when more complex functions are considered. With this in mind, we
introduce a new security type to sL:

sL ::= ` | (sL, sL) | (either sL sL )` | only `

Security type only ` represents any security type that contains all their security labels
as `. Typing rule for pure is given in Figure 7. Observe the use of the Haskell typing
judgment (written ::) in the hypothesis of the rule. Function join(sL1 ) computes the
join of all the security labels in sLl . Essentially, the typing rule over-approximates the
output security type by using the security labels found in the input security type. By
only having one piece of secret information as input, results of pure computations
are thus confidential regardless what they do or what kind of result they return. As a
consequence, computations that follow combinator pure cannot operate on public data
any more. As an example, consider the program f >>> pure ( \(x,y) -> y +
1) >>> g, where computation g operates on public data and computation f produces
a pair where the first and second components are secret and public values, respectively.
This simple program just adds one to the public output of f and provides that as the
input of g. However, the program is rejected by the encoded type system in our library,
even though no leaks are produced by this code. The reason for this is that program g
receives confidential information from pure while it expects only public inputs. Since
pure is responsible for allowing the use of any Haskell functions in the library, this
restriction seems to be quite severe to implement concrete applications.
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3.4 Combinator lowerA

Combinator lowerA is introduced to mitigate the restriction of not allowing compu-
tations on public data to take some input produced by pure combinators. Basically,
lowerA takes a security label ` and an arrow computation p, and returns a compu-
tation p′. Computation p′ behaves like p and has the same input type, output type, and
input security type as p. However, its output security type might be different. The output
security type is constructed based on the output type of p and it contains only security
labels of value `. In other words, lowerA downgrades the output of p to the security
level `. In principle, this combinator might be also used to leak secrets. An attacker can
just apply (lowerA LOW) to every computation that involves secrets! To avoid this
kind of attacks, lowerA filters out data with security level higher than `.

Input filtering mechanism Filtration of data is done by replacing some pieces of
information with undefined 1. This idea is implemented by the member function
removeData of the type-class FilterData. The signature of the type-class is the
following:

class (Lattice l) => FilterData l t where
removeData :: l -> t -> (SecType l) -> t

Method removeData receives a security level l, a value of type t, and a security
type (SecType l), and produces another value of type t where the information with
security label higher than l is replaced by undefined. As an example, instantiations
for integers and pairs are given in Figure 8. Observe how the use of type-classes allows
to define different filtering policies for different kind of data. This is particularly useful
when references are introduced in the language (see Section 4.6).
The introduction of undefined values might also introduce leaks due to termination. For
instance, if filtered values are used inside of computations that branches on secrets, then
the program might terminate (or not) depending on which branch is executed. However,
these kind of leaks only reveal one bit of information about confidential data. In some
scenarios, leaking one bit due to termination is acceptable and termination-insensitive
security conditions are adopted for those cases. In fact, our library is particularly suit-
able to guarantee termination-insensitive security specifications.

Building output security types Besides introducing a filtering mechanism, lowerA
constructs output security types where security labels are all the same. We define the
following type-class:

class (Lattice l) => BuildSecType l t where
buildSecType :: l -> t -> (SecType l)

Method buildSecType receives a security label l and a value of type t, and produces
a security type for t where security labels are l. For instance, it produces security type
(l,l) for pair of integers. Instantiations for pairs and integers are given in Figure 9.

1 This is an undefined value in Haskell and it is member of every type.
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instance (Lattice l)
=> FilterData l Int where

removeData l x (SecLabel l’) =
if label_leq l’ l then x
else undefined

instance (Lattice l, FilterData l a,
FilterData l b)
=> FilterData l (a,b) where
removeData l (x, y) (SecPair lx ly) =

(removeData l x lx, removeData l y ly)

Fig. 8. Instantiations for FilterData

instance (Lattice l) =>
BuildSecType l Int where
buildSecType l _ = (SecLabel l)

instance
(Lattice l, BuildSecType l a, BuildSecType l b)
=> BuildSecType l (a,b) where

buildSecType l _ =
(SecPair (buildSecType l (undefined::a))

(buildSecType l (undefined::b)))

Fig. 9. Instantiations for BuildSecType

Observe that the value of the second argument of buildSecType is not needed, but
its type. Type-classes provide a mechanism to access information about types in Haskell
and take different actions, like building different security types, depending on them.
When lowerA receives a computation as an argument, it needs to know its output type
in order to properly apply buildSecType. For that purpose, we introduce another
type-class:

class (Lattice l, Arrow a)
=> TakeOutputType l a b c where

deriveSecType :: l -> (a b c) -> (SecType l)

Method deriveSecType receives a security label l, an arrow computation (a b
c), and returns the corresponding security type (SecType l) for the output type c.
The instantiation of this type-class is shown in Figure 10.
To put it briefly, combinator lowerA creates a new computation that behaves as the
computation received as argument, but calling the described methods removeData

and buildSecType in due course. The type signature for lowerA is given in Figure
11. Typing rule for lowerA is shown in Figure 12. Observe how the output security
type is changed. Function ρ is defined in Figure 13 and implemented by the method
buildSecType. As a simple example of the use of lowerA, we rewrite the example
in Section 3.3 as follows: f >>> lowerA LOW (pure (\(x,y) -> y + 1))
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instance
(Lattice l, BuildSecType l c, Arrow a)
=> TakeOutputType l a b c where
deriveSecType l ar =

buildSecType l (undefined::c)

Fig. 10. Instantiation for TakeOutputType

lowerA :: ( Lattice l, Arrow a,
FilterData l b, BuildSecType l c,
TakeOutputType l (FlowArrowRef l a) b c )

=> l -> FlowArrowRef l a b c -> FlowArrowRef l a b c

Fig. 11. Type signature for lowerA

>>> g. Observe that the value received by program g is not confidential anymore, and
consequently, the program passes the type-checking tests in our library. In this exam-
ple, the filtering mechanism of lowerA does not introduce leaks due to termination. In
general, the possibilities to exploit undefined values introduced by some computation
like lowerA LOW p are related to the security of p. If p only produces LOW values,
no leaks due to termination are introduced. Otherwise, if p presents, for instance, some
flows from secret data to its output, a one-bit leak due to termination might happen as a
price to pay for not being able to predict the input-output dependency of p and avoiding
leaking the whole secret.
One alternative implementation to the input filter mechanism in lowerA ` p could have
been to reject computation p if it takes some input with security label higher than `. Un-
fortunately, this idea might not work properly when programs take input from external
modules or components, which frequently provide data with different security levels
to arrow computations. Consequently, the pattern lowerA ` (pure f) is particularly
useful to get any values at security levels below ` regardless the security input type of
pure f .

4 Adding references

Dealing with information-flow security in languages with reference manipulation is
not a novelty. Unsurprisingly, Jif and FlowCaml include them as a language feature.
Nevertheless, it is stated as an open question how Li and Zdancewic’s library needs
to be modified to consider side-effects. In particular, what arrows could be used to
handle them and how their encoded type system needs to be modified. We have already
started answering these question with the modification of pure and the introduction of
lowerA in Section 3. We will complete answering Li and Zdancewic’s questions by
showing how to extend their library to introduce references. The developed techniques
in this section can be considered for other kind of side-effects as well.
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C ` f : τ1 | sL1 → τ2 | sL2
C ` lowerA ` f : τ1 | sL1 → τ2 | ρ(`, τ2)

Fig. 12. Typing rule for lowerA

ρ(int, `) → `

ρ(τ, `) → sL1

ρ(τ ref , `) → sL1 ref `

ρ(τ1, `) → sL1 ρ(τ2, `) → sL2

ρ((τ1, τ2), `) → (sL1 , s
L
2)

ρ(τ1, `) → sL1 ρ(τ2, `) → sL2

ρ(either τ1 τ2, `) → (either sL1 s
L
2)`

Fig. 13. Definition for Function ρ

4.1 Security types for references

The treatment of references is based on Pottier and Simonet’s work [PS02]. They intro-
duce security types for references containing two parts: a security type and a security
label. The security type provides information about the data that is referred to, while
the security label gives a security level to the reference itself as a value. Following the
same approach, we extend our security types as follows:

sL ::= ` | (sL, sL) | (either sL sL )` | only ` | sL ref `

Observe that security types for references (sL ref `) are composed of two parts as men-
tioned before. The subtyping relationship is also extended as follows:

sL1 = sL2 `1 v `2
sL1 ref `1 v sL2 ref `2

(1)

In order to avoid aliasing problems[NNH99], this rule imposes an invariant in the sub-
typing relationship by requiring sL1 to be the same as sL2 . Clearly, this invariant needs to
be preserved by the arrow combinators in the library. However, lowerA could break
that invariant! Remember that it changes every security label in the output security type
of a given computation. As a consequence, we need to modify its implementation (see
Section 4.2).
Data type SecType is extended as follows:

data SecType l
= SecLabel l
| SecPair (SecType l) (SecType l)
| SecEither (SecType l) (SecType l) l
| SecRef (SecType l) l

where SecRef (SecType l) l represents security types for references.
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4.2 References and combinator lowerA

Combinator lowerA could break the subtyping invariant for references described in
(1). As a result, aliasing problems, and therefore leakage of secrets, might be intro-
duced. The root of this problem comes from the fact that lowerA only uses output
types to determine output security types. To illustrate this problem, consider a program
that has two public references, r1 and r2, with security type (SecRef (SecLabel
LOW) LOW). Assume that both references refer to the same value. If r1, for instance,
is fed into the computation lowerA HIGH (pure id), the output produced, which
is obviously r1, will have security type (SecRef (SecLabel HIGH) HIGH).
Observe that the security type for the content of the reference has changed. After do-
ing that, leaks can occur by writing secrets using r1 and reading them out by using
r2. Naturally, lowerA could also examine input security types, but unfortunately this
is not enough. Once again, the difficulty to track input-output dependencies of pure
computations (see Section 3.3) makes it difficult to determine, for instance, which ref-
erence from the input correspond to which reference in the output. Consequently, it is
also difficult to determine security types for references in the output based on the input
security types. To overcome this problem, we use a mechanism that can transport secu-
rity information about contents of references from the input to the output of an arrow
computation. In this way, lowerA can read this information and place the correspond-
ing security types references when needed, and thus keep the subtyping invariant. This
mechanism relies on the use of singleton types, which are the topic of the next section.

4.3 Preserving subtyping invariants

On one side, combinator lowerA builds output security types based on the output type
of computations. On the other hand, security types for the content of references must
never be changed. So, why not encoding in the Haskell type system the security type
for the content of references? Hence, lowerA can take the encoded information and
precisely determines the corresponding security type for the content of each reference.
Singleton types [Pie04] are adequate to represent specific values at the level of types.
Essentially, they allow to have a match between values and types and vice versa. Our
goal is, therefore, to encode values of type (SecType l) in more fine-grained Haskell
types. For instance, the encoding for values of type (SecType Label) can be done
as follows:

data SLow = VLow
data SMedium = VMedium
data SHigh = VHigh

data SSecLabel lb = VSecLabel lb
data SSecPair st1 st2 = VSecPair st1 st2
data SSecEither st1 st2 lb= VSecEither st1 st2 lb
data SSecRef st lb = VSecRef st lb

Observe how one type has been introduced for each constructor appearing in Label
and SecType. With this encoding, we can now represent security types in the Haskell
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type system. As an example, security type (SecRef (SecLabel HIGH) LOW)
can be encoded using the value (VSecRef (VSecLabel VHigh) VLow) of type
(SSecRef (SSecLabel SHigh) SLow).
As mentioned before, lowerA should use the encoded information to place the corre-
sponding security types for content of references. In order to achieve that, we need a
mapping from singleton types to values of type (SecType l). The following code
implements that:

class STLabel lb l where
toLabel :: lb -> l

instance STLabel SLow Label where
toLabel _ = LOW

instance STLabel SMedium Label where
toLabel _ = MEDIUM

instance STLabel SHigh Label where
toLabel _ = HIGH

class STSecType st l where
toSecType :: st -> SecType l

instance STLabel lb l
=> STSecType (SSecLabel lb) l where
toSecType _
= SecLabel (toLabel (undefined::lb))

instance (STSecType st l, STLabel lb l)
=> STSecType (SSecRef st lb) l where
toSecType _
= SecRef (toSecType (undefined::st))

(toLabel (undefined::lb))
instance (STSecType st1 l, STSecType st2 l)

=> STSecType (SSecPair st1 st2) l where
toSecType _
= SecPair (toSecType (undefined::st1))

(toSecType (undefined::st2))
instance (STSecType st1 l,

STSecType st2 l, STLabel lb l)
=> STSecType (SSecEither st1 st2 lb) l where
toSecType _
= SecEither (toSecType (undefined::st1))

(toSecType (undefined::st2))
(toLabel (undefined::lb))

Functions toLabel and toSecType return security labels and security types based
on singleton types, respectively.
Having our encoding ready, we introduce references as values of the data type: data
Ref st a = Ref st (IORef a), where (IORef a) is the type for references
in Haskell and st is a singleton type encoding the security type for its content. At this
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point, we are in conditions to extend the function buildSecType, used by lowerA,
to build output security types:

instance (Lattice l, STSecType st l)
=> BuildSecType SecType l (SRef st a) where

buildSecType l _
= (SecRef (toSecType (undefined::st)) l)

Observe how buildSecType calls toSecType to build the security type for the
content of the reference by passing an undefined value of singleton type st. The sub-
typing invariant is now preserved by lowerA. In fact, this technique can be used to
preserve any subtyping invariant required in the library.

