
BinderAnn: Automated Reification of Source
Annotations for Monadic EDSLs

Agustín Mista1 and Alejandro Russo1

Chalmers University of Technology, Gothenburg, Sweden
{mista,russo} @chalmers.se

Abstract. Embedded Domain-Specific Languages (EDSLs) are an al-
ternative to quickly implement specialized languages without the need to
write compilers or interpreters from scratch. In this territory, Haskell is
a prime choice as the host language. EDSLs in Haskell, however, are of-
ten incapable of reifying useful static information from the source code,
namely variable binding names and source locations. Not having access
to variable names directly affects EDSLs designed to generate low-level
code, where the variables names in the generated code do not match
those found in the source code—thus broadening the semantic gap among
source and target code. Similarly, many existing EDSLs produce poor
error messages due to the lack of knowledge of source locations where
errors are generated.

In this work, we propose a simple technique for enhancing monadic
EDSLs expressed using do notation. This technique employs source-to-
source plugins, a relatively new feature of GHC, to annotate every do
statement of our EDSLs with relevant information extracted from the
source code at compile time. We show how these annotations can be in-
corporated into EDSL designs either directly inside values or as monadic
effects. We provide BinderAnn, a GHC source plugin implementing our
ideas, and evaluate it by enhancing existing real-world EDSLs with rel-
atively minor modification efforts to contemplate the source-level static
information related to variables names and source locations.

Keywords: Embedded domain-specific languages, Haskell

1 Introduction

Embedded Domain-Specific Languages (EDSLs) are ubiquitous in Haskell. Its
powerful type system and extensible syntax are among the reasons making it a
very suitable programming language for implementing EDSLs [14]. Especially,
monads [25] and monadic do notation [17] are part of programmers’ toolbox
to implement all sorts of EDSLs. Monadic do notation enables users to write
domain-specific code in a sequential-like manner that it is easy to adopt by
programmers not familiar to Haskell’s syntax or even to functional programming
languages.

2 A. Mista et al.

semaphore = do
green ← node
yellow ← node
red ← node
green .->. yellow
yellow .->. red
red .->. green

(a) EDSL code describing
a semaphore color cycle.

digraph G
{
n0; n1; n2;
n0 -> n1;
n1 -> n2;
n2 -> n0;

}

(b) Generated code with-
out source information.

digraph G
{
green; yellow; red;
green -> yellow;
yellow -> red;
red -> green;

}

(c) Generated code using
the BinderAnn plugin.

Fig. 1: Enhancing the dotgen code generating EDSL with source information.

As a result of being embedded, Haskell EDSLs often lack the ability of re-
flecting some of the static source information that is intrinsic and available to
the host language (Haskell) but not in guest (the embedded DSL), namely bound
names and source locations. These limitations are especially known by designers
of EDSLs which generate low-level code, e.g., FeldSpar [3], Ivory [8], or Copilot
[22]. In these EDSLs, developers adopted, as the best-case scenario, ad-hoc mea-
sures to enforce that variables names in the generated code match those in the
host language. In this paper, we instead propose a systematic solution to such
problems as a source-to-source plugin [21] called BinderAnn. We will illustrate
the aforementioned limitations of Haskell EDSLs using a series of real-world ex-
amples of code generation, while we will show in tandem how our approach can
be used to overcome it.

1.1 Motivating examples

We consider as motivating example the monadic EDSL from the dotgen package
for generating DOT code1 from inside Haskell [10]. This EDSL creates new graph
nodes and connects them using do notation. A simple example of this is shown in
Fig. 1a, where we create a graph of the alternating colors of a street semaphore.

Internally, this EDSL sequentially creates a fresh node name for each invo-
cation of the node combinator, i.e, n0, n1, and so on. Then, the corresponding
DOT code is generated referring to these generated names, as it is shown in
Fig. 1b. Sadly, the generated code does not quite reflect the nature of our par-
ticular graph: sequential names are of little help for interpreting the semantics
of the generated code. To make things worse, this is not a just limitation of this
particular EDSL. The variable names to the left of binds (←) do not belong to
an EDSL itself, but to the host language in which it is embedded—thus, such
EDSL cannot make use of this useful source information directly.

Common practices To address this recurrent limitation, some EDSLs resolve
in using redundant strings to indicate variable names when synthesizing code
[9, 22, 2]. For instance, consider the EDSL for synthesizing C programs via SMT

1DOT is a graph description language used by many open source applications.

Automated Reification of Source Annotations for Monadic EDSLs 3

1 genAddSub = do
2 x← cgInput "x"
3 y← cgInput "y"
4 cgOutput "diff" (x− y)
5 cgReturn (x+ y)

(a) EDSL code with redundant string
names for generating terms.

genAddSub = do
x← cgInput
y← cgInput
diff← cgOutput (x− y)
cgReturn (x+ y)

(b) Simplified EDSL where names are ex-
tracted automatically by BinderAnn.

Fig. 2: Avoiding redundant string names in the sbv EDSL via source annotations.

solvers in the sbv package [9]. This EDSL enables to express relationships be-
tween the inputs and outputs of a function, and based on that, it generates its C
body accordingly. Fig. 2a presents a very simple example of this, where we use
the cgInput combinator to bind the function inputs "x" and "y" to the Haskell
variables x and y, respectively, and then we specify how the outputs are calcu-
lated based on them. In this example, the function will simply return the sum of
both inputs (line 5), while storing their difference in the output pointer "diff"
(line 4). Then, the EDSL will generate the following C code:

SInt32 AddSub(SInt32 x, SInt32 y, SInt32 *diff){
...
*diff = x - y;
return (x + y);

}

where ... simply indicates the rest of the generated code which is not relevant
to the point being made here. Notice how the EDSL expects the users to give
strings denoting variable names to the expressions they already bind with the
same variable name but using do notation. While this common technique works
in practice, this added redundancy requires maintenance and might be hard to
keep in sync with the concrete Haskell bind variable names they replicate.

