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Chapter 1 Introdu
tion\ | Mire: dentro del movimiento de la demo
ra
ias la 
arta m�as peligrosaque se juega es pre
isamente la de la revolu
i�on. Una revolu
i�on se sabe siempred�onde 
omienza, pero nun
a se puede saber d�onde ir�a a terminar "Lo que me dijo el general UriburuJ.M. Espigares MorenoBuenos Aires, 1933In this 
hapter we brie
y present the 
on
epts behind program spe
ialization and how it
an be 
arried out by type spe
ialization. In addition, we also explain the 
ontributionof this work to the �eld.1.1 Program Spe
ialization\There is a trade-o� between eÆ
ien
y and generality" was always the phrase said bytea
hers in several 
ourses when I tried to write a program that solved many instan
esof a given problem and was eÆ
ient at the same time.Programers usually want to write the minimum lines of 
ode while possible. Oneway to obtain this is to write general programs, that is, a program that solves manysimilar problems. General programs are often 
learer, more understandable and easierto implement than spe
i�
 ones and we 
an assume that it is better to write generalprograms. However there exists a very important entity that does not 
ombine neatlywith general programs, in the sense of time of 
omputing them: the 
omputer. Generalprograms are less eÆ
ient than spe
i�
 ones, so we want to write general programs but atthe same time we want eÆ
ient ones. The idea of program spe
ialization is to provide anautomati
 form to go from a general and non-eÆ
ient program to a spe
i�
 and eÆ
ientone. This is done by a program, here 
alled spe
ializer, whose input is a program andwhose output is one or more parti
ular versions of it. The program used as input is
alled sour
e program, and those produ
ed as output are 
alled residual programs. The
lassi
 example is the re
ursive power fun
tion 
al
ulating xnpower n x = if n == 1then xelse x * power (n-1) xwhose 
omputation involves several 
omparisons and re
ursive 
alls, but when the inputparameter n is known | for example let us say it is 3 | it 
an be spe
ialized to anon-re
ursive residual version whi
h 
an only 
omputes powers of that parti
ular n |the fun
tion power3 x = x * (x * x)1



2 Chapter 1. Introdu
tionin our example. It is 
lear that the residual version is mu
h more eÆ
ient than thesour
e version when 
omputing 
ubes. Program spe
ialization has been studied fromseveral di�erent approa
hes; among them, Partial Evaluation [Jones et al., 1993; Conseland Danvy, 1993℄ is by far the most popular and well-known.Partial evaluation is a te
hnique that produ
es residual programs by using a general-ized form of redu
tion: subexpressions with known arguments are repla
ed by the resultof their evaluation, and 
ombined with those 
omputations that 
annot be performedstati
ally. That is, a partial evaluator works with the text of the sour
e program by�xing some of the input data (the stati
 data) and performing a mixture of 
omputationand 
ode generation to produ
e a new program. The programs produ
ed, when run onthe remaining data | 
alled dynami
 data be
ause they are not known until run-time |yield the same result as the original program run on all the data. Partial evaluation maysound like a sophisti
ated form of 
onstant folding, but in fa
t, a wide variety of power-ful te
hniques are needed to do it su

essfully, and these may 
ompletely transform thestru
ture of the original program. An area where partial evaluation is parti
ularly su
-
essful is the automati
 produ
tion of 
ompilers: 
ompilation is obtained by spe
ializingan interpreter for a language to a given program [Futamura, 1971; Jones et al., 1985;Jones et al., 1989; Wand, 1982; Hannan and Miller, 1992℄. In this 
ase, the interpreter isused as the sour
e program, the obje
t program is used as the stati
 data, and then theresidual program is the 
ompiled version of the obje
t program; so, the spe
ializationof the interpreter yields 
ompilation. Another layer of 
omplexity 
an be added whenthe partial evaluator is written in the language it spe
ializes: self-appli
ation be
omespossible, and thus 
ompilers 
an be generated as well. The (
ode of the) partial evalu-ator is the sour
e program and the interpreter is the stati
 data; the resulting residualprogram performs spe
ialization of the interpreter mentioned above: a 
ompiler! Thisis very useful in the area of domain-spe
i�
 languages [Thibault et al., 1998℄, where the
ost of generating a 
ompiler must be kept to a minimum.An important notion in the program spe
ialization approa
h is that of inherited limit[Mogensen, 1996; Mogensen, 1998℄. An inherited limit is some limitation in the residualprogram imposed by the stru
ture of the sour
e program and the spe
ialization method;that is, the form of obtainable generated programs is limited by the form of the programto be spe
ialized. For example, the number of fun
tions (supposed that ea
h fun
tionin the sour
e language be spe
ialized in a unique way), the number of variables, thenumber of types, et
. Mogensen has argued that histori
al developments in programspe
ialization gradually remove inherited limits, and suggest how this prin
iple 
an beused as a guideline for further development [Mogensen, 1996℄.One good way to dete
t the presen
e or absen
e of inherited limits is to spe
ializea self-interpreter and 
ompare the residual programs with the sour
e one: if they areessentially the same, then we 
an be 
on�dent that no inherited limits exist. We then saythat the spe
ialization was optimal (or Jones-optimal, after Neil Jones [Jones, 1988℄).Partial evaluation, in the 
ase of self-interpreters written in untyped languages, 
anobtain optimality; but for typed interpreters things are di�erent. As partial evaluationworks by redu
tion, the type of the residual program is restri
ted by that of the sour
eone; thus, the residual 
ode will 
ontain type information 
oming from the representationof programs in the interpreter: optimality 
annot be a
hieved, and the inherited limit



1.2. Prin
ipal Type Spe
ialization 3of types is exposed. This problem was stated by Neil Jones in 1987 as one of the openproblems in partial evaluation [Jones, 1988℄.1.2 Prin
ipal Type Spe
ializationType Spe
ialization is a di�erent form of program spe
ialization introdu
ed by JohnHughes in 1996 as a solution for optimal spe
ialization of typed interpreters. It has alsoproved to be a ri
h approa
h to program spe
ialization. For example, it is possible to usethe same interpreter for a given obje
t language L to obtain automati
ally a 
ompiler forboth untyped and typed version of L with just a 
hange on stati
 or dynami
 information[Hughes, 1998℄. This 
annot be obtained by traditional te
hniques of partial evaluation.Types in programming languages 
apture di�erent properties about expressions andthis is the key to this approa
h: the information marked stati
 in an expression willbe moved into the residual type, expressing more detailed fa
ts about expressions thansour
e types; we need a more powerful residual type system for expressing that moredetailed information. To illustrate this fa
t, we 
an think of an expression with typeInt; the fa
ts we know about it is that, if the 
omputation of the expression �nishes,the result will be an integer. But if we know more about the expression, for examplethat it is a 
onstant 28, a better type asso
iated to it is one 
apturing that information| let us 
all this type 2̂8, and allow residual types to be extended with that kind oftypes. Having all the information in the type, there is no need to exe
ute the programanymore, and thus, we 
an repla
e the integer 
onstant by a dummy 
onstant havingtype 2̂8 | that is, the sour
e expression 28 : Int 
an be spe
ialized to � : 2̂8, where � isthe dummy 
onstant.In the original formulation of type spe
ialization, presented like a generalized form oftype inferen
e [Hughes, 1996℄, both the sour
e and residual type systems are monomor-phi
, imposing an inhereted limit: the residual programs 
annot be polymorphi
, they
annot have more polymorphism than the sour
e program. Other drawba
k is the la
kof prin
ipality be
ause of the monomorphi
 and non-syntax dire
ted nature of the rules,whi
h has important undesirable 
onsequen
es. In [Mart��nez L�opez and Hughes, 2004℄and [Mart��nez L�opez, 2004℄ these problems were �xed for a subset of the language pre-sented by John Hughes. The inherited limit of polymorphism was removed and wasproved that his syntax dire
ted system has a notion of prin
ipality, 
alled prin
ipal spe-
ialization. The spe
ialization pro
ess was divided in two independent phases: 
onstraintgeneration and 
onstraint solving. The �rst phase tries to 
ow information as mu
h asit 
an, and when there is some absent information whi
h must 
ow from the 
ode tothe type, 
onstraints play a 
ru
ial rôle. In the se
ond phase, when this informationis present, the right residual program 
an be 
al
ulated using heuristi
s [Badenes andMart��nez L�opez, 2002℄.1.3 Contribution of this WorkThe main 
ontribution of this work is to extend the language des
ribed in [Mart��nezL�opez and Hughes, 2004℄ and [Mart��nez L�opez, 2004℄ to be able to manipulate dynami