4.4 Reference manipulation

Li and Zdancewic’s library uses the underlying arrow (->) to perform computations.
However, we need to modify that in order to include side-effects produced by refer-
ences. The following data type defines the underlying arrow used in our library: data
ArrowRef a b = a -> IO b. Underlying computations can therefore take an ar-
gument of type a and return a value of type (IO b), which probably produces some
side-effects related to references.
Three primitives are provided to create, read, and write references: createRefA,
readRefA, and writeRefA. Basically, these functions lift the traditional Haskell op-
erations to manipulate references into FlowArrowRef, but performing some checking
related to information-flow security (see Section 4.5). However, from a programmer’s
point of view, they look similar to any primitives that deal with references. For instance,
createRefA has the following signature:

createRefA :: (Lattice l, STSecType st l, BuildSecType l a)
=> st -> l -> FlowArrowRef l ArrowRef a (Ref st a)

where singleton type st encodes the security type for the content of the reference,
and l is the security level of the reference as a value. Observe that ArrowRef is
used for the underlying computation. As an example, (createRefA (VSecLabel
VHigh) LOW) returns a computation that creates a public reference to a secret value
received as argument. This is the only primitive where programmers must use single-
ton types and where the library exploits the correspondence between values and types.
Because of that, it could be possible to remove the argument st from createRefA
to make its type signature simpler. However, by doing that, programmers would need
to explicitly specify the type for every occurrences of createRefA with their corre-
sponding (STSecType st l) and (Ref st a).

4.5 Typing rules for reference primitives

Pottier and Simonet present a type-based information flow analysis for CoreML pro-
vided with references, exceptions and let-polymorphism [PS02]. Particularly, their type
system is constraint-based and uses effects to deal with references. We restate some
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e(`) → `

e(sL1) → `1 e(sL2) → `2

e((sL1 , s
L
2)) → `1 t `2

e((either sL1 s
L
2)`) → ` e(only `) → `

e(sL ref `) → `

Fig. 14. Definition for Function e

(PURE )
f : τ1 → τ2

>, ∅ ` pure f : τ1 | sL1 → τ2 | only `

(SEQ)
pc1, C1,` f1 : τ1 | sL1 → τ2 | sL2 pc2, C2 ` f2 : τ2 | sL3 → τ4 | sL4
pc1 u pc2, C1 ∪ C2 ∪ {sL2 v sL3} ` f1 >>> f2 : τ1 | sL1 → τ4 | sL4

(CHOICE )
pc1, C1 ` f1 : τ1 | sL1 → τ2 | sL2 pc2, C2,` f2 : τ3 | sL3 → τ2 | sL4

pc1 u pc2, C1 ∪ C2 ∪ C3 ` f1 ||| f2 : flow

flow = either τ1 τ3 | (either sL1 s
L
3)` → τ2 | ↑ (sL2 t sL4 , `)

C3 = {(eithersL1 s
L
3)` � (pc1 u pc2), (either sL1 s

L
3)` � e(↑ (sL2 t sL4 , `))}

Fig. 15. Typing rules for pure, sequential composition, and choice combinators

of their ideas in the framework of our library. More precisely, we adapt our encoded
type-checker to include effects and consequently involve references.
We enhance the typing judgement introduced in Section 3.2 as follows: pc , C ` f : τ1 |
sL1 → τ2 | sL2 , where the new parameter, pc, is a lower bound on the security level
of the memory cell that is written. In Figure 15, we show how typing rules for pure,
sequential, and branching computations are rewritten using this new parameter. Typ-
ing rules for other combinators are adapted similarly. Rule (PURE) produces no side-
effects and therefore it imposes no lower bounds in pc. Rule (SEQ) takes the meet of
the lower bounds for side-effects as the new pc. Rule (CHOICE) essentially requires
that the branching computation does not produce side-effects or results that are below
the guard of the branch, which has type either τ1 τ3. These requirements are enforced
by (eithersL1 s

L
3 )`� (pc1u pc2) and (either sL1 s

L
3)`� e(↑ (sL2 t sL4 , `)), respectively.

As defined in Simonet and Pottier’s work, constraint sL�` imposes ` as an upper bound
for every security label in sL. Function e determines the security level of a given value
(see Figure 14). Operator ↑ lifts security labels that are below certain security level, but
not violating subtyping invariants (see Figure 16).
Typing rules for references are introduced in Figure 17. Singleton type sL encodes
the security type sL and is generated by the value (sL)v . Rule (CREATE) requires
that the singleton type passed as argument matches the input security type. Otherwise,
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`1 v `2
↑ `1 `2 → `2

`2 < `1
↑ `1 `2 → `1

`1 v `2
↑ (sL ref `1) `2 → sL ref `2

`2 < `1

↑ (sL ref `1) `2 → sL ref `1

↑ sL1 ` → sL3 ↑ sL2 ` → sL4

↑ (sL1 , s
L
2) ` → (sL3 , s

L
4)

`1 v `2 ↑ sL1 `2 → sL3 ↑ sL2 `2 → sL4

↑ (either sL1 s
L
2)`1 `2 → (either sL3 s

L
4)`2

`2 < `1 ↑ sL1 `2 → sL3 ↑ sL2 `2 → sL4

↑ (either sL1 s
L
2)`1 `2 → (either sL3 s

L
4)`1

`1 v `2
↑ (only `1) `2 → only `2

`2 < `1
↑ (only `1) `2 → only `1

Fig. 16. Definition for Function ↑

(CREATE)
e(sL1), ∅ ` createRefA (sL1)v ` : τ | sL1 → τ ref | sL1 ref `

(READ)
>, ∅ ` readRefA : τ ref | sL1 ref ` → τ | ↑ (sL1 , `)

(WRITE)
e(sL), {`� sL} ` writeRefA : (τ ref, τ ) | (sL ref `, sL) → () | ⊥

Fig. 17. Typing rules for reference primitives

programmers could introduce inconsistencies in the type-checking process. The side-
effect produced by creation of references is allocation of memory. Therefore, the pc
is related with the security level of the content of the created reference (e(sL1)). Rule
(READ) lifts security labels in the output security type considering the security level
of the reference (↑ (sL1 , `)). Rule (WRITE) imposes the constraint ` � sL. Similarly
to Simonet and Pottier’s work, constraint ` � sL requires sL to have security level ` or
greater, and is used to record a potential information flow.

We modify the implementation of the type-system in our library to include effects.
Consequently, data type FlowArrowRef is extended with a new field called pc to
represent lower bounds for side-effects as explained above. Data type Constraint is
also extended to involve operators� and�. Moreover, we add unification mechanisms
inside of arrow combinators to pass information about security types when needed. As
a consequence, a few security annotations need to be provided by programmers. Li
and Zdancewic’s library does not need this feature since their security types are very
simple. One of the interesting aspect of implementing unification inside of arrows is
the generation of fresh names. Our library generates fresh names by applying renaming
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functions when arrow combinators are applied, but we omit the details here due to lack
of space.

4.6 Filtering references

References introduce the possibility of having shared resources in programs. In Section
3.4, the filtering mechanism replaces some pieces of information with undefined.
Nevertheless, it is not recommended to replace the content of some reference with
undefined since it might be used by other parts (or threads) in the program. We
still need to restrict the access to that content somehow. In order to do that, we intro-
duce projection functions for each reference handled by the library. Projection func-
tions are basically functions that return values less informative than their arguments.
The concept of projection functions has been indirectly used in semantic models for
information-flow security [Hun91, SS99]. The instance for references of the method
removeData creates projection functions that, when applied to the contents of their
associated references, return values where some information higher than some secu-
rity level is replaced by undefined. However, the content of the reference itself is
not modified. Observe that the filtering principle applied by projection functions and
removeData is the same. Combinator readRefA is also modified to return the con-
tent of the reference by firstly passing it through its corresponding projection function.
Due to lack of space, we omit the implementation of these ideas here.

5 Information-flow in a concurrent setting

Concurrency introduces new covert channels, or unintended ways, to leak secret infor-
mation to an attacker. As a consequence, the traditional techniques to enforce informa-
tion flow policies in sequential programs are not sufficient for multithreaded languages
[SV98]. One particularly dangerous covert channel is called internal timing. It allows
to leak information when secrets affect the timing behavior of a thread, which via the
scheduler, affects the order in which public computations occur. Consider the following
two imperative programs running in two different threads:

t1 : (if h > 0 then skip(120) else skip(1)); l := 1

t2 : skip(60); l := 0 (2)

Variables h and l store secret and public information, respectively. Assume skip(n)
executes n consecutive skip commands. Notice that both t1 and t2 are secure in isolation
under the notion of noninterference [SM03]. However, by running them in parallel, it
is possible to leak information about h. To illustrate that, we assume an scheduler with
time slice of 80 steps that always starts by running t1. On one hand, if h > 0, t1 will
run for 80 steps, and while being running skip(120), t2 is scheduled and run until
completion. Then, the control is given again to t1, which completes its execution. The
final value of l is 1. On the other hand, if h ≤ 0, t1 finishes first its execution. After
that, t2 is scheduled and run until completion. In this case, the final value of l is 0.
An attacker can, therefore, deduce if h > 0 (or not) by observing the final value of l.
Different from the external timing covert channel, the attacker does not need to observe
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the actual execution time of a program in order to deduce some secret information.
Moreover, internal timing leaks can also be magnified via loops, where each iteration
of the loop can leak one bit of the secret. Hence, entire secret values can be leaked.
There are several existing approaches to tackling internal timing flows. Several works
by Volpano and Smith [SV98, VS99, Smi01, Smi03] propose a special primitive called
protect. By definition, protect(c) takes one atomic step in the semantics with the
effect of executing c to the end. Internal timing leaks are removed if every computa-
tion that branches on secrets is wrapped by protect() commands. However, imple-
menting protect imposes a major challenge [SS00, Sab01, RS06a] (except for co-
operative schedulers [RS06b]). These proposals rely on the modification of the run-
time environment or the assumption of randomized schedulers, which are rarely found
in practice. Russo et al. [RHNS06] propose a transformation to close internal timing
channels that does not require the modification of the run-time environment. The trans-
formation works for programs that run under a wide class of round-robin schedulers
and only rejects those ones that have symptoms of illegal flows inherent from sequen-
tial settings. Boudol and Castellani [BC01, BC02] propose type systems for languages
that do not rely on the protect primitive. However, they reject programs with assign-
ments to low variables after some computation that branches on secrets. Internal tim-
ing problem can also be solved by considering external timing. Definitions related to
external timing involve stronger attackers. As expected, an stronger attacker model im-
poses more restriction on programs. For instance, loops branching on secrets are disal-
lowed. There are several works on that direction [Aga00, SS00, Sab01, SM02, KM06].
Zdancewic and Myers [ZM03] prevent internal timing leaks by disallowing races on
public data. However, their approach rejects innocent secure programs like l := 0 ‖
l := 1 where l is a public variable. Recently, Huisman et al. [HWS06] improved
Zdancewic and Myers’ work by using logic-based characterizations and well known
model checking techniques. Several proposals have been explored in process-calculus
settings [HVY00, FG01, Rya01, HY02, Pot02], but without considering the impact of
scheduling.
The referred works above have neglected to consider implementing case studies where
the proposed enforcement mechanisms are applied. This work presents, to the best of
our knowledge, the first concrete implementation of a case study that consider informa-
tion -flow policies in presence of concurrency.