1.2 BinderAnn

In this paper, we present a novel technique to enhance existing (and future) ED-
SLs with the static information that is missing to generate faithful code, and
without relying on redundant string names. In essence, our approach consists of
automatically transforming the syntactic representation of our Haskell code to
make the static information related to bound names explicitly available to ED-
SLs. This is now possible due to the recent addition of source-to-source plugins
[21] to the GHC Haskell compiler.

Recalling our dotgen example, our approach can be used to generate DOT
code that accurately reflects the one written by the user of the EDSL—see Fig. 1c
Furthermore, Fig 2b shows how our approach can simplify the sbv EDSL by not
requiring string names to be passed around while generating the same C code.

4 A. Mista et al.

1.3 Beyond bindings

In practice, bound names are not the only kind of useful static information that
can be extracted from EDSL code. Many EDSLs lack descriptive error messages
which could be improved by having access to the source locations. To illustrate
this point, we consider the EDSL provided by the shellmate package for exe-
cuting shell scripts from Haskell [7]. With this EDSL, we can create computa-
tions capturing the output of existing shell commands:

cpuinfo = capture (run "cat" ["/proc/cpuinfo"])
meminfo = capture (run "cat" ["/proc/meminfo"])

And use them to build complex shell-like scripts:

1 saveInfo = do
2 cpu← cpuinfo
3 mem← meminfo
4 output "info.txt" (cpu++ mem)

Let us suppose that we mistype the "/proc/meminfo" path. If we run our
saveInfo script, the mangled path given to the command cat will produce a
runtime exception that will be captured by the EDSL and printed to the user
simply as:

Command "cat" failed with error code 1

This error message is hardly helpful for debugging the problem of our shell script,
especially considering that many functions may be defined in terms of capturing
the output of the cat command.

By using BinderAnn, it is also possible to extract the exact position in the
user code where the error is triggered. In this light, we can enhance this EDSL to
support more precise and useful error messages. For instance, the error message
above can be improved to:

Exception raised at src/MyScript.hs:(3,3):
The value "mem" produced the following error:
Command "cat" failed with error code 1

Note how this error message now includes not only the name bound to the
problematic command (mem), but also its position in the code.

The examples presented so far have motivated the development of BinderAnn
to improve the capabilities of monadic EDSLs considerably. To summarize, the
contributions of this paper are:
• We propose a simple yet powerful syntactic transformation technique for anno-

tating monadic computations expressed using do notation with useful source
information (Section 2).
• We propose two different annotation styles depending on how EDSLs can

consume the static information provided to them, i.e., binding names and
source locations (Section 3).

Automated Reification of Source Annotations for Monadic EDSLs 5

• We extend our simple transformation technique with support for annotating
monadic computations returning and pattern matching against tuples, as well
as a mechanism for controlling the transformation scope (Section 4).
• We provide an implementation of our ideas, in the shape of a GHC source-

to-source plugin called BinderAnn.2 With our plugin in mind from the begin-
ning, we develop a complete case study from scratch, demonstrating how the
ability of reifying source information automatically might unlock attractive
new features in future EDSLs (Section 5).
• We discuss other possible approaches to fill the static information gap between

hosts and guests embedded languages and their implications. Additionally, we
reflect on the limitations of BinderAnn, as well as possible extensions to make
it applicable to a larger space of EDSL (Section 6).

2 Generating Source Annotations Using Source Plugins

This section briefly describes source-to-source plugins (or source plugins for
short), a new mechanism included in the GHC compiler for inspecting and trans-
forming the parsed representation of the compiled code before any other trans-
formation is performed. Moreover, we show how it is possible to take advantage
of this mechanism to transparently enhance monadic code written using do no-
tation with useful source information.

Essentially, a GHC plugin is a Haskell function that can be inserted into
the compilation pipeline to transform the output of the compiled code in differ-
ent ways [21, 20]. These transformations can alter the compiled code at different
stages, where each stage defines a different interface for its corresponding kind of
plugin, dependent on the representation of the code used by the compiler at that
point. Historically, this mechanism only allowed plugins to be inserted during
type-checking, and after the code was transformed to GHC’s Core intermediate
representation [15]. Recently, GHC 8.6.1 also added support for plugins to be in-
serted after parsing and after renaming, and this work focuses on the former kind.

In GHC, the plugin interface is condensed in a record data type Plugin,
containing a field for each of the transformation stages available. In particular,
source-to-source plugins are given by the record field parsedResultAction of
this data type:

data Plugin = Plugin {
parsedResultAction :: [CommandLineOption]→ ModSummary

→ HsParsedModule→ Hsc HsParsedModule
· · ·

}

This field exposes the interface of a transformation function over the abstract
syntax tree of the module under compilation (of type HsParsedModule). This
abstract syntax tree includes relevant static information not available to the

2Available at https://github.com/OctopiChalmers/BinderAnn

6 A. Mista et al.

programmer, such as the variable name of every binding, as well as the source
location of every syntactic object in the module—two valuable resources that
one might want to have access to when implementing EDSLs in Haskell.

Using this interface, we can implement our source plugin by providing a mod-
ule exporting a value plugin :: Plugin, which executes our code transformation:

module BinderAnn (plugin) where

import GhcPlugins

plugin :: Plugin
plugin = defaultPlugin {parsedResultAction = <our code here>}

Later, our plugin can be enabled by passing the name of its module as a
flag to the GHC compiler (-fplugin=BinderAnn), or using a compiler-options
pragma in the module we want our plugin to transform:

{-# OPTIONS_GHC -fplugin BinderAnn #-}

Next subsection introduces a simple syntactic transformation procedure based
on source plugins for transposing useful static information from the source code
representation into the internal state of our EDSLs automatically.

2.1 Enhancing EDSLs with Source Information

We have seen that it is possible to expose static source information from our
code using source plugins. However, for our EDSLs to take advantage of this in-
formation, we need to transform the user code so that it explicitly communicates
this information to the EDSL after our plugin runs at compile time.

