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Abstract. Information integrity is a vital security property in a variety of ap-
plications. However, there is more than one facet to integrity: interpretations of
integrity in different contexts include integrity via information flow, where the
key is that trusted output is independent from untrusted input, and integrity via
invariance, where the key is preservation of an invariant. Furthermore, integrity
via invariance is itself multi-faceted. For example, the literature features formal-
izations of invariance as predicate preservation (predicate invariance), which is
not directly compatible with invariance of memory values (value invariance).
This paper offers a unified framework for integrity policies that include all of the
facets above. Despite the different nature of these facets, we show that a straight-
forward enforcement mechanism adapted from the literature is readily available
for enforcing all of the integrity facets at once.

1 Introduction

Information integrity is a vital security property in a variety of applications. However,
there is clearly more than one facet to integrity. Indeed, security textbooks [40, 25]
agree that it is hard to pin down the essence of integrity, and surveys [33, 45, 42] and
tutorials [26] identify a range of integrity flavors.

Integrity in the area of information flow often means that trusted output is inde-
pendent from untrusted input [10]. This is dual to the classical models of confidential-
ity [9, 30, 17, 24], where public output is required to be independent from secret input.
Integrity in the area of access control [45] is concerned with improper/unauthorized data
modification. The focus is on preventing data modification operations, when no modi-
fication rights are granted to a given principal. Integrity in the context of fault-tolerant
systems is concerned with preservation of actual data. For example, a desired property
for a file transfer protocol on a lossy channel is that the integrity of a transmitted file is
preserved, i.e., the information at both ends of communication must be identical (which
can be enforced by detecting and repairing possible file corruption). Integrity in the
context of databases often means preservation of some important invariants, such as
consistency of data and uniqueness of database keys.

The list of different interpretations of integrity can be continued, including rather
general notions as integrity as expectation of data quality and integrity as guarantee of
accurate data and meaningful data [45, 40].

Sabelfeld and Myers [42] observe that integrity has an important difference from
confidentiality: a computing system can damage integrity without any external inter-
action, simply by computing data incorrectly. Thus, strong enforcement of integrity
requires proving program correctness.

Seeking to clarify the area of integrity policies, Li et al. [31] suggest a classifica-
tion for data integrity policies into information-flow, data invariant, and program cor-
rectness policies. In a similar spirit, Guttman [26] identifies causality and invariance
policies as two major types of data integrity policies.
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With the classification by Li et al. [31] as a point of departure, we present a general
framework for the different facets of integrity that include information-flow, invariance,
and correctness aspects. Furthermore, we argue that integrity via invariance is itself
multi-faceted. For example, the literature (cf. [31]) features formalizations of invariance
as predicate preservation (predicate invariance), which is not directly compatible with
invariance of memory values (value invariance).

This paper offers a unified framework for integrity policies that include all of the
facets above. A key feature of the framework is generalized invariants that can represent
a range of properties from program correctness to predicate and value invariance. Our
formalization shows that program correctness (which was previously identified as a
separate type of integrity [31]) in fact subsumes invariance-based integrity.

Correctness
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invariance

Predicate 
invariance
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Fig. 1. Generalized invariance

Figure 1 illustrates the policy
set inclusion. We comment on the
characteristic policy examples that
correspond to points in the di-
agram (the formal definitions of
these policies are postponed to
Section 2). Notation x and x′ de-
notes the values of the correspond-
ing variable before and after pro-
gram execution. An example of a
value invariance policy is x = x′,
i.e., the value of the variable stays
unchanged. An example of a pred-
icate invariance policy is x > 0⇒
x′ > 0, i.e., if the variable is pos-
itive initially, it must stay positive
at the end of execution. Value in-
variance is inherently about the re-
lation of some expression before
and after the execution. On the other hand, predicate invariance is inherently about
preservation of some predicate on the current memory. As we explain in detail in Sec-
tion 2, these policies are not directly compatible because (i) in order to mimic value
invariance (as in x = x′) by predicate invariance, the final memory needs to explic-
itly include the initial memory, and (ii) in order to mimic predicate invariance (as in
x > 0 ⇒ x′ > 0) by value invariance, the predicate to be preserved needs to be
encoded, if at all possible, into expression equality.

Further, there are properties beyond invariance that are integrity properties. For ex-
ample, x′ = 5⇒ x = 5 is a property that assures that if the final value of the variable is
5, then it has not been modified compared to its initial value. This corresponds to a gen-
eral class of properties, called program correctness properties. Thanks to its generality,
program correctness can model all of the integrity flavors, including meaningfulness
and consistency. In fact, any program property can be represented as long as it can be
described by a generalized predicate that has access to initial and final memories. (As
we remark in Section 8, an extension of the framework to handle intermediate states
appears natural.)

Note that the goal of the paper is not to achieve as much expressiveness as possible.
Indeed, a wide range of formalisms exists for reasoning about program correctness from
Hoare logic [29] to refinement types [23], and a large body of work in-between [37].
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Furthermore, logic-based mechanisms have been explored for reasoning about confi-
dentiality [18, 8, 2, 6]. Instead, we aim at a treatment of integrity that allows us to ex-
press the different flavors in a uniform and convenient fashion that is directly connected
to enforcement.

Indeed, despite the different nature of the integrity facets, we show that a straight-
forward enforcement mechanism adapted from the literature is readily available for
enforcing all of the integrity facets at once. This mechanism, as proposed by Askarov
and Sabelfeld [5], is originally for enforcing an information release (or declassifica-
tion) policy of delimited release [43]. It guarantees that the values of declassification
expressions (called escape hatches) have not changed compared to their initial values
by performing a dynamic check at declassification time. We observe that the dual of this
mechanism allows tracking both safe endorsement (i.e., intentional increase in trust to
a given expression), and it is readily available to track correctness and therefore invari-
ance properties. Indeed, the latter facets of integrity can be straightforwardly guaranteed
by checking immediately before termination whether the desired correctness/invariance
property is satisfied and terminating normally only in the case of positive outcome.

