
It's My Privilege:

Controlling Downgrading in DC-Labels ?

Lucas Waye1, Pablo Buiras2, Dan King1,
Stephen Chong1, and Alejandro Russo2??

1 Harvard University, Cambridge MA, USA
{lwaye,danking,chong}@seas.harvard.edu

2 Chalmers University of Technology, Gothenburg, Sweden
{buiras,russo}@chalmers.se

Abstract. Disjunction Category Labels (DC-labels) are an expressive
label format used to classify the sensitivity of data in information-�ow
control systems. DC-labels use capability-like privileges to downgrade in-
formation. Inappropriate use of privileges can compromise security, but
DC-labels provide no mechanism to ensure appropriate use. We extend
DC-labels with the novel notions of bounded privileges and robust priv-

ileges. Bounded privileges specify and enforce upper and lower bounds
on the labels of data that may be downgraded. Bounded privileges are
simple and intuitive, yet can express a rich set of desirable security poli-
cies. Robust privileges can be used only in downgrading operations that
are robust, i.e., the code exercising privileges cannot be abused to release
or certify more information than intended. Surprisingly, robust down-
grades can be expressed in DC-labels as downgrading operations using
a weakened privilege. We provide sound and complete run-time security
checks to ensure downgrading operations are robust. We illustrate the
applicability of bounded and robust privileges in a case study as well as
by identifying a vulnerability in an existing DC-label-based application.

1 Introduction

Information-�ow control (IFC) systems track the �ow of information by associ-
ating labels with data. Disjunction Category Labels (DC-labels) are a practical
and expressive label format that can capture the security concerns of principals.
IFC systems and DC-labels can provide strong, expressive, and practical infor-
mation security guarantees, preventing exploitation of, for example, cross-site
scripting and code injection vulnerabilities [9, 10,19,23,26].

IFC systems often need to downgrade information: declassi�cation down-
grades con�dentiality, and endorsement downgrades integrity. Downgrading of

? This work is supported in part by the National Science Foundation under Grants
1054172 and 1421770, DARPA CRASH under contract #N66001-10-2-4088, the
Swedish research agencies VR and STINT, and the Barbro Osher Pro Suecia foun-
dation.

?? Work done while visiting Stanford

DC-labels occurs via operations that require unforgeable capability-like tokens
known as privileges. Unfortunately, DC-labels o�er no methodology to protect
developers from the discretionary (i.e., unrestricted) exercise of privileges�even
a minor mistake in handling privileges can compromise the whole system's se-
curity. For example, we found a one-line vulnerability in an existing DC-label
application written by experts that enabled con�dential information to be inap-
propriately released, thus violating the application's intended security properties.

To address this, we introduce restricted privileges: privileges that are limited
in their ability to declassify and endorse information. By declaratively restricting
the use of privileges, developers can reason about the security properties of the
system, regardless of the code that may possess or use the restricted privileges.
Thus, the developer's local declaration of restrictions enables the enforcement of
global information security guarantees.

We present two kinds of restricted privileges: bounded privileges and robust
privileges. A bounded privilege imposes upper and lower bounds on the DC-labels
of data that is declassi�ed or endorsed using that privilege. Robust privileges
avoid the accidental or malicious use of privileges to declassify or endorse more
information than intended, achieving a property known as robustness [16, 25].

Bounded Privileges. A bounded privilege wraps an unrestricted privilege with
two immutable labels that indicate upper and lower bounds for downgrading.
DC-labels form a lattice structure (described in Section 2), and thus a bounded
privilege restricts where in the lattice downgrading may occur. A bounded priv-
ilege also has a mode, indicating whether the bounded privilege may be used for
declassi�cation, endorsement, or both declassi�cation and endorsement.

In terms of con�dentiality, the upper bound limits the con�dentiality of in-
formation that can be declassi�ed using the privilege, and the lower bound limits
the con�dentiality of the information after declassi�cation. For example, suppose
principal fb.com passes a bounded privilege to gogl.com. If the lower bound of
the bounded privilege is the label �gogl.com� then the privilege can be used to
declassify information only from fb.com to gogl.com. Even if gogl.com passes
the bounded privilege to another domain, say evil.com, the bounded privilege
cannot be used to declassify information from fb.com to evil.com.

In terms of integrity, the upper bound of a bounded privilege indicates the
least trustworthy level of information the privilege can be used to endorse, and
the lower bound limits the integrity of the information after endorsement. For
example, by setting the upper bound appropriately, fb.com can create a bounded
privilege that can be used to endorse data only from gogl.com, and cannot be
used to endorse other data, say from evil.com.

Robust Privileges. The security of a system might be at risk if an attacker
is able to in�uence the decision to declassify or endorse information, or can
in�uence what information is declassi�ed. For example, consider a routine that
receives a secret pair (username,password) and uses a privilege to declassify the
�rst component of the pair. If an attacker (from another system component) can
in�uence the pair to be (password,username) and trigger the declassi�cation,
the password will be leaked.

Robust declassi�cation [25] and quali�ed robustness [16] are end-to-end se-
mantic security guarantees that ensure that attackers are unable to inappropri-
ately in�uence what information is revealed to them. These security conditions
can be enforced by restricting declassi�cation and endorsement operations. A ro-
bust privilege wraps a privilege and ensures that it is used only in declassi�cation
and endorsement operations that satisfy appropriate robustness checks.