In this work, we propose a simple transformation over do statements: we
will annotate each statement with the static information that can be extracted
from the parsed representation of the code, which we will simply refer to as a
source annotation. To achieve this, the first step consists of defining a concrete
representation for source annotations, which will be used both by our plugin and
by the target EDSLs it annotates. For this purpose, we will rely on a new data
type SrcInfo to hold the static information relative to a do statement:

data SrcInfo = Info (Maybe String) (Maybe Loc)

This data type stores the name bound to the statement (if any), and the location
in the source code where it is defined, being the latter a conjunction of a file
path, and a row and column within such file:

type Loc = (FilePath, Int, Int)

The option type used for the location information in the definition of SrcInfo is
required to represent the fact that the GHC compiler might not know the specific
source location of a statement. A situation that might occur, for instance, if such
statement was automatically generated by another source plugin.

Automated Reification of Source Annotations for Monadic EDSLs 7

Later, our source plugin can easily populate a source annotation (of type
SrcInfo) for each do statement it finds. However, we still need to insert each
annotation into our EDSL in a predictable way. For this purpose, we will define
a function annotateM, taking a monadic computation and a source annotation,
and returning a new monadic computation which internalizes such annotation:

annotateM :: Monad m⇒ m a→ SrcInfo→ m a

Note how this function refers neither to a specific monadic type (m) nor to a
specific return type of the monadic computation (a). This generality lets our
plugin blindly transform every do statement it finds in the user code in a type-
safe manner. To do so, it simply wraps every statement with its static information
using our generic annotation function. For instance, our plugin will transform
the semaphore example from Section 1 to the following concrete code:

1 semaphore = do
2 green ← node `annotateM̀ Info (Just "green") (Just ("Main.hs", 2, 3))
3 yellow ← node `annotateM̀ Info (Just "yellow") (Just ("Main.hs", 3, 3))
4 red ← node `annotateM̀ Info (Just "red") (Just ("Main.hs", 4, 3))
5 green .->. yellow`annotateM̀ Info Nothing (Just ("Main.hs", 5, 3))
6 yellow .->. red `annotateM̀ Info Nothing (Just ("Main.hs", 6, 3))
7 red .->. green `annotateM̀ Info Nothing (Just ("Main.hs", 7, 3))

Notice, for instance, how the bound name red is reflected in the source anno-
tation for the red ← node statement with the value Just "red", whereas the
green .->. yellow statement in the next line is not given any name, which gets
represented by the Nothing constructor on its corresponding source annotation.

Additionally, each annotation carries the source location within the user code
of its corresponding statement—assuming here that the first do statement is
defined in line number 2 of the file Main.hs.

After this transformation is automatically applied, the user will be able to
make use of this useful source information, which is now explicit in the source
code—and without the burden of maintaining manually written annotations.

Even though this transformation is rather mechanical, the behavior of the
annotating function annotateM is not trivial, and is subject to which types of our
EDSLs are expected to be annotated, and how the source annotations should be
consumed by them. The next section addresses the challenges of implementing
this function in depth.

3 Consuming Source Annotations

In the previous section, we demonstrated how it is possible to annotate expres-
sions written using do notation with source information via source plugins. Such
annotations rely on a generic function annotateM to produce the annotation ef-
fect. This section explores the details of this function in two possible variants.

Haskell gives the programmer the freedom to implement EDSLs in many
ways, depending on the nature of the embedded language. As a consequence, a

8 A. Mista et al.

concrete solution for annotating EDSLs would likely not fit many use cases. In
this light, our approach supports two different annotation styles that the pro-
grammer can use depending on the particular implementations of their EDSLs:
• Effect-free annotations: the annotations are stored directly on the values they

refer to, e.g, using a specialized data constructor, or an option type.
• Effect-full annotations: the annotations are kept in a monadic context as a side

effect, e.g., using a mapping from values to annotations inside a state monad.
On one hand, the effect-free style lets us annotate values in place, regardless of
the monadic context producing them, which might come in handy if our EDSL
defines several monadic types to be used by the end-user. On the other hand,
the effect-full style lets us insert the source annotations in the monadic context
without having to modify the return value of each computation. This style might
be useful if our EDSL already carries an internal monadic state, or if the source
annotations should not be available to the end-user.

Both annotation styles are independent of each other and provide different
interfaces to interact with BinderAnn. Programmers will then have to choose
the most suitable one depending on the nature of their EDSLs, and adapt their
code to be able to consume the annotations generated by our plugin.

The rest of this section addresses each annotation style in detail.

3.1 Effect-Free Annotations

The simplest way to annotate a value with source information is given when
its type already supports annotations. For instance, suppose that the graph-
building EDSL from Section 1 defines graph nodes as having an identifier, and
an associative list of attributes as payload:

data Node = Node Id [(Attr, Value)]

With this in place, the rest of the EDSL combinators can be implemented in
terms of nodes as inputs and outputs:

node :: Dot Node
(.->.) :: Node→ Node→ Dot ()

where Dot is the main monad defined by this EDSL, whose details are not
very relevant for this annotation style. To support generating faithful code, we
can extend the definition of the Node data type to also carry an optional field
representing the name of each node:

data Node = Node Id (Maybe String) [(Attr, Value)]

Then, we need to somehow specify that every monadic computation returning
a Node should (potentially) be annotated with its bound name. To encode this,
we can define a new type class [13] Annotated, representing types (of type a)
that can be annotated directly:

Automated Reification of Source Annotations for Monadic EDSLs 9

class Annotated a where
annotate :: a→ SrcInfo→ a

The function annotate simply takes a value and an annotation and returns an
annotated value of the same type. Then, we can specify how the source bound
names can be inserted into nodes by giving an appropriate Annotated instance:

instance Annotated Node where
annotate (Node id attrs) (SrcInfo name loc) = Node id name attrs

where we simply extract the bind name from the source annotation and use it
as the node name—for simplicity, we discard the location information here.