The possibility of easily deploying Askarov and Sabelfeld’s enforcement [5] for a
wide range of integrity policies (for which the enforcement was not originally designed)
is a one of the greatest benefits of our approach. It liberates us from the necessity of
designing a multi-dimensional enforcement framework of complexity similar to the
policy framework.

A summary on the tightness of integration offered by our approach follows. We
achieve tight integration on the enforcement side: a single enforcement mechanism is
suitable to support all facets of integrity, including those that it has not been designed
to support. On the policy side, the integration between information flow and correct-
ness facets is not tight as these facets are inherently distinct. Nevertheless, within the
correctness facet, we achieve tight integration of various flavors of invariants into our
generalized invariant framework.

In the rest of the paper, we present a generalized definition for integrity as invari-
ance (Section 2), recap a standard definition of integrity as information flow (Section 3),
show how to enforce all facets of integrity with a single enforcement mechanism (Sec-
tion 4), discuss endorsement (Section 5), extensions and practical aspects (Section 6),
related work (Section 7), and offer some concluding remarks (Section 8).

To clarify the scope of this paper, we note that the focus is on information integrity
(or data integrity), i.e., the integrity of data (in contrast to system integrity that addresses
the integrity of the processing software and hardware units). Hence, integrity refers to
information integrity throughout the paper.

2 Integrity via invariance

Before we launch into formal definitions of the concepts described above, we need some
preliminaries. In particular, we must define what it means for a program to terminate.
We use the term memories for mappings from variables to values. We work with seman-
tics given as a small-step transition system with configurations of some form C, where
the transition system defines transitions of the forms

C −→ C and C −→ m

where m is a memory. A transition of the second kind represents the terminating transi-
tion. If such a transition is contained in a trace, then it will always be the last one given
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that there are only transitions of the above forms. An example of a configuration is the
tuple 〈c,m〉 where c is a syntactic term (command or program) and m is a memory.

Definition 1 (Termination) We say that configuration C0 terminates in a memory m,
written C0 ↓ m if and only if there exists a trace

C0 → C1 → . . .→ Cn → m

(according to some particular semantics which is usually clear from the context.) If no
such trace exists, we write C0

9
.

Note that C0
9
covers both the cases when programs diverge, i.e., they have an

infinite execution trace, or when they get stuck before reaching a terminal state.

2.1 Value invariance

A value invariant states that the value of an expression should not change by executing
a program. We define value invariants to be expressions which are required to evaluate
to the same value only in the initial and the final memory of a terminating program. We
write m(e) to denote the value of an expression e with respect to a memory m.

Definition 2 (Value invariant) Let e be an expression. We say that a program c satis-
fies the value invariant e if and only if

∀m. 〈c,m〉 ↓ m′ =⇒ m(e) = m′(e).

A simple example of a value invariant would be the expression x, corresponding to
x = x′ in Figure 1. This value invariant states that the variable x is not modified by
running the program. Note that it may be modified during the execution of the program,
as long as its original value is restored in the end. Another simple example is the ex-
pression x + y, which allows x and y to change, as long as their changes are balanced
so that their sum stays constant.

On the other hand, there are some interesting “invariants” which we cannot describe
by value invariants. This includes, for example, the invariant x > 42, which in some
ways resembles a pair of a pre- and a postcondition. Treating this boolean expression
as a value invariant requires that if the expression is false in the initial memory, it must
also be false in the final memory. However, by our intuition, starting from a memory
where the expression is false, we would like the program to be valid no matter the final
value of the expression. This leads us to another notion of invariance from the literature.

2.2 Predicate invariance

Predicate invariance [31] resembles very much pre- and postconditions from Hoare
logic [29, 37]. A predicate invariant consists of a boolean predicate on memories that
programs must preserve.

Definition 3 (Predicate invariant) For a predicate ϕ on memories, a program c satis-
fies the predicate invariant ϕ if and only if

∀m. 〈c,m〉 ↓ m′ =⇒ ϕ(m)⇒ ϕ(m′).
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Predicate invariants allow us to easily describe invariants such as x > 0 (see Fig-
ure 1) with the intuitive semantics described above. The intuitive idea described by Li
et. al. is that ϕ can be used to describe when a memory has a good property, where it is
desirable that programs preserve that property in the final memory.

However, there are also important examples of invariants which are not captured
by predicate invariance. For example, the simple value invariant x, i.e., a given vari-
able maintains it value, cannot be modeled as a predicate invariant without passing the
initial value of the variable to the final memory. Thus, the two types of invariants are
incompatible. In the next section we define a new notion of invariance which unifies the
two.

2.3 Generalized invariance

We can observe that both of the above notions of invariance quantify over all initial
memories, which for deterministic languages corresponds to quantifying over all runs
of a particular program. If we treat (terminating) programs purely as a transformation
on memories, then a possible general notion of invariance is simply a predicate on the
initial and final memories. A given program satisfies such an invariant if all pairs of
initial and final memories that it relates satisfy the predicate. Obviously, this captures
the two notions of invariance above.

We provide a particularly convenient policy language that is equivalent in expres-
siveness to a general predicate on initial and final memory. The goal is that an invariant
can be easily specified by the programmer and enforced by, e.g., a runtime monitor.
Thus, we specify invariants by two expressions, one to be evaluated in initial memory
and one in final memory, along with a binary predicate on those values. As we will see
in Section 5, this is a particularly beneficial way to specify invariants because of smooth
integration with endorsement.