This paper makes the following contributions: (i) We introduce bounded
and robust privileges to limit the exercise of privileges for declassi�cation and
endorsement. (ii) We present a semantic characterization of how bounded privi-
leges and robust privileges restrict declassi�cation and endorsement operations.
(iii) We de�ne run-time security checks for bounded privileges and robust priv-
ileges that soundly and completely enforce the semantic characterization of re-
stricted downgrading operations. The run-time checking for robust downgrading
is e�ectively a weakening of the underlying unrestricted privilege: a surpris-
ingly simple characterization of robustness. (iv) We illustrate the applicability
of bounded and robust privileges via a case study. Moreover, use of restricted
privileges identi�ed a vulnerability in an existing DC-label-based application.

This paper is organized as follows. Section 2 introduces the DC-label model.
Section 3 characterizes downgrading operations that use restricted privileges, and
Section 4 provides the corresponding enforcement. Section 5 describes security
properties in the presence of multiple restricted privileges. Case studies are given
in Section 6. Section 7 examines related work and Section 8 concludes.

2 Background

We brie�y de�ne three concepts fundamental to our presentation: the DC-label
model, privileges, and �oating label systems.

C1 vc C2 ⇐⇒ C2 ⇒ C1

C1 tc C2 ⇐⇒ C1 ∧ C2

C1 uc C2 ⇐⇒ C1 ∨ C2

⊥c ≡ True >c ≡ False

Fig. 1: Con�dentiality Lattice

I1 vi I2 ⇐⇒ I1 ⇒ I2
I1 ti I2 ⇐⇒ I1 ∨ I2
I1 ui I2 ⇐⇒ I1 ∧ I2

⊥i ≡ False >i ≡ True

Fig. 2: Integrity Lattice

Label Lattice DC-labels [21] are pairs of
con�dentiality and integrity policies. Con-
�dentiality polices describe who may learn
information. Integrity polices describe who
takes responsibility or vouches for informa-
tion. Both con�dentiality and integrity poli-
cies are positive propositional formulas in
conjunctive normal form, where propositional
constants represent principals. Let CNF de-
note the set of all positive propositional for-
mulas in conjunctive normal form; we use the
term formula to range over CNF. We assume
that operations on formulas always reduce
their results to conjunctive normal form.

Both con�dentiality policies and integrity
policies form lattices�see Figures 1 and 2.

We interpret C1 vc C2 as: C2 is at least as con�dential as C1. For instance,
Alice ∨ Bob vc Alice, which means that data readable by either Alice or Bob
is less con�dential than data readable only by Alice. Conjunctions of princi-
pals represent the multiple interest of principals to protect the data. Conversely,
disjunctions of principals represent groups wherein any member may learn the
information. The integrity lattice is dually de�ned [3]; we interpret I1 vi I2 as:
I1 is at least as trustworthy as I2. For example, Alice∧Bob vi Alice, which indi-
cates that data vouched for by Alice∧Bob is more trustworthy than data vouched
for only by Alice. In this case, conjunctions of principals represent groups whose
members are independently responsible for the information. For example, data
with integrity Alice∧Bob means that Alice is completely responsible for the data,
and so is Bob. Conversely, disjunctions of principals represent groups that col-
lectively take responsibility for the information, however, no principal takes sole
responsibility. For example, data with integrity Alice∨Bob means that Alice and
Bob collectively are responsible for the data, i.e., both may have contributed to,
or in�uenced the computation of the data.

〈C1, I1〉 v 〈C2, I2〉 ⇐⇒ C1 vc C2 and I1 vi I2
〈C1, I1〉 t 〈C2, I2〉 ≡ 〈C1 tc C2, I1 ti I2〉
〈C1, I1〉 u 〈C2, I2〉 ≡ 〈C1 uc C2, I1 ui I2〉
c(〈C, I〉) ≡ C i(〈C, I〉) ≡ I

Fig. 3: Security lattice for DC-labels

Formally, a DC-label is a
pair of a con�dentiality pol-
icy C and an integrity policy
I, written 〈C, I〉. DC-labels
form a product lattice given
in Figure 3. The v relation is
called the can-�ow-to relation
because it describes informa-
tion �ows that respect con�dentiality and integrity policies. We write c(·) and
i(·) for the projection of con�dentiality and integrity components, respectively.

〈Alice,Charlie〉 6v 〈Alice,Charlie ∧ Alice〉

Fig. 4: Downgrading integrity

〈Alice ∧ Bob,Charlie〉 6v 〈Bob,Charlie〉

Fig. 5: Downgrading con�dentiality

Downgrading In the DC-label
model, one security policy downgrades
to another security policy if they do
not satisfy the can-�ow-to relation.
Consider the pair of security labels in
Figure 4. The �rst security label en-
forces the policy that data is vouched
for by Charlie. The second security la-
bel enforces the policy that data is vouched for by Charlie and Alice, therefore a
secure system cannot permit data to �ow from the sources protected by the �rst
policy to sinks protected by the second policy. This downgrade is an endorse-
ment, since it downgrades only integrity, i.e., it makes a value more trustworthy.
Dually, a declassi�cation downgrades only con�dentiality, i.e., it makes a value
less con�dential. Consider the pair of security labels in Figure 5: The �rst secu-
rity label enforces the policy that data is con�dential to Alice∧Bob. The second
security label enforces that data is con�dential to Bob. Permitting data to �ow
from a source protected by the �rst policy to a sink protected by the second
policy violates the con�dentiality expectations of the source.