4 Chapter 1. Introdu
tionsum-types. A

ording to the de�nition of sum-types given by [Jones et al., 1993℄, theyare basi
ally data types without names and re
ursion. However, we 
onsider sum-typeswith names but without re
ursion | re
ursion is out of the s
ope of this work.All formal system rules and proofs presented in [Mart��nez L�opez and Hughes, 2004℄and [Mart��nez L�opez, 2004℄ are extended in order to in
orporate dynami
 sum-typesto the language, and all proofs are 
ompleted to show that the notion of prin
ipalityis preserved by the extension. With respe
t to the 
onstraint solving phase, we leaveformalization of rules involving dynami
 sum-types as future work but provide an im-plementation instead.Dynami
 data types are needed to write interpreters to untyped languages under thetype spe
ialization and prin
ipal type spe
ialization approa
hes. Mart��nez L�opez' workhas not yet been extended to obtain prin
ipal type spe
ialization of dynami
 data typesand thus, we 
an 
onsider this work as a small step towards the a
hievement of thisgoal.1.4 OverviewThis work is divided in �ve 
hapters.In Chapter 2 we des
ribe brie
y the ideas behind spe
ialization and explain thetheory of quali�ed types developed by Mark Jones [Jones, 1994a℄, whi
h is the te
hni-
al fundation used in [Mart��nez L�opez and Hughes, 2004℄ and [Mart��nez L�opez, 2004℄.Additionally, we present Mart��nez L�opez' reformulation of type spe
ialization to obtainprin
ipality. In Chapter 3 we present our extension to his approa
h to deal with dy-nami
 sum-types. After that, in Chapter 4 we develop the extension of the algorithmthat obtains prin
ipal spe
ializations. Then, in Chapter 5 we show some details of theextension that were made to the existing prototype implementing prin
ipal type spe
ial-ization in the fun
tional language Haskell [Peyton Jones and Hughes (editors), 1999℄.Finally, in Chapter 6 we talk about future work and 
on
lusions.An appendix with formal proofs is given as an addition in order to allow a moresmooth reading of this work.



Chapter 2 Spe
ialization\T�u pensabas de ni~no, que es mago aquel que puede ha
er 
ualquier 
osa.Eso pens�e yo, alguna vez. Y todos nosotros. Y la verdad es que a medida que unhombre adquiere m�as poder y sabidur��a, se le estre
ha el 
amino, hasta que al �nno elige, y ha
e pura y simplemente lo que tiene que ha
er"La sombra en libertadUn mago de Terramar�Ursula K. Le GuinIn this 
hapter we sumarize the 
on
epts behind type spe
ialization, the theory ofquali�ed types and prin
ipal type spe
ialization.2.1 Type Spe
ializationType Spe
ialization is an approa
h to program spe
ialization introdu
ed by John Hughesin 1996 [Hughes, 1996℄. The main idea of type spe
ialization is to spe
ialize both thesour
e program and its type to a residual program and residual type. In order to dothis, instead of a generalized form of evaluation, type spe
ialisation uses a generalizedform of type inferen
e.2.1.1 Sour
e LanguageThe sour
e language we 
onsider is a �-
al
ulus enri
hed with lo
al de�nitions andarithmeti
 
onstants and operations. Furthermore, there are two kind of annotationsfor 
onstru
ts: S or D . We also have lift, poly and spe
, whi
h are another kindof annotation whose purpose will be explained later. So, the de�nition of the sour
elanguage is the following.Definition 2.1. Let x denote a sour
e term variable from a 
ountable in�nite set ofvariables, and let n denote an integer number. A sour
e term, denoted by e, is anelement of the language de�ned by the following grammar:e ::= x j nD j e +D ej lift e j nS j e +S ej �Dx:e j e �D e j letD x = e in ej (e; : : : ; e)D j �Dn;n ej poly e j spe
 ewhere (e1; : : : ; en)D is a �nite tuple of e's for every possible arity n. The proje
tions�D1;2 e and �D2;2 e may be abbreviated fstD e and sndD e respe
tively.5



6 Chapter 2. Spe
ializationIt is expe
ted that stati
 terms be removed from the sour
e program by 
omputingand moving them into their residual types, while dynami
 terms be kept in the residual
ode. Annotations are provided by the programer and are part of the input to thespe
ializer | they 
annot be 
al
ulated as in partial evaluation, more details 
an befound in [Hughes, 1996℄.The 
onstru
tion lift is responsible for 
hanging the information that has been movedto residual types ba
k to residual 
ode | see Example 2.6 | poly introdu
es polyvariantexpressions, and spe
 | see example Example 2.9 | is applied to polyvariant terms inorder to produ
e di�erent spe
ializations of the same sour
e term.Sour
e types will re
e
t the stati
 or dynami
 nature of expressions | the type of
onstants, fun
tions and operators will be 
onsistent with the types of arguments. Thesour
e types are de�ned as follows.Definition 2.2. A sour
e type, denoted by � , is an element of the language de�ned bythe following grammar:� ::= IntD j IntS j (�; : : : ; �)D j �!D � j poly �where the type (�1; : : : ; �n)D is a �nite tuple for every possible arity n.This language is a small subset of the language of the type spe
ializer from [Hughes,1996℄, but 
ontains enough 
onstru
ts to illustrate the basi
 notions.2.1.2 Residual LanguageThe residual language has 
onstru
ts and types 
orresponding to all the dynami
 
on-stru
ts and types in the sour
e language, plus additional ones used to express the resultof spe
ializing stati
 
onstru
ts. Residual terms are de�ned as follows.Definition 2.3. Let x0 denote a residual term variable from a 
ountable in�nite set ofvariables. A residual term, denoted by e0, is an element of the language de�ned by thefollowing grammar: e0 ::= x0 j n j e0 + e0 j �j �x0:e0 j e0�e0 j let x0 = e0 in e0j (e01; : : : ; e0n) j �n;n e0As in the sour
e language, (e01; : : : ; e0n) is a �nite tuple of e's for every possible arity n,and �1;2 e0 and �2;2 e0 may be abbreviated fst e0 and snd e0 respe
tively.The expression � 
orresponds to the residual of stati
 
onstants, the numbers n tothe residual of dynami
 numbers, lambda abstra
tion and appli
ation and let 
onstru
tsare the residual of 
orresponding dynami
 ones, and �nally, tuples and proje
tions 
or-responds to both the residual of tuples and the residual of polyvariant expressions andtheir spe
ializations. It is important to mention that [Hughes, 1996℄ makes no distin
-tion between stati
 and dynami
 tuples, so both the residual of dynami
 tuples and thetuples introdu
ed by polyvarian
e will be eliminated in a postpro
essing phase 
alledarity raising.Residual types re
e
t the de�nition of sour
e types.



2.1. Type Spe
ialization 7Definition 2.4. A residual type, denoted by � 0, is an element of the language de�nedby the grammar: � 0 ::= Int j n̂ j � 0 ! � 0 j (� 0; : : : ; � 0)where (� 01; : : : ; � 0n) is a �nite tuple of � 0s for every possible arity n.The novel feature of this language is the use of an in�nite number of one-point types| being the one-point type n̂ the residual type 
orresponding to some stati
 integerwhose value is known to be n.2.1.3 Spe
ializingIn order to express the result of the spe
ialization pro
edure, [Hughes, 1996℄ introdu
eda new kind of judgment, and a system of rules to infer valid judgments. These judg-ments, similarly to typing judgments in the sour
e language, make use of assignmentsto determine the spe
ialization of free variables.Definition 2.5. A spe
ialization assignment, denoted by �, is a (�nite) list of spe
ial-ization statements of the form x : � ,! e0 : � 0, where no sour
e variable appears morethan on
e.The spe
ialization of a given program is expressed by type inferen
e with a judgementof the form � ` e : � ,! e0 : � 0whi
h denotes that the program e with sour
e type � 
an be spe
ialized to a residualprogram e0 with residual type � 0, under the hypothesis � (
ontaining assumptions aboutthe spe
ialization of free variables).Instead of showing the rules that spe
ify the spe
ialization pro
ess, whi
h 
an befound in [Hughes, 1996℄, we explain through examples its 
apability and limits thatmotivate the need for prin
ipality.2.1.4 ExamplesExample 2.6. Observe how every expression annotated as dynami
 appears in theresidual term (in fa
t, we have that a fully dynami
 expression, that is one in whi
hevery annotation is D , spe
ializes to a 
opy of itself with the annotations removed).1. ` 42D : IntD ,! 42 : Int2. ` 42S : IntS ,! � : 4̂23. ` (2D +D 1D ) +D 1D : IntD ,! (2 + 1) + 1 : Int4. ` (2S +S 1S ) +S 1S : IntS ,! � : 4̂5. ` lift (2S +S 1S ) +D 1D : IntD ,! 3 + 1 : IntAlso observe in 5 how the use of lift allows us to 
ast a stati
 integer into a dynami
one, thus inserting the result of the stati
 
omputation ba
k into the residual term.
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ializationExample 2.7. Assignments provide the information for the spe
ialization of free vari-ables, whi
h allows the spe
ialization of fun
tions.1. x : IntS ,! � : 3̂ ` x +S 1S : IntS ,! � : 4̂2. ` (�Dx:x +S 1S ) �D (2S +S 1S ) : IntS ,! (�x0:�)�� : 4̂3. ` (�Dx:lift x +D 1D ) �D (2S +S 1S ) : IntD ,! (�x0:3 + 1)�� : IntIn 3 there is information that was moved from the 
ontext of the fun
tion to the fun
-tion's body, where lift pla
es it.Example 2.8. One feature of type spe
ialization is that there exist 
orre
tly annotatedterms that 
annot be spe
ialized; 
onsiderletD f = �Dx:lift x +D 1Din (f �D 42S ; f �D 17S )D : (IntD ; IntD )D :As we have seen in Example 2.7-3, the body of the fun
tion is spe
ialized a