Definition 4 (Generalized invariant) A generalized invariant is a triple (e1, e2, P ),
where e1, and e2 are expressions, and P is a binary predicate on values. A program
c satisfies such an invariant if and only if

∀m. 〈c,m〉 ↓ m′ =⇒ P
(
m(e1),m′(e2)

)
We can explore the expressiveness of this notion of invariance. We can immediately

observe that it captures the previously defined notions of invariance. Any value invariant
e is represented by the generalized invariant (e, e,=). Similarly, any predicate invariant
ϕ is represented by (ϕ,ϕ,⇒). These observations are depicted in Figure 2.

Generalized invariance e1 e2 P
Value invariance e e =

Predicate invariance ϕ ϕ ⇒

Fig. 2. Kinds of invariance

Generalized invariants can also de-
scribe more general notions of correct-
ness. Our example of x′ = 5 ⇒ x = 5
from Section 1 can be described by (x =
5, x = 5,⇐). If we want to make sure
a certain variable increases by running a
program, we can write (x, x,<).

It may not be clear why we would call such a condition as the last one an invariant,
as it appears to state that something has to change. However, the property m(x) <
m′(x) must hold for all initial and final memories m and m′, if we are to say that the
program in question satisfies it. In other words, the property predicate by itself is an
invariant for all runs of a program.

5



Another important facet of integrity is that we do not want untrusted inputs to have
any influence on trusted outputs. This facet cannot be described by generalized invari-
ants [34, 46], and is the topic of the next section.

3 Integrity via information flow

Information-flow integrity policies restrict how untrustworthy data flows inside pro-
grams. These policies seek to prevent corrupting critical information. For example, the
(untrusted) data input of an in-flight entertainment system must not affect the auto-pilot
control system (critical component), but the auto-pilot control system might be allowed
to display information in the in-flight entertainment systems, such as estimated time
of arrival. For simplicity, we only consider two integrity levels: Hi (high integrity) for
trustworthy and Li (low integrity) for untrustworthy data. A common baseline policy
for information flow is the noninterference policy [17, 24]. This policy states that trust-
worthy data cannot be affected by untrustworthy values (written as Li 6v Hi). However,
there is no risk for untrusted data to be affected by trusted data. In this case, we indicate
Hi v Li. The integrity levels Hi and Li form a two-point security lattice [19] that
indicates how information can flow inside programs.

As before, we write 〈c,m〉 ↓ m′ for a terminating execution of program c under the
initial memory m and final memory m′. We assume that every variable in memory is
assigned an integrity level. Memories m1 and m2 are high-integrity equivalent, written
m1 =Hi

m2, if they agree on high integrity values. The following definition captures
the noninterference security policy.

Definition 5 (Noninterference) A program c satisfies noninterference if for any mem-
ories m1 and m2 such that 〈c,m1〉 ↓ m′

1, and 〈c,m2〉 ↓ m′
2, then

m1 =Hi m2 =⇒ m′
1 =Hi

m′
2.

The definition above ignores nonterminating executions of programs. This kind of def-
inition is known as termination-insensitive noninterference [47, 42, 1]. In some cases,
attackers can still affect the termination behavior of the program. However, we ignore
the termination channel because its bandwidth is negligible [1] in our setting.

Information-flow integrity can be seen as the dual to confidentiality. To illustrate
this connection, we assume confidentiality levels Lc and Hc for public and secret in-
formation, respectively. Observe that the integrity requirements Li 6v Hi and Hi v Li
are the duals to the ones Lc v Hc and Hc 6v Lc, which indicate that secret information
cannot be leaked to public recipients. This confidentiality policy underlies the original
definitions of noninterference [17, 24]. Due to this duality, the techniques developed
for confidentiality can also be used to guarantee information-flow integrity. In the next
section, we extend a runtime monitor for enforcing information-flow confidentiality to
enforce both information-flow and invariance integrity.

4 Enforcement

To illustrate the idea behind enforcement, we consider a simple imperative language
with the syntax and semantics given in Figures 3 and 4, respectively. The syntax and se-
mantic rules are mostly standard [48] except for minor extensions. We include a pseudo-
term end that indicates leaving the scope of an if or a while. This term generates a
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n ∈ Z, x ∈ Vars, op ∈ {+,−, . . . }
e ::= n |x | e op e
c ::= skip |x := e | c; c | if e then c else c | while e do c

Fig. 3. Syntax

SKIP

〈skip,m〉 nop−→ 〈ε,m〉
ASSIGN

〈x := e,m〉 a(x,e)−→ 〈ε,m[x 7→ m(e)]〉

SEQ1

〈c1,m〉
β−→ 〈c′1,m′〉 c′1 6= ε

〈c1; c2,m〉
β−→ 〈c′1; c2,m′〉

SEQ2

〈c1,m〉
β−→ 〈ε,m′〉

〈c1; c2,m〉
β−→ 〈c2,m′〉

IF1

m(e) 6= 0

〈if e then c1 else c2,m〉
b(e)−→ 〈c1; end,m〉

IF2

m(e) = 0

〈if e then c1 else c2,m〉
b(e)−→ 〈c2; end,m〉

WHILE1

m(e) 6= 0

〈while e do c,m〉 b(e)−→ 〈c; end; while e do c,m〉

WHILE2

m(e) = 0

〈while e do c,m〉 b(e)−→ 〈end,m〉

END

〈end,m〉 f−→ 〈ε,m〉
TERMc

〈ε,m〉 term(m)−→ m

Fig. 4. Command semantics

transition described by the rule END. The rule TERMc is also nonstandard and, together
with the empty term ε, it guarantees that a terminating run of any program ends with a
transition generated by this rule. Transitions in the semantics are labeled with an event
β. The purpose of labeled events as well as rules END and TERMc is communication
with the runtime monitor, which is described next.