〈C1, I1〉 vp 〈C2, I2〉 ⇐⇒ C1 vc

p C2 and I1 vi

p I2

where C1 vc

p C2 ⇐⇒ C1 vc C2 tc p

I1 vi

p I2 ⇐⇒ I1 ui p vi I2

Fig. 6: Relation can-�ow-to-with-privilege-p

Privileges Practical systems must permit some downgrading. The DC-label
model controls downgrading with privileges, where every principal has an as-
sociated privilege, and a principal's privilege enables downgrading. More pre-
cisely, given principal p, the can-�ow-to-with-privilege-p relationship, written
vp, describes the information �ows permitted with p's privilege�see Figure
6. Observe that both downgrading examples from the previous section are now
permitted by the can-�ow-to-with-privilege relationship for the principal Alice,
i.e., 〈Alice,Charlie〉 vAlice 〈Alice,Charlie ∧ Alice〉 and 〈Alice ∧ Bob,Charlie〉 vAlice

〈Bob,Charlie〉.
Floating label systems DC-labels are usually part of �oating label systems
like LIO [22], Hails [9], and COWL [23]. Such systems associate a current la-
bel, Lpc , with every computational task�this label plays a role similar to the
program counter (PC) in more traditional language-based IFC approaches [19].
The current label denotes the fact that a computation depends only on data
with labels bounded above by Lpc . When a task with current label Lpc observes
information with label LA, the current label after observation, L

′
pc , must ��oat�

above both the previous current label and the observed information's label, i.e.,
L′
pc = Lpc t LA. Importantly, and to respect the security lattice, the current

label restricts the subsequent writes to communication channels. Speci�cally, a
task with current label Lpc is prevented from writing to channels protected by
policy LA if Lpc 6v LA.

Floating-label systems typically use some run-time representation of princi-
pals' privilege, and downgrading operations require the run-time representation
of a principal p's privilege to be presented in order to use the can-�ow-to-with-
privilege-p relation, vp. Thus, the run-time representation of a principal's priv-
ilege acts like a capability to downgrade that principal's information. We write
pQ for the run-time representation of the privilege of principal p, and refer to
this value as a raw privilege (to contrast it with the restricted privileges that we
introduce in this paper).

3 Security De�nitions

If a system contains pQ, then downgrading of data with policies involving p
depends entirely on how pQ is used in the system. Reasoning about what down-
grading occurs may require reasoning about global properties of the system.
Indeed, we found a vulnerability in a Hails example application [9] of a web-
based rock-paper-scissors game where use of a raw privilege was localized to one
component, but arbitrary data could be passed to this component to be down-
graded. This motivates our work to restrict privileges, and enable local reasoning
about downgrading that may occur in a system.

A restricted privilege is a raw privilege �wrapped� with limitations on its use.
These limitations enable sound reasoning about the downgrading that may be
performed using the restricted privilege, even if arbitrary code uses the restricted
privilege. Thus, local reasoning that ensures pQ is always appropriately restricted
provides global guarantees about the downgrading that can occur with respect
to policies involving p.

We present two kinds of restricted privileges, bounded privileges and robust
privileges, which provide simple declarative limitations on the use of raw privi-
leges.

Bounded Privileges A bounded privilege wraps a raw privilege with down-
grading bounds and a downgrading mode. A downgrading bound is a pair of
security lattice labels Lhigh and Llow that provide upper and lower bounds on
downgrading, and the mode indicates whether the bounded privilege can be used
to both declassify and endorse, only to declassify, or only to endorse.

De�nition 1 (Downgrading bounds). An operation that downgrades from
security policy Lfrom to security policy Lto in a computational context with
current label Lpc satis�es downgrading bounds Lhigh and Llow if and only if
(Lfrom t Lpc) v Lhigh and Llow v (Lto t Lpc)

De�nition 2 (Bounded privileges). A bounded privilege with bounds Lhigh

and Llow and mode m on privilege pQ, written m[pQ]
Lhigh

Llow
, can be used only for

downgrading operations with privilege pQ that satisfy downgrading bounds Lhigh

and Llow . Mode m is one of de, d, or e. Declassi�cation operations are permitted
only if the mode is de or d; endorsement operations are permitted only if the mode
is de or e.

⊥ = ⟨True, False⟩

⊤ = ⟨False, True⟩

Lhigh

Llow
integrity

co
nf

ide
nti

ali
ty

⟨A v B, A∧B⟩

⟨A∧B, A v B⟩

⟨A v B, A v B⟩

information
flow
(⊑)

⟨A∧B, A∧B⟩

Fig. 7: Bounded Downgrading

Figure 7 shows a visualiza-
tion of bounded downgrading.
The security lattice on the left
is overlaid with a visualiza-
tion of where bounded down-
grading can occur (shaded)
with respect to bounds Lhigh

and Llow . The security lattice
on the right shows an exam-
ple of what labeled values can
be declassi�ed (shaded) with a bounded declassi�cation privilege with bounds
Lhigh = 〈A ∧ B,A ∨ B〉 and Llow = 〈A ∨ B,A ∧ B〉.

In essence, the con�dentiality lattice has collapsed c(Lhigh) and c(Llow) and
all points in between: information that has con�dentiality up to c(Lhigh) may
be declassi�ed to con�dentiality c(Llow)�all other points in the con�dentiality
lattice are not a�ected. Guarantees for endorsement with respect to bounded
privileges are similar, but for integrity instead of con�dentiality.

Example 1 (Policy: Only Bob controls Alice's privilege). Principal Alice allows
Bob to declassify her data provided that Bob vouches for the data and the
decision to declassify. In other words, information labeled with Alice can be
declassi�ed only after endorsement by Bob. This property can be captured by a
bounded privilege with mode d and bounds: Lhigh = 〈>c,Bob〉, Llow = 〈⊥c,Bob〉.
If the privilege is used to declassify information that is not endorsed by Bob or in
a context where the current label is not endorsed by Bob, then the declassi�cation
fails. In general, data must be vouched for by Bob (e.g., by using BobQ or
another restricted privilege) before the bounded privilege for Alice can be used.
For example, if a computational task has a current label Lpc = 〈Alice,Bob ∨
Charlie〉, the current label must be endorsed by Bob �rst. By endorsing the
current label, Bob e�ectively vouches for any in�uence Charlie may have had
on the computational task.