Using this type class, we can finally implement our desired annotateM func-
tion which transforms do statements by unwrapping the return value from the
monadic computation and returning the corresponding annotated one:

annotateM :: (Monad m, Annotated a)⇒ m a→ SrcInfo→ m a
annotateM ma ann = do
a← ma
return (annotate a ann)

This is an extensible mechanism that lets us support automatic annotations
over the return types of our interest. We simply need to provide an instance of
the Annotated type class for every return type of a do statement we want to
annotate using our plugin.

While simple, this transformation is not safe (yet). Recalling from Section
2, our plugin knows nothing about the return type of a do statement. Hence, it
transforms every statement it finds under the assumption that this transforma-
tion will not produce a type error—as annotateM universally quantifies over any
possible return type of the monadic computation it transforms. However, our
annotateM function now carries an additional Annotated constraint! In prac-
tice, this means that our plugin will break the well-typedness of our EDSL if
it happens to find a monadic computation returning a value of a type with-
out an Annotated instance. And even though we could potentially provide an
Annotated instance for every type used by our EDSL, a user could always write
a statement returning a value of a type not known by our EDSL:

x← return False

Here, the lack of an instance for Annotated Bool will break the module during
type checking.

To attenuate this problem, we can make every type trivially annotatable by
simply discarding the annotation altogether:

instance {-# INCOHERENT #-} Annotated a where
annotate a = a

This generic instance works as a default trivial annotation method, where any
concrete Annotated instance written by the programmer will take precedence

10 A. Mista et al.

against this one [16]. Furthermore, note how this default instance requires to be
declared as incoherent. This ensures that the type checker will pick a concrete
instance written by the user whenever possible, but it will conservatively use the
default one in case of an overlapping arising from annotating fully-polymorphic
functions—we discuss this in detail in Section 6.4.

3.2 Effect-Full Annotations

EDSLs might also be implemented in a fully stateful manner, where the impor-
tant data is kept in the monadic context, and the user only gets a reference to
handle it. For instance, suppose that our graph-building EDSL from Section 1
does not return nodes directly, but references to them instead:

data NodeRef = NodeRef Id

node :: Dot NodeRef
(.->.) :: NodeRef→ NodeRef→ Dot ()

Here, the node payload will be kept in an internal state of the Dot monad defined
by the EDSL, which could be defined on terms of a state monad:

newtype Dot a = Dot (State DotState a)

data DotState = DotState {
node_attrs :: Map NodeRef [(Attr, Value)]
}

In this case, we might as well want our annotation mechanism to follow the same
pattern, inserting the annotations in the monadic context instead of directly in
the value they refer to. For this purpose, we can extend our DotState type to also
carry the source names given to the bound nodes (if any) using a partial mapping:

data DotState = DotState {
node_attrs :: Map NodeRef [(Attr, Value)],
node_names :: Map NodeRef String
}

Similarly as before, we can define a new type class to specify how to annotate
values of different types, except that this time we also need to quantify over the
specific monadic context in which the annotation takes place:

class Monad m⇒ AnnotatedM m a where
annotateM :: m a→ SrcInfo→ m a

Notice that this new type class defines our desired annotateM function directly.
In contrast to the previously seen Annotated type class from the previous sub-
section, this type class let us specify how do statements can be annotated de-
pending not only on their result type but also on their specific monadic type. In
this light, computations returning new node references can be annotated within
the Dot monad by inserting the bound names in the extended internal state:

Automated Reification of Source Annotations for Monadic EDSLs 11

instance AnnotatedM Dot NodeRef where
annotateM mref (Info name loc) = do
ref← mref
when (isJust name) $ modify $ λs→
s {node_names = Map.insert ref (fromJust name) (node_names s)}

return ref

As before, we also need to provide a default instance for our new type class, to
ensure that our plugin will not break the well-typedness of the user code:

instance {-# INCOHERENT #-} Monad m⇒ AnnotatedM m a where
annotateM ma = ma

All in all, the two annotation styles presented in this section cover a wide
variety of EDSL implementation patterns.

4 Extensions

This section describes two useful extensions to our annotation approach that are
currently supported by our plugin.

4.1 Annotating Computations Returning Tuples

The syntactic transformation described so far contemplates monadic computa-
tions with and without bound names. However, in principle we could only use it
to extract the names bound to complete resulting values, i.e, when the pattern
at the left hand side of (←) is a plain variable pattern. In practice, a compu-
tation could produce multiple values and return them in a tuple. For instance,
suppose that our graph-building EDSL example from Section 1 provides a com-
binator nodes returning multiple new nodes at once:

(green, yellow, red)← nodes

For this common programming practice, we would want to insert an annotation
for each element of this tuple, following the same pattern as we did before.
However, our source annotations can only associate a single name bound to a
complete result value of a monadic computation.

Fortunately, we can extend our plugin to support tuple results by inserting
a function that lifts our annotation mechanism to each element of the resulting
tuple:

(green, yellow, red)← nodes
`annotateM3̀

(Info (Just "green") (Just ("Main.hs", 2, 4)),
Info (Just "yellow") (Just ("Main.hs", 2, 10)),
Info (Just "red") (Just ("Main.hs", 2, 18))

12 A. Mista et al.

where annotateM3 simply extracts each tuple element from the monadic compu-
tation, annotates it using the ordinary annotation function, and returns a new
tuple containing each annotated value:

annotateM3 :: Monad m⇒ m (a, b, c)→ (SrcInfo, SrcInfo, SrcInfo)→ m (a, b, c)
annotateM3 mabc (ia, ib, ic) = do

(a, b, c)← mabc
a’← return a`annotateM̀ ia
b’← return b`annotateM̀ ib
c’← return c`annotateM̀ ic
return (a’, b’, c’)

It is easy to see how this lifting primitive can be trivially generalized to tuples
of any fixed size.