ording tothe parameter, but f has two di�erent parameters!. In order to allow f to be spe
ializedin more than one way, we must use the annotation poly.Example 2.9. Observe the use of poly in the de�nition of f (and how that annotationprodu
es a tuple for the de�nition of f 0 in the residual 
odes of both spe
ializations),and the use of spe
 in every appli
ation of f to an argument (and how that produ
esthe 
orresponding proje
tions).1. ` letD f = poly (�Dx:lift x +D 1D )in (spe
 f �D 42S ; spe
 f �D 17S )D : (IntD ; IntD )D ,!let f 0 = (�x0:42 + 1; �x0:17 + 1)in (fst f 0��; snd f 0��) : (Int; Int)2. ` letD f = poly (�Dx:lift x +D 1D )in (spe
 f �D 42S ; spe
 f �D 17S )D : (IntD ; IntD )D ,!let f 0 = (�x0:17 + 1; �x0:55 + 1; �x0:42 + 1)in (�3;3 f 0��; �1;3 f 0��) : (Int; Int)The size and order of the residual tuple is arbitrary, provided that it has at least twoelements (�x0:42 + 1 and �x0:17 + 1), and that the proje
tions sele
t the appropriateelement, as 
an be seen when 
ontrasting spe
ialization 2 against spe
ialization 1. Inthis way, we 
an obtain a potentially in�nite number of spe
ializations from a givensour
e program.The following example show the problems that were solved in [Mart��nez L�opez andHughes, 2004℄.Example 2.10. Observe that in all 
ases there is some stati
 information missing.1. �Dx:x +S 1S : IntS !D IntS



2.2. Quali�ed Types 92. poly (�Dx:lift x +D 1D ) : poly (IntS !D IntD )3. �Df:spe
 f �D 13S : poly (IntS !D IntD )!D IntDAll have many di�erent unrelated spe
ializations! For example, the fun
tion in Exam-ple 2.10-1 has one spe
ialization for ea
h possible value for x | in parti
ular, �x0:� :n̂ ! n̂0, for every value of n and n0 su
h that n0 = n + 1. If this fun
tion appears inone module, but is applied in another one, then the spe
ialization should wait until thevalue n of the argument is known in order to de
ide its residual type. The same problemappears in the 
ase of polyvarian
e where the generation of the tuple or the sele
tionof the right proje
tion should be deferred until all the information is available. Thisproblem is 
alled la
k of prin
ipality and �xing it requires a big 
hange in the residuallanguage.2.2 Quali�ed TypesThe theory of quali�ed types [Jones, 1994a℄ is a framework that allows the develop-ment of 
onstrained type systems in an intermediate level between monomorphi
 andpolymorphi
 type dis
iplines.Mart��nez L�opez used this 
on
ept deeply when he reformulated type spe
ializationto obtain prin
ipality [Mart��nez L�opez and Hughes, 2004℄.Quali�ed types 
an be seen in two ways: either as a restri
ted form of polymorphism,or as an extension of the use of monotypes (
ommonly des
ribed as overloading, in whi
ha fun
tion may have di�erent interpretations a

ording to the types of its arguments).Predi
ates are used to restri
t the use of type variables, whi
h are allowed as a type.The theory explains how to enri
h types with predi
ates, how to perform type in-feren
e using the enri
hed types, and whi
h are the minimal properties that predi
atesmust satisfy in order for the resulting type system to have similar properties as theHindley-Milner one [Milner, 1978℄. In parti
ular, it has been shown that any well typedprogram has a prin
ipal type that 
an be 
al
ulated by an extended version of Milner'salgorithm.2.2.1 Predi
ates and EntailmentPolymorphism is the ability to treat some terms as having many di�erent types. We
an express a polymorphi
 type by means of a type s
heme [Damas and Milner, 1982℄,using universal quanti�
ation to abstra
t those parts of a type that may vary. That is,if f(t) is a type for every possible value of type variable t, then giving the type s
heme8t:f(t) to a term means that the term 
an re
eive any of the types in the setff(�) s.t. � is a typegBut sometimes that is not enough: not all the types 
an repla
e t and still express apossible type for the term. For those 
ases, a form of restri
ted quanti�
ation 
an beused. If P (t) is a predi
ate on types, we use the type s
heme 8t:P (t)) f(t) to representthe set of types ff(�) s.t. � is a type and P (�) holdsg
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ializationand a

urately re
e
t the desired types for a given term.The key feature in the theory is the use of a language of predi
ates to des
ribe sets oftypes (or, more generally, relations between types). The exa
t set of predi
ates may varyfrom one appli
ation to another | predi
ates that we use are des
ribed in Se
tion 2.3.1.In [Jones, 1994a℄, Mark Jones uses several notations of 
onventions, in parti
ularregarding lists of elements, lists of pairs, the usual operations on lists, and their use ontype expressions.Notation 2.11. Let L and L0 be any kind of (�nite) lists or sets, and l be an element.We write L; L0 for the result of the union of sets L and L0 or the append of lists L andL0. We write l; L for the result of the in
lusion of element l to set L or the 
ons of l tolist L. Finally, we write ; for the empty set or list, and assume that ;; L = L; ; = L.As a 
onsequen
e of all these 
onventions, a use of l 
ould represent an element or asingleton list, depending on the 
ontext.Another point where 
onventions are 
onvenient is when working with quali�ed types;there are two possible ways to add predi
ates to the basi
 syntax: one by one, or alltoghether in a set. For example, this amounts to de�ne either that � ::= Æ ) � j � or� ::= �) � , being � the list of predi
ates Æ1; : : : ; Æn. We will use the �rst form as thede�nition and the se
ond as an abbreviation (although the other way is also possible).Notation 2.12. Assuming that a list of predi
ates � = Æ1; � � � ; Æm, a list of type vari-ables � = �1; � � � ; �m, a list of eviden
e variables h = h1; � � � ; hm, and a list of eviden
eexpressions v = v1; � � � ; vm, we use the abbreviations:Obje
t Expression Abbreviation(s)Quali�ed type Æ1 ) � � � Æm ) � 0 �) � 0Type s
heme 8�1: � � � 8�m:� 8�:�Eviden
e abstr. �h1: � � ��hm:e0 �h:e0Eviden
e app. ((e0((v1))) � � � )((vm)) e0((v))In the spe
ial 
ase when m = 0, all the sequen
es are empty, and then the abbreviationsstand for the en
losed element (e.g. e0((v)) represents e0). This implies, for example, thata type � 
an be understood as a quali�ed type (; ) �) or a type s
heme (8;:; ) �)depending on the 
ontext of use.Another 
onvention is 
on
erned with lists of pairs.Notation 2.13. Lists of pairs may be abbreviated by a pair of lists in the following way.If h = h1; : : : ; hn and � = Æ1; : : : ; Æn, the list h1 : Æ1; : : : ; hn : Æn may be abbreviated ash : � or as � depending on the 
ontext. The latter is also used for a list of predi
ates| no expli
it remotion of the variables (�rst 
omponents of pairs) will be used.The union (
on
atenation) of two sets (lists) of pairs h : � and h0 : �0 will be denotedh : �; h0 : �0 (as an alternative to h; h0 : �;�0, whi
h may also be used).Despite the possible sour
e of 
onfusion that these 
onventions may be for a 
asualreader, they 
an be easily mastered with very little pra
ti
e.