Example 2 (Policy: �A close source said...�). The bounded privilege d[AliceQ]
〈>c,>i〉
〈⊥c,>i〉

requires that the integrity of data being declassi�ed is >i, i.e., data that no
principal takes responsibility for. Alice may wish to impose this restriction on
declassi�cation involving data con�dential to her to ensure that she has plausible
deniability regarding the source of the data released. That is, the bounded priv-
ilege can not be used to declassify data for which Alice is explicitly responsible.

Robust Privileges Robustness [16, 25] is a semantic security condition that
limits downgrading based on which principals might bene�t from the downgrad-
ing, and which principals have in�uenced the data to downgrade and the decision
to downgrade.

Consider a declassi�cation of information from a source protected by label
Lfrom to a sink protected by label Lto . A formula A (representing a principal
or party of principals) will bene�t from the declassi�cation if A cannot read
from the source, but can read the sink, i.e., c(Lfrom) 6vc A and c(Lto) vc A.
A robust declassi�cation does not permit any principal that bene�ts from it to
in�uence either the decision to declassify or the data to declassify. A in�uences
the decision to declassify if A vi

i(Lpc), and A in�uences the data to declassify
if A vi

i(Lfrom).

De�nition 3 (Robust declassi�cation). A robust declassi�cation using priv-
ilege pQ from a source protected by Lfrom to a sink protected by Lto, in a com-
putational context with current label Lpc is a declassi�cation (i.e., c(Lfrom) vc

p

c(Lto)) where ∀A ∈ CNF.c(Lto) vc A ∧ c(Lfrom) 6vc A ⇒ A 6vi
i(Lpc) ∧ A 6vi

i(Lfrom).

For endorsement, a principal beni�ts if it may be held responsible for infor-
mation from the source but is not held responsible for information from the sink.
In other words, A bene�ts from an endorsement if A gets absolved of responsi-
bility for a value, i.e., A vi

i(Lfrom)∧A 6vi
i(Lto). Robust endorsement does not

permit principals that bene�t from it to in�uence the decision to endorse.

De�nition 4 (Robust endorsement). A robust endorsement using privilege
pQ from a source protected by Lfrom to a sink protected by Lto, in a computational
context with current label Lpc is an endorsement (i.e., i(Lfrom) vi

p i(Lto)) where
∀A ∈ CNF.A vi

i(Lfrom) ∧A 6vi
i(Lto)⇒ A 6vi

i(Lpc).

A robust privilege is a privilege that can only be used for robust downgrading
operations.

De�nition 5 (Robust privilege). A robust privilege with mode m on priv-
ilege pQ, written rbstm{pQ}, restricts downgrading operations where it is used
to those that are robust for pQ. Mode m is one of de, d, or e. Declassi�cation
operations are permitted only if the mode is de or d; endorsement operations are
permitted only if the mode is de or e.

The de�nitions of robust declassi�cation and endorsements both quantify
over all formulas A in the (possibly in�nite) set CNF. In Section 4, we consider
how to implement e�cient checks that do not use universal quanti�cation.

C(
L lo
w
)

information
flow
(⊑)

Lfrom

Llow

⊤= ⟨False, True⟩

co
nf

ide
nti

ali
ty

integrity
I

⟨A v B, A⟩

⟨A∧B, A⟩

⊥=⟨True, False⟩

AA

Fig. 8: Robust Declassi�cation

Figure 8 shows a visual-
ization of where robust de-
classi�cation is allowed for a
given robust privilege. The se-
curity lattice on the left is
overlaid with a visualization
of where a value with la-
bel Lfrom can be declassi�ed
to (shaded line) using a ro-
bust declassi�cation privilege.
(Note that the current label
Lpc is not included in the diagram for brevity.) I represents the boolean formula
for the integrity of the labeled value. Llow is one of the lowest points where Lfrom

can be declassi�ed to while still being a robust declassi�cation, i.e., Llow v Lto .
That is, the integrity of the label of the value for declassi�cation (together with
the integrity of the current label of the process) is used as a lower bound for de-
classi�cation. Intuitively, those who in�uence a declassi�cation should not learn
from it. In the right hand side of Figure 8, the shaded line indicates to where a
robust privilege may declassify the labeled value 〈A∧B,A〉. The declassi�cation
is robust if A is not able to learn from the declassi�cation. As a result, the value
could not be declassi�ed to 〈A ∨ B,A〉 as A would learn from a declassi�cation
that it in�uenced. In contrast, it is robust to declassify it to 〈B,A〉.

4 Enforcement for robust privileges

In this section we describe enforcement mechanisms for restricted privileges that
satisfy their semantic characterizations described in Section 3. We have imple-
mented these mechanisms in LIO and use them in our case study (see Section 6).

When a bounded privilege (De�nition 2) is used at run time, it is simple to
check that the downgrading operation satis�es the appropriate bounds, since the
labels relevant to the downgrading (Lfrom , Lto , and Lpc) are all available at run
time, and the label ordering relation can be easily checked dynamically.

Robust privileges (De�nition 5) impose restrictions on downgrading opera-
tions which quantify over formulas A. However, attempting to explicitly check
each possible formula A at run time is not feasible. We can however, derive simple
and e�cient run-time checks that are sound and complete with respect to their
semantic characterizations. These checks are inspired by Chong and Meyers [6],
who provide run-time checks for robustness that are sound but not complete.

The following theorem shows that the semantic characterization of robust
declassi�cation (De�nition 3) is equivalent to two con�dentiality-policy compar-
isons involving only Lfrom , Lto , and Lpc .