6 Closing internal timing channels

We incorporate a run-time mechanism to close internal timing covert channels in our
library. We base our approach in a combination of ideas taken from the literature. On
one hand, Russo and Sabelfeld [RS06b] show how to implement protect() for co-
operative schedulers. Essentially, their work states that threads must not yield control
inside of computations that branch on secrets. Russo et al. [RHNS06], on the other
hand, express that a class of round-robin schedulers does not suffer from leaks due to
dynamic thread creation. As a consequence, creation of threads can be allowed at any
point in programs. By mixing these two ideas, we modify the underlying arrow com-
binators in order to implement a cooperative round-robin scheduler and to guarantee
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that computations branching on secrets do not yield control when running. In this way,
internal timing leaks are removed from programs and a flexible treatment for dynamic
thread creation is also obtained. In fact, the introduced modifications are completely
independent to the encoded type system described in Section 3 and 4.
Cooperative schedulers are based on yielding control when programs indicate that. On
the other hand, programs are written using arrow combinators, which can be seen as
a kind of building blocks. In our library, simple arrow combinators yield control after
finishing their execution if they are not part of computations that branch on secrets.
Example of such combinators are pure, createRef, readRef, and writeRef.
Computations branching on secrets do not yield control regardless how many build-
ing blocks compose them. As result, simple arrow combinators and computations that
branch on secrets are atomic computational units involved in interleavings. The round-
robin scheduler is obtained by yielding control in a particular way.
Concurrency is introduced in our implementation by importing the Haskell module
Control.Concurrent [SPJF96, The] . This module provides dynamic thread cre-
ation and pre-emptive concurrency. Since threads can be scheduled anytime, some syn-
chronization is needed to restrict their execution as round-robin. Software transactional
memory(STM) [HHMJ05] provides easy-to-reason and simple primitives to do that.
We could have chosen more standard primitives like semaphores or MVar [SPJF96].
However, the obtained code would have been more complicated.
We start introducing information concerning scheduling upon the underlying arrow
ArrowRef:

data RRobin a = RRobin
{ data :: a, iD :: ThreadId,
queue :: TVar [ThreadId], blocks :: Int }

data ArrowRef a b
= AR ((RRobin a) -> IO (RRobin b))

Data type (RRobin a) stores information related to scheduling in the input and out-
put values of arrows. Field data stores the input data for the arrow. Field iD stores the
thread identification number where the arrow computation is executed. Field queue
stores a round-robin list of threads identifiers and its access is protected by a mutex
(TVar [ThreadId]). The list is updated when creation or termination of threads
occur. Field blocks indicates if the thread executing the arrow computation must wait
for its turn to run and then, when finishing, yields the control to another thread. This
field plays an essential rôle to guarantee atomic execution of computations that branch
on secrets.
We introduce two new combinators in the underlying arrow: waitForYield and
yieldControl. Essentially, these combinators are responsible for implementing a
round-robin scheduler. Combinator waitForYield blocks until the content of the
head of the round-robin queue (TVar [ThreadId]) is the same as the thread identi-
fication (iD) running this combinator. Combinator yieldControl removes the head
of the round-robin queue and put it as the last element. Both combinators have no com-
putational effects if the field blocks is different from zero. The implementation of
these combinators is shown in Figure 18. Function atomically guarantees mutual
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waitTurn :: RRobin a -> IO ()
waitTurn sch = if (blocks sch) > 0 then return ()

else atomically (
do q <- readTVar (queue sch)

if head q /= (iD sch)
then retry
else return ())

waitForYield :: ArrowRef a a
waitForYield = AR (\sch -> do waitTurn sch

return sch)

nextTurn :: RRobin a -> IO ()
nextTurn sch

= if (blocks sch) > 0 then return ()
else atomically (

do q <- readTVar (queue sch)
writeTVar (queue sch)

((tail q)++[head q])
return () )

yieldControl :: ArrowRef a a
yieldControl = AR (\sch -> do nextTurn sch

return sch)

Fig. 18. Primitives for yielding control

exclusion access to the round-robin queue. Function retry blocks the thread until
queue changes its value. When this happens, it resumes its execution from the first
command wrapped by atomically. It is important to remark that combinators in the
underlying arrow are not accessible for users of the library.
Simple arrow combinators include now waitForYield and yieldControl before
and after finishing their computations, respectively. Nevertheless, combinators related
with branches are threaded differently. Computations that branch on secrets must not
yield control until finishing their execution. Branching combinators, like (|||), can be
applied to arrow computations that involve yieldControl in their bodies. As a con-
sequence, when the guard of the branch involves some secrets, these combinators must
no yield control to other threads. We introduce two more combinators to the underlying
arrow: beginAtomic and endAtomic. When placed like beginAtomic >>> f
>>> endAtomic, they leave without any effect the combinators waitForYield
and yieldControl appearing in f. Therefore, program f executes until completion
without yielding control to other threads. We then modify the implementation of com-
binators related with branchings in order to include beginAtomic and endAtomic
when the condition of the branch depends on secrets. We show the Implementation de-
tails of beginAtomic and endAtomic in Figure 19. Observe that beginAtomic
and endAtomic count how many computations branching on secret are nested. Com-
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beginAtomic :: ArrowRef a a
beginAtomic

= waitForYield >>>
AR (\sch -> return sch {blocks =

((blocks sch)+1)} )

endAtomic :: ArrowRef a a
endAtomic

= AR (\sch -> return sch {blocks =
((blocks sch)-1)})

>>> yieldControl

Fig. 19. Primitives for atomicity

pc, C ` f : τ1 | sL1 → τ2 | sL2
pc, C ` forkRef f : τ1 | sL1 → () | ⊥

Fig. 20. Typing rule for forkRef

binators waitForYield, yieldControl, beginAtomic and endAtomic need
to be pairwise to properly work.
Dynamic thread creation is introduced by the new arrow combinator forkRef. It takes
a computation as argument and spawns it in a new thread with an exception handler. If
the new thread raises an exception, the handler forces all the program to finish, reducing
the bandwidth of leakings due to no termination. The typing rule for forkRef is shown
in Figure 20. Observe that the returned value of f is discarded since f will be run in
another thread.

7 Case study: online shopping

In order to evaluate the flexibility of the arrow combinators and techniques proposed
in Sections 3, 4, and 6, we implemented a case study of an online shopping server.
Basically, the server processes transactions related to buying products. It receives in-
formation from the network and spawn different threads to perform purchases for each
client. For simplicity, we assume that there is only one product to buy and that the
only information provided by clients are their names, billing addresses, and credit card
numbers composed of 16 digits. We also assume that there are security levels HIGH
and LOW for secret and public information, respectively. Our library guarantees, in this
example, that the confidentiality of credit card numbers is preserved.
The server program consists of three components: protectData, purchase, and
showPurchase. Component protectData receives information from clients and
determines that credit card numbers are the only secrets in the system. The imple-
mentation of protectData is just a few lines that apply combinator tag to its in-
put. We consider this component as part of the trusted computing based. Component
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Secret: 100011100001101111001001101111110000001111111111111111

Run Leaked credit card number Seconds

1 101011111001111111111011101111110000011111111111111111 27
2 110011100001101111011101101111010000001111111111111111 27
3 101011100001101111101001101111110000001111111111111111 28
4 100011100101101111001001101111110000001111111111111011 28
5 100011100001101111001001101111110100001111111111111111 29

Inferred Secret: 100011100001101111001001101111110000001111111111111111

Fig. 21. Results produced by the malicious code

purchase simulates buying products. Moreover, it copies the client credit card num-
ber and the rest of his/her information into two different databases, respectively. We
simulate the access to these databases with references to different lists of data. Compo-
nent showPurchase retrieves information from the database with public information
and shows it on the screen (a public channel).
The online shopping server can be modified to execute malicious code that exploits
the internal timing covert channel. An attack similar to (2) can be implemented if no
countermeasures are taken. However, such an attack only reveals one bit of the secret. In
order for the attacker to obtain complete credit card numbers, it is necessary to magnify
the attack by introducing a loop. Each iteration of the loop leaks one bit of the secret.
The implementation of this attack reveals a credit card number in about two minutes
2. Notoriously, it was quite straightforward to leak the sixteen digits of a credit card
number even though we have no information about the run-time environment. This
shows how feasible and dangerous are internal timing leaks in practice.
Our malicious code concatenates credit card numbers after the billing addresses of
clients. Thus, credit card numbers can be displayed on the screen by just invoking
showPurchase. To illustrate that, we consider a client with the credit card num-
ber 9999999999999999. We run the attack several times obtaining different leaked
credit card numbers (see Figure 21). These numbers differ in at most three bits from the
binary representation of the secret. This imprecision comes from the lack of knowledge
about the run-time environment, in particular, the lack of knowledge about scheduler
policies. Scheduler policies are important for an internal timing attack to succeed. Nev-
ertheless, by repeatedly running the attack and taking the most frequent boolean values
in each position, it is possible to obtain the value of the secret with very high confidence.
Observe that the secret and the inferred secret are the same in Figure 21.
We repeatedly run the malicious code mentioned above but with the countermeasures
described in Section 6. In this opportunity, the leaked credit card number was always
0. In other words, the attack did not succeed. There is an obvious overhead introduced
by restricting the scheduler in the run-time environment to behave like a round-robin

2 Every experiment was run on a laptop Pentium M 1.5 GHz and 512 MB RAM.
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one. However, this is acceptable since only small parts of a system need to manipulate
secrets and therefore be written using our library.

8 Conclusions

We have presented an extension to Li and Zdancewic’s library to consider secure pro-
grams with reference manipulation and concurrency. On one hand, introducing refer-
ences requires to handle more richer security types than those in Li and Zdancewic’s
work. As consequence, a more precise analysis for information-flow security is needed.
In order to obtain that, we combine several ideas from the literature in our implementa-
tion: singleton types, type-classes in Haskell, and projection functions. On the other
hand, supporting concurrency requires to deal with internal-timing attacks. The ex-
tension includes a mechanism to close internal-timing covert channels and provides
a flexible treatment for dynamic thread creation. Therefore, it is not necessary to mod-
ify the run-time environment to obtain secure programs. These achievements are re-
sult of taking several ideas from the literature: round-robin cooperative schedulers and
software transactional memories. Similarly to Li and Zdancewic’s work, the technical
development in this paper is informal, although we have implemented it in Haskell.
The type system encoded in FlowArrowRef can be mainly justified by following
standard techniques to prove non-interference properties [VSI96, PS02]. A case study
has been also implemented to evaluate the techniques proposed in this work. It reveals
that internal-timing leaks are feasible and dangerous in practice and how our library
properly repairs them. To the best of our knowledge, this is the first tool that supports
information-flow security and concurrency, and the first case study implemented that in-
volves concurrent programs and information-flow policies. The implementation of the
library and the case study is publicly available in [TR].
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Abstract. Protecting confidentiality of data has become increasingly important
for computing systems. Information-flow techniques have been developed over
the years to achieve that purpose, leading to special-purpose languages that guar-
antee information-flow security in programs. However, rather than producing a
new language from scratch, information-flow security can also be provided as a
library. This has been done previously in Haskell using the arrow framework. In
this paper, we show that arrows are not necessary to design such libraries and that
a less general notion, namely monads, is sufficient to achieve the same goals. We
present a monadic library to provide information-flow security for Haskell pro-
grams. The library introduces mechanisms to protect confidentiality of data for
pure computations, that we then easily, and modularly, extend to include dealing
with side-effects. We also present combinators to dynamically enforce different
declassification policies when release of information is required in a controlled
manner. It is possible to enforce policies related to what, by whom, and when
information is released or a combination of them. The well-known concept of
monads together with the light-weight characteristic of our approach makes the
library suitable to build applications where confidentiality of data is an issue.