2.2. Quali�ed Types 11(Fst) h : �; h0 : �0 `̀ h : �(Snd) h : �; h0 : �0 `̀ h0 : �0(Univ) h : � `̀ v0 : �0 h : � `̀ v00 : �00h : � `̀ v0 : �0; v00 : �00(Trans) h : � `̀ v0 : �0 h0 : �0 `̀ v00 : �00h : � `̀ v00[h0=v0℄ : �00(Close) h : � `̀ v0 : �0h : S� `̀ v0 : S�0Figure 2.1: Stru
tural laws satis�ed by entailment.The minimun required properties of predi
ates are 
aptured by using an entailmentrelation (`̀ ) between (�nite) sets of predi
ates satisfying a few simple laws. The judge-ment �1 `̀ �2 means that predi
ates belonging to �1 
an be used to 
onstru
t eviden
efor all the predi
ates in �2.The basi
 properties that entailment must satisfy are:Monotoni
ity: � `̀ �0 whenever � � �0Transitivity: if � `̀ �0 and �0 `̀ �00, then � `̀ �00Closure property: if � `̀ �0, then S� `̀ S�0.The last 
ondition is needed to ensure that the system of predi
ates is 
ompatiblewith the use of parametri
 polymorphism. These properties 
an be expressed by a system
ontaining the rules in Figure 2.1. Observe that if Æ 2 �, then � `̀ Æ by monotoni
ityof `̀ | � `̀ fÆg is also written as � `̀ Æ by virtue of Notation 2.11.2.2.2 Type inferen
e with Quali�ed TypesIn the theory of quali�ed types, the language of types and type s
hemes is strati�ed in asimilar way as in the Hindley-Milner system, where the most important restri
tion is thatquali�ed or polymorphi
 types 
annot be argument of fun
tions; that is, types (denotedby �) are de�ned by a grammar with at least these produ
tions � ::= t j � ! � . Ontop of types are 
onstru
ted quali�ed types of the form � ) � (denoted by �), andthen type s
hemes of the form 8f�ig:� (denoted by �). We use freely the 
onventionsde�ned in Notation 2.12. Using that notation, any type s
heme 
an be written in theform 8�i:�) � , representing the set of quali�ed typesf�[�i=�i℄) � [�i=�i℄ s.t. �i is a typegThe language of terms | denoted by e | is based on the untyped �-
al
ulus (it has,at least, variables, appli
ations, abstra
tions, and the let 
onstru
t); it is 
alled OML,
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ialization(QIN) �; Æ j � ` e : �� j � ` e : Æ ) �(QOUT) � j � ` e : Æ ) � � `̀ Æ� j � ` e : �(GEN) � j � ` e : �� j � ` e : 8�:� (�62FV(�)[FV(�))(INST) � j � ` e : 8�:�� j � ` e : S � (dom(S)=�)Figure 2.2: Related variables and predi
ates typing rules for OML.abbreviating `Overloaded ML'. Type inferen
e uses judgements extended with a 
ontextof predi
ates � j � ` e : �representing the fa
t that when the predi
ates in � are satis�ed, and the types of thefree variables of e are as spe
i�ed by �, then the term e has type �. The type system isin essen
e similar to a Hindley-Milner one, with the rules showed in Figure 2.2 added.The rules (GEN) and (INST) are used to generalize and instantiate type variables in types
hemes, and (QIN) and (QOUT) to manage predi
ates.Definition 2.14. A 
onstrained type s
heme is an expression of the form (� j �) where� is a set of predi
ates and � is a type s
heme.In order to �nd all the ways in whi
h a parti
ular e 
an be used within a given �, thetheory have to deal with sets of the formf(� j �) s.t. � j � ` e : �gThe main tool used to deal with these sets is a preorder � | pronoun
ed moregeneral | de�ned on pairs of 
onstrained type s
hemes, and whose intended meaningis that if (� j �) � (�0 j �0) then it is possible to use an obje
t whi
h 
an be treatedas having type � in an environment satisfying the predi
ates in � whenever an obje
tof type �0 is required in an environment satisfying the predi
ates in �0. To de�ne itformally, the notion of generi
 instan
e is needed.Definition 2.15. A quali�ed type �� ) � is a generi
 instan
e of the 
onstrained types
heme (� j 8�i:�0 ) � 0) if there are types �i su
h that�� `̀ �;�0[�i=�i℄ and � = � 0[�i=�i℄In parti
ular, a quali�ed type � ) � is instan
e of another quali�ed type �0 ) � 0 ifand only if � `̀ �0 and � = � 0. Now we are in position to de�ne the \more general"ordering (�) on 
onstrained type s
hemes.



2.2. Quali�ed Types 13(QIN) �; h : Æ j � ` e ,! e0 : �� j � ` e ,! �h:e0 : Æ ) �(QOUT) � j � ` e ,! e0 : Æ ) � � `̀ v : Æ� j � ` e ,! e0((v)) : �Figure 2.3: Translation rules from OML to OP that involves predi
ates.Definition 2.16. The 
onstrained type s
heme (� j �) is said to be more general thanthe 
onstrained type s
heme (�0 j �0), written (� j �) � (�0 j �0), if every generi
 in-stan
e of (�0 j �0) is a generi
 instan
e of (� j �).2.2.3 Coheren
e and Eviden
eIn order to give semanti
s to the terms in the system, [Jones, 1994a℄ introdu
es the notionof eviden
e, and provide a translation from the original language of terms, OML, to onemanipulating eviden
e expli
itely | 
alled OP, for `Overloaded Polymorphi
 �-
al
ulus'.The essential idea is that an obje
t of type �) � 
an only be used if it is supplied withsuitable eviden
e that predi
ates in � do indeed hold. The treatment of eviden
e 
an beignored in the basi
 typing algorithm, but is essential to provide 
oheren
e, that is, themeaning of a term does not depend on the way it is type
he
ked [Breazu-Tannen et al.,1991℄. The properties of predi
ate entailment must be extended to deal with predi
ateassignments and eviden
e expressions (in parti
ular, the rules given in Figure 2.1 already
ontained this extension, where h denote an eviden
e variable, and v denotes an eviden
eexpression). Observe that we are using the 
onventions introdu
ed in Notation 2.13, sopredi
ate assignments are written as h : � meaning h1 : Æ1; : : : ; hn : Æn, and similarly forv : �.Unfortunately, there exist OML terms for whi
h the translation gives more than onenon-equivalent term, showing that the meaning of those OML terms depend in the waythey are typed. In order to 
hara
terize terms with a unique meaning when possible,OP typings have to be studied; thus, redu
tion and equality of OP terms are de�ned,and then, the 
entral notion of 
onversion is provided. A 
onversion from � to �0 is a
olle
tion of OP terms that allow the transformation of any OP term of type � into anOP term of type �0 by manipulating eviden
e; this is an extension of the notion of �de�ned before. The motivation for using this notion is that an important property ofthe ordering relation � used to 
ompare types in OML breaks down in OP, due to thepresen
e of eviden
e: a term with a general type 
an be used as having an instan
e ofthat type only after adjusting the eviden
e it uses.The de�nition of 
onversions extends the de�nition of � (De�nition 2.16) with thetreatment of eviden
e.Definition 2.17. Let � = 8�i:�� ) � and �0 = 8�i:�0� ) � 0 be two type s
hemes, andsuppose that none of the �i appears free in �, �, or �'. A 
losed OP term C of type(� j �)! (�0 j �0), su
h that erasing all eviden
e from it returns the identity fun
tion,is 
alled a 
onversion from (� j �) to (�0 j �0), written C : (� j �) � (�0 j �0), if there
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ializationare types �i, eviden
e variables h0 and h0� , and eviden
e expressions v and v0 su
h that:� � 0 = � [�i=�i℄� h0 : �0; h0� : �0� `̀ v : �; v0 : �� [�i=�i℄, and� C = (�x:�h0; h0� :x((v))((v0)))Conversions are only used in the theory of quali�ed types to relate di�erent translationsfor the same term.Finally, Jones de�ne the notions of simpli�
ation and improvement on predi
ate sets.These notions will also appear in prin
ipal type spe
ialization.2.3 Prin
ipal Type Spe
ializationAs we saw in Se
tion 2.1, Hughes' formulation of type spe
ialization for
es an algorithmto wait until all the 
ontext is known before making any attempt to spe
ialize a givenexpression [Hughes, 1996℄. The problem, 
alled by us la
k of prin
ipality, is very similarto the problem appearing in simply typed �-
al
ulus when typing an expression like�x:x, where the type of x is determined by the 
ontext of use | di�erent typings forthis expression have no relation between them expressible in the system. The solutionto the latter is to extend the type language in order to allow polymorphism | byintrodu
ing type variables | and de�ning a notion of instantiation for types.Mart��nez L�opez' work �nds prin
ipal type spe
ializations for ea
h term in the sour
elanguage su
h that every other valid spe
ialization of this term 
an be obtained byinstantiation of it [Mart��nez L�opez and Hughes, 2004℄. Thus, spe
ialization 
an be donein isolation, without any 
ontext. A �rst step in this dire
tion is to use residual typevariables to defer the spe
ialization of expressions depending on the 
ontext. However,this is not enough, as subtle dependen
ies between types (as the relation between n andn0 in the spe
ialization of Example 2.10-1), 
annot be expressed. The theory of quali�edtypes, brie
y des
ribed in Se
tion 2.2, presents a type framework that allows expressing
onditions relating universally quanti�ed variables [Jones, 1994a℄.2.3.1 Residual LanguageExtending the residual type language with predi
ates implies that the residual termlanguage must also be extended to manipulate eviden
e. The extensions have two parts:the \stru
tural" 
omponents taken from the theory of quali�ed types, and the parti
ular
onstru
ts needed to express spe
ialization features.Following the theory of quali�ed types, the residual type language is extended withtype variables (t), and the synta
ti
 