Theorem 1 (Robust declassi�cation check). A declassi�cation using privi-
lege pQ from a source protected by Lfrom to a sink protected by Lto in a computa-
tional context with current label Lpc is robust if and only if c(Lfrom) vc

p c(Lto),
c(Lfrom) vc

c(Lto) tc
i(Lpc), and c(Lfrom) vc

c(Lto) tc
i(Lfrom).

The run-time check ensures that if there is any formula A that bene�ts from
the declassi�cation (c(Lfrom) 6vc A and c(Lto) vc A) then A 6vi

i(Lpc) (or,
equivalently, i(Lpc) 6vc A), and similarly that A 6vi

i(Lfrom). Thus, the run-time
check converts a comparison of integrity policies to a comparison of integrity
policies that does not involve A.

The next theorem describes a simple run-time check for robust endorsement.

Theorem 2 (Robust endorsement check). An endorsement using privilege
pQ from a source protected by Lfrom to a sink protected by Lto in a computational
context with current label Lpc is robust (De�nition 4) if and only if i(Lfrom) vi

p

i(Lto), and i(Lpc) ui
i(Lfrom) vi

i(Lto).

The run-time check that all formulas A that may be responsible for either the
current label (A vi

i(Lpc)) or the data itself (A vi
i(Lfrom)) should also be

responsible for the data after endorsement (A vi
i(Lto)). Proofs of Theorems 1

and 2 are omitted due to space limitations.

Alternative formulation In DC-labels, privileges can be arbitrary formulas,
which can be stronger or weaker than privileges for individual principals. For
example, a privilege for A∧B can downgrade more information than a privilege
for A or B alone, whereas a privilege for A ∨ B can downgrade less information
than a privilege for A or B alone. Leveraging this feature, we show how robust
downgrading can be seen (and enforced) as normal downgrading operations that
use a weakened privilege. That is, the privilege used in a downgrading operation
is weakened so as to permit all and only robust downgrading operations.

The next corollaries follow from Theorems 1 and 2 and the de�nition for the
can-�ow-to-with-privilege-p relation.

Corollary 1. A declassi�cation using raw privilege pQ from a source protected
by Lfrom to a sink protected by Lto in a computational context with current label
Lpc is robust (De�nition 3) if and only if c(Lfrom) vc

p ∨ i(Lfrom) ∨ i(Lpc)
c(Lto).

This indicates that robust declassi�cation can be achieved by simply weakening
privilege pQ with the integrity labels of the current label and the data to be
released, i.e., p∨ i(Lfrom)∨ i(Lpc). Robust endorsement has a similar corollary.

Corollary 2. An endorsement using raw privilege pQ from a source protected
by Lfrom to a sink protected by Lto in a computational context with current label
Lpc is robust (De�nition 3) if and only if i(Lfrom) vi

p ∨ i(Lpc)
i(Lto).

The proof of Corollary 1 is omitted due to space limitations; the proof of
Corollary 2 is similar.

The current implementation of DC-labels [21] provides the ability to infer
appropriate Lto labels of downgrading operations given a privilege p. By ex-
pressing the runtime checks for robust downgrading operations as a standard
downgrading operation with a weakened privilege, we can take advantage of this
feature and automatically infer a suitable Lto label if one exists. This reduces
the burden on the programmer.

5 Interaction among restricted privileges

We can extend restricted privileges to allow them to be composed, i.e., by al-
lowing bounded privileges and robust privileges to wrap around other restricted
privileges, as well as raw privileges. The guarantee provided by the composi-
tion of restricted privileges is the intersection of their individual guarantees.
For example, a bounded privilege composed with another bounded privilege will
require that downgrading operations satisfy the bounds of both privileges. A
bounded privilege composed with a robust privilege (and vice-versa) requires
the downgrading both to be robust and satisfy the downgrading bounds. Robust
privileges are idempotent: a robust privilege composed with a robust privilege
will simply require all downgrade operations to be robust.

Lfrom

L'
Lto

Bounded
Endorsement

Bounded
Declassification

integrity
co

nf
ide

nti
ali

ty

Fig. 9: Multiple bounds.

Privileges might also interact because a
system has multiple privileges available. Un-
like composed privileges (which further re-
strict possible information �ows), multiple
privileges enable additional information �ows.
In the remainder of the section, we discuss the
guarantees that result from the use of mul-
tiple restricted privileges. In the accompany-
ing �gures, bounded privileges are depicted
as a shaded rectangle corresponding to their
bounds. Robust declassi�cation privileges are depicted as a pair of dashed lines:
one line represents the integrity of the source and the other line represents the
lower bound to which data may be declassi�ed. Labels are depicted as points
along with their names.

Bounded declassi�cation and bounded endorsement Figure 9 depicts two bounded
privileges, one for declassi�cation and one for endorsement, as well as a label,
Lfrom that is outside the bounds of the declassi�cation privilege. Because the
bounds of the privileges overlap, data can transitively �ow from Lfrom to Lto .
The endorsement privilege enables data from Lfrom to be endorsed to L′. The
bounded declassi�cation privilege can then declassify data from L′ to Lto .

C
low

I

Bounded
Declassification

Lto
integrity

co
nf
ide
nti
ali
ty

L'
Lfrom

Fig. 10: Bounded and robust de-
classi�cation.

Bounded declassi�cation and robust declassi-
�cation Figure 10 depicts two declassi�ca-
tion privileges, one robust and one bounded,
and a label that is outside the bounds of
the bounded declassi�cation privilege. Neither
privilege alone permits a �ow from Lfrom to
Lto . However, when used together, the robust
declassi�cation privilege permits declassi�ca-
tion of data from Lfrom to L′ and the bounded
declassi�cation permits a �ow from L′ to Lto ,
completing a �ow from Lfrom to Lto .