1 Introduction

Protecting confidentiality of data has become increasingly important for computing sys-
tems. Often, software is so complex that it is hard to see if a program can be abused by a
malicious person to gain access to private data. This is important when developing soft-
ware oneself, and becomes increasingly more important if one is forced to trust other
people’s code.
Information-flow techniques have been developed over the years to achieve this kind
of protection. For example, as a result, two main stream compilers, Jif (based on Java)
and Flowcaml (based on Ocaml) have been developed to guarantee information-flow
security in programs.
However, it is a very heavy-weight solution to introduce a new programming language
for dealing with information-flow. In this work, we explore the possibility of expressing
restrictions on information-flow as a library rather than a new language.
We end up with a light-weight monadic approach to the problem of expressing and en-
suring information-flow in Haskell. Code that exhibits information flows that are disal-
lowed will be ill-typed and rejected by the type checker. Our approach is general enough
to deal with practical concepts such as secure reading and writing to files (which can be
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generalized to capture any information exchange with the outside world) and declassi-
fication (a pragmatic way of allowing controlled information leakage [SS05]).
Our library might be used in scenarios where we want to incorporate in our programs
some code written by outsiders (untrusted programmers) to access our private infor-
mation. Such code can be also allowed to interact with the outside world (for example
by accessing the web). We would like to have a guarantee that the program will not
send our private data to an attacker. A slightly different, but related, scenario is where
we ourselves write the possibly unsafe code, but we want to have the help of the type
checker to find possible security mistakes.
Li and Zdancewic [LZ06] have previously shown how to provide information-flow se-
curity also as a library, but their implementation is based on arrows [Hug00], which nat-
urally requires programmers to be familiar with arrows when writing security-related
code. In this work, we show that arrows are not necessary to design such libraries and
that a less general notion, namely monads, is sufficient to achieve very similar goals.

1.1 Motivating example

Consider a machine running Linux with the default installation of the Shadow Suite
[Jac96] responsible to store and manage users’ passwords. In this machine, the file
/etc/passwd contains information regarding users such as user and group ID’s,
which are used by many system programs. This file must remain world readable. Oth-
erwise, simple commands as ls -l stop working. Passwords are properly set in the
file /etc/shadow, which can only be read and written by root. From now on, we
refer to the passwords stored in this file as shadow passwords. Programs that verify
passwords need to be run as root. From the security point of view, this requirement
implies that very careful programming practices must be followed when creating such
programs. For instance, if a program running as root has a shell escape, it is not desir-
able that such shell escape runs with root privileges. The process to verify a password
usually consists of taking the input provided by the user, applying some cryptographic
algorithms to it, and comparing the result of that with the user’s information stored in
/etc/shadow. Observe that an attacker can encrypt a dictionary of common pass-
words offline and then, given some file /etc/shadow, try to guess users’ passwords
by checking matches. This attack is known as an offline dictionary attack and is one
of the most common methods for gaining or expanding unauthorized access to sys-
tems [NS05]. In order to obtain the content of /etc/shadow, the attacker needs to
obtain root privileges, which is not impossible to achieve [Loc08]. Given these facts,
we can conclude that there are mainly two security problems with shadow passwords:
programs require having root privileges to verify passwords and offline dictionary at-
tacks. We start dealing with these problems by firstly limiting the access to the password
file. With this in mind, we assume that information stored in /etc/shadow is only
accessible through an API. The following Haskell code shows an example of such API.

data Spwd = Spwd { uid :: UID, cypher :: Cypher }

getSpwdName :: Name -> IO (Maybe Spwd)
putSpwd :: Spwd -> IO ()

Data type Spwd stores users’ identification number (uid::UID) and users’ password
(cypher :: Cypher). For a simple presentation, we assume that passwords are stored as
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plain text and not cyphers. Function getSpwdName receives a user name and returns
his (her) password if such user exists. Function putSpwd takes a register of type Spwd
and adds it to the shadow password file. This API is now the only way to have access
to shadow passwords. We can still be more restrictive and require that such API is only
called under root privileges, which is usually the case for Unix-like systems. Unfor-
tunately, this restriction does not help much since attackers could obtain unauthorized
root access and then steal the passwords. However, by applying information-flow tech-
niques to the API and programs that use it, it is possible to guarantee that passwords are
not revealed while making possible to verify them. In other words, offline dictionary
attacks are avoided as well as some requirements as having root privileges to verify
passwords. In Section 3.3, we show a secure version of this API.

1.2 Contributions

We present a light-weight library for information-flow security in Haskell. The library
is monadic, which we argue is easier to use than arrows, which were used in previous
attempts. The library has a pure part, but also deals with side-effects, such as the secure
reading and writing of files. The library also provides novel and powerful means to
specify declassification policies.

1.3 Assumptions

In the rest of the paper, we assume that the programming language we work with is a
controlled version of Haskell, where code is divided up into trusted code, written by
someone we trust, and untrusted code, written by the attacker. There are no restric-
tions on the trusted code. However, the untrusted code has certain restrictions; certain
modules are not available to the untrusted programmer. For example, all modules pro-
viding IO functions, including exceptions (and of course unsafePerformIO) are
not allowed. Our library will reintroduce part of that functionality to the untrusted pro-
grammer in a controlled, and therefore, secure way.

2 Non-interference for pure computations

Non-interference is a well-known security policy that preserves confidentiality of data
[Coh78, GM82]. It states that public outcomes of programs do not depend on their
confidential inputs.
In imperative languages, information leaks arise from the presence of explicit and im-
plicit flows inside of programs [DD77]. Explicit flows are produced when secret data
is placed explicitly into public locations by an assignment. Implicit flows, on the other
hand, use control constructs in the language in order to reveal information. In a pure
functional language, however, this distinction becomes less meaningful, since there are
no assignments nor control constructs. For example, a conditional (if-then-else) is just a
function as any other function in the language. In a pure language, all information-flow
is explicit; information only flows from function arguments to function results.
To illustrate information leaks in pure languages, we proceed assuming that a program-
mer, potentially malicious, needs to write a function
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f :: (Char,Int) -> (Char,Int)

where characters and integers are considered respectively secret and public data. We
assume that attackers can only control public inputs and observe public results when
running programs, and can thus only observe the second component of the pair re-
turned by function f. For simplicity, we also assume that type Char represents ASCII
characters.
If a programmer writes the code

f (c, i) = (chr (ord c + i), i+3)

then the function is non-interferent and preserves the confidentiality of c; the public
output of f is independent of the value of c 1. If a programmer instead writes

f (c, i) = (c, ord c)

then information about c is revealed, and the program is not non-interferent! Attackers
might try to write less noticeable information leaks however. For instance, the code

f (c, i) = (c, if ord c > 31 then 0 else 1)

leaks information about the printability of the character c and therefore should be dis-
allowed as well.
In this section, we show how monads can be used to avoid leaks and enforce the non-
interference property for pure computations.

2.1 The Sec monad

In order to make security information-flow specific, we are going to make a distinction
at the type level between protected data and public data. Protected data only lives inside
a special monad [Wad92]. This security monad makes sure that only the parts of the
code that have the right to do so are able to look at protected data.
In larger programs, it becomes necessary to talk about several security levels or areas.
In this case, values are not merely protected or public, but they can be protected by a
certain security level s.
Take a look at Fig. 1, which shows the API of an abstract type, Sec, which is a functor
and a monad. There are two functions provided on the type Sec; sec is used to protect
a value, and open is used to look at a protected value. However, to look at a protected
value of type Sec s a, one needs to have a value of type s. Restricting access to
values of different such types s by means of the module system allows fine control over
which parts of the program can look at what data. (For this to work, open needs to be
strict in its second argument.)
For example, if we define a security area H in the following way:

data H = H
1 Function chr returns an exception when the received argument does not represent an ASCII

code. By observing occurrences of exceptions or computations that diverge, an attacker can
deduce some information about secrets. However, we only consider programs that terminate
successfully.



A Light-Weight Library for Information-Flow Security in Haskell 177

newtype Sec s a

instance Functor (Sec s)
instance Monad (Sec s)

sec :: a -> Sec s a
open :: Sec s a -> s -> a

Fig. 1. The Sec monad

module Lattice where

data L = L
data H = H

class Less sl sh where
less :: sh -> sl -> ()

instance Less L L where
less = ()

instance Less L H where
less = ()

instance Less H H where
less = ()

Fig. 2. Implementation of a two-point
lattice

then we can model the type of the function f given in the beginning of this section as
follows:

f :: (Sec H Char, Int) -> (Sec H Char, Int)

The first, secure, example of f can be programmed as follows:

f (sc,i) = ((\c -> chr (ord c + i)) ‘fmap‘ sc,i+3)

However, the other two definitions can not be programmed without making use of H or
breaking the type checker.
So, for a part of the program that has no means to create non-bottom values of a type s,
direct access to protected values of type Sec s a is impossible. However, computa-
tions involving protected data are possible as long as the data stays protected. This can
be formalized by stating that type Sec guarantees a non-interference property. For any
type A, and values a1, a2 :: A, a function

f :: Sec H A -> Bool

will produce the same result for arguments a1 and a2. 08 See Appendix 7 for more
details.
We will later show the implementation of the type Sec and its associated functions.

2.2 Security lattice

Valid information flows inside of programs are determined by a lattice on security lev-
els [Den76]. Security levels are associated to data in order to establish its degree of
confidentiality. The ordering relation in the lattice, writtenv, represents allowed flows.
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For instance, l1 v l2 indicates that information at security level l1 can flow into entities
of security level l2.
For simplicity, in this paper, we will only use a two-point lattice with security levels H
and L where L v H and H 6v L. Security levels H and L denote secret (high) and public
(low) information, respectively. The implementation of the lattice is shown in Figure 2.
Type class Less encodes the relationv and security levels are represented as singleton
types [Pie04]. The role of less is explained in Section 4. Public information is charac-
terized by the security level L. Constructor L is then publicly available so that data at
security level L can be observed by anyone, which also includes attackers.
As explained earlier, attackers must have no access to the constructor H. In Section 4,
we describe how to achieve such restriction.
Finally, to capture the fact that valid information flows occur from lower (L) to higher
(H) security levels, we introduce the function

up :: Less sl sh => Sec sl a -> Sec sh a

The function up can be used to turn any protected value into a protected value at a
higher security level. The implementation of up will be shown later.

3 Non-interference and side-effects

The techniques described in Section 2 do not perform computations with side-effects.
The reason for that is that side-effects involving confidential data cannot be executed
when they are created inside of the monad Sec s.
Even if we allowed a restricted and secure form of file reading and writing in the IO-
monad, that would still not be enough. For example, if we, read information from file
A, and depending on the value of a secret, want to write either to a file B or file C, we
would obtain a computation of type IO (Sec H (IO ())). It is easy to see that
these types quickly become unmanagable, and, more importantly, unusable.
In this section, we show how we can augment our security API to be able to deal with
controlled side-effects while still maintaining non-interference properties.
In this paper, we concentrate how to provide an API that allows reading and writing
protected data from and to files. For this to work properly, files need to contain a security
level, so that only data from the right security level can be written to a file. We assume
that the attacker has no way of observing what side-effects were performed, other than
through our API. (The attacker, so to say, sits within the Haskell program and has no
way of getting out2.)
The ideas for reading and writing files can be extended to deal with many other con-
trolled IO operations, such as creating, reading and writing secure references, commu-
nicating over secure channels, etc. We will however not deal with the details of such
operations in this paper.

