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Abstract. Language-based information-flow security has emerged as a promis-
ing technology to guarantee confidentiality in on-line systems, where enforce-
ment mechanisms are typically presented as run-time monitors, code transfor-
mations, or type-systems. Recently, an alternative technique, called secure multi-
execution, has been proposed. The main idea behind this novel approach consists
on running a program multiple times, once for each security level, using special
rules for I/O operations. Compared to run-time monitors and type-systems, se-
cure multi-execution does not require to inspect the full code of the application
(only its I/O actions). In this paper, we propose the core of a library to provide
non-interference through secure-multi execution. We present the code of the li-
brary as well as a running example for Haskell. To the best of our knowledge, this
paper is the first work to consider secure-multi execution in a functional setting
and provide this technology as a library.

1 Introduction

Over the past years, there has been a significant increase in the number of online activi-
ties. Users can do almost everything using a web browser. Even though web applications
are probably among the most used pieces of software, they suffer from vulnerabilities
that permit attackers to steal confidential data, break the integrity of systems, and affect
the availability of services. Web-based vulnerabilities have already outplaced those of
all other platforms [1] and there are no reasons to think that this situation is going to
change [9].

In this work, we focus on preserving confidentiality of data through the security
policy known as non-interference [3, 10] (i.e. not leaking secrets into public channels).
Confidentiality policies are getting more and more relevant for widely open connected
systems as the web, where compromised confidential data can be used to impersonate
users in Facebook, Twitter, Flickr, and other social networks.

Language-based information-flow security [27] has developed approaches to ana-
lyze applications’ code, leading to special-purpose languages, interpreters or compil-
ers [19, 24] that guarantee security policies like non-interference. Rather than produc-
ing new languages from scratch, security can also be provided by libraries [14]. The
potential of this approach has been shown across a range of programming languages
and security policies [32, 25, 23, 4, 15, 6].

Traditionally, information-flow analysis on a program is done statically (e.g. using
a type-system), dynamically (e.g. using an execution monitor), or with a combination
of both. Recently, authors in [7] devised an alternative approach, called secure multi-
execution, based on the idea of executing the same program several times, once for
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each security level. As opposed to previous enforcement mechanisms, this novel ap-
proach does not demand to design type-systems or deploy heavy-weight monitoring of
programs; it only requires modifying the semantics of I/O operations.

In this paper, we present the main ideas of a library based on monads [17, 16] to pro-
vide non-interference through secure-multi execution. The ideas can be easily applied
to any pure language and are illustrated with an implementation for the programming
language Haskell. To the best of our knowledge, this paper is the first one to consider
secure-multi execution as library in a pure functional setting.

2 Secure multi-execution

Devriese and Piessens [7] propose the novel approach of secure multi-execution to en-
force non-interference. We organize security levels in a security lattice L, where se-
curity levels are ordered by a partial order v, with the intention to only allow leaks
from data at level `1 to data at level `2 when `1 v `2. Secure multi-execution runs a
program multiple times, once for each security level. In order to enforce security, the
I/O operations of those multiple copies of the program are interpreted differently. Out-
puts on a given channel at security level ` is performed only in the execution of the
program linked to that security level. Inputs coming from a channel at security level `
are replaced by a default value if the execution of the program is linked to a security
level `e such that ` 6v `e. In that manner, the execution of the program linked to level
`e never obtains information higher than its security level. In the case that `e = `, the
input operation is performed normally. Finally, if ` v `e, the execution of the program
linked to level `e reuses the inputs obtained by the execution linked to level `.

Devriese and Piessens show that secure multi-execution is sound and precise. Sound-
ness states that each execution linked to a given level cannot get any information from
higher levels and consequently, all of its output will have to be generated from infor-
mation at its level or below, guaranteeing non-interference. Precision establishes that
if a program satisfies non-interference under normal execution, then its behavior is the
same as the one obtained by secure multi-execution on terminating runs.

3 Secure multi-execution in Haskell

In most pure functional programming languages, computations with side-effects such as
inputs and outputs can be distinguished by its type. For instance, in Haskell every com-
putation performing side-effects must be encoded as a value of the monad (or abstract
data type) IO [22]. Specifically, a value of type IO a is an action (i.e., a computa-
tion which may have side-effects) which produces a value of type a when executed.
This manner in which monads identify computations with side-effects fits particularly
well with the idea of secure multi-execution of giving different interpretations to I/O
operations as specified by the execution level.