We present an extension to the dynamic monitor found in [5] in order to enforce
both information-flow integrity and generalized invariants.

Figure 5 gives the monitor semantics. The monitor is a separate transition system
whose transitions are labeled with the same kind of events β as the command transitions.
This is used to synchronize the two executions. Furthermore, the monitor may block
progress of the program, in case the program can do a transition with a certain event but
the monitor is not able to match it.

The monitor enforces information-flow integrity with the rules FLOW, BRANCH and
FINISH, in the same way as [5]. The first rule allows direct assignments of an expres-
sion e to a variable x, indicated by the event a(x, e), only if e has the same or higher
integrity than x (Γ maps variables to their integrity levels.) The rule also ensures that
the minimum level lev(st) on the context stack st is at least as high as x’s level. This is
to prevent implicit flows [20], i.e., flows via control flow. The stack contains the levels
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of expressions affecting control flow. It is maintained by the rules BRANCH and FIN-
ISH, which synchronize with the program entering or leaving an if or while block, as
indicated by the events b(e) and f , respectively.

NOP
〈i, st, I〉 nop−→ 〈i, st, I〉

FLOW
lev(e) v Γ (x) lev(st) v Γ (x)

〈i, st, I〉 a(x,e)−→ 〈i, st, I〉
BRANCH

〈i, st, I〉 b(e)−→ 〈i, lev(e) :st, I〉
FINISH

〈i, hd :st, I〉 f−→ 〈i, st, I〉

TERMm

∀(e1, e2, P ) ∈ I : P (i(e1),m(e2))

〈i, st, I〉 term(m)−→ 〈i, st, I〉

Fig. 5. Monitor semantics

The rule TERMm synchronizes
with program termination and en-
forces the invariance integrity policy.
The monitor carries in its state a set
of generalized invariants, as well as
a snapshot of the initial memory, and
uses these to ensure all the invariants
are satisfied by the execution. If not,
this rule blocks the program from ter-
minating.

Before proving the desired proper-
ties of our monitor we should make a
small note about its practicality. While
it is certainly infeasible to store a
snapshot of the initial memory of a
program, this is only a feature of our
theoretical model. In practice the only
additional state required to enforce a
set of invariants I, are the values of the first expression of each one, as evaluated in
initial memory. A monitor needs only evaluate these expressions at the start, store their
values and then at the end evaluate the second expression as well as the predicate of
each invariant. Since we expect the set of invariants to be relatively small given their
expressiveness, the overhead of adding invariant enforcement is small compared to the
information flow enforcement overhead of the original monitor from [5]. Controlling
the complexity of the expressions and predicates of course remains the responsibility of
the policy writer.

In the rest of the section, we will talk about monitored programs which refers to a
program which is run in lockstep with a monitor. For convenience, we represent moni-
tored programs with a monitor combination operator ], whose semantics is defined with
the following two rules, where Cc is the configuration of program semantics, and Cm is
that of the monitor semantics.

Cc
β−→ C′

c Cm
β−→ C′

m

Cc ] Cm −→ C′
c ] C′

m

Cc
β−→ m Cm

β−→ C′
m

Cc ] Cm −→ m
(1)

Note that ] is a meta-operator, it works on configurations rather than syntactic terms.
We can immediately state and prove one useful property of such monitored pro-

cesses. If an unmonitored program does not terminate, then adding a monitor can not
make it terminate. This is obvious from the right rule above, a terminating transition
of the unmonitored program is a premise for proving a terminating transition of the
monitored one. Nevertheless it is useful to state this explicitly as a lemma.

Lemma 1 (Failstop correctness) For any monitored program Cc ] Cm, we have

Cc ] Cm ↓ m =⇒ Cc ↓ m.

Proof. If the monitored program terminates, there is a terminating trace with transitions
proved by the rules (1). By taking the left premise of each transition proof, it is straight-
forward to construct a terminating trace for the unmonitored program 〈c,m〉.
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Since the terminating transition must be due to the right rule, it is obvious that both
traces terminate in the same memory. 2

Throughout the paper, we assume finite sets of generalized invariants I. Given a set
of generalized invariants I, we can now prove that the monitor presented in Figure 5
is sound, in the way that a monitored program that terminates satisfies all invariants of
I and satisfies noninterference. An important ingredient to this is that all invariants are
decidable. We assume evaluation of their expressions is decidable, but we also require
that checking each invariant’s predicate is decidable as well.

Theorem 1 (Soundness) Let c be a command and I a set of (generalized) invariants
with decidable predicates. Then, for all memories m it holds that

〈c,m〉 ]〈m, [], I〉 ↓ m′ =⇒ ∀(e1, e2, P ) ∈ I : P (m(e1),m′(e2)),

i.e., the monitored program satisfies all of the invariants in I. Furthermore, if m1 and
m2 are high-integrity equivalent memories, and 〈c,mi〉 ]〈mi, [], I〉 ↓ m′

i, with i ∈
{1, 2}, then m′

1 is high-integrity equivalent to m′
2, i.e., the monitored program satisfies

noninterference.