2 A situation where the attacker is in league with a hacker who has gotten access to our system,
and can for example read log files, is beyond our control and the guarantees of our library.
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3.1 Secure files

We model all interactions with the outside world by operations for reading and writing
files [Tan01]. For that reason, we decide to include secure file operations in our library.
We start by assigning security levels to files in order to indicate the confidentiality of
their contents. More precisely, we introduce the abstract data type File s. Values of
type File s represent names of files whose contents have security level s. These files
are provided by the trusted programmer. We assume that attackers have no access to
the internal representation of File s. In Section 4, we show how to guarantee such
assumption.
A first try for providing secure file operations is to provide the following two functions:

readSecIO :: File s -> IO (Sec s String)
writeSecIO :: File s -> Sec s String -> IO ()

These functions do not destroy non-interference, because they do not open up for extra
information-flow between security levels. The data read from a file with security level
s is itself protected with security level s, and any data of security level s can be written
to a file of security level s.
However, the above functions are not enough to preserve confidentiality of data. Take a
look at the following program:

writeToAFile :: Sec H String -> Sec H (IO ())
writeToAFile secs =

(\s -> if length s < 10
then writeSecIO file1 s
else writeSecIO file2 s) ‘fmap‘ secs

Here, file1, file2 :: File H is assumed to be defined elsewhere.
The behavior of the above function is indeed dependent on the protected data in its argu-
ment, as indicated by the result type. However, only the side-effects of the computation
are dependent on the data, not the result value. Why is this important? Because we as-
sume that the attacker has no way of observing from within the program what these
side-effects are! (Unless the attacker can observe the results of the side-effects, namely
the change of file contents in either file1 or file2, but that information can only be
obtained by someone with the appropriate security clearance anyway.) This assumption
is valid for the scenarios described in Section 1.
In other words, since side-effects cannot be observed from within a program, we are
going to allow the leakage of side-effects. Our assumption is only true if we restrict the
IO actions that the attacker can perform.

3.2 The SecIO monad

To this end, we introduce a new monad, called SecIO. This monad is a variant of the
regular IO monad that keeps track of the security level of all data that was used inside
it.
Take a look at Fig. 3, which shows the API for an abstract type SecIO, which is a
functor and a monad. Values of type SecIO s a represent computations that can
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newtype SecIO s a

instance Functor (SecIO s)
instance Monad (SecIO s)

value :: Sec s a -> SecIO s a

readSecIO :: File s’ -> SecIO s (Sec s’ String)
writeSecIO :: File s -> String -> SecIO s ()

plug :: Less sl sh => SecIO sh a -> SecIO sl (Sec sh a)
run :: SecIO s a -> IO (Sec s a)

Fig. 3. The SecIO monad

securely read from any file, securely write to files of security level s (or higher), and
look at data protected at level s (or lower).
The function value can be used to look at a protected value at the current security
level. The function readSecIO reads protected data from files at any security level,
protecting the result as such. The function writeSecIO writes data to files of the
current security level.
The function plug is used to import computations with side-effects at a high level
into computations with side-effects at a low level of security. Observe that only the
side-effects are “leaked”, not the result, which is still appropriately protected by the
high security level. This function is particularly suitable to write programs that contain
loops that depend on public information and perform, based on secret and public data,
side-effects on secret files in each iteration.
These functions together with the return and bind operations for SecIO s constitute
the basic interface for programmers.
Based on that, more convenient and handy functions can then be defined. For instance,

s_read :: Less s’ s => File s’ -> SecIO s String
s_read file = do ss <- readSecIO file

value (up ss)

s_write :: Less s’ s =>
File s -> String -> SecIO s’ (Sec s ())

s_write file str = plug (writeSecIO file str)

Observe that s read and s write have simpler types while practically providing the
same functionality as readSecIO and writeSecIO, respectively.
In the next section, we show how to implement the core part of our library: the monads
Sec s and SecIO s. We continue this section with an example that shows how these
APIs can be used.
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3.3 Developing a secure shadow passwords API

As an example of how to apply information-flow mechanisms, we describe how to adapt
the API described in the introduction to guarantee that neither API’s callers or the API
itself reveal shadow passwords. Specifically, passwords cannot be copied into public
files at all. Hence, offline dictionary attacks are avoided as well as the requirement
of having root privileges to verify passwords. As mentioned in the introduction, we
assume that the contents of /etc/shadow is only accessible through the API. For
simplicity, we assume that this file is stored in the local file system, which naturally
breaks the assumption we have just mentioned (user root has access to all the files in
the system). However, it is not difficult to imagine an API that establishes, for example,
a connection to some sort of password server in order to get information regarding
shadow passwords.
We firstly start adapting our library to include the two-point lattice mentioned in Section
2. We decide to associate security level H, which represents secret information, to data
regarding shadow passwords. Then, we indicate that file /etc/shadow stores secret
data by writing the following lines

shadowPwds :: File H
shadowPwds = MkFile "/etc/shadow"

We proceed to modify the API to indicate what is the secret data handled by it. More
precisely, we redefine the API as follows:

getSpwdName :: Name -> IO (Maybe (Sec H Spwd))
putSpwd :: Sec H Spwd -> IO ()

where values of type Spwd are now “marked” as secrets 3. The API’s functions are
then adapted, without too much effort, to meet their new types. In order to manipulate
data inside of the monad Sec H, API’s callers need to import the library in their code.
Since /etc/shadow is the only file with type File H in our implementation, this is
the only place where secrets can be stored after executing calls to the API. By marking
values of type Spwd as secrets, we restrict how information flows inside of the API and
API’s callers while making possible to operate with them. In Section 5, we show how
to implement a login program using the adapted API.

4 Implementation of monads Sec and SecIO

In this section, we provide a possible implementation of the APIs presented in the pre-
vious two sections.
In Fig. 4 we show a possible implementation of Sec. Sec is implemented as an identity
monad, allowing access to its implementation through various functions in the obvious
way. The presence of less in the definition of function up includes Less in its typing
constrains. Function unSecType is used for typing purposes and has no computational
meaning. Note the addition of the function reveal, which can reveal any protected

3 Values of type Maybe are not included inside of Sec H since the existence of passwords is
linked to the existence of users in the system, which is considered public information.



182 Alejandro Russo, Koen Claessen, and John Hughes

module Sec where

-- Sec
newtype Sec s a = MkSec a

instance Monad (Sec s) where
return x = sec x

MkSec a >>= MkSec k =
MkSec (let MkSec b = k a in b)

sec :: a -> Sec s a
sec x = MkSec x

open :: Sec s a -> s -> a
open (MkSec a) s = s ‘seq‘ a

up :: Less s s’ => Sec s a -> Sec s’ a
up sec_s@(MkSec a) = less s s’ ‘seq‘ sec_s’

where (sec_s’) = MkSec a
s = unSecType sec_s
s’ = unSecType sec_s’

-- For type-checking purposes (not exported).
unSecType :: Sec s a -> s
unSecType _ = undefined

-- only for trusted code!
reveal :: Sec s a -> a
reveal (MkSec a) = a

Fig. 4. Implementation of Sec monad

value. This function is not going to be available to the untrusted code, but the trusted
code might sometimes need it. In particular, the implementation of SecIO needs it in
order to allow the leakage of side-effects.
In Fig. 5 we show a possible implementation of SecIO. It is implemented as an IO
computation that produces a safe result. As an invariant, the IO part of a value of type
SecIO s a should only contain unobservable (by the attacker) side-effects, such as
the reading from and writing to files.
There are a few things to note about the implementation. Firstly, the function reveal
is used in the implementation of monadic bind, in order to leak the side-effects from
the protected IO computation. Remember that we assume that the performance of side-
effects (reading and writing files) cannot be observed by the attacker. Some leakage of
side-effects is unavoidable in any implementation of the functionality of SecIO. Sec-
ondly, the definition of the type File does not make use of its argument s. This is also
unavoidable, because it is only by a promise from the trusted programmer that certain
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module SecIO where
import Lattice
import Sec

-- SecIO
newtype SecIO s a = MkSecIO (IO (Sec s a))

instance Monad (SecIO s) where
return x = MkSecIO (return (return x))

MkSecIO m >>= k =
MkSecIO (do sa <- m

let MkSecIO m’ = k (reveal sa)
m’)

-- SecIO functions
value :: Sec s a -> SecIO s a
value sa = MkSecIO (return sa)

run :: SecIO s a -> IO (Sec s a)
run (MkSecIO m) = m

plug :: Less sl sh => SecIO sh a -> SecIO sl (Sec sh a)
plug ss_sh@(MkSecIO m)

= less sl sh ‘seq‘ ss_sl
where

(ss_sl) = MkSecIO (do sha <- m
return (sec sha))

sl = unSecIOType ss_sl
sh = unSecIOType ss_sh

-- For type-checking purposes (not exported).
unSecIOType :: SecIO s a -> s
unSecIOType _ = undefined

-- File IO
data File s = MkFile FilePath

readSecIO :: File s’ -> SecIO s (Sec s’ String)
readSecIO (MkFile file) =
MkSecIO ((sec . sec) ‘fmap‘ readFile file)

writeSecIO :: File s’ -> String -> SecIO s ()
writeSecIO (MkFile file) s =
MkSecIO (sec ‘fmap‘ writeFile file s)

Fig. 5. Implementation of SecIO monad
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module SecLibTypes ( L (..), H, Less () ) where
import Lattice

module SecLib
( Sec, open, sec, up

, SecIO, value, plug, run,
, File, readSecIO, writeSecIO, s_read, s_write

)
where

import Sec
import SecIO

Fig. 6. Modules to be imported by untrusted code

files belong to certain security levels. Thirdly, function plug, similarly to function up,
includes less and an auxiliary function (unSecIOType) to properly generate type
constraints.
The modules Sec, SecIO, and Lattice can only be used by trusted programmers.
The untrusted programmers only get access to modules SecLibTypes and SecLib,
shown in Fig. 6. They import the three previous modules, but only export the trusted
functions. Observe that the type L and its constructor L are exported, but for H, only
the type is exported and not its constructor. Method less is also not exported. There-
fore, functions up and plug are only called with the instances of Less defined in
Lattice.hs.
In order to check that a module is safe with respect to information-flow, the only thing
we have to check is that it does not import trusted modules, in particular:

– Sec and SecIO
– any module providing exception handling, for example
Control.Monad.Exception,

– any module providing unsafe extensions, for example
System.IO.Unsafe

5 Declassification

Non-interference is a security policy that specifies the absence of information flows
from secret to public data. However, real-word applications release some information
as part of their intended behavior. Non-interference does not provide means to distin-
guish between intended releases of information and those ones produced by malicious
code, programming errors, or vulnerability attacks. Consequently, it is needed to relax
the notion of non-interference to consider declassification policies or intended ways to
leak information. In this section, we introduce run-time mechanisms to enforce some
declassification policies found in the literature.
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Declassification policies have been recently classified in different dimensions[SS05].
Each dimension represents aspects of declassification. Aspects correspond to what,
when, where, and by whom data is released. In general, type-systems to enforce dif-
ferent declassification policies include different features, e.g rewriting rules, type and
effects, and external analysis [ML00, SM04, CM04]. Encoding these features directly
into the Haskell type system would considerably increase the complexity of our li-
brary. For the sake of simplicity and modularity, we preserve the part of the library
that guarantees non-interference while orthogonally introducing run-time mechanisms
for declassification. More precisely, declassification policies are encoded as programs
which perform run-time checks at the moment of downgrading information. In this way,
declassification policies can be as flexible and general as programs! Additionally, we
provide functions that automatically generate declassification policies based on some
criteria. We call such programs declassification combinators. We provide combinators
for the dimensions what, when, and who (where can be thought as a particular case of
when). As a result, programmers can combine dimensions by combining applications
of these combinators.