For simplicity, we consider a two-point security lattice with elements L and H ,
where L v H and H 6v L. Levels L and H represent public and secret confidentiality
levels, respectively. The implementation shown here, however, works for an arbitrary
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finite security lattice. In Fig. 1 we show the implementation of the lattice as elements
of the datatype Level and define the order relationship v and the non-reflexive @.

data Level = L | H deriving (Eq ,Enum)

· v ·, · @ · :: Level → Level → Bool

H v L = False

v = True

p @ q = p v q ∧ p 6≡ q

Fig. 1. Security lattice

We propose a library that works by
replacing I/O actions (i.e., values of the
IO monad) by a pure description of
them [31]. Haskell programs which per-
form some I/O actions have type a →
IO b. That is, given some argument of
type a , the program performs some I/O
actions and then returns a value of type
b as the result. In secure multi-execution,
the I/O actions performed by such pro-

gram must be interpreted differently depending on the security level linked to a given
execution (see Section 2). Hence, programs to be run under secure multi-execution do
not return I/O actions, but rather a pure description of them. With this in mind, secure
programs have the type a → ME b, where monad ME describes the side-effects pro-
duced during the computation. When the program is executed, those I/O descriptions
are interpreted according to the specification of secure multi-execution. For security
levels L and H , the program is run twice, where the I/O actions are interpreted dif-
ferently on the execution linked at level L, and on the one linked at level H . Figure 2
summarizes the ideas behind our library. Function run executes and links the program
to the security level given as argument. Observe that function run is also responsible
for the interpretation of the I/O actions described in the monad ME .

a) a // IO b

b) a // ME b
run L //

run H
// IO b

c) data ME a = Return a
|Write FilePath String (ME a)
| Read FilePath (String → ME a)

Fig. 2. Type for a typical program with side-effects (a) and a
secure multi-execution program (b), and definition of ME (c).

For simplicity, we only
consider reading and writ-
ing files as the possible I/O
actions. It is easy to general-
ize our approach to consider
other I/O operations. Func-
tion level :: FilePath →
Level assigns security lev-
els to files indicating the
confidentiality of their con-
tents. We assume that, when
a file is read, its access time gets updated as a side-effect of the operation. An attacker,
or public observer, is able to learn the content of public files as well as their access time.

Monad ME describes the I/O actions performed by programs and is defined in
Fig. 2(c). Constructors Return , Write , and Read model programs performing different
actions. Program Return x simply returns value x without performing any I/O opera-
tions. Program Write file x p models a program that writes string x into file file and
then behaves as program p. Program Read file g models a program that reads the con-
tents x of file file and then behaves as program g x . Technically, ME is an intermediate
monad that provides a pure model of the reading and writing of files in the IO monad.

Users of the library do not write programs using the constructors of ME directly.
Instead, they use the interface provided by the monad: return :: a → ME a and
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(>>=) :: ME a → (a → ME b) → ME b. The return function lifts a pure value
into the ME monad. The operator >>=, called bind, is used to sequence computations.
A bind expression (m>>=f ) takes a computation m and function f which will be applied
to the value produced by m and yields the resulting computation. These are the only
primitive operations for monad ME , and consequently, programmers must sequence
individual computations explicitly using the bind operator. Fig. 3 shows the implemen-
tation of return and >>=. The expression return x builds a trivial computation, i.e.,
a computation which does not perform any Write/Read actions and just returns x .

instance Monad ME where

return x = Return x

(Return x ) >>= f = f x

(Write file s p)>>= f = Write file s (p >>= f )

(Read file g)>>= f = Read file (λi → g i >>= f )

Fig. 3. Definitions for return and >>=

Values in ME are introduced
with Return , so this is the
only case where f is applied.
In the other two cases, the
Write/Read operations are pre-
served and bind with f (>>=f )
is recursively applied. Besides
return and (>>=), the monad
ME has operations to denote
I/O actions on files. These oper-
ations model the equivalent operations on the IO monad and are given by the following
functions.

writeFile :: FilePath → String → ME ()
writeFile file s = Write file s (return ())

readFile :: FilePath → ME String
readFile file = Read file return

4 An interpreter for the monad ME

run :: Level → ChanMatrix → ME a → IO a
run l (Return a) = return a
run l c (Write file o t)
| level file ≡ l = do IO .writeFile file o

run l c t
| otherwise = run l c t

run l c (Read file f )
| level file ≡ l = do x ← IO .readFile file

broadcast c l file x
run l c (f x )

| level file @ l = do x ← reuseInput c l file
run l c (f x )

| otherwise = run l c (f (defvalue file))