Proof. We note that I stays unchanged by the monitor. Since 〈c,m〉 terminates in m′,
there exists a trace

〈c,m〉 ]〈m, [], I〉 −→ · · · −→ C′
c ] C′

m −→ m′

The last rule of a monitored execution can only be the right rule of (1), which in turn
means the rule used to prove the left premise is TERMc and that C′

c = 〈ε,m′〉. Conse-
quently, the last transition of this trace must have the following proof tree:

TERMc

〈ε,m′〉 term(m′)−→ m′
TERMm

∀(e1, e2, P ) ∈ I : P (m(e1),m′(e2))

〈m, st, I〉 term(m′)−→ 〈m, st, I〉
〈ε,m′〉 ]〈m, st, I〉 −→ m′

The only premise in this proof must thus hold, which concludes the proof of the invari-
ance part.

For proof of the noninterference part we refer to [5]. 2

It is a natural question to ask also if the monitor is complete. Informally, we would
formulate this in the following way: If a program satisfies a set of invariants to be-
gin with, a monitored version will not diverge unless the program does also. The pre-
sented monitor enforces both information flow integrity as well as invariant integrity.
The monitor is not complete in enforcing noninterference. For example, the program
h := l;h := 0, where h and l are high- and low-integrity variables, respectively, is
blocked by the monitor although it satisfies noninterference. However, we can prove
that if the information-flow integrity is set aside, then the monitor is complete in en-
forcing invariance integrity.

We will use the following fact (that is straightforward to prove): If all variables
used in a program have the same integrity level, then no execution of the monitored
version 〈c,m〉 ]〈m, [], I〉 (where I is arbitrary) will get stuck due to the rule FLOW
being disabled. This is obvious since the premises of the rule are always true if all
integrity levels are equal. We can now state and prove the completeness of the monitor
with respect to invariant integrity policies.
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Theorem 2 (Completeness of invariance enforcement) Let c be a command,m some
memory, and I a set of generalized invariants with decidable predicates. Assume all
variables used in c have the same integrity level. Then, if the (unmonitored) program
〈c,m〉 satisfies the invariants in I, i.e.,

〈c,m〉 ↓ m′ =⇒ ∀(e1, e2, P ) ∈ I : P (m(e1),m′(e2)),

then the program either diverges by itself or the monitored version also terminates (in
some memory):

〈c,m〉
9
∨ 〈c,m〉 ]〈m, [], I〉 ↓ m′′.

Proof. If the premise holds because 〈c,m〉 does not terminate, then the conclusion
holds trivially. In the other case, when 〈c,m〉 ↓ m′ and

∀(e1, e2, P ) ∈ I : P (m(e1),m′(e2)), (2)

then we consider the terminating trace

〈c,m〉 = 〈c0,m0〉 −→ . . . −→ 〈cn,mn〉 −→ m′. (3)

From the command semantics we can see that the last transition is due to rule TERMc.
Now consider the monitored version 〈c,m〉 ]〈m, [], I〉. If this does not terminate, it

must be because the monitor blocks the execution at some point. This can only happen
if rules FLOW or TERMm are disabled. However, the rule FLOW is never disabled since
there is no violation of information-flow integrity, and so the monitor can only block
due to the termination rule being disabled. This would mean that the monitored program
gets stuck just before the last transition of (3), since this is the only transition that can
potentially synchronize with TERMm. This means mn = m′ and thus we are already
in final memory at this point. Since TERMm is disabled, its premise is false. However
being in final memory, its premise is exactly (2), which we assumed true. Thus, the
monitored program must terminate. 2

The completeness theorem states that our monitor will never stop an otherwise ter-
minating and correct program. In other words, the monitor does not raise false alarms.

However, completeness alone is not enough, since the monitor could potentially
terminate in a different final memory than the original, correct program does. Of course,
this is not desirable, so we follow with a proof that our monitor is transparent, i.e., it
does not alter the semantics of correct programs.

Theorem 3 (Transparency of invariance enforcement) Let c be a command,m a mem-
ory, and I a set of generalized invariants with decidable predicates. We assume that all
variables in c have the same integrity level. If the (unmonitored) program satisfies the
invariants in I, formally

〈c,m〉 ↓ m′ =⇒ ∀(e1, e2, P ) ∈ I : P (m(e1),m′(e2)),

then, the following implications hold:

〈c,m〉 ↓ m′ =⇒ 〈c,m〉 ]〈m, [], I〉 ↓ m′, and

〈c,m〉
9

=⇒ 〈c,m〉 ]〈m, [], I〉
9

Proof. First, assume that 〈c,m〉 ↓ m′. By the completeness theorem above, the mon-
itored version terminates in some memory m′′. To see that m′ = m′′, observe the last
transition of the monitored trace. This transition is due to the right rule of (1) whose
first premise can only be met by the last transition of (3) from the last proof. By the def-
inition of that rule, the conclusion indeed “returns” the same memory m′. This proves
the first implication. The second implication is a simple contrapositive of Lemma 1. 2
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〈x := endorse(e),m〉 end(x,e,m)−→ 〈ε,m[x 7→ m(e)]〉

i(e) = m(e) lev(st) v Γ (x)

〈i, st, I〉 end(x,e,m)−→ 〈i, st, I〉

Fig. 6. Rules for endorsement

5 Endorsement

When dealing with confidentiality, it is sometimes necessary to intentionally release,
or declassify, some confidential information [44]. Analogously for integrity, it is some-
times necessary to boost the integrity of some piece of untrustworthy data to trustwor-
thy. For example, the integrity of user-provided data can be raised after the data is sani-
tized. Dually to declassification, endorsement converts low integrity into high integrity
data.

This section introduces a security condition and an enforcement mechanism for en-
dorsement that can be seen as the dual of delimited release [43, 5]. We include the
command x := endorse(e) in our language for boosting the integrity of expression e
from low to high. The semantic rule, depicted in Figure 6, simply performs the assign-
ment and triggers the event end(x, e,m) for communication with the monitor.