5.1 Escape hatches

In our library, declassification is performed through some special functions. By borrow-
ing terminology introduced in [SM04], we call these functions “escape hatches” and we
represent them as follows.

type Hatch s s’ a b = Sec s a -> IO (Maybe (Sec s’ b))

Escape hatches are functions that take some data at security level s, perform some com-
putations with it, and then probably return a result depending if downgrading of infor-
mation to security level s’ is allowed or not. Arbitrary escape hatches can be included
in the library depending on the declassification policies needed for the built applica-
tions. In fact, escape hatches are just functions. Types IO and Maybe are present in the
definition of Hatch s s’ a b in order to represent run-time checks and the fact that
declassification may not be possible on some circumstances. By placing Maybe outside
of monad Sec s’, the fact that declassification is possible or not is public information
and programs can thus take different actions in each case. Consequently, it is important
to remark that declassification policies should not depend on secret values in order to
avoid unintended leaks (we give examples of such policies later). Otherwise, it would
be possible to reveal information about secrets by inspecting the returned constructor
(Just or Nothing) when applying escape hatches.
As mentioned in the beginning of the section, we include some declassification com-
binators that are responsible for generating escape hatches. The simplest combinator
creates escape hatches that always succeed when downgrading information. Specifi-
cally, we define the following combinator.

hatch :: Less s’ s => (a -> b) -> Hatch s s’ a b
hatch f = \sa -> return(Just(return(f (reveal sa))))

Basically, hatch takes a function and returns an escape hatch that applies such function
to a value of security level s and returns the result of that at security level s’ where
s’ v s. Observe how the function reveal is used for declassification.
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The idea is that the function hatch is used by trusted code in order to introduce a
controlled amount of leaking to the attacker. Note that it is possibly dangerous for
the trusted code to export a polymorphic escape hatch to the attacker! A polymorphic
function can often be used to leak an unlimited amount of information, by for exam-
ple applying it to lists of data. In general, escape hatches that are exported should be
monomorphic.

5.2 The What dimension

In general, type systems that enforce declassification policies related to “what” infor-
mation is released are somehow conservatives [SM04, AS07, MR07]. The main reason
for that is the difficulty to statically predict how the data to be declassified is manip-
ulated or changed by programs. Inspired by quantitative information-theoretical works
[CHM02], we focus on “how much” information can be leak instead of determining
exactly “what” is leaked. In this light, we introduce the following declassification com-
binator.

ntimes :: Int -> Hatch s s’ a b -> IO (Hatch s s’ a b)
ntimes n f
= do ref <- newIORef n

return (\sa -> do k <- readIORef ref
if k <= 0

then do return Nothing
else do writeIORef ref (k-1)

f sa )

Essentially, ntimes takes a number n and an escape hatch h, and returns a new escape
hatch that produces the same result as h but that can only be applied at most n times. To
achieve that, the combinator creates the reference ref to the number of times (n) that
the escape hatch (h) can be applied. Every application of the escape hatch then checks
if the maximum number of allowed applications has been reached by observing the
condition k <= 0. Additionally, every application of the escape hatch also reduce the
number of possible future applications by executing writeIORef ref (k-1). The
generated escape hatch returns Nothing if the policy is violated as a manner to avoid
leaking more information than intended. Inspecting if the result of applying an escape
hatch is Nothing or not can be considered as a covert channels by itself when hap-
pening inside of computations related to confidential data. Fortunately, escape hatches
applied inside of computations depending on secrets are never executed. For instance,
if we try to apply an escape hatch inside of some secret computation, it will have the
type Sec H (IO (Maybe (Sec L b))) for some type b. Declassification is per-
formed inside of the IO monad and it is not possible to extract IO computations from
the monad Sec H unless than another escape hatches is declared to release IO compu-
tations. Therefore, escape hatches must be introduced to release pure values rather than
side-effecting computations, which seems to be the case for most applications.
Note that the function ntimes is safe to be exported to the attacker, since it only
restricts the use of existing hatches.
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module Policies ( declassification ) where
import SecLibTypes ; import Declassification
import SpwdData

declassification
= ntimes 3 (hatch (\(spwd,c) -> cypher spwd == c))

:: IO (Hatch H L (Spwd, String) Bool)

module Main ( main ) where
import Policies
import Login

main = do match <- declassification
login match

module Login ( login ) where
import SecLibTypes ; import SecLib
import SpwdData ; import Spwd
import Maybe

check :: (?match :: Hatch H L (Spwd, Cypher) Bool)
=> Sec H Spwd -> String -> Int -> String

-> IO ()
check spwd pwd n u =
do acc <- ?match ((\s -> (s, pwd)) ‘fmap‘ spwd)

if (public (fromJust acc))
then putStrLn "Launching shell..."
else do putStrLn "Invalid login!"

auth (n-1) u spwd

auth 0 _ spwd = return ()
auth n u spwd = do putStr "Password:"

pwd <- getLine
check spwd pwd n u

login match
= do let ?match = match

putStrLn "Welcome!"
putStr "login:"
u <- getLine
src <- getSpwdName u
case src of

Nothing -> putStrLn "Invalid user!"
Just spwd -> auth 3 u spwd

Fig. 7. Secure login program
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As an example of how ntimes can be used, we write a login program that uses the
secure shadow password API described in Section 3.3. It is not possible to write such
program without having means for declassification. The login program must release
some information about users’ passwords: if access is granted, then the attacker knows
that his input matches the password, otherwise he knows that it does not. We present the
program in Figure 7. Module Policies introduces declassification policies for our lo-
gin program and states that a shadow password can be compared by equality at most
three times. This module is trusted and must not be imported by untrusted code. Oth-
erwise, attackers can create an unrestricted number of escape hatches in order to leak
secrets! Module SecLibTypes, described in Section 4, is extended to include type
definitions related to declassification as, for instance, Hatch s s’ a b. Module
Declassification introduces declassification combinators (e.g. ntimes). These
modules are part of our trusted base. Module Declassification must not be im-
ported by untrusted code for the same reasons given for module Policies. Modules
SpwdData and Spwd respectively include the data type declaration of Spwd and the
API described in Section 3.3. Module Main extracts declassification policies defined
in Policies and pass them to the login function. In general, this module deter-
mines what functions are called from untrusted code in order to run the program. In this
case, it determines that login must be called to perform the login procedure. Since
the module imports module Policies, it also belongs to the trusted base. The most
interesting module is Login. This module does not belong to our trusted base and
therefore it may contain code written by possibly malicious programmers. Because de-
classification policies can be applied at any part of the untrusted code, we place them
into implicit parameters [LLMS00]. Implicit parameters can be thought as some kind of
global variables and they are declared by writing variable names starting with the sym-
bol ?. Module Login contains three functions: check, auth, and login. Function
check takes the password spwd :: Sec H Spwd stored in the system for the user
u :: String and checks, by applying the escape hatch placed in ?match, if the
user’s input pwd :: String matches the password stored in the field cypher of
spwd. Assuming that is possible to perform the declassification described by ?match,
variable acc stores if the access is granted or not. We assume that untrusted code has
access to the functionpublic :: Sec L a -> a to extract the public values from
monad Sec L. In the example, public is applied to values returned by ?match. If
the access is denied, check might give another chance to the user by calling the func-
tion auth. Function auth is responsible to ask the user’s password and validates it at
most n times. Function login asks for the user name and checks that the user is reg-
istered in the system by calling the function getSpwdName from the secure shadow
password API.

Since program in Figure 7 type-checks, it respects the declassification policies defined
in module Policies, i.e. the password can be compared for equality only three times.
To illustrate that, we place our selves in the role of the attacker and modify function
check to call auth n u spwd instead. As a result, it would be now possible to try
as many passwords as the user wants and thus increasing the amount of information leak
by unit of time. Observe that this situation is particularly dangerous when passwords
have short length as PIN numbers in ATMs. Nevertheless, if we try to run the modified
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code, we get the message *** Exception: Maybe.fromJust: Nothing af-
ter the user tries more than three times to check if the access can be granted or not.

5.3 The When dimension

module Bid ( bid ) where

obtainBid :: FilePath -> IO Int
obtainBid file = do s <- readFile file

return (read s :: Int)

bid = do putStrLn "Bid system!"
putStrLn "-----------"
putStrLn ""
putStrLn "Obtaining the bids..."
a <- obtainBid "bidA"
-- writeFile "bidB" (show (a+1))
b <- obtainBid "bidB"
putStrLn (if a > b then "A wins!"

else "B wins!")

Fig. 8. Insecure bidding system

As a motivating example for handling this dimension, we can consider the scenario
described in [CM04] of a sealed auction where each bidder submits a single secret bid
in a sealed envelope. Once all bids are submitted, the envelopes are opened and the
bids are compared. The highest bidder wins. One security property that is important for
this program is that no bidder knows any of the other bids until all the bids have been
submitted. Program in Figure 8 simulates this process for two bidders: A and B. We
represent envelopes as files. Function obtainBid opens an envelope and extracts the
bid. The rest of the program is self-explanatory. It is possible to incorrectly implement
the auction protocol by mistake or intentionally. For instance, if we uncommented the
line in Figure 8, the program uses the bid from user A to make user B the winner.
However, no information about A’s bid must be available until B submits his (her) own
bid.
The library introduces the when dimension by associating events in the system that
indicates at which time release of information may occur. For instance, “releasing a
software key may occur after the payment has been confirmed”. Inspired by [BS06],
we implement boolean flags called flow locks 4 that, when open, allow downgrading of
information.

4 The notion presented here about flow locks is not exactly the same that is introduced in Broberg
and Sands’s paper. For instance, their work can statically check if a program respects the
declassification policies determined by the flow locks. Moreover, the state of the locks is not
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Flow locks are introduced by the following combinator.

when :: Hatch s s’ a b ->
IO (Hatch s s’ a b, Open, Close)

when f = do ref <- newIORef False
return (\sa -> do b <- readIORef ref

if b then f sa
else return Nothing

, writeIORef ref True
, writeIORef ref False)

Basically, when takes an escape hatch h and returns a new escape hatch that produces
the same result as h but that has associated a flow lock to it. The combinator creates
the reference ref to an initially close flow lock represented as False. The returned
escape hatch can only be applied when the associated flow lock is open (i.e. the corre-
sponding boolean flag is set to True). Observe that, by inspecting the value of b, every
application of the escape hatch checks that the flow lock is open before declassifying in-
formation. The combinator also returns computations to open and close the lock, which
respectively have type Open and Close. These computations must be only used by
trusted code. Otherwise, the attacker can execute them at any time in the untrusted code
and thus ignoring the events that indicate when declassification may occur. Open and
Close are just synonymous type declarations for IO ().
We can then implement a secure bidding system. We firstly define our security lattice
composed by the security levels A, B, and L, where L v A and L v B. Security levels
A and B are respectively associated to information coming from users A and B, while L
denotes public information. We implement these security levels as singleton types with
constructors A :: A, B :: B, and L::L. The described security lattice is very sim-
ple and therefore we omit details about its implementation. The secure bidding system
is shown in Figure 9. At first glance, it might seem that this implementation is much
more complex than the insecure one. However, the module Bid, the core of the bidding
system, has approximately the same size as before. The rest of the modules are related
to properly setting up the security level of different resources in the program as well as
the corresponding declassification policies. ModuleFiles declares the security level A
and B for the files that store the bids of users A and B, respectively. Module Policies
defines the escape hatches ha and hb to release information that belongs to users A
and B, respectively. Computations openA and closeA (openB and closeB) open
and close the flow lock associated to hA(hB), respectively. As mentioned before, the
opening and closing of locks are produced by trusted code. In this case, the opening of
locks happens when bids are read from files. We then place functionobtainBid in the
trusted module Main. We also adapt such function to read files at security level s and
return their contents, but opening the flow lock received as argument. Function main
obtains the escape hatches from declassification and defines trusted function
responsible for opening flow locks. Function obtainBidA (obtainBidB) reads the
bid of user A (B) and opens the lock for releasing the bid of user B (A). Differently from

related with the state of programs at all. We differ from these two points due to the dynamic
nature of our approach. However, the intuitive idea of allowing downgrading of information
when locks are open is preserved in our implementation.
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module Files ( bidAF, bidBF ) where
import Sec (secret, File (File) )
import Lattice

bidAF :: File A
bidAF = MkFile "bidA"

bidBF :: File B
bidBF = MkFile "bidB"

module Policies ( declassification ) where
import SecLibTypes ; import Declassification

declassification
= do (pA :: Hatch A L Int Int, openA, closeA)

<- when (hatch id)
(pB :: Hatch B L Int Int, openB, closeB)

<- when (hatch id)
return (pA, openA, closeA, pB, openB, closeB)

module Main ( main ) where
import Policies ; import Files ; import SecLib
import Bid

obtainBid :: File s -> Open -> IO (Sec s Int)
obtainBid file open

= do sec <- run (do r <- s_read file
return (read r :: Int))

open
return sec

main
= do (hA, openA, closeA,

hB, openB, closeB) <- declassification
let obtainBidA = obtainBid bidAF openB

obtainBidB = obtainBid bidBF openA
bid hA obtainBidA hB obtainBidB

module Bid ( bid ) where
import SecLibTypes ; import SecLib

bid hA obtainBidA hB obtainBidB
= do putStrLn "Bid system!"

putStrLn "-----------"
putStrLn ""
putStrLn "Obtaining the bids..."
bidA <- obtainBidA
-- Just cheat <- hA bidA
bidB <- obtainBidB
Just seca <- hA bidA
Just secb <- hB bidB
putStrLn(if (public seca) > (public secb)

then "A wins!"
else "B wins!")