4.2 Specifying the Annotation Scope

By default, our annotation plugin will transform every do expression present
on the module it runs over. Even though a module can contain do expressions
of different monadic types, we have shown in Section 3 how this transformation
can effectively affect only those expressions of the types the user is interested in.

Nonetheless, for a given type to be annotated with source information, a user
might still want to limit the scope of the annotations to a certain subset of do
expressions. To support this, our plugin can also be set to work in a selective
mode, where the user specifies which do expressions should be transformed.

On one hand, if the target expression is bound to a top-level name, we can
use a GHC annotation pragma to specify that we are interested in annotating it:

{-# ANN semaphore SrcInfo #-}
semaphore = do
<annotated do statements>

This way, BinderAnn will begin by reifying all the annotation pragmas defined
in the module, and will proceed to transform only those do expression for which
a corresponding annotation pragma exists.

However, annotation pragmas can only refer to top-level bindings, limiting
the applicability of this technique. In practice, writing do expressions at the
right hand side of the ($) infix function application operator is quite common.
For instance, a user might define a graph and render its DOT code right away:

semaphoreCode = showDot $ do
<do statements>

There is no top-level name we can use to specify our plugin to annotate this
nested do expression. To solve this, we can introduce an infix annotation oper-
ator. This is, we can replace the infix function application operator ($) with a
new syntactic operator, e.g., (|$|), that can be sought within the user’s code in
order to transform nested do expressions:

Automated Reification of Source Annotations for Monadic EDSLs 13

semaphoreCode = showDot |$| do
<annotated do statements>

Then, our plugin will transform every do expression at the right hand side of a
(|$|) operator to include the appropriate source annotations, replacing it with
normal function application in the process. In practice, the programmer can
specify the annotation operator to be any valid infix operator name using a
plugin option in BinderAnn (-fplugin-opt BinderAnn:infix=|$|).

This gives us the freedom to choose the most appropriate operator according
to the nature of the embedded language. Additionally, the infix annotation op-
erator can be defined as a synonym to the actual function application operator:

(|$|) :: (a→ b)→ a→ b
(|$|) = ($)

This way, the behavior of our code does not change when the plugin is disabled.
Next section develops a complete case study, exploring some interesting fea-

tures that our plugin enables and can aid in implementing in future EDSLs.

5 Case Study: Theorem Proving EDSL

So far we have seen how source annotations can be automatically extracted from
the source code using a GHC source plugin (Section 2), as well as consumed to
our EDSLs in different ways depending on how they are implemented (Section 3).

Using this approach, we enhanced several existing EDSLs [10, 9, 7, 1] (includ-
ing the ones presented in Section 1) to support source annotations, obtaining
attractive results3with relatively small effort.

To demonstrate the full potential of our automated transformation technique,
this section introduces a novel case study we designed from scratch having source
annotations in mind. In this light, we implemented a simple proof assistant EDSL
for propositional logic formulas,4 based on Coq’s [4] tactic style, i.e., our proofs
will consist of a series of monadic commands (the tactics) which will manipulate
our goals and hypotheses to construct a proof for a given target formula.

Despite not being academically enlightening, this EDSL uses the effect-full
annotation style to take advantage of the source information present in the user
code, in order to provide useful interactive (modulo recompilation time) proof-
state reports—an attractive feature that was not possible to achieve before using
monadic EDSLs. To give an example of this, Fig. 3a shows a proof of Modus
ponens discharged using our EDSL. Firstly, we use the combinator variables
to create two new propositional variables p and q (line 3). These variables are
used immediately in line 4, where the proof combinator establishes the current
proof goal (p ∧ (p ⇒ q) ⇒ q) and we can proceed to prove it using the do
expression starting after the ($) operator.

3Available at http://github.com/OctopiChalmers/BinderAnn-examples
4Available at http://github.com/OctopiChalmers/PropProver

14 A. Mista et al.

1 modus_ponens :: Proof Prop
2 modus_ponens = do
3 (p, q)← variables
4 proof (p ∧ (p ⇒ q) ⇒ q) $ do
5 hand← intro
6 (hp, hpq)← destruct hand
7 hq← apply hp hpq
8 exact hq
9 qed

(a) A proof of Modus Ponens using
do notation in our EDSL.

At Proofs.hs:(7,5):
1 subgoal left
p, q: Prop
hand: p ∧ (p ⇒ q)
hp: p
hpq: p ⇒ q
hq: q
===================
q

(b) Proof state using
source annotations.

Incomplete proof:
1 subgoal left
V0, V1: Prop
H0: V0 ∧ (V0 ⇒ V1)
H1: V0
H2: V0 ⇒ V1
H3: V1
===================
V1

(c) Proof state using
internal names.

Fig. 3: User interface of our Coq-like, tactics-based proof assistant EDSL.

The proof itself uses a series of tactic combinators to progressively manipulate
our goal and hypotheses in order to prove our goal. In the first place, we introduce
the left hand side of the top-level implication goal as a new hypothesis named
hand using the intro combinator (line 5), leaving us with the responsibility of
proving its consequence, i.e., q. From here, we use the destruct combinator to
split our conjunction hypothesis hand into two new hypotheses named hp and
hpq, representing each side of the conjunction (line 6). Having the hypotheses
p and p ⇒ q now in scope, we use the apply tactic to eliminate the latter
applying it the former, obtaining a new hypothesis hq which represents our goal
(line 7). Our proof concludes in line 8 by telling the EDSL to use the specific
hypothesis hq as a proof of our goal, using the exact combinator. The final qed
command at line 9 simply asserts that the proof given matches the current goal,
and returns the proven proposition.