Endorsement and robust declassi�cation In a
system with unrestricted endorsement, robust
declassi�cation provides almost no protection against attackers in�uencing what
they learn. Intuitively, the endorsement of data by p can make the data trust-
worthy enough to make a subsequent declassi�cation robust. Consider a declas-
si�cation of a value from label Lfrom = 〈A∧B,A〉 to L = 〈A,A〉 using the robust
privilege rbstd{BQ}. This declassi�cation is not robust: principal A, who bene�ts
from this declassi�cation, may be held responsible for the value, i.e., A may have
decided what gets declassi�ed. However, an unrestricted endorsement privilege
BQ could be used to endorse the value�e�ectively endorsing any possible in-
�uence by A. In other words, 〈A ∧ B,A〉 can be endorsed to 〈A ∧ B,B〉, and a
subsequent declassi�cation from 〈A ∧ B,B〉 to 〈A,B〉 is robust.

Llow

L1

L2

I1

I2

C 1

C 2

L''

L'

Fig. 11: Bounded endorsement
and robust declassi�cation.

Bounded endorsement e�ectively limits
the aforementioned deletrious e�ects of unre-
stricted endorsement to the bounded area of
the lattice, Figure 11 depicts this situation.
Besides mitigating the e�ects of unrestricted
endorsement, bounded endorsement is useful
to relax robust declassi�cation so that it suc-
ceeds for principals collaborating in achieving
a common goal�see, for example, Section 6.

Bounded and robust declassi�cation Figure 10
shows the guarantees when a robust declassi�cation-only privilege (i.e.,

rbstd{pQ}) and a bounded declassi�cation-only privilege (i.e., d[pQ]
Lhigh

Llow
) for the

same principal are both available in the system. Intuitively, p's information can
be declassi�ed from Lfromto L′ using the robust privilege. The information can

then be declassi�ed again to Lto using the bounded privilege, even though Lfrom

is below the threshold imposed by robust declassi�cation (i.e., the lowest pos-
sible label that robust declassi�cation could declassify label Lfrom). Thus, the
presence of a bounded declassi�cation-only privilege can bypass the guarantees
provided by robust declassi�cation.

Several bounded privileges Multiple robust privileges for the same principal do
not add any additional complexity, as all robust privileges are equivalent (up
to their modes). Bounded privileges, however, may di�er on the bounds they
impose. The presence of multiple bounded privileges in a system for princi-
pal p collapses the label lattice for principal p in complex ways. For instance,
the left diagram of Figure 9 illustrates an example where there is a bounded
endorsement-only privilege and a bounded declassi�cation-only privilege with
di�erent bounds. It may be possible for a value labeled Lfrom to be relabeled to
Lto via an endorsement to L′ followed by a declassi�cation. Thus, labels between
Lfrom and L′ and between L′ and Lto are e�ectively collapsed, since the bounded
privileges allow a value with any of these labels to be relabeled to any other of
these labels. More generally, as more overlapping bounded privileges exist for a
given principal, data can be downgraded in more possible ways.

6 Case studies

6.1 Calendar Case Study

We have extended LIO [22] with support for bounded privileges and robust priv-
ileges, and used them to develop a Calendar application to explore and illustrate
the utility of restricted privileges. The application allows users to view their ap-
pointments, and schedule appointments with each other. DC-label principals are
the calendar users. A user's appointments are con�dential to that user.

We consider a setting where principals belong to groups and a principal is
willing to disclose her availability to all and only members of her groups. For
example, if Bob wants to schedule an appointment with Alice at time t, the
application will check Alice's calendar and inform Bob whether Alice is available
at that time. This operation, which declassi�es Alice's availability at time t to
Bob, should succeed only if Alice and Bob are in the same group.

Each user A has a robust declassi�cation privilege rbstd{AQ}, and, for each
group G that A belongs to, a bounded endorsement privilege e[AQ]

〈>c,G〉
〈⊥c,⊥i〉 , where

G is the disjunction of all users in the group. These are the only privileges
available in the system for user A, and thus all endorsements must be bounded
appropriately, and all declassi�cations must be robust.

Joint scheduling between A and B works as follows:
1. User B sends a scheduling request for time t labeled 〈B,B〉 to user A.
2. User A computes her availability for time t. Because the context that com-

putes the availability reads data labeled 〈A,A〉 and 〈B,A〉, the label of the
availability result is 〈A ∧ B,A ∨ B〉.

3. If A and B are both in some group G, then A uses her bounded privilege
to endorse the availability result to 〈A ∧ B,A〉, since she is prepared to take
sole responsibility for the availability result. Since both A and B are in the
same group, the endorsement satis�es the bounds (i.e., A∨B vi G). If there
is no group for which both A and B are members, then A has no bounded
endorsement privilege for which the bounds will be satis�ed.

4. User A uses her robust privilege to declassify the availability result to 〈B,A〉.
The declassi�cation is robust.

5. User A sends the declassi�ed value to B.

Because all downgrading in the system relevant to user A must use A's
restricted privileges, we obtain strong system-wide guarantees, even if A's re-
stricted privileges manage to escape from the scheduling component, and even if
if B sends malicious scheduling requests. Section 5 (Figure 11) discusses in more
detail the system-wide guarantees that hold when both a bounded endorsement
privilege and a robust declassi�cation privilege are available.