Fig. 9. Secure bidding system
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the insecure version in Figure 8, functionbid receives as arguments escape hatches and
functions to obtain bids. Module Bid is written by the attacker or possibly malicious
programmer. In this module, function bid obtains the bids to later compare them. In
order to compare bids, they need to be extracted from values of type Sec A Int and
Sec B Int through the escape hatches ha and hb, respectively. It is then not possi-
ble to determine which bid is the highest before obtaining all for them. For instance,
if we uncommented the line in function bid, we obtain a program that tries to release
the bid from user A before getting the bid for user B, which is clearly a non-desirable
behavior for the auction system. However, if we run the program, we get the message
*** Exception: Maybe.fromJust: Nothing since the flow lock associated
to release A’s bid is not open. In order to open it, we firstly need to get B’s bid!
To illustrate why flow locks may need to be closed, we take the example on step further
by thinking of a bidding system that allows the users to bid more than once. In this
case, function bid is called several times and flow locks related to hA and hB must
be closed between each call. Otherwise, all the flow locks are open at the second call
of bid, which allows bids to be released at any time. It is not difficult to imagine this
implementation by considering that function main calls computations closeA and
closeB before each call of bid.
For simplicity, we considered an auction system with only two users. However, it is
possible to use flow locks when more users are present in the auction. Indeed, we can
create escape hatches that are associated to as many flow locks as users. In order to do
that, we can compose when with itself as many times as users we have in the system.
In this way, the escape hatch obtained in the end is associated to as many flow locks as
users. Then, when a user submits its bid, his corresponding flow lock is open.
Attackers can still write programs that wrongly implement the auction system. For in-
stance, we can write a program that makes user A the winner all the time by just re-
placing the if-then-else in Figure 9 by putStrLn "The user A wins!".
However, user A is going to be the winner because the program is not implemented
correctly, but not because the program “cheated” by inspecting B’s bid. Correctness of
programs are stronger properties than those ones captured by declassification policies.

5.4 The Who dimension

In the Decentralized Label Model (DLM) [ML97, ML98, ML00] data is marked with
a set of principals who owns the information. While executing a program, the code is
authorized to act on behalf of some set of principals known as authority. Then, declas-
sification makes a copy of the released data and marked it with the same principals as
before the downgrading but excluding those ones appearing in the authority of the code.
We do not consider situations where some principals can act on behalf of others.
Similarly to [LZ06], we adapt the idea of DLM to work on a security lattice. Author-
ities are assigned with a security level l in the lattice and they are able to declassify
data at that security level. To achieve that, we introduce a declassification combinator
that checks the authority of the code before applying an escape hatch. As indicated in
[BS06], DLM can be expressed using flow locks. Fortunately, our implementation is
also suitable for that. More precisely, we have the following declassification combina-
tor.
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Tax OfficeBank

Public

Government

Fig. 10. Security lattice

data Authority s = Authority Open Close

who :: Hatch s s’ a b -> IO (Hatch s s’ a b, Authority s)
who f = do (whof, open, close) <- when f

return (whof, Authority open close)

certify :: s -> Authority s -> IO a -> IO a
certify s (Authority open close) io =

s ‘seq‘ (do open ; a <- io ; close ; return a)

Combinatorwho takes an escape hatch an returns another escape hatch that is associated
with a flow lock. The main idea here is that the flow lock is open when the code runs
under the same authority as the security level appearing as the argument of the escape
hatch. The mechanisms to open and close the flow lock are placed inside of the data
type Authority s. The constructor of this data type is not accessible for attackers.
Otherwise, they can avoid the certification process to determine that some piece of
code runs under some authority. Such certification process is carried out by the function
certify. This function takes an element of security type s, an Authority s, and
a computation IO a. In Section 4, we explain that constructors that belongs to security
levels above the security level of the attacker are not exported. For instance, in the
two-point lattice considered so far, attackers can only observe data at security level L,
and thus constructor H :: H is not exported to untrusted modules. This assumption
needs to be relaxed in order to consider this dimension for declassification. To certify
that some code has authority s, we require that such code, possibly malicious, has only
access to the constructors for security level s and the security level denoting public
information. In this way, it is reflected that code running under authority s can freely
declassify data from security level s as expected in DLM. Function certify checks
that it receives a valid constructor for the security type s by applying seq to it, and then
respectively opens and closes a flow lock before and after running the IO computation
received as argument. Observe that this function can be freely used by attackers since it
requires to provide the right constructor for some security level s and only authorities
at that level must have it. Therefore, assignments of authorities to pieces of code must
be clearly part of the trusted code.
As a motivating example for this dimension, we start consider the security lattice in
Figure 10. We have the security levels: Government, Bank, Tax Office, and Public to
represent information related to citizens that is used for such entities. Unless that in-
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module Policies ( declassification ) where
import SecLibTypes ; import Declassification
import Data

declassification
= do (hB :: (Hatch B L Account Status),

authBank) <- who (hatch status)
(hT :: (Hatch T L Citizen Address),
authTax) <- who (hatch address)

(hG :: (Hatch G T Immigrant Citizen),
authG) <- who (hatch inmigrants)

(hG’ :: (Hatch G B Study Result),
authG’) <- who (hatch studies)

return ((hB, authBank), (hT, authTax),
(hG, authG), (hG’, authG’))

module Bank ( bank ) where
import SecLibTypes ; import SecLib
import Data

bank :: B -> (Hatch B L Account Status,
Authority B) -> IO ()

bank = ...

module TaxOffice ( taxoffice ) where

import SecLibTypes ; import SecLib
import Data

taxoffice
:: T -> (Hatch T L Citizen Address, Authority T)

-> IO ()
taxoffice = ...

module Government ( government ) where
import SecLibTypes ; import SecLib
import Data

government
:: G -> (Hatch G T Immigrant Citizen,

Authority G) -> (Hatch G B Study Result,
Authority G) -> IO ()

government = ...

module Main ( main ) where
import Policies ; import Lattice
import Bank ; import TaxOffice ; import Government

main
= do (whohB, whohT, whohG, whohG’)

<- declassification
bank B whohB
taxoffice T whohT
government G whohG whohG’
return ()

Fig. 11. Skeleton for an application
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formation is made public, banks cannot have access to information stored in the tax
office and vice versa. Government, on the other hand, can have full access to the in-
formation stored at banks and the tax office, which can be debatable for any real gov-
ernment. However, we made such assumption to simplify the example and rather illus-
trate how functions who and certify can be used. We implement the security levels
Government, Bank, Tax Office, and Public with the singleton types G, B, T, and L, re-
spectively. The described security lattice is very simple and therefore we omit details
about its implementation. We assume that the declassification polices are the follow-
ings: banks can declassify the status of their accounts ( i.e. if an account is open or
close), the tax office can release the address of the citizens, and the government can
provide information about new immigrants to the tax office as well as revealing results
of financial studies related to the economy of the country to the banks. Observe that,
for instance, it is possible for the government to declassify some information to a bank,
and then the bank divulges that information to the public by opening or closing some
accounts. In order to avoid that, a more complex security lattice needs to be encoded.
However, for simplicity, we tighten to the lattice in Figure 10. In Figure 11, we give the
skeleton of an application that uses these security levels and the mentioned declassi-
fication policies. Module Policies declares declassification policies constructed by
combinator who. Accounts, status of accounts, citizens, addresses, immigrants, finan-
cial studies, and outcomes of financial studies are represented by data types Account,
Status, Citizen, Address, Immigrant, Study, and Result, respectively.
Functions status, address, immigrant, and study have types Account ->
Status, Citizen -> Address, Immigrant -> Citizen, and Study ->
Result, respectively. These functions together with declarations of data types related
to the application are placed in the module Data. Function declassification im-
plements the declassification policies described before. Modules Bank, TaxOffice,
and Government are untrusted and they might include malicious code. Functions
bank, taxoffice, and government receive the escape hatches together with val-
ues of type Authority s for some corresponding instances of s. Observe that bank,
taxoffice, and government expects to receive the constructor for security types
B, T, and G, respectively. In other words, the authority for bank, taxoffice, and
government is set to B, T, and G, respectively. Consequently, it is then possible
for those functions to apply cerfity with escape hatches that release information
at their authority level. Module Main sets the authority for each of the given functions
while providing the corresponding escape hatches. Observe how constructors B :: B,
T :: T, andG :: G are given to functionsbank, taxoffice, and government,
respectively. Malicious code placed in one function only compromises confidential in-
formation related to its authority’s security level. For instance, if function bank con-
tains malicious code, then confidential information related to the bank may be at risk.
However, if government is compromised, all the information in the system may be
affected. Functiongovernment should be carefully designed, or perhaps other restric-
tions regarding the application of the escape hatch must be imposed in this function (see
next subsection). This phenomenon also occurs in DLMwhen a process running with the
authority of all the principals in the system contains malicious code.
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5.5 Combining dimensions

For some application, declassification policies are not so simple as those ones captured
by the dimensions of what, when, and who. For those scenarios, the user of the library
has basically two options. One one hand, the user can program his own policy, which
provides enough flexibility. However, such flexibility could be dangerous when declas-
sification policies are not implemented carefully. For instance, an escape hatch must not
decide if declassification is possible by inspecting confidential data. Otherwise, attack-
ers learn information about secrets when applying escape hatches by inspecting if the
returned values are Nothing or not. On the other hand, users can specify more inter-
esting declassification policies by combining applications of ntimes, when, and who
together. For instance, we extend the what-policy from the example given in Section
5.2 to consider more dimensions as follows.

comb = do h <- ntimes 3
(hatch (\(spwd,c) -> cypher spwd == c))

(h’, open, close) <- when h
(h’’, auth) <- who h’
return (h’’:: Hatch H L (Spwd, String) Bool,

open, close, auth)

Observe how comb defines an escape hatch that releases information if it is applied in
a piece of code with authority H when some events that execute open happened and
information has not been previously released more than three times. Other combina-
tions are also possible. To the best of our knowledge, this is the first implementation of
mechanisms to enforce more than one dimension for declassification.