While writing this proof, our EDSL assists the user with a report of the
current proof state on each step. For instance, by removing the last tactic we
apply (line 8), the corresponding proof state given to the user is the one shown in
Fig. 3b. Notice how this report reflects the same variable and hypothesis names
introduced by the user in the proof code, i.e., p, q, hand, and so on. Additionally,
it indicates the current proof position within our file, which is also used to emit
a precise error message whenever some tactic is applied incorrectly—all these
features being now possible thanks to our plugin.

To illustrate how helpful this information is for our EDSL, Fig. 3c illustrates
the same proof state report we would obtain without reified source annotations
(by disabling our plugin for instance). There, both variable and hypothesis names
are just printed out using their internal names. Moreover, the current proof-state
source position is not available either. Together, these two compromises limit the
attractiveness of implementing elegant embedded proof assistants in Haskell.

Implementation To implement our EDSL, we will start by defining our main
monadic data type Proof by stacking two monads: a StateT transformer to keep

Automated Reification of Source Annotations for Monadic EDSLs 15

an implicit proof state, on top of an Except monad to raise and catch proof-
related errors:

newtype Proof a = Proof (StateT ProofState (Except ProofError a))

The most interesting bit here is how we define our proof state. In essence, we
will keep a set of propositional variables in scope, along with a stack of subgoals
(propositional formulas to construct) and their corresponding context:

data ProofState = ProofState {
ps_vars :: Set Var,
ps_subgoals :: [(Prop, Context)]
}

Here, variables are represented simply as numbers, whereas contexts are map-
pings from hypotheses (also represented as numbers) to propositions:

newtype Var = Var Int
newtype Hyp = Hyp Int
type Context = Map Hyp Prop

Finally, propositions are represented using a simple recursive data type encoding
each logical connective:

data Prop = Var Var | Prop ∧ Prop | Prop ⇒ Prop | · · ·

The machinery introduced so far is enough to implement the core logic of our
EDSL and its proof tactics. However, to take advantage of the source information
extracted by our plugin using the effect-full annotation style, we will further
extend our proof state with three additional fields to keep track of the source
information relevant to our proofs:

data ProofState = ProofState {
· · ·
ps_var_names :: Map Var String,
ps_hyp_names :: Map Hyp String,
ps_curr_pos :: Maybe Loc
}

These new fields will help us keeping track of: the source name given to each
propositional variable (introduced by the variables combinator); the source
name given to each new hypothesis (introduced by our different tactics); and the
location in the source code of the last command evaluated by the EDSL (if any).

Then, to connect this internal state to the source annotations generated by
our plugin, we need to consider the different result types that each combinator
of our EDSL produces. In first place, our variables combinator is used to
instantiate new propositional variables (of type Var). In this light, we can create
an annotation rule (using an AnnotatedM instance) to store the source name
each variable is given by the user (if any) into the internal names mapping of
our proof state:

16 A. Mista et al.

1 instance AnnotatedM Proof Var where
2 annotateM mvar (Info name loc) = do
3 updateCurrentPosition loc
4 var← mvar
5 when (isJust name) (recordVarName var (fromJust name))
6 return var

where recordVarName (line 5) inserts the bind name (if any) coming from the
source annotation into the internal variable names mapping:

recordVarName :: Var→ String→ Proof ()
recordVarName var name = modify $ λs→
s {ps_var_names = Map.insert var name (ps_var_names s)}

Additionally, the function updateCurrentPosition (line 3) simply updates the
location in the code of the last command executed by the EDSL (if any):

updateCurrentPosition :: Maybe Loc→ Proof ()
updateCurrentPosition loc = modify $ λs→ s {ps_curr_pos = loc}

The next thing we need to consider is how the result of each tactic affects
the source information collected in the internal proof state. In principle, proof
tactics can return either a new hypothesis (or a tuple of them), when they
cause new hypotheses to appear in the proof state, e.g., intro or apply tactics;
or a unit value, when they transform the proof state without introducing any
new hypothesis, e.g., the exact tactic. With this in mind, we will provide two
additional annotation rules to be executed whenever a proof tactic returns either
a new hypothesis (of type Hyp) or nothing (of type ()):

1 instance AnnotatedM Proof Hyp where
2 annotateM mhyp (Info name loc) = do
3 updateCurrentPosition loc
4 hyp← mhyp
5 when (isJust name) (recordHypName hyp (fromJust name))
6 return hyp

7 instance AnnotatedM Proof () where
8 annotateM munit (Info name loc) = do
9 updateCurrentPosition loc

10 munit

The first AnnotatedM instance (line 1) will store the source name each hypoth-
esis is given by the user (if any) into the internal proof state—the function
recordHypName from line 5 works analogously as recordVarName. As before, we
keep track of the last command evaluated by the EDSL in case of a proof error.

For the case of the second AnnotatedM instance (line 7), tactics not producing
new hypotheses will not bring new source names to store into the internal proof
state. However, this instance makes sure that if such a tactic fails, we have its
position logged into our internal proof state in order to report a precise error
message (line 9).

Automated Reification of Source Annotations for Monadic EDSLs 17

With these AnnotatedM instances in place, our plugin will seamlessly interact
with them, keeping track automatically of source names introduced by the users
in their code, as well as the location of each tactic invocation in case of having
to report a proof-related error.

6 Discussion

We have presented a simple mechanism based on source plugins for enhancing
Haskell EDSLs with source information. This section reflects on other approaches
for supporting the extraction of source information without relying on source plu-
gins. Moreover, we discuss limitations and possible extensions to our approach.

6.1 Preprocessing Haskell Code

Our approach is based on transforming the user code adding explicitly some of
the useful information that gets lost during compilation. The main advantage of
source plugins is that they provide a simple way of doing so without relying on
external machinery. Before their existence, achieving the same kind of function-
ality would have required a substantial amount of effort.

For an overview of other possible (and arguably less pleasant) solutions of this
problem, we refer the reader to the work of Dévai et al. [5]. There, the authors
propose different indirect techniques for enhancing Haskell EDSLs with static
information, e.g., using cpphs, the Haskell implementation of the C preprocessor;
as well as transforming the Haskell source AST using existing parsers and pretty
printers before feeeding it to the actual compiler.