The security condition, dubbed delimited endorsement, captures what it means to
be secure for programs involving endorsements.

Definition 6 (Delimited endorsement) Consider a program c containing exactly n en-
dorsement commands x1 := endorse(e1), . . . , xn := endorse(en), where expres-
sions e1, . . . , en are called escape hatches. Command c is secure if for all memories
m1 and m2 such that m1 =Hi

m2, ∀i.m1(ei) =Hi
m2(ei), 〈c,m1〉 ↓ m′

1, and
〈c,m2〉 ↓ m′

2, we have m′
1 =Hi m

′
2.

Intuitively, delimited endorsement establishes that a program is secure if whenever
two high-integrity equivalent memories are indistinguishable by escape hatches, then
they must also be indistinguishable by the program itself: terminating runs of the pro-
gram in these memories leads to high-integrity equivalent final states. One way to en-
force this condition is by checking whether the value of any escape-hatch expression
at the time of endorsement is the same as it was at the beginning of computation. This
brings us to the enforcement.

The monitor rule for endorsement is also given in Figure 6. It checks that the en-
dorsed value m(e) of expression e in memory m is indeed the same in the initial
and current memory (i(e) = m(e)). This restriction avoids laundering, i.e., abusing
the endorsement mechanisms to endorse other data than the one indicated by x :=
endorse(e) [43, 5]. Similar as for regular assignments, restriction lev(st) v x is used
to avoid implicit flows.

The mechanisms to enforce invariants in Figure 5 can be easily reused for enforc-
ing endorsement. Observe that i(e) = m(e) can be interpreted as a particular kind of
invariant P (i(e),m(e′)), where P is the equality predicate =, and expressions e and e′

are the same.
The following theorem establishes the formal guarantees obtained by the enforce-

ment rules.

Theorem 4 For any program c, the monitored execution of c (with the initial configu-
ration 〈c,m〉 ]〈m, [], I〉 for memory m) satisfies delimited endorsement.

11



Proof. It follows by an adaptation of Askarov and Sabelfeld’s proof [5] for delimited
release. The failstop property of the monitor allows for a straightforward adaption of
the proof: the invariant-checking part is largely orthogonal since all the monitor can do
is to block the execution, in which case the high-integrity equivalence does not need to
be tracked. 2

As it was for the information-flow part of the monitor in Section 4, the delimited
endorsement monitor is incomplete in the information-flow part for the same reason.

6 Extensions and practical aspects

The enforcement mechanisms presented in Section 4 and 5 can be naturally extended
to support I/O operations and a form of access control. We briefly outline the principles
behind such extensions and discuss practical aspects.

6.1 I/O

Programs often require to take inputs as well as produce outputs during execution.
Defining and tracking delimited release in the presence of communication primitives
is described in [5]. When considering inputs, the restriction i(e) = m(e) needs to be
revised because it does not allow to declassify (endorse in our case) variables that have
been updated by inputs.

Askarov and Sabelfeld [5] remark that inputs may introduce fresh data into pro-
grams and, therefore, they distinguish them from regular updates. They propose a mon-
itor that allows to declassify information when the value being declassified (m(e))
matches the value of the expression in a memory that records most recent inputs. If
no inputs where performed for a given variable e, the value considered for that variable
is the one found in the initial memory. In a similar fashion, it is possible to modularly
extend the rules in Figures 5 and 6 to consider a context level input label ct, which
records if there has been an input in a high context, and update memory i in the mon-
itor’s state every time that an input is produced. The extended monitor then disallows
endorsement if the input context label ct has low integrity. This is necessary because
inputs, unlike branch/loop guards, are not lexically-bounded in their impact. The update
of memory i on every input allows the monitor to have a memory where each variable’s
value refers either to its last input or its value at the initial memory (i.e., no inputs are
performed for that variable).

In the presence of outputs, checking invariants at the end of program execution
needs to be revised. Data invariants could refer to outputs produced by programs, e.g.,
every credit-card number sent to a server must be formed by 16 digits. To express this, it
is sufficient to apply rule TERMc at every output produced by the program. In principle,
it is possible to allow programmers to indicate what invariants must be checked at what
outputs.

When considering inputs and outputs, the security condition for declassification in
[5] is based on the attacker’s knowledge [21, 4, 6]. With this in mind, it is possible to use
the same semantics techniques to handle endorsement in presence of communication
primitives. In fact, the dual of the attacker knowledge in [5] can be interpreted as the
attacker capabilities to control or affect computations regarding high integrity data [3].
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6.2 Access control

As mentioned in Section 1, integrity in the area of access control [45] focuses on pre-
venting data modification operations when no modification access is granted to a given
principal. Policies of the kind “resource R cannot be written by principal P ” cannot
be naturally enforced by noninterference. The main reason is the degree of freedom
that noninterference allows regarding entities at the same security level. Noninterfer-
ence only restricts how information flows among different security levels. To illustrate
this, assume an information-flow enforcement mechanism is in place. Whatever secu-
rity level variable R is assigned to, it is still possible to read its content, concatenated
with itself, and save it back to R. Observe that these operations only manipulate data
at security level R. In contrast, our monitor can be easily adapted to enforce that no
write operation is invoked on R by P or, more generally, no changes are performed on
resource R by just establishing, through an invariant, that the content of R is the same
at the beginning and at the end of the program. Moreover, if considering endorsement
as given in Figure 6, it is possible to enforce no changes on R by endorsing it at the end
of the program. Direct enforcement of no unauthorized write operations is of course
also possible when the monitor has access to the entire trace.