6 Related work

Much previous related work addresses non-interference and functional languages con-
sider reduced programming languages [HR98, VSI96, VS97] or requires designing
compilers from scratch [PS02, Sim03]. Rather than implementing compilers, Li and
Zdancewic [LZ06] show how to provide information flow security as a library for a real
programming language. They provide an implementation for Haskell based on arrows
combinators[Hug00], which naturally requires programmers to be familiar with arrows
when writing security-related code. Their library still imposes restrictions on what kind
of programs can be written. In particular, their approach does not generalize naturally
in the presence of side-effects or information composed of data with different security
levels. To incorporate these features, the library requires major changes as well as the
introduction of new combinators [TRH07].
In this paper, we show that a less general notion, namely monads, is enough to provide
information-flow security as a library. We propose a light-weight library (∼ 400 LOC)
able to handle side-effecting computations and that requires programmers to be familiar
with monads rather than arrows. Moreover, by just placing data into corresponding
Sec s monads, our library is also able to handle data composed of elements with
different security levels. However, there exists one restriction in our approach w.r.t. to
the arrow approach. Since our security levels are represented by types, all of them have
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to be known statically at compile-time5, whereas in the arrow approach, they can be
constructed at run-time.
Abadi et. al. developed the dependency core calculus (DCC) [ABHR99] based on a
hierarchy of monads to guarantee non-interference. Similarly, Sec constructs a hierar-
chy of monads when applied to security levels s. However, DCC uses non-standard
typing rules for its bind operations while our library just provides instances of the
type class Monad. Tse and Zdancewic translate DCC to System F and show that non-
interference can be stated using the parametricity theorem for F [TZ04]. They also
provide an implementation in Haskell for a two-point lattice. Their implementation
encodes each security level as an abstract data type constructed from functions and
binding operations to compose computations with permitted flows. The same kind of
ideas relies behind Sec s, open, and close (see Section 4). Their implementation
requires, at most, O(n2) definitions for binders for n-points lattices. Since they con-
sider the same non-standard features for binders as in DCC, they provide as many def-
initions for binders as different type of values produced after composing secure com-
putations. Moreover, their implementation needs to be compiled with the GHC’s flag
-fallow-undecidable-instances. On one hand, our library requires, at most,
O(n2) instantiations on the type class Less for n-points lattices, but it does not pro-
vide more than one definition for binders nor requires allowing undecidable instances
in GHC 6. DCC and Tse and Zdancewic’s approaches do not consider computations
with side-effects. Moreover, Tse and Zdancewic leaves as an open question how to en-
code more expressive policies, such as declassification, directly in the type system of
Haskell.
Harrison and Hook show how to implement an abstract operating system called separa-
tion kernel [HH05]. Programs running under this multi-threading operating system are
non-interferent. To achieve that, the authors rely on properties related to monad trans-
formers as well as state and resumption monads. Basically, each thread is represented
as an state monad that have access to the locations related to the thread’s security level
while state monad transformers act as parallel composition. Interleaving and commu-
nication between threads is carried out by plugging a resumption monads on top of the
parallel composition of all the threads in the system. Non-interference is then enforced
by the scheduler implementation, which only allow signaling threads at the same, or
higher, security level as the thread that issued the signal. Different from that, our library
enforces non-interference by typing. The authors also use monads differently than we
do since their goals are constructing secure kernels rather than providing information-
flow security as a library. For instance, we do not use state monads, state transformers,
or resumption monads since we do not model threads. As a result, our library is simpler
and more suitable to write sequential programs in Haskell. It is stated as a future work
how to extend our library to include concurrency.
Crary et. al. design a monadic calculus for non-interference for programs with mutable
state[CKP03]. Their language distinguishes between term and expressions, where terms

5 We are investigating the use of polymorphic recursion to alleviate this – this remains future
work however.

6 All the code shown in the paper works with the Glasgow Haskell Compiler (GHC) with the
flag -fglasgow-exts
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are pure and expressions are (possibly) effectful computations. The calculus mainly
tracks flow of information by inspecting the security levels of effects produced by ex-
pressions. Expressions can be included at the term level as an element of the monadic
type ©(r,w)A, which denotes a suspended computation where the security level r is
an upper bound on the security levels of the store locations that the suspended com-
putation reads, while w is a lower bound on the security level of the store locations
to which it writes. Authors introduce the notion of informativeness in order to relax
some typing rules so that reading and writing into secret store locations can be included
in large computations related to public data. A type A is informative at security level
r or above if its values can be used or observed by computations that may read data
from security level r or above. In our library, the type SecIO s a makes the value
of type a only informative at security level s. In principle, the value of type a can-
not be used anywhere but inside the monad SecIO s. Considering a two-point lattice,
we introduce the function plug :: Less L H => SecIO H a -> SecIO L
(Sec H a) to allow reading and writing secret files into computations related to pub-
lic data. Observe that the function preserves the informativeness of a by placing it inside
of the monad Sec H.
Recently, several approaches have been proposed to dynamically enforce non-interference
[GBJS06, SST07, NSCT07]. In order to be sound, these approaches still need to per-
form some static analysis prior to or at run-time. Authors argue, in one way or another,
that their methods are more precise than just applying an static analysis to the whole
program. For instance, if there is an insecure piece of dead code in a program, most of
the static analysis techniques will reject that program while some of their approaches
will not. The reason for that relies in the fact that dead code is generally not executed
and therefore not analyzed by dynamic enforcement mechanisms. Our library also com-
bines static and dynamic techniques but in a different way. Non-interference is statically
enforced through type-checking while run-time mechanisms are introduced for declass-
fication. By dynamically enforcing declassification policies, we are able to modularly
extend the part of the library that enforce non-interference to add downgrading of in-
formation and being able to enforce several dimensions for declassification in a flexible
and simple manner. To the best of our knowledge, this is the first implementation of
declassification policies that are enforced at run-time and the first implementation that
allows combining dimensions for declassifications.

7 Conclusions

We have presented a light-weight library for information-flow security in Haskell. Based
on specially designed monads, the library guarantees that well-typed programs are non-
interferent; i.e. secret data is not leaked into public channels. When intended release of
information is required, the library also provides novel means to specify declassifica-
tion policies, which comes from the fact that policies are dynamically enforced and it
is possible to construct complex policies from simple ones in a compositional manner.
Taking ideas from the literature, we show examples of declassification policies related
to what, when, and by whom information is released. The implementation of the library
and the examples described in this paper are publicly available in [RCH08a]. The well-
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known concept of monads together with the light-weight and flexible characteristic of
our approach makes the library suitable to build Haskell applications where confiden-
tiality of data is an issue.
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e ::= tt | ff | case e e e | x | λx.e | e e | (e, e) | πi e | fix e
| return` e | e ?` e | up`,`′ e | public` e | S` e | •

v ::= tt | ff | x | λx.e | (v, v) | fix e | S` e
τ ::= Bool | τ → τ | (τ, τ ) | Sec` τ

Fig. 12. Terms, values, and types

E ::= [] | case E e e | E e | (E, e) | (e, E) | πi E
| return` E | E ?` e | up`,`′ E | public` E

E[case tt e1 e2] −→ E[e1] E[return` e] −→ E[S` e]
E[case ff e1 e2] −→ E[e2] E[(S` e1) ?` e2] −→ E[([e1/x]e2) ?` λx.return` x]
E[(λx.e1) e2] −→ E[[e2/x]e1] E[(S` e) ?` λx.return` x] −→ (S` e)
E[πi (e1, e2)] −→ E[ei] E[up`,`′ (S` e)] −→ E[S`′ e]

E[fix e] −→ E[e (fix e)] E[public`′ (S` e)] −→ E[e]

Fig. 13. Operational semantics

Soundness

This section formalizes the non-interference guarantee obtained by our approach. Due
to lack of space, we only include details regarding the core, purely functional, part of
the library. Further details can be found in [RCH08b].
To illustrate our approach, we take a simple call-by-need λ-calculus extended with
boolean values, pairs, recursion, and monadic operations, as shown in Figure 12. Syn-
tactic categories e, v, and τ represent terms, values, and types, respectively. Monadic
terms, values, and types are decorated with security levels (`) in order to make type-
checking easier. Three special syntax nodes are added to the language: public`, S` e,
and •, . Node S` e denotes the run-time representation of a monadic value and it does
not appear in programs. Node public` denotes an operation that allows to extract re-
sults of monadic computations. Node • represents term erasure, which is explained
later. The operational semantics of the language is formalized in Figure 13 and it is self
explanatory.
Typing rules related to non-monadic terms are standard and therefore we omit them.
Erased terms • are associated to any type (Γ ` • : τ ). Typing rules for monadic oper-
ations are given in Figure 14. The first three typing rules are self explanoty. However,
typing rule for primitive public` deserves some explanation. Predicate Attacker de-
fines the attacker model. Given a security level `, predicate Attacker(`) holds iff `
is the highest security level where attackers can observe data, which we consider as
unique. For instance, the attacker described in Section 3.3 can only observe public data,
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Γ ` e : τ

Γ ` return` e : Sec` τ

Γ ` e1 : Sec` τ Γ ` e2 : τ → Sec` τ
′

Γ ` e1 ?` e2 : Sec` τ
′

Γ ` e : Sec` τ

Γ ` up`,`′ e : Sec`′ τ
(` v `′)

Γ ` e : Sec`′ τ Attacker (`)

Γ ` public` e : τ
(`′ v `)

Γ ` e : τ

Γ ` S` e : Sec` τ

Fig. 14. Typing rules for monadic operations and values

i.e. Attacker(L) holds for the two-point lattice. If the attacker can observe data at se-
curity level `, then the attacker can extract such data from a monadic computation of
type Sec`′ τ , where `′ v `. Later, we will show that well-typed programs preserve
confidentiality of data at higher security levels than `.
Similar to [LZ07], we formalize the non-interference property by using the technique
of term erasing. Intuitively, data at security levels where the attacker cannot observe
information can be safely rewritten to the syntax node •. Function ε` is responsible to
perform such rewritten for data at security level not lower than `, as shown in Figure
15. This function is also defined for contexts E as an homomorphism (e.g. ε`([]) = [],
ε`(case E e1 e2) = case ε`(E) ε`(e1) ε`(e2), etc). We define a relation (=⇒) for
erased terms as follows.

e1 −→ e2

e1 =⇒ ε`(e2)

Erased terms evaluate in the same way as terms, except that, after one evaluation step,
the resulting term is erased again. The relation guarantees that “confidential” data is
erased as soon as it is created.
To formalize a non-interference-like result, we establish a simulation between terms
(−→) and erased terms (=⇒). The following lemmas establish the simulation for one
and multiple steps. We write −→∗ and =⇒∗ for the reflexive and transitive clousure of
−→ and =⇒, respectively.

Lemma 1 (Single step-simulation). If Γ ` e1 : τ , Attacker(`) holds, and e1 −→ e2,
then Γ ` e2 : τ and ε`(e1) =⇒∗ ε`(e2).

Lemma 2 (Multiple step-simulation). If Γ ` e1 : τ , Attacker(`) holds, and e1 −→∗
e2, then Γ ` e2 : τ and ε`(e1) =⇒∗ ε`(e2).

Once established the simulation between (−→) and (=⇒), we can proceed to formalize
the security guarantee. The following theorem gives a non-interference-like property.
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ε`(tt) = tt

ε`(ff) = ff

ε`(case e1 e2 e3) = case ε`(e1) ε`(e2) ε`(e3)

ε`(x) = x

ε`(λx.e) = λx.ε`(e)

ε`(e1 e2) = ε`(e1) ε`(e2)

ε`((e1, e2)) = (ε`(e1), ε`(e2))

ε`(πi e) = πi ε`(e)

ε`(fix e) = fix ε`(e)

ε`(return`′ e) =


return`′ (ε`(e)) , `

′ v `
• , otherwise

ε`(e1 ?`′ e2) =


(ε`(e1)) ?`′ (ε`(e2)) , `′ v `

• , otherwise

ε`(up`′,`′′ e) =


up`′,`′′ (ε`(e)) , `

′′ v `
• , otherwise

ε`(public`′ e) =


public`′ (ε`(e)) , `

′ v `
• , otherwise

ε`(S`′ e) =


S`′ (ε`(e)) , `

′ v `
• , otherwise

ε`(•) = •

Fig. 15. Definition of the erasure function

Theorem 1. Given security levels `, `′ and function e such that it is not the case `′ v `,
Attacker(`) holds, e does not include • or constructor S`′′ for any `′′, and Γ ` e :
Sec`′ τ → Bool, then

∀e1e2.(Γ ` ei : τ)i=1,2 ∧ e (return`′ e1) −→∗ v1 ∧
e (return`′ e2) −→∗ v2 ⇒ v1 = v2

The theorem states that given two pieces of data that are “secret”, e.g. not observable
by the attacker, the result of the computation must not be affected by any of them.
Therefore, no leaks are produced. The proof easily follows from Lemma 2 and the fact
that −→ and =⇒ are deterministic.