6.2 Implementing EDSLs Using QuasiQuotation

In contrast to preprocessing our Haskell code to include static information, it is
also somewhat possible achieve the same goal this using meta-programming.

Template Haskell [23] is the Haskell meta-programming framework bun-
dled in the GHC compiler. This tool can be used to inspect the typing in-
formation present in the user’s codebase and synthesize new code depending
on it but, for technical reasons, inspecting term definitions or modifying exist-
ing Haskell code is not possible, making this framework unsuitable for imple-
menting a transformation-based approach. Nonetheless, a useful feature of Tem-
plate Haskell used by many existing EDSLs [24, 8, 12, 19, 11] is the support for
quasiquotation [18]. Essentially, quasiquotation allows to embed code written us-
ing arbitrary, domain-specific syntax into our Haskell code. To do so, this ap-
proach relies on implementing quasi quoters, i.e., interpretations from arbitrary
strings to their corresponding Haskell expressions:

data QuasiQuoter = QuasiQuoter {
quoteExp :: String→ Q Exp,
· · ·

}

18 A. Mista et al.

where Q is the quasiquotation monad defined by Template Haskell.
Using this approach, it would be possible to implement our Coq-like EDSL

from Section 5 as a quasi quoter coq :: QuasiQuoter accepting concrete Coq
syntax. Then, we could use it to embed Coq proofs into our Haskell EDSL using
quasiquotation brackets syntax ([| · · · |]):

1 modus_ponens :: Proof Prop
2 modus_ponens = [coq|
3 Variables P Q.
4 Theorem (P ∧ (P → Q) → Q).
5 Proof.
6 intro hand.
7 destruct hand as [hp hpq].
8 apply hp hpq as hq.
9 exact hq.

10 Qed.
11 |]

An advantage of this approach is that the arbitrary code written inside of
the quasiquotation brackets has (almost) no syntactic restrictions. Hence, it can
be used to embed domain-specific code written using the syntax that fits best
the nature of a given EDSL, as opposed to the syntactic restrictions imposed by
the use of Haskell syntax and do notation—which are exploited by BinderAnn.

However, all this flexibility does not come for free. Implementing a quasi
quoter for a language with a novel syntax implies writing a lexer and a parser
from a plain string to a Haskell expression—a task that might overcome the
benefits of having a new specialized syntax. Moreover, the interaction between
quasiquoters and native Haskell code tends to be intricate. In particular, enabling
quasiquoters to support embedding native Haskell code inside quasiquotation
brackets (something known as antiquotation) requires a considerable amount of
work and knowledge [18]—without this feature, our quasiquoters can only accept
constant EDSL expressions inside the quasiquotation brackets.

Extracting bound names becomes possible using quasi quoters, since, as we
mention above, we have access to the literal string written by the user. Source
locations, on the other hand, are more tricky to infer. By default, quasi quoters
will only be able to recognize source locations relative to where the quasiquota-
tion brackets are interpolated in our Haskell code (line 2 in our example above),
difficulting the task of giving the end-user error messages referring to absolute
locations within their code.

6.3 Source Annotations for Non-Monadic EDSLs

In this work, we decided to focus only on automatically annotating monadic
EDSLs expressed using do notation. Although it may seem arbitrary, the reason
behind this decision is simple: do notation gives us a good level of granularity.
Our plugin perform statement-wise transformations, matching the natural notion
of having one domain-specific command or instruction per do statement. This
symmetry lets us annotate EDSL very transparently for the end-user.

Automated Reification of Source Annotations for Monadic EDSLs 19

On the other hand, there exists many remarkable non-monadic EDSLs writ-
ten in Haskell and not supporting them by default constitutes a noticeable lim-
itation of our current approach. In principle, we could use the pure annotation
style introduced in Section 3 to insert annotations into pure values. However, it
is the lack of a well-defined statement structure what complicates deciding where
to insert source annotations. On one hand, annotating only top-level bindings
might be too sporadic for practical purposes, while doing so for every subexpres-
sion within a value might blow up the size of our transformed code exponen-
tially, so an acceptable annotation granularity would seem to lay somewhere in
between of these two extremes—an intriguing problem to drive our future work.

6.4 Use of Incoherent Instances

As mentioned in Section 3, our approach let us inject source annotations into
the values of certain types of interest, and relies on default instances to provide
trivial implementations of the annotation functions for any other possible value.

Instead of having to provide concrete annotation instances for each possible
type present in the user code, these default instances are a convenient feature
that allows doing so on a per-case basis while preserving the type-correctness of
the user code after it is transformed by our plugin. Sadly, this convenience has
as a limitation that annotations inserted into fully-polymorphic functions will
be systematically discarded. To illustrate this, consider for example the following
function that duplicates the output of a monadic computation:

twice :: Monad m⇒ m a→ m (a, a)
twice ma = do
x← ma
return (x, x)

If written by the user of the EDSL, and then annotated by our plugin, this
function will trigger a type error when there exists at least a single more concrete
Annotated or AnnotatedM instance. The reason behind this is simple: while type
checking the annotated statement x← ma, only the default annotation instance
is polymorphic enough to match the type of ma, however, it cannot be chosen
directly, as the existence of other more concrete ones would make this choice
inconsistent, e.g, using the default instance even when twice is instantiated in
the user code with a type that has a more concrete one. Then, declaring our
default instances as incoherent loosens this constraint, allowing the compiler to
choose the default instance whenever it has to solve an overlap while compiling
fully-polymorphic functions like twice, but leaving us with the aforementioned
limitation as a result of this conservative behavior.

The complexity around the use of overlapping instances is well known by the
Haskell community. In this light, this problem has been solved using more so-
phisticated approaches relying on type-level programming, e.g., using closed type
families [6]. Adopting them in our plugin without sacrificing its transparency
and ease of use is an ambitious problem that we keep as future work.