Fig. 4. Interpreter for monad ME

Fig. 4 shows the interpreter for
programs of type ME a . Intu-
itively, run l c p executes p and
links the execution to security
level l . Argument c is used when
inputs from executions linked to
lower levels need to be reused
(explained below). The imple-
mentation is pleasantly close
to the informal description of
secure multi-execution in Sec-
tion 2. Outputs are only per-
formed (IO .writeFile file o)
when the confidentiality level of
the output file is the same as

the security level linked to the execution (level file ≡ l ). Inputs are obtained
(IO .readFile file) when files’ confidentiality level is the same as the security level
linked to the execution (level file ≡ l ). Data from those inputs is broadcasted to ex-
ecutions linked to higher security levels in order to be properly reused when needed
(broadcast c l file x ). If the current execution level is higher than the file’s confiden-
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tiality level (level file @ l)), the content of the file is obtained from the execution linked
to the same security level as the file (reuseInput c l file). Otherwise, the input data
is replaced by a default value. Function defvalue :: FilePath → String sets default
values for different files. Unlike [7], and to avoid introducing runtime errors, we adopt
a default value for each file (i.e., input point) in the program. Observe that inputs can
be used differently inside programs. For instance, the contents of some files could be
parsed as numbers, while others as plain strings. Therefore, choosing a constant default
value, e.g. the empty string, could trigger runtime errors when trying to parse a number
out of it.

An execution linked to security level ` reuses inputs obtained in executions linked to
lower levels. Hence, we implement communication channels between executions, from
a security level `′ to a security level `, if `′ @ `. In the interpreter, the argument of
type ChanMatrix consists of a matrix of communication channels indexed by security
levels. An element c`′,` of the matrix denotes a communication channel from security
level `′ to ` where `′ @ `; otherwise c`′,` is undefined. In this manner, execution linked
at level `′ can send its inputs to the execution linked at level `, where `′ @ `. Messages
transmitted on these channels have type (FilePath,String), i.e., pairs of a filename and
its contents. Function broadcast c l file x broadcasts the pair (file, x ) on the channels
linked to executions at higher security levels, i.e., channels cl,` such that l @ `. Function
reuseInput c l file matches the filename file as the first component of the pairs in
channel clevel file,l and returns the second component, i.e., the contents of the file.

sme :: ME a → IO ()
sme t = do

c ← newChanMatrix
l ← newEmptyMVar
h ← newEmptyMVar

forkIO (do run L c t ; putMVar l ())
forkIO (do run H c t ; putMVar h ())

takeMVar l ; takeMVar h

Fig. 5. Secure multi-execution

Multithreaded secure multi-execution
is orchestrated by the function sme . This
function is responsible for creating com-
munication channels to implement the
reuse of inputs, creating synchronization
variables to wait for the different threads
to finish, and, for each security level,
forking a new thread that runs the in-
terpreter at that level. Fig. 5 shows a
specialized version of sme for the two-
point security lattice. However, in the li-

brary implementation, the function sme works for an arbitrary finite lattice. Function
newChanMatrix creates the communication channels. Synchronization variables are
just simple empty MVars. When a thread tries to read (takeMVar ) from an empty
MVar it will block until another thread writes to it (putMVar ) [21]. Function forkIO
spawns threads that respectively execute the interpreter run at levels L and H , and then
signal termination by writing (putMVar l (); putMVar h ()) to the thread’s synchro-
nization variable. The main thread locks on these variables by trying to read from them
(takeMVar l ; takeMVar h).

Unlike [7], function sme does not require the scheduler to keep the execution at
level L ahead of the execution at level H . In [7], this requirement helps to avoid timing
leaks at the price of probably modifying the runtime system (i.e, the scheduler). As
mainstream information-flow compilers, monad ME also ignores timing leaks.
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data CreditTerms = CT {discount :: Rational , ddays :: Rational ,net :: Rational }
calculator :: ME ()
calculator = do loanStr ← readFile "Client"

termsStr ← readFile "Client-Terms"
let loan = read loanStr

terms = read termsStr
interest = loan − loan ∗ (1− discount terms / 100)
disct = discount terms / (100− discount terms)
ccost = disct ∗ 360 / (net terms − ddays terms)

writeFile "Client-Interest" (show interest)
writeFile "Client-Statistics" (show ccost)

-- writeFile "Client-Statistics" (show ccost ++ loanStr)

Fig. 6. Financial calculator

5 A motivating example

We present a small example of how to build programs using monad ME . We con-
sider the scenario of a financial company who wants to preserve the confidentiality
of their clients but, at the same time, compute statistics by hiring a third-party con-
sultant company. Given certain loan, the company wants to write code to compute
the cost of credit [5] and the total amount of interest that it will receive as income.
When taking a loan, credit terms usually indicate a due date as well as a cash dis-
count if the credit is canceled before an expiration date. We consider credit terms of the
form “discount / discount period net / credit period”, which indicates that if payment
is made within discount period days, a discount percent cash discount is allowed.
Otherwise, the entire amount is due in credit period days. Given a credit term, the
amount of money paid when the credit is due is loan − loan × (1 − discount/100).
The yearly cost of credit, i.e., the cost of borrowing money under certain terms is

discount
100−discount ×

360
credit period−discount period . For instance, in an invoice of $1000 with

terms 2 /10 net 30, the total interest payed at the due date is $1000−$1000×(1− .2) =
$20, and the cost of credit becomes 2

98 ×
360
20 = .3673, i.e., 37%.