6.2 Restricted Privileges in Existing Applications

Using our restricted privileges, we found a security vulnerability in an applica-
tion written using Haskell Automatic Information Labeling System (Hails) [9].
Hails is a web framework built on LIO that extends the traditional Model-View-
Controller paradigm to Model-Policy-View-Controller. The policy module speci-
�es all models and describes the labels for data fetched from the database. When
data is stored in the database, Hails checks labels against the policy module to
ensure appropriate data integrity. The policy module has access to a privilege
that can declassify all models. As a design pattern, policy modules export func-
tions that perform declassi�cation for untrusted applications using the privilege;
untrusted applications never have direct access to the privilege.

Rock-Paper-Scissors3 is a Hails application that contains a security vulner-
ability due to misuse of the policy privilege, despite being written by security
experts who developed Hails.

The policy module includes a function to get the outcome of a match given a
particular move by a player. This function can be exploited to reveal the oppo-
nent's move before the player has actually committed to a move by submitting
it to the database. As a result, a player can always win a match by exploiting
this function to determine which move will win, and then committing to that
winning move. When we replaced the policy module's raw privilege with a robust
privilege, the robust declassi�cation check signalled a potential security vulner-
ability. To �x the vulnerability, we added code that checks whether a player had
committed to a move (i.e., the move is in the database), and, if so, endorses the
submitted move. This endorsement allows the robust declassi�cation check to
succeed. Endorsing only when the player has committed to his move �xes the
security vulnerability.

3 https://github.com/scslab/hails/tree/master/examples/hails-rock

https://github.com/scslab/hails/tree/master/examples/hails-rock

7 Related Work

Declassi�cation can be characterized into di�erent dimensions: who, what, where,
and when [20]. Our work can be considering as restricting where in the secu-
rity lattice downgrading may occur (bounded downgrading) and who may in-
�uence downgrading (robustness). Almeida Matos and Boudol [1] introduce a
construct flow p ≺ q in c to indicate where additional information �ows are
allowed within a lexical scope. Intransitive noninterference [11, 12, 18] posits a
non-transitive information �ow ordering which describes what downgrading op-
erations are permitted. Mantel and Sands [11] combine intransitive noninterfer-
ence with language techniques that use declassi�cation annotations to explicitly
identify non-transitive information �ows. In our bounded declassi�cation mech-
anism, violating the normal ordering of security levels is tied to a runtime value,
and not lexically scoped or marked by annotations.

In Jif [13], declassi�cations may explicitly state where in the security lattice
the declassi�cation occurs. By contrast, our bounded mechanisms declare this
restriction on the run-time value that authorizes downgrading. Jif uses a form of
access control to restrict which code may downgrade information, coined selective
declassi�cation by Pottier and Conchon [17]. Speci�cally, a downgrading opera-
tion that may compromise the security of principal p may only occur in code that
has been (statically or dynamically) authorized by p. Similarly, the authority to
declassify or endorse information in Asbestos [7], HiStar [26], Flume [10], and
COWL [23] must come from the creator of the exercised privileges. By contrast,
LIO associates the authority to declassify or endorse a principal's information
with a run-time value. This capability-like approach to authorizing downgrad-
ing enables our local declarative approach to restrict downgrading. Birgisson et
al. [4] use capabilities to restrict the ability to read and write memory locations,
but do not consider the use of capabilities to restrict downgrading.

Zdancewic and Myers [25] introduce the semantic security condition of ro-
bust declassi�cation, and Myers et al. [16] enforce robust declassi�cation with a
security type system [19, 24], and introduce quali�ed robustness, which extends
the concept to reason about endorsement. Askarov and Myers [2] subsequently
present a semantic framework for downgrading, and present a crisper version of
quali�ed robustness. Chong and Myers [6] extend the notion of robust declassi-
�cation to the Decentralized Label Model [14, 15]. The run-time checks used in
this work to enforce robustness are analogous to the run-time checks Chong and
Myers introduce for the DLM. In other work, Chong and Myers [5] note that
the semantic security condition for robust declassi�cation applies to information
�ow of con�dential information generally, including, for example, information
erasure, and is more general than just declassi�cation. If the only privilege for p
available in the system is a robust privilege with mode mode d then the system
will be robust for p. If the privilege for that mode is de (i.e., robust declassi-
�cation operations and robust endorsement operations are possible), then the
end-to-end security guarantee is quali�ed robustness [2, 16]. A system satis�es
quali�ed robustness if the only way an attacker can in�uence what information
is released to it is via robust endorsement operations.

Foley et al. incorporate bounds constraints on a system with relabeling opera-
tions on objects [8]. Our model performs relabeling based on the use of capability-
like tokens rather than with respect to a particular subject. Bound restrictions
can be placed per privilege rather than on all relabeling operations, so the guar-
antees of this work are more dependent on what sorts of privileges are available
for use, but do not require changes to the trusted computing base.

The system HiStar [26] provides the notion of gates: entities designed to
encapsulate privileges so that processes can safely switch their current label
by exercising them through the gate. Gates have a clearance component which
imposes an upper bound on the label that results from using it. Gates can be
leveraged to restrict the use of privileges similar to upper bounds in bounded
privileges. Similar to our approach, Flume [10] distinguishes privileges used for
declassi�cation (symbol −) and endorsement (symbol +).

8 Conclusion

Restricted privileges are a new mechanism to control declassi�cation and en-
dorsement in DC-labels that is simple and intuitive yet expresses a rich set of
desirable policies. Bounded privileges impose upper and lower bounds on data
that is declassi�ed or endorsed. Robust privileges help prevent the accidental or
malicious exercise of privileges to downgrade more information than intended,
and can provide the end-to-end security guarantees of robustness and quali�ed
robustness. We provide sound and complete e�cient security checks for down-
grading using restricted privileges. We note that robust downgrading operations
can be viewed as privileged downgrading with a weakened privilege. We explore
the guarantees provided by combining the use of bounded and robust privileges
as well as their composition in a case study. This work establishes a basis for
better design of IFC systems that use privileges for downgrading information.