20 A. Mista et al.

7 Conclusions

We developed a simple mechanism to facilitate the automatic extraction of useful
source code information that is otherwise lost during compilation. Having access
to such information when implementing embedded domain-specific languages is
extremely valuable, making possible to implement attractive features such as
faithful code generation and precise error messages. In the past, such features
were more complicated if not impossible to achieve without involving undesirable
trade-offs like repeated code or quasiquotations.

In the future, we aim to investigate how to extend our approach to a wider
set of EDSL programming patterns, especially to those implemented using non-
monadic combinators, and for which the use of do notation is not available.
Additionally, we intend to evaluate how our annotation framework could be
extended using generic programming techniques, so programmers should not
need to adapt their existing EDSL data type definitions to work with it.

Acknowledgments. We want to thank Koen Claessen for the useful feedback
given throughout the development of this work. This work was funded by the
Swedish Foundation for Strategic Research (SSF) under the project Octopi (Ref.
RIT17-0023) and WebSec (Ref. RIT17-0011) as well as the Swedish research
agency Vetenskapsrådet.

References

1. Algehed, M., Jansson, P., Einarsdóttir, S.H., Gerdes, A.: Saint: An API-generic
type-safe interpreter. In: Pałka, M., Myreen, M. (eds.) Trends in Functional Pro-
gramming. pp. 94–113. Springer International Publishing (2019)

2. Axelsson, E.: Compilation as a typed EDSL-to-EDSL transformation. arXiv
preprint arXiv:1603.08865 (2016)

3. Axelsson, E., Claessen, K., Dévai, G., Horváth, Z., Keijzer, K., Lyckegård, B., Pers-
son, A., Sheeran, M., Svenningsson, J., Vajdax, A.: Feldspar: A domain specific
language for digital signal processing algorithms. In: Eighth ACM/IEEE Interna-
tional Conference on Formal Methods and Models for Codesign (MEMOCODE
2010). pp. 169–178. IEEE (2010)

4. Barras, B., Boutin, S., Cornes, C., Courant, J., Filliatre, J.C., Gimenez, E., Her-
belin, H., Huet, G., Munoz, C., Murthy, C., et al.: The Coq proof assistant refer-
ence manual: Version 6.1 (1997)

5. Dévai, G., Leskó, D., Tejfel, M.: The EDSL’s struggle for their sources. In: Central
European Functional Programming School. pp. 300–335. Springer (2013)

6. Eisenberg, R.A., Vytiniotis, D., Peyton Jones, S., Weirich, S.: Closed type families
with overlapping equations. ACM SIGPLAN Notices 49(1), 671–683 (2014)

7. Ekblad, A.: shellmate: Simple interface for shell scripting in Haskell. (2014),
https://hackage.haskell.org/package/shellmate

8. Elliott, T., Pike, L., Winwood, S., Hickey, P., Bielman, J., Sharp, J., Seidel, E.,
Launchbury, J.: Guilt free ivory. In: ACM SIGPLAN Notices. No. 12, ACM (2015)

9. Erkok, L.: sbv: SMT based verification: Symbolic Haskell theorem prover using
SMT solving. (2010), https://hackage.haskell.org/package/sbv

Automated Reification of Source Annotations for Monadic EDSLs 21

10. Gill, A.: dotgen: A simple interface for building .dot graph files. (2008),
https://hackage.haskell.org/package/dotgen

11. Giorgidze, G., Grust, T., Schreiber, T., Weijers, J.: Haskell boards the ferry. In:
Symposium on Implementation and Application of Functional Languages. pp. 1–
18. Springer (2010)

12. Giorgidze, G., Nilsson, H.: Embedding a functional hybrid modelling language in
Haskell. In: Symposium on Implementation and Application of Functional Lan-
guages. pp. 138–155. Springer (2008)

13. Hall, C.V., Hammond, K., Peyton Jones, S.L., Wadler, P.L.: Type classes in
Haskell. ACM Transactions on Programming Languages and Systems (TOPLAS)
18(2), 109–138 (1996)

14. Hudak, P., et al.: Building domain-specific embedded languages. ACM Comput.
Surv. 28(4es), 196 (1996)

15. Jones, S.L.P., Santos, A.M.: A transformation-based optimiser for Haskell. Science
of computer programming 32(1-3), 3–47 (1998)

16. Jones, S.P., Jones, M., Meijer, E.: Type classes: an exploration of the design space.
In: Haskell workshop. pp. 1–16 (1997)

17. Launchbury, J.: Lazy imperative programming. In: Workshop on State in Program-
ming Languages, Copenhagen, Denmark, ACM (1993)

18. Mainland, G.: Why it’s nice to be quoted: quasiquoting for Haskell. In: Proceedings
of the ACM SIGPLAN workshop on Haskell workshop. pp. 73–82. ACM (2007)

19. Mainland, G., Morrisett, G.: Nikola: embedding compiled GPU functions in
Haskell. In: ACM Sigplan Notices. vol. 45, pp. 67–78. ACM (2010)

20. Marlow, S., Jones, S.P., et al.: The Glasgow Haskell compiler (2004)
21. Pickering, M., Wu, N., Németh, B.: Working with source plugins. In: Proceedings

of the 12th ACM SIGPLAN International Symposium on Haskell. ACM (2019)
22. Pike, L., Goodloe, A., Morisset, R., Niller, S.: Copilot: a hard real-time run-

time monitor. In: International Conference on Runtime Verification. pp. 345–359.
Springer (2010)

23. Sheard, T., Jones, S.L.P.: Template meta-programming for Haskell. SIGPLAN No-
tices 37(12), 60–75 (2002)

24. Snoyman, M.: Developing web applications with Haskell and Yesod. O’Reilly Me-
dia, Inc. (2012)

25. Wadler, P.: Monads for functional programming. In: International School on Ad-
vanced Functional Programming. pp. 24–52. Springer (1995)