In this setting, we consider the amount of every loan to be confidential (secret)
information, while cost of credit is public and thus available for statistics. By writ-
ing our program using monad ME , we can be certain that confidential information is
never given for statistics. In other words, the third-party consultant company does not
learn anything about the amount in the loans provided by the financial company. Fig-
ure 6 shows one possible implementation of the program to compute interests and cost
of credit. Files "Client" and "Client-Interest" are considered secret (level
H ), while "Client-Terms" and "Client-Statistics" are considered public
(level L). The code is self-explanatory.

If a programmer writes, by mistake or malice, show ccost++loanStr as the informa-
tion to be written into the public file (see commented line), then secure multi-execution
avoids leaking the sensitive information in loanStr by given the empty string to the
execution linked to security level L.
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6 Related work

Previous work addresses non-interference and functional languages [11, 33, 24, 29].
The seminal work by Li and Zdancewic [14] shows that information-flow security can
also be provided as a library for real programming languages. Morgenstern et al. [18]
encode a programming language aware of authorization and information-flow policies
in Agda. Devriese and Piessens [8] enforce non-interference, either dynamically or stat-
ically, using monad transformers in Haskell. Different from that work, the monad ME
does not encode static checks in the Haskell’s type-system or monitor every step of pro-
grams’ executions. Moreover, Devriese and Piessens’ work requires to encode programs
as values of a certain data type, while our approach only models I/O operations.

Russo et al. [26] outline the ground idea for secure multi-execution as a naive trans-
formation. A transformed program runs twice: one execution computes the public re-
sults, where secret inputs were removed, and the second execution computes the secret
outputs of the program. Devriese and Piessens [7] propose secure multi-execution as
a novel approach to enforce non-interference. Devriese and Piessens implement se-
cure multi-execution for the Spider-monkey JavaScript engine. The implementation
presented in this work is clean and short (approximately 130 lines of code), and thus
making it easy to understand how multi-execution works concretely. Unlike [7], our
approach does not consider termination and timing covert channels. We argue that deal-
ing with termination and timing covert channels in a complex language, without be-
ing too conservative, is a difficult task. In this light, it is not surprising that the main
information-flow compilers (Jif [20] –based on Java–, and FlowCaml [30] –based on
Caml–) ignore those channels.

Close to the notion of secure multi-execution, Jif/split [34] automatically partitions
a program to run securely on heterogenously trusted hosts. Different from secure multi-
execution, the partition of the code is done to guarantee that if host h is subverted, hosts
trusting h are the only ones being compromised. Swift [2] uses Jif/split technology to
partition the program into JavaScript code running on the browser, and JavaScript code
running on the web server.

7 Concluding remarks

We propose a monad and an interpreter for secure multi-execution. To the best of our
knowledge, we are the first ones to describe secure multi-execution in a functional lan-
guage. We implement our core ideas in a small Haskell library of around 130 lines of
code and present a running example. The implementation is compact and clear, which
makes it easy to understand how secure multi-execution works concretely. Broadcasting
input values to executions at higher levels is a novelty of our implementation if com-
pared with Devriese and Piessens’ work. This design decision is not tied to the Haskell
implementation, and the idea can be used to implement the reuse of inputs in any secure
multi-execution approach for any given language. The library is publicly available [13].

Future work Our long-term goal is to provide a fully-fledged library for secure multi-
execution in Haskell. The IO monad can perform a wide range of input and output
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operations. It is then interesting to design a mechanism capable to lift, as automatically
as possible, IO operations into the monad ME [12]. Another direction for future work
is related with declassification, or deliberate release of confidential information [28].
Declassification in secure multi-execution is still an open challenge. Due to the struc-
ture of monadic programs, we believe that it is possible to identify, and restrict, possible
synchronization points where declassification might occur. Then, declassification can-
not happen arbitrarily inside programs but only on those places where we can give some
guarantees about the security of programs. To evaluate the capabilities of our library, we
plan to use it to implement a medium-size web application. Web applications are good
candidates for case studies due to their demand on confidentiality as well as frequent
input and output operations (i.e. server requests and responses). It is also our intention
to perform benchmarks to determine the overhead introduced by our library. The library
seems to multiply execution time by the number of levels, but since file operations are
only done once, the reality could be better if the broadcast mechanism is not expensive.
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