References

1. Almeida Matos, A., Boudol, G.: On declassi�cation and the non-disclosure policy.
In: Proc. 18th IEEE Computer Security Foundations Workshop. pp. 226�240 (2005)

2. Askarov, A., Myers, A.: A semantic framework for declassi�cation and endorse-
ment. In: Proc. 19th European Symposium on Programming (2010)

3. Biba, K.J.: Integrity considerations for secure computer systems. ESD-TR-76-372
(1977)

4. Birgisson, A., Russo, A., Sabelfeld, A.: Capabilities for information �ow. In: Proc.
6th Workshop on Programming Languages and Analysis for Security (2011)

5. Chong, S., Myers, A.C.: Language-based information erasure. In: Proc. 18th IEEE
Computer Security Foundations Workshop. pp. 241�254 (Jun 2005)

6. Chong, S., Myers, A.C.: Decentralized robustness. In: Proc. 19th IEEE Workshop
on Computer Security Foundations. pp. 242�256 (2006)

7. Efstathopoulos, P., Krohn, M., VanDeBogart, S., Frey, C., Ziegler, D., Kohler,
E., Mazières, D., Kaashoek, F., Morris, R.: Labels and event processes in the
Asbestos operating system. In: Proc. 20th ACM Symposium on Operating Systems
Principles (2005)

8. Foley, S., Gong, L., Qian, X.: A security model of dynamic labeling providing a
tiered approach to veri�cation. In: Proc. 1996 IEEE Symposium on Security and
Privacy. pp. 142�158 (1996)

9. Gi�n, D.B., Levy, A., Stefan, D., Terei, D., Mazières, D., Mitchell, J., Russo, A.:
Hails: Protecting data privacy in untrusted web applications. In: Proc. Symposium
on Operating Systems Design and Implementation (2012)

10. Krohn, M., Yip, A., Brodsky, M., Cli�er, N., Kaashoek, M.F., Kohler, E., Morris,
R.: Information �ow control for standard OS abstractions. In: Proc. 21st Symp. on
Operating Systems Principles (October 2007)

11. Mantel, H., Sands, D.: Controlled Declassi�cation based on Intransitive Noninter-
ference. In: Proc. 2nd Asian Symposium on Programming Languages and Systems.
vol. 3303, pp. 129�145 (Nov 2004)

12. van der Meyden, R.: What, indeed, is intransitive noninterference? In: Proc. 12th
European Symposium On Research In Computer Security. vol. 4734, pp. 235�250
(Sep 2007)

13. Myers, A.C., Zheng, L., Zdancewic, S., Chong, S., Nystrom, N.: Jif: Java Informa-
tion Flow (2001�), software release. http://www.cs.cornell.edu/jif

14. Myers, A.C., Liskov, B.: A decentralized model for information �ow control. In:
Proc. 16th ACM Symposium on Operating System Principles. pp. 129�142. New
York, NY, USA (1997)

15. Myers, A.C., Liskov, B.: Complete, safe information �ow with decentralized labels.
In: Proc. IEEE Symposium on Security and Privacy. pp. 186�197 (May 1998)

16. Myers, A.C., Sabelfeld, A., Zdancewic, S.: Enforcing robust declassi�cation and
quali�ed robustness. Journal of Computer Security 14(2), 157�196 (Apr 2006)

17. Pottier, F., Conchon, S.: Information �ow inference for free. In: Proc. 5th ACM
SIGPLAN International Conference on Functional Programming. pp. 46�57. New
York, NY, USA (2000)

18. Roscoe, A.W., Goldsmith, M.H.: What is intransitive noninterference? In: Proc.
12th IEEE Computer Security Foundations Workshop (1999)

19. Sabelfeld, A., Myers, A.C.: Language-based information-�ow security. IEEE Jour-
nal on Selected Areas in Communications 21(1), 5�19 (Jan 2003)

20. Sabelfeld, A., Sands, D.: Dimensions and principles of declassi�cation. In: Proc.
18th IEEE Computer Security Foundations Workshop. pp. 255�269 (Jun 2005)

21. Stefan, D., Russo, A., Mazières, D., Mitchell, J.C.: Disjunction category labels. In:
16th Nordic Conference on Security IT Systems. vol. 7161, pp. 223�239 (Oct 2011)

22. Stefan, D., Russo, A., Mitchell, J.C., Mazières, D.: Flexible Dynamic Information
Flow Control in Haskell. In: Proc. 4th ACM symposium on Haskell. pp. 95�106.
New York, NY, USA (2011)

23. Stefan, D., Yang, E.Z., Marchenko, P., Russo, A., Herman, D., Karp, B., Maz-
ières, D.: Protecting users by con�ning JavaScript with COWL. In: Proc. 11th
Symposium on Operating Systems Design and Implementation (Oct 2014)

24. Volpano, D., Smith, G., Irvine, C.: A sound type system for secure �ow analysis.
Journal of Computer Security 4(3), 167�187 (1996)

25. Zdancewic, S., Myers, A.C.: Robust declassi�cation. In: Proc. 14th IEEE Computer
Security Foundations Workshop. pp. 15�23 (Jun 2001)

26. Zeldovich, N., Boyd-Wickizer, S., Kohler, E., Mazières, D.: Making information
�ow explicit in HiStar. In: Proc. 7th Symposium on Operating Systems Design
and Implementation. pp. 263�278 (2006)

http://www.cs.cornell.edu/jif

	It's My Privilege: Controlling Downgrading in DC-Labels