6.3 Practical aspects

Preliminary results from a Haskell-based library for integrity [22] suggest light imple-
mentation overhead to enforce integrity policies in presence of I/O and access control
requirements. Diserholt [22] shows how to build a secure password administrator that
preserves confidentiality of passwords as well as several facets of integrity policies, e.g.,
password must be difficult to guess (integrity via invariance), certain operations should
not write the contents of some files (access control), and user input cannot determine the
utilized hash function (integrity via information flow). We argue that it is not difficult
to reformulate the concrete case study in [22] using our approach and obtain similar
results.

7 Related work

Being one of the most fundamental security properties, integrity is subject to a vast
area of research. We refer to security textbooks [40, 25] that discuss assorted flavors of
integrity, and integrity surveys [33, 45] and tutorials [26] that develop integrity classifi-
cations. Section 1 also contains pointers to various interpretations of integrity in various
disciplines.

To the best of our knowledge, our framework is the first to unify information in-
tegrity for programs. As mentioned previously, our departure point is the classification
by Li et al. [31]. Our contribution compared to this classification is a more general
model of invariants (Li et al. only discuss predicate invariants), a more general model
of information flow (Li et al. do not consider endorsement), and a unified view, where
we show that program correctness subsumes invariance policies. In addition, we also
offer a unified enforcement mechanism that guarantees all aspects of integrity at once.

Information-flow integrity dates back to Biba’s integrity model [10], which dual-
izes Bell and LaPadula’s model [9, 30] for mandatory access control. The Clark-Wilson
integrity model [15] is a classical model that focuses on separation of duties and trans-
actions.
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Although information integrity for programs has been unexplored compared to con-
fidentiality, it has recently received increasing attention. Languages such as Perl, PHP,
and Ruby offer dynamic integrity checks that are based on tainting, a runtime mecha-
nism for tracking explicit flows.

Ørbæk and Palsberg [38, 39] define instrumented information-flow semantics for
integrity in λ-calculus. The semantics is based on integrity label manipulation. An un-
soundness related to the impact of flow sensitivity on information flow has been recently
uncovered [41].

Heintze and Riecke [28] consider integrity as dual to confidentiality in their study
of information flow for a language based on λ-calculus. Li and Zdancewic unify confi-
dentiality and integrity policies [32] in the context of information downgrading.

A line of work on robust declassification [49, 35, 3] is based on an interplay between
confidentiality and integrity, where information release (of high confidentiality data) is
allowed only if it cannot be manipulated by the attacker (through attacker-controlled
low integrity data) to release additional information. The Java-based Jif tool [36], as
well as its web-based extensions [14, 13], implement robustness policies.

Sabelfeld and Sands [44] introduce dimensions of declassification, with the main
focus on declassification of confidentiality levels. They informally discuss the dual of
dimensions of declassification: dimensions of endorsement.

We draw on delimited release [43] when it comes to enforcement of integrity poli-
cies. Although delimited release is a confidentiality property, its enforcement includes
information-flow aspects and is capable of enforcing generalized invariants. This paper
builds on a runtime mechanism for delimited release by Askarov and Sabelfeld [5]. A
static static alternative to tracking delimited release has been explored by Sabelfeld and
Myers [43].

Boudol and Kolundzija [11] combine programming constructs for expressing access-
control and declassification policies. Access control is represented at language level,
with explicit granting, restricting, and testing access rights. Information-flow policies
and access control have been also integrated at language level by Banerjee and Nau-
mann [7], although without considering declassification.

Haack et al. [27] explore reasoning about explicit flows in program logic. They
arrive at two kinds of integrity notions: flow-based and format-based. The former is an
information-flow policy, and the latter is concerned with proper formatting (they give
an example policy such as “a phone number field should only contain numbers”). This
latter type of integrity is subsumed by generalized invariance.

Cheney et al. [12] investigate semantic foundations for data provenance in databases.
Provenance is concerned with tracking the origin of information, and so Cheney et al.
model it as a dependency analysis.

Diserholt [22] proposes a library that handles confidentiality and integrity poli-
cies in Haskell. Besides handling confidentiality, the library is also able to combine
information-flow integrity, predicate invariants, and some means for access control.
Similarly to this paper, their work is inspired by the classification of integrity policies
in [31].

Clarkson and Schneider [16] propose contamination and suppression as quantitative
definitions of integrity. The former is dual to quantitative information leakage, whereas
the later measures how much information is lost from outputs. The study of suppression
includes program suppression due to malicious influence and implementation errors as
well as channel suppression due to information loss about inputs to a noisy channel.
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8 Conclusions

We have presented a uniform framework for information integrity. The framework in-
corporates a range of integrity aspects from information-flow integrity to program cor-
rectness. The framework integrates different types of integrity as invariance. We show
that some of the invariant-based policies are not compatible with each other (cf. value
vs. predicate invariance). Nevertheless, they are naturally represented in our framework
as program correctness properties. Endorsement policies naturally extend information-
flow policies and also fit into the framework.

Despite being general, our integrity framework is realizable. A single enforcement
mechanism [5] (for tracking delimited information release) turns out to be an excellent
match for enforcement of integrity. It supports both information-flow integrity, includ-
ing extensions with endorsement policies, as well as correctness properties, including
the various flavors of invariance. This mechanism is scalable to handling communica-
tion primitives.

Future work is focused on the directions outlined in Section 6. We explore both for-
mal aspects of policies in the presence of communication and access control and practi-
cal aspects of enforcement, with inlining transformation and library-based enforcement
as our main goals. Another direction of work is an extension of the framework to rep-
resent trace properties, i.e., properties of sequences of intermediate states. We expect
the extension of the framework and monitor rather straightforward: generalized invari-
ants can just as well refer to the full traces, and enforcement corresponds to enforcing
safety [46] properties.