ategories of quali�ed types (�) and type s
hemes(�); also parti
ular predi
ates (Æ) are de�ned. The most important innovations withrespe
t to the theory of quali�ed types are the new type 
onstru
t poly �, and the useof s
heme variables (s), both used to express polyvarian
e.Definition 2.18. Let t denote a type variable from an 
ountable in�nite set of variables,and s a type s
heme variable from another 
ountable in�nite set of variables, both
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ipal Type Spe
ialization 15(�v) (�h:e01)((v)) . e01[h=v℄(�v) �h:e01((h)) . e01 (h62EV(e01))(letv) letv x = e01 in e02 . e02[x=e01℄(Æv) (v1 Æ v2)[e0℄ . v1[v2[e0℄℄(ifv-True) ifv True then e01 else e02 . e01(ifv-False) ifv False then e01 else e02 . e02Figure 2.4: Redu
tion for residual terms.disjoint with any other set of variables already used. A residual type, denoted by � 0, isan element of the language given by the grammar� 0 ::= t j Int j n̂ j � 0 ! � 0 j (� 0; : : : ; � 0) j poly �� ::= Æ ) � j � 0� ::= s j 8s:� j 8t:� j �Æ ::= IsInt � 0 j � 0 := � 0 + � 0 j IsMG � �The residual term language is extended with eviden
e (v), in
luding eviden
e variables(h), eviden
e abstra
tions (�h:e0), and eviden
e appli
ations (e0((v))). Eviden
e is veryimportant in this formulation of type spe
ialization be
ause it allows us to abstra
tdi�eren
es among di�erent residual terms of a given sour
e term, and is one of the
ornerstones for the prin
ipality result. Two parti
ular kinds of eviden
e are used:numbers, as eviden
e for predi
ates of the form IsInt and := + , and 
onversions, aseviden
e for predi
ates of the form IsMG. Observe that 
onversions, denoted by C , arede�ned separately from other elements in the language, and that they are 
ontexts |instead of (families of) terms, as in [Jones, 1994a℄.Definition 2.19. A residual term, denoted by e0, is an element of the language de�nedby the following grammar:e0 ::= x0 j n j e0 + e0 j �j �x0:e0 j e0�e0 j let x0 = e0 in e0j (e01; : : : ; e0n) j �n;n e0j h j v[e0℄ j �h:e0 j e0((v)) j letv x = e0 in e0v ::= h j n j C j v Æ vC ::= [℄ j �h:C j C ((v)) j letv x = C in e0We will be working under a equivalen
e = on residual terms, de�ned as the minimal rela-tion that 
ontains �-
onversions for both � and �-abstra
tions, and rules in Figure 2.4.Equivalen
e is also extended to 
onversions, de�ning that C = C 0 if for all expressions e0,C [e0℄ = C 0[e0℄. The meaning of `̀ , whose stru
tural propierties are given in Figure 2.1,is 
ompleted with the rules that show, in Figure 2.5, how the eviden
e for parti
ularpredi
ates is 
onstru
ted. The predi
ate IsInt is provable when the type is a one-point
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ialization(IsInt) � `̀ n : IsInt n̂(IsOp) � `̀ n : n̂ := n̂1 + n̂2 (whenever n=n1+n2)(IsOpIsInt) �; h : � 0 := � 01 + � 02;�0 `̀ h : IsInt � 0(IsMG) C : (� j �0) � (� j �)� `̀ C : IsMG �0 �(Comp) � `̀ v : IsMG �1 �2 � `̀ v0 : IsMG �2 �3� `̀ v0 Æ v : IsMG �1 �3Figure 2.5: Entailment for eviden
e 
onstru
tion.type representing a number and the eviden
e is the value of that number. Similarly, thepredi
ate := + is provable when the three arguments are one-point types with the
orresponding numbers related by addition and the eviden
e is the number 
orrespond-ing to the result of that addition. The predi
ate IsMG internalizes the ordering � andthe eviden
e is the 
orresponding 
onversion. The 
omposition of eviden
e used in thisrule was de�ned in Figure 2.4.2.3.2 Residual TypesAs we dis
ussed in Se
tion 2.2.3, the relation between di�erent types and s
heme typesis expressed by �. We de�ne 
onversions as a spe
ial kind of 
ontexts, rather than asterms in the residual language. Additionally, we use 
onversions as part of the eviden
elanguage, whi
h prove some kind of predi
ates with a similar semanti
s to relation �.This eviden
e will be applied to terms, so we need to slightly modify the de�nition of
onversion as follows:Definition 2.20. Let � = 8�i:�� ) � and �0 = 8�i:�0� ) � 0 be two type s
hemes,and suppose that none of the �i appears free in �, h : �, or h0 : �0. A term C is 
alled a
onversion from (� j �) to (�0 j �0), written C : (� j �) � (�0 j �0), if and only if thereare types �i, eviden
e variables h� and h0� , and eviden
e expressions v and v0 su
h that:� � 0 = � [�i=�i℄� h0 : �0; h0� : �0� `̀ v : �; v0 : �� [�i=�i℄, and� C = (letv x = �h:[℄ in �h0� :x((v))((v0)))The most important property of 
onversions is that they 
an be used to transform anobje
t e0 of type � under a predi
ate assignment � into an element of type �0 under apredi
ate assignment �0, 
hanging only the eviden
e that appears at top level of e0.The following assertions hold when �; �0; �00 are s
heme variables:1. [℄ : (� j �) � (� j �)
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ialization 172. if C : (� j �) � (�0 j �0) and C 0 : (�0 j �0) � (�00 j �00)then C 0 Æ C : (� j �) � (�00 j �00)Example 2.21. Conversions are used to adjust the eviden
e demanded by di�erent types
hemes. For all � it holds that1. [℄((42)) : (� j 8t:IsInt t) t! Int) � (� j 4̂2! Int)2. C : (� j 8t1; t2:IsInt t1; IsInt t2 ) t1 ! t2) � (� j 8t:IsInt t) t! t)where C = �h:[℄((h))((h))3. �h:[℄ : (� j 4̂2! Int) � (� j 8t:IsInt t) 4̂2! Int)In [Mart��nez L�opez and Hughes, 2004℄, a type system to infer the type of a residualexpresion is also presented, proving later that spe
ialization is well behaved with respe
tto it. This system of rules is not able to infer the type of any residual expresion |only to 
he
k it. The expressions that will be veri�ed are those that 
ome from thespe
ialization pro
ess: the programmer does not write any pie
e of residual 
ode; instead,the spe
ialization obtains the residual 
ode together with its residual type. This lastremark justi�es why it is reasonable to provide the form of higher-order polymorphism,
ontrolled by annotations poly and spe
.2.3.3 Spe
ifying Prin
ipal Type Spe
ializationThe system spe
ifying type spe
ialisation is 
omposed by two sets of rules.The �rst one relates sour
e types with residual types, expressing whi
h residual types
an be obtained by spe
ialising a given sour
e one. This system, whi
h is 
alled SR |see Figure 2.6 | is important be
ause it is needed to restri
t the possible 
hoi
es ofresiduals for bound variables when spe
ializing lambda-abstra
tions and spe
ializationsof polyvariant expressions; without these restri
tions we 
an obtain more spe
ializationsthan expe
ted | for example the sour
e term �Dx:x : IntS !D IntS 
an be spe
ializedto �x0:x0 : Bool! Bool.The se
ond one is the spe
ialization pro
ess itself and appears in Figures 2.7 and 2.8.Judgements have the stru
ture � j � P̀ e : � ,! e0 : �, expanding notions explained inSe
tion 2.1 for the use of quali�ed types.Rules (QIN) and (QOUT) in
orporate the notion of eviden
e introdu
ed in Se
tion 2.2.3and allow us to move information from the 
ontext (as predi
ates) into the residualterms (adding predi
ates in the type and abstra
ting eviden
e) and ba
k. Observe thatthese are dual rules, so it is possible to eliminate the e�e
t produ
ed by one of them byusing the other one.We revisit here some examples of Se
tion 2.1, but now using the rules that appearin Figures 2.7 and 2.8.Example 2.22. The sour
e term in Example 2.10-1 
an now be spe
ialized as followsP̀ �Dx:x +S 1S : IntS !D IntS ,! �ht; ht0 :�x0:ht0 : 8t; t0:IsInt t; t0 := t+ 1̂) t! t0Observe the use of eviden
e abstra
tions to wait for the residual of stati
 information.This is one of the keys allowing prin
ipal spe
ialisation. The eviden
e will be the num-bers 
orresponding to the stati
 values of x and resulting operations.
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(SR-DINT) � S̀R IntD ,! Int(SR-SINT) � `̀ IsInt � 0� S̀R IntS ,! � 0(SR-DFUN) � S̀R �1 ,! � 01 � S̀R �2 ,! � 02� S̀R �2!D �1 ,! � 02 ! � 01(SR-TUPLE) (� S̀R �i ,! � 0i)i=1;::;n� S̀R (�1; : : : ; �n)D ,! (� 01; : : : ; � 0n)(SR-POLY) � S̀R � ,! �0 � `̀ IsMG �0 �� S̀R poly � ,! poly �(SR-QIN) �; Æ S̀R � ,! �� S̀R � ,! Æ ) �(SR-QOUT) � S̀R � ,! Æ ) � � `̀ Æ� S̀R � ,! �(SR-GEN) � S̀R � ,! �� S̀R � ,! 8�:� (�62FV(�))(SR-INST) � S̀R � ,! 8�:�� S̀R � ,! S � (dom(S)=�)Figure 2.6: Rules de�ning the sour
e-residual relationship.
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(VAR) x : � ,! x0 : � 0 2 �� j � P̀ x : � ,! x0 : � 0(DINT) � j � P̀ nD : IntD ,! n : Int(D+) (� j � P̀ ei : IntD ,! e0i : Int)i=1;2� j � P̀ e1 +D e2 : IntD ,! e01 + e02 : Int(LIFT) � j � P̀ e : IntS ,! e0 : � 0 � `̀ v : IsInt � 0� j � P̀ lift e : IntD ,! v : Int(SINT) � j � P̀ nS : IntS ,! � : n̂(S+) (� j � P̀ ei : IntS ,! e0i : � 0i)i=1;2 � `̀ v : � 0 := � 01 + � 02� j � P̀ e1 +S e2 : IntS ,! � : � 0(DTUPLE) (� j � P̀ ei : �i ,! e0i : � 0i)i=1;::;n� j � P̀ (e1; : : : ; en)D : (�1; : : : ; �n)D ,! (e01; : : : ; e0n) : (� 01; : : : ; � 0n)(DPRJ) � j � P̀ e : (�1; : : : ; �n)D ,! e0 : (� 01; : : : ; � 0n)� j � P̀ �Di;n e : �i ,! �i;n e0 : � 0i(DLAM) � j �; x : �2 ,! x0 : � 02 P̀ e : �1 ,! e0 : � 01 � S̀R �2 ,! � 02� j � P̀ �Dx:e : �2!D �1 ,! �x0:e0 : � 02 ! � 01 (x0 fresh)(DAPP) � j � P̀ e1 : �2!D �1 ,! e01 : � 02 ! � 01 � j � P̀ e2 : �2 ,! e02 : � 02� j � P̀ e1 �D e2 : �1 ,! e01�e02 : � 01(DLET) � j � P̀ e2 : �2 ,! e02 : � 02� j �; x : �2 ,! x0 : � 02 P̀ e1 : �1 ,! e01 : � 01� j � P̀ letD x = e2 in e1 : �1 ,! let x0 = e02 in e01 : � 01 (x0 fresh)(POLY) � j � P̀ e : � ,! e0 : �0 � `̀ v : IsMG �0 �� j � P̀ poly e : poly � ,! v[e0℄ : poly �(SPEC) � j � P̀ e : poly � ,! e0 : poly � � `̀ v : IsMG � � 0 � S̀R � ,! � 0� j � P̀ spe
 e : � ,! v[e0℄ : � 0Figure 2.7: Spe
ialisation rules (�rst part)
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ialization(QIN) �; hÆ : Æ j � P̀ e : � ,! e0 : �� j � P̀ e : � ,! �hÆ:e0 : Æ ) �(QOUT) � j � P̀ e : � ,! e0 : Æ ) � � `̀ vÆ : Æ� j � P̀ e : � ,! e0((vÆ)) : �(GEN) � j � P̀ e : � ,! e0 : �� j � P̀ e : � ,! e0 : 8�:� (�62FV(�)[FV(�))(INST) � j � P̀ e : � ,! e0 : 8�:�� j � P̀ e : � ,! e0 : S � (dom(S)=�)Figure 2.8: Spe
ialisation rules (se
ond part).Example 2.23. The expression in Example 2.10-2 is a polyvariant term that 
annotbe spe
ialized by Hughes' formulation [Hughes, 1996℄, but in this other approa
h itsprin
ipal spe
ialization is:P̀ poly (�Dx:lift x +D 1D ) : poly (IntS !D IntD ),! �h:h[�hx:�Dx0:hx + 1℄ :8s:IsMG (8t:IsInt t) t! Int) s) poly sIn this example, the polyvariant fun
tion is abtra
ted by 
onversion h, whi
h abstra
tsthe eviden
e of the type (8t:IsInt t ) t ! Int), being more general than any possibleinstan
e for s. At the same time, the real value of x in ea
h possible expression obtainedfrom this polivariant fun
tion is abstra
ted using the eviden
e variable hx.Example 2.24. In this example, the same polyvariant fun
tion that appears in theprevious example is instantiated twi
e, re
eiving di�erent stati
 information ea
h time.P̀ letD f = poly (�Dx:lift x +D 1D )in (spe
 f �D 42S ; spe
 f �D 17S )D: (IntD ; IntD )D,!let f 0 = �hx:�x0:hx + 1in (f 0((42))��; f 0((17))��): (Int; Int)Observe the intera
tion between annotations poly and spe
, whi
h introdu
es abstra
-tion and appli
ation of eviden
e 
orresponding to the values that variable x assumes.Example 2.25. Finally, we show how Example 2.10-3 is spe
ialized, obtaining:P̀ �Df:spe
 f �D 13S : poly (IntS !D IntD )!D IntD,! �hu; hl:�f 0:hl[f 0℄�� : 8s:IsMG (8t:IsInt t) t! Int) s;IsMG s (1̂3! Int);) poly s! Int