It is important to support our results with practical findings from case studies. Pre-
liminary results from a Haskell-based library for integrity [22] suggest light implemen-
tation overhead.
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[18] A. Darvas, R. Hähnle, and D. Sands. A theorem proving approach to analysis of secure
information flow. In Proc. Workshop on Issues in the Theory of Security, Apr. 2003.

[19] D. E. Denning. A lattice model of secure information flow. Comm. of the ACM, 19(5):236–
243, May 1976.

[20] D. E. Denning and P. J. Denning. Certification of programs for secure information flow.
Comm. of the ACM, 20(7):504–513, July 1977.

[21] C. Dima, C. Enea, and R. Gramatovici. Nondeterministic nointerference and deducible
information flow. Technical Report 2006-01, University of Paris 12, LACL, 2006.

[22] A. Diserholt. Providing integrity policies as a library in Haskell. Master Thesis, Chalmers
University of Technology, Gothenburg, Mar. 2010. http://www.cse.chalmers.se/
˜russo/albert.htm.

[23] T. Freeman and F. Pfenning. Refinement types for ml. In Proc. ACM SIGPLAN Conference
on Programming language Design and Implementation, pages 268–277, 1991.

[24] J. A. Goguen and J. Meseguer. Security policies and security models. In Proc. IEEE Symp.
on Security and Privacy, pages 11–20, Apr. 1982.

[25] D. Gollmann. Computer Security (2nd Edition). Wiley, 2006.
[26] J. Guttman. Invited tutorial: Integrity. Presentation at the Dagstuhl Seminar on Mobil-

ity, Ubiquity and Security, Feb. 2007. http://www.dagstuhl.de/07091/. Slides at
http://web.cs.wpi.edu/˜guttman/.

[27] C. Haack, E. Poll, and A. Schubert. Explicit information flow properties in JML. In Proc.
WISSEC, 2008.

[28] N. Heintze and J. G. Riecke. The SLam calculus: programming with secrecy and integrity.
In Proc. ACM Symp. on Principles of Programming Languages, pages 365–377, Jan. 1998.

[29] C. A. R. Hoare. An axiomatic basis for computer programming. Comm. of the ACM,
12(10):576–580, 1969.

[30] L. J. LaPadula and D. E. Bell. Secure computer systems: A mathematical model. Technical
Report MTR-2547, Vol. 2, MITRE Corp., Bedford, MA, 1973. Reprinted in J. of Computer
Security, vol. 4, no. 2–3, pp. 239–263, 1996.

[31] P. Li, Y. Mao, and S. Zdancewic. Information integrity policies. In Workshop on Formal
Aspects in Security and Trust (FAST’03), 2003.

16



[32] P. Li and S. Zdancewic. Unifying confidentiality and integrity in downgrading policies. In
Workshop on Foundations of Computer Security, pages 45–54, June 2005.

[33] T. Mayfield, J. E. Roskos, S. R. Welke, J. M. Boone, and C. W. McDonald. Integrity in
automated information systems. Technical Report P-2316, Institute for Defense Analyses,
1991.

[34] J. McLean. A general theory of composition for trace sets closed under selective interleav-
ing functions. In Proc. IEEE Symp. on Security and Privacy, pages 79–93, May 1994.

[35] A. C. Myers, A. Sabelfeld, and S. Zdancewic. Enforcing robust declassification and quali-
fied robustness. J. Computer Security, 14(2):157–196, May 2006.

[36] A. C. Myers, L. Zheng, S. Zdancewic, S. Chong, and N. Nystrom. Jif: Java information
flow. Software release. Located at http://www.cs.cornell.edu/jif, July 2001.

[37] D. Naumann. Theory for software verification. Draft, http://www.cs.stevens.
edu/˜naumann/pub/theoryverif.pdf, Jan. 2009.

[38] P. Ørbæk. Can you trust your data? In Proc. TAPSOFT/FASE’95, volume 915 of LNCS,
pages 575–590. Springer-Verlag, May 1995.

[39] P. Ørbæk and J. Palsberg. Trust in the λ-calculus. J. Functional Programming, 7(6):557–
591, 1997.

[40] C. P. Pfleeger and S. L. Pfleeger. Security in Computing (4th Edition). Prentice Hall, 2006.
[41] A. Russo and A. Sabelfeld. Dynamic vs. static flow-sensitive security analysis. In Proc.

IEEE Computer Security Foundations Symposium, July 2010.
[42] A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE J. Selected

Areas in Communications, 21(1):5–19, Jan. 2003.
[43] A. Sabelfeld and A. C. Myers. A model for delimited information release. In Proc. In-

ternational Symp. on Software Security (ISSS’03), volume 3233 of LNCS, pages 174–191.
Springer-Verlag, Oct. 2004.

[44] A. Sabelfeld and D. Sands. Declassification: Dimensions and principles. J. Computer
Security, 17(5):517–548, Jan. 2009.

[45] R. S. Sandhu. On five definitions of data integrity. In Proceedings of the IFIP WG11.3
Working Conference on Database Security VII, pages 257–267, 1994.

[46] F. B. Schneider. Enforceable security policies. ACM Transactions on Information and
System Security, 3(1):30–50, 2000.

[47] D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow analysis. J.
Computer Security, 4(3):167–187, 1996.

[48] G. Winskel. The Formal Semantics of Programming Languages: An Introduction. MIT
Press, Cambridge, MA, 1993.

[49] S. Zdancewic and A. C. Myers. Robust declassification. In Proc. IEEE Computer Security
Foundations Workshop, pages 15–23, June 2001.

17