2.3. Prin
ipal Type Spe
ialization 21This example shows a higher-order fun
tion that re
ieves a polyvariant fun
tion as itsargument to apply it to a spe
i�
 stati
 value. The argument fun
tion must be aninstan
e of 8t:IsInt t ) t ! Int, but at least as general as 1̂3! Int. These 
onditionsare represented with eviden
e variables, whi
h manipulate the residual 
ode a

ordingto eviden
e that prove predi
ates when we determine the value of s.The system P̀ is stable under substitutions, an essential property for prin
ipality.Proposition 2.26. If � j � P̀ e : � ,! e0 : � then S� j S � P̀ e : � ,! e0 : S �.Spe
ialization also respe
ts the `̀ relation.Proposition 2.27. If h : � j � P̀ e : � ,! e0 : � 0 and h0 : �0 `̀ v : �, thenh0 : � j � P̀ e : � ,! e0[v=h℄ : � 02.3.4 AlgorithmAdditionally to the spe
i�
ation rules given in Figures 2.7 and 2.8, Mart��nez L�opezpresents an algorithm for prin
ipal spe
ialization, previously de�ning a syntax dire
tedsystem similar to that used in [Jones, 1994a℄. This algorithm is based on the Milner'sW algorithm [Milner, 1978℄, and the rules 
an be interpreted as an attribute grammar[R�emy, 1989℄. The system of rules is showed in Figures 2.9 and 2.10. This algorithmuses a number of auxiliaries subsystems whi
h 
an be summarized as follows:Uni�
ation: The uni�
ation algorithm is based on Robinson's algorithm, with modi�-
ations to deal with substitution under quanti�
ation (that is, inside polyvariantresidual types). We use a kind of \skolemisation" of quanti�ed variables to avoidsubstituting them | in order to do this, we extend residual type s
hemes withskolem 
onstants, ranging over 
, and belonging to a 
ountable in�nite set with nointerse
tion with other variables. In order to spe
ify the uni�
ation algorithm, weuse a system of rules to derive judgments of the form �
 �U �
, with U rangingover substitutions. The rules are presented in Figure 2.11.Entailment: The idea of an algorithm for entailment is to 
al
ulate a set of predi
atesthat should be added to the 
urrent predi
ate assignment � in order to be ableto entail a given predi
ate Æ. The input is the 
urrent predi
ate assignment andthe predi
ate Æ to entail, and the output is the set of predi
ates to add and theeviden
e proving Æ. The result 
an be easily a
hieved by adding Æ to � with anew variable h. So, the only rule that is ne
essary for this algorithm ish : Æ j � `̀ W h : Æ (h fresh)that is, generate a new fresh variable h and add h : Æ to the 
urrent predi
ateassignment.More re�ned algorithms 
an be designed to handle ground predi
ates (su
h asIsInt n̂) or predi
ates already appearing in �, but all these 
ases 
an be handled bysimpli�
ation and 
onstraint solving phases [Badenes and Mart��nez L�opez, 2002℄.
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(W-VAR) x : � ,! e0 : � 0 2 �; j Id � Ẁ x : � ,! e0 : � 0(W-DINT) ; j Id � Ẁ nD : IntD ,! n : Int(W-D+) �1 j S1 � Ẁ e1 : IntD ,! e01 : Int �2 j S2 (S1 �) Ẁ e2 : IntD ,! e02 : IntS2�1;�2 j S2S1 � Ẁ e1 +D e2 : IntD ,! e01 + e02 : Int(W-LIFT) � j S � Ẁ e : IntS ,! e0 : � 0 �0 j � `̀ W v : IsInt � 0�0;� j S � Ẁ lift e : IntD ,! v : Int(W-SINT) ; j Id � Ẁ nS : IntS ,! � : n̂(W-S+) �1 j S1 � Ẁ e1 : IntS ,! e01 : � 01�2 j S2 (S1 �) Ẁ e2 : IntS ,! e02 : � 02� j S2�1;�2 `̀ W v : t := S2 � 01 + � 02�; S2�1;�2 j S2S1 � Ẁ e1 +S e2 : IntS ,! � : t (t fresh)(W-DLAM) � Ẁ-SR �2 ,! � 02 �0 j S (�; x : �2 ,! x0 : � 02) Ẁ e : �1 ,! e0 : � 01�0; S� j S � Ẁ �Dx:e : �2!D �1 ,! �x0:e0 : S � 02 ! � 01 (x0 fresh)(W-DAPP) �1 j S1 � Ẁ e1 : �2!D �1 ,! e01 : � 01�2 j S2 (S1 �) Ẁ e2 : �2 ,! e02 : � 02 S2 � 01 �U � 02 ! tUS2�1; U �2 j US2S1 � Ẁ e1 �D e2 : �1 ,! e01�e02 : U t (t fresh)(W-POLY) h : � j S � Ẁ e : � ,! e0 : � 0�0 j ; `̀ W v : IsMG (GenS �(�) � 0)) s�0 j S � Ẁ poly e : poly � ,! v[�h:e0℄ : poly s (s fresh)(W-SPEC) � j S � Ẁ e : poly � ,! e0 : � 0� � 0� �U poly s�0 Ẁ-SR � ,! � 0 �00 j U �;�0 `̀ W v : IsMG (U s) � 0�00; U �;�0 j US � Ẁ spe
 e : � ,! v[e0℄ : � 0 (s fresh)Figure 2.9: Type Spe
ialisation Algorithm (�rst part).
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ialization 23(W-DTUPLE) �1 j S1 � Ẁ e1 : �1 ,! e01 : � 01. . . �n j Sn Sn�1 : : : S1 � Ẁ en : �n ,! e0n : � 0nSn : : : S2�1; : : : ;�n j Sn : : : S1 �Ẁ (e1; : : : ; en)D : (�1; : : : ; �n)D,! (e01; : : : ; e0n) : (Sn : : : S2 � 01; Sn : : : S3 � 02; : : : ; � 0n)(W-DPRJ) � j S � Ẁ e : (�1; : : : ; �n)D ,! e0 : � 0 � 0 �U (t1; : : : ; tn)U � j US � Ẁ �Di;n e : �i ,! �i;n e0 : U ti (t1;:::;tn fresh)(W-DLET) �2 j S2 � Ẁ e2 : �2 ,! e02 : � 02�1 j S1 (S2 �; x : �2 ,! x0 : � 02) Ẁ e1 : �1 ,! e01 : � 01S1�2;�1 j S1S2 � Ẁ letD x = e2 in e1 : �1,! let x0 = e02 in e01 : � 01 (x0 fresh)
Figure 2.10: Type Spe
ialisation Algorithm (se
ond part).Sour
e-Residual Relationship: The relationship between sour
e and residual typesis 
al
ulated by providing the algorithm with the sour
e type as its input, so itprodu
es as output the residual type and a predi
ate assignment expressing therestri
tions on type variables. It 
an be interpreted as an attribute grammar withjudgments of the form � Ẁ-SR � ,! � 0, where � is an inherited attribute (i.e.input to the algorithm),and � and � 0 are synthesized ones (i.e. output). The rulesare given in Figure 2.12.Finally, we present the most important property whi
h is the reason for these systems| prin
ipality:Theorem 2.28. If we have � j � P̀ e : � ,! e0 : �, then there exist e0p and �p satisfying� P̀ e : � ,! e0p : �p su
h that for all �00, e00, �00 with �00 j � P̀ e : � ,! e00 : �00there exists a 
onversion C and a substitution R satisfying C : ( j R�p) � (�00 j �00) andC [e0p ℄ = e00.The meaning of this theorem is that every residual term and type obtained by the systemP̀ 
an be expressed as a parti
ular 
ase of the residual term and type produ
ed by thealgorithm. We 
an found te
hni
al details of this proof in [Mart��nez L�opez and Hughes,2004℄.Prin
ipality allows us to spe
ialize programs in a modular way, spe
ializing ea
hpie
e of 
ode independently from the 
ontext where it will be used.2.3.5 ExtensionsThe language 
onsidered in Se
tion 2.3.1 is a small subset of a real programming lan-guage. In order to 
onsider examples of some interest, su
h as the interpreter for lambda-
al
ulus, Mart��nez L�opez extends the language with new 
onstru
ts [Mart��nez L�opez,2004℄, 
onsidering how to obtain prin
ipal spe
ialization for them. Some simple exten-sions that we 
an mention are:
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 �Id 
n̂ �Id n̂Int �Id Int� �Id �� 62 FV(�)� �[�=�℄ �� 62 FV(�)� �[�=�℄ �� 01 �T � 02 T � 001 �U T � 002� 01 ! � 02 �UT � 001 ! � 002� 011 �T1 � 021 T1 � 012 �T2 T1 � 022 . . . Tn�1 : : : T1 � 01n �Tn Tn�1 : : : T1 � 02n(� 011; : : : ; � 01n) �Tn:::T1 (� 021; : : : ; � 02n)� �U �0poly � �U poly �0�[�=
℄ �U �0[�0=
℄8�:� �U 8�0:�0 (
 fresh)Æ �U Æ0 � �U �0Æ ) � �U Æ0 ) �0� �U � 0IsInt � �U IsInt � 0� �T � 0 T �1 �U T � 01 UT �2 �V UT � 02� := �1 + �2 �V UT � 0 := � 01 + � 02�1 �T �2 T �01 �U T �02IsMG �1 �01 �UT IsMG �2 �02Figure 2.11: Rules for uni�
ation.



2.3. Prin
ipal Type Spe
ialization 25IsInt t Ẁ-SR IntS ,! t (t fresh); Ẁ-SR IntD ,! Int�1 Ẁ-SR �1 ,! � 01 �2 Ẁ-SR �2 ,! � 02�1;�2 Ẁ-SR �2!D �1 ,! � 02 ! � 01(�1 Ẁ-SR �1 ,! � 01)i=1;:::;n�1; : : : ;�n Ẁ-SR (�1; : : : ; �n)D ,! (� 01; : : : ; � 0n)� Ẁ-SR � ,! � 0IsMG � s Ẁ-SR poly � ,! poly s (�=Gen;(�)� 0) and s fresh)Figure 2.12: Rules 
al
ulating prin
ipal sour
e-residual relationship.� Booleans as a base type (together with its primitives).� Stati
 sum-like types, with 
ontru
tors and pattern-mat
hing as part of a 
ase.There are extensions that are not straightforward to obtain, for example, we have:� Re
ursion (dynami
 and stati
 one)� Stati
 fun
tions� PolymorphismWe have summarized the prin
ipal ideas, de�nitions and theorems behind prin
ipaltype spe
ialization. We pro
eed in the next 
hapter with our work, that is, extendingprin
ipal type spe
ialization to handle dynami
 sum-types.





Chapter 3Prin
ipal Spe
ialization of Dynami
Sum-Types\ Mas no transformar�as una sola 
osa, un guijarro, un grano de arena hastaque no sepas 
u�al ser�a el bien y el mal que resultar�a. El mundo se mantiene enEquilibrio. El poder de Transforma
i�on y de Invo
a
i�on de un mago puede romperese equilibrio. Tiene que ser guiado por el 
ono
imiento, y servir a la ne
esidad."La es
uela de he
hi
er��aUn mago de Terramar�Ursula K. Le GuinIn this 
hapter we present our proposal to deal with dynami
 sum-type in the frame-work developed in [Mart��nez L�opez and Hughes, 2004℄.First, in Se
tions 3.1 and 3.2, we extend the grammars des
ribing sour
e and residualterms as well as sour
e and residual types. Then, in Se
tion 3.3, we give two rules totype the extensions made in the residual 
ode. Finally, in Se
tion 3.4, we present therules to spe
i
ialize terms related to dynami
 sum-types. We also extend all the proofsof lemmas, propositions and theorems that appear in Se
tions 3.3 and 3.4 to prove thatthey hold after our additions.3.1 Extending Sour
e and Residual LanguageIn order to introdu
e dynami
 sum-types we �rst have to extend the sour
e languagedes
ribed in [Mart��nez L�opez and Hughes, 2004℄. We use the same notation and 
onven-tions for dynami
 sum-types used in [Hughes, 1996℄, where 
onstru
tors are distinguishedlexi
ally and take only one argument. However, instead of anonymous sum-types, wewill use named ones. Moreover, our dynami
 sum-types have arity zero, i.e. with noparameters. We extend the sour
e language as follows.Definition 3.1. Let D denote a sum-type name and C a 
onstru
tor name. A sour
eterm, denoted by e, is an element of the language de�ned by the following abstra
tgrammar: e ::= [ dd
l ℄� epdd
l ::= data DD = 
s
s ::= C D1 � jj : : : jj C Dn �ep ::= : : :j CDj 
aseD ep of [ br ℄�br ::= CD x ! ep27
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ipal Spe
ialization of Dynami
 Sum-Typeswhere ep is the grammar des
ribing sour
e terms in [Mart��nez L�opez and Hughes, 2004℄but with two extra 
onstru
ts. A sequen
e of none, one or more e items is denotedby [ e ℄�. The non-terminal symbol 
s denotes just an enumeration of 
ontru
tors (thesymbol jj is used to avoid 
onfusion with the symbol j used for 
hoi
e).De
larations of dynami
 sum-types are only allowed at the begining of the program.The reason for this is only simpli
ity and it is not hard to 
onstru
t a new grammarthat enable us to de
lare dynami
 sum-types in any other part of the program.Be
ause we are dealing with dynami
 
onstru
ts, we have to add them to the residuallanguage too.Definition 3.2. Let D denote a sum-type name and C a 
onstru
tor name. A residualterm, denoted by e0, is an element of the language de�ned by the following grammar:e0 ::= [ dd
l0 ℄� e0pdd
l0 ::= data D = 
s0
s0 ::= C 1v0p � jj : : : jj Cnv0p �e0p ::= : : :j Cj 
ase e0p of [ br0 ℄�j proto
asev e0p with v0p of [ br0 ℄�br0 ::= C x ! e0pv0p ::= : : : j fC k gk2Iwhere e0p is the grammar des
ribing residual terms in [Mart��nez L�opez and Hughes,2004℄ but with three extra 
onstru
ts. On the other hand, v0p is the grammar de�nedin [Mart��nez L�opez and Hughes, 2004℄ for eviden
e but with a new kind of eviden
e: aset of 
onstru
tors names. The non-terminal symbol 
s 0 denotes just an enumeration of
ontru
tors. The purpose of the 
onstru
t proto
asev will be explain later.The fun
tion of upper and lower indexes of residual 
onstru
tors needs further ex-planation. If there is a dynami
 
onstru
tor in our sour
e program, said C Dk , the spe-
ialization pro
ess put it in the residual program as C kv , without the dynami
 tag andwith the upper index being the same as the lower index in the sour
e program. On theother hand, the lower index in the residual program, denoted by eviden
e v, indi
ateswhi
h of the several spe
ializations of the sum-type we are refering | see next example.Example 3.3. The goal of the lower index in a residual dynami
 
onstru
tor is impor-tant be
ause it determines whi
h spe
ialization of DD is 
onsidered. For example, if wehave the following sum-type de
larationdata DD= C D1 IntSin the sour
e 
ode letD d1 = C D1 29Sin letD d2 = C D1 71Sin 4D



3.2. Extending Sour
e And Residual Types 29The residuals of C D1 are applied to two arguments with di�erent residual types. Then itis ne
essary to 
onsider two di�erent spe
ialization of DD , where C 1 
an be applied toarguments with types 2̂9 and 7̂1 respe
tively. After spe
ialization and 
onstraint solving,the residual type is Int, and thus there are no possibilities for new restri
tions a�e
tingthe residual 
ode produ
ed. So, 
onstraint solving 
an 
ompletely and safely solve allthe predi
ates [Badenes and Mart��nez L�opez, 2002℄, produ
ing the residual programdata D1 = C 11 2̂9data D2 = C 12 7̂1let d1 = C 11 �in let d2 = C 12 �in 4Observe how C 12 belongs to D2.3.2 Extending Sour
e And Residual TypesIt is also ne
essary to extend the sour
e and residual types. We do this as follows.Definition 3.4. A sour
e type, denoted by � , is an element of the language de�ned bythe following grammar:� ::= IntD j IntS j (�; : : : ; �)D j �!D � j poly � j DDwhere the type (�1; : : : ; �n)D is a �nite tuple for every possible arity n. The name D
annot be any name that already exist, like Int, et
.Definition 3.5. Let t denote a type variable from a 
ountable in�nite set of variablesand s a type s
heme variable from another 
ountable in�nite set of variables, all of themdisjoint with any other set of variables already used. A residual type, denoted by � 0, isan element of the language given by the grammar� 0 ::= t j Int j n̂ j � 0 ! � 0 j (� 0; : : : ; � 0) j poly � j Dn� ::= Æ ) � j � 0� ::= s j 8s:� j 8t:� j �Æ ::= IsInt � 0 j � 0 := � 0 + � 0 j IsMG � � j ÆdWe are free of 
hoosing any form of a residual sum-type name (ex
ept those thatalready exist, like Int, et
.) be
ause residual programs are generated automati
ally, notby hand. We 
hoose that a residual sum-type name is 
omposed of two parts: a string,denoted by D, and a number, denoted by n. A residual 
onstru
tor will have its lowerindex identi
al to the lower index of its residual sum-type name.New predi
ates are introdu
ed in order to establish relations between residual types,helping us to determine whi
h is the residual type of the argument of ea
h residual
onstru
tor.
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(RT-DCONSTR) � j �R R̀T e0 : � 0j(� `̀ vk : C k 2 � 0e?�k; vmk : C k 2 � 0e?HasC � 0e C k � 0k)k2D^k 6=j� `̀ vmj : HasC � 0e C j � 0j; v
s : ConstrsOf � 0e� j �R R̀T C jvmj e0 : � 0e

(RT-DCASE) � j �R R̀T e0 : � 0e(hk : �k j �R R̀T �x0k:e0k : � 0k ! � 0)k2B(� `̀ vmk : C k 2 � 0e?HasC � 0e C k � 0k; vk : C k 2 � 0e?�k)k2B� `̀ v
s : ConstrsOf � 0e� j �R R̀T proto
asev e0 with v
s of(C kvmk x0k ! e0k[vk=hk℄)k2B: � 0Figure 3.1: Residual type rules of 
ase and 
onstru
tor appli
ationDefinition 3.6. The new predi
ates, denoted in De�nition 3.5 as Æd, are de�ned asfollows Æd ::= ConstrsOf � 0j HasC � 0 C k � 0j C 2 � 0?ÆResidual sum-types will be determined during 
onstraint solving, so we need to putinformation into predi
ates in order to use it when this phase is performed. The purposeof ea
h predi
ate is explained later in Se
tion 3.4.3.3 Extending RT RelationThe typing of residual terms is de�ned by a separate system, 
alled RT, as we explainedin Se
tion 2.3.2.There is no need of type inferen
e for residual terms be
ause the spe
ialization pro-
ess is well behaved with respe
t to system RT. In Figure 3.1 we de�ne the rules fortyping expressions that involve sum-types 
onstru
ts.We extend the proof of the following properties. They show that 
ontexts 
an beweakened in residual judgments, and that 
onversions indeed relate types � and �0 intheir 
ontexts.Proposition 3.7. If h : � j �R R̀T e0 : �, and �0 `̀ v : �, then �0 j �R R̀T e0[v=h℄ : �.Theorem 3.8. If h : � j �R R̀T e0 : �, and C : (h : � j �) � (h0 : �0 j �0), thenh0 : �0 j �R R̀T C [e0℄ : �0.3.4 Spe
ializations Rules for Dynami
 Sum-TypesThe system spe
ifying type spe
ialization is 
omposed by two system of rules, 
alledSR and P. In order to spe
ialize sum-types we have to extend both systems and theentailment relationship (`̀ ).
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 Sum-Types 31(HASC) � `̀ Dn(C k ) � � 0� `̀ n : HasC Dn C k � 0(CONSTRS-OF) Dn = fC k gk2I� `̀ fC k gk2I : ConstrsOf Dn(GUARD-TRUE) C k 2 Dn � `̀ v : �0� `̀ v : C k 2 Dn?�0(GUARD-FALSE) C k =2 Dn� `̀ � : C k 2 Dn?�0(UNIFY-HASC) �; h : HasC � 0 C k � 001 ;�0 `̀ � 001 � � 002�; h : HasC � 0 C k � 001 ;�0 `̀ h : HasC � 0 C k � 002(HASC-GUARD) �;HasC � 0 C k � 00;�0 `̀ v : �00�;HasC � 0 C k � 00;�0 `̀ v : C k 2 � 0?�00(ENTL-GUARD) h : � `̀ v0 : �0 �00 `̀ v
s : ConstrsOf � 0�00; h : C k 2 � 0?� `̀ ifv C k 2 v
s then v0 else � : C k 2 � 0?�0Figure 3.2: Entailment for eviden
e 
onstru
tion3.4.1 Entailment RelationshipEviden
e is used in residual 
ode for 
apturing di�eren
es between all possible spe
ial-izations of a given sour
e program.We add several entailment rules to spe
ify how to 
onstru
t eviden
e for predi
atesinvolving sum-types | see Figure 3.2. The eviden
e of (HASC) is just the number of thespe
ialized instan
e obtained from DD . The rule (CONSTRS-OF) has as its eviden
e thenames of 
onstru
tors that are in a residual sum-type de�nition. On the other hand,rules (GUARD-TRUE) and (GUARD-FALSE) say that if a 
onstru
tor belongs to a residual sum-type de�nition, ea
h of the predi
ates under the guard has to be proved a

ordingly, butif this is not the 
ase, they 
an be proved trivially using eviden
e �.Additionally, (UNIFY-HASC) is expressing that if we have two predi
ates HasC whi
hare relating a 
onstru
tor of the same sum-type with two di�erent residual types, thesetypes have to unify, being 
onsistent with the idea explained in Example 3.3. Observethat a predi
ate HasC is preserved in the hypothesis of that rule, be
ause it will help
onstraint solving to 
onstru
t residual sum-types de�nitions. The rule (HASC-GUARD)is used for 
onstru
ting the eviden
e of a 
onditional predi
ate when we are sure thata 
onstru
tor belongs to a sum-type. Finally, (ENTL-GUARD) shows how to 
onstru
teviden
e of a guard that we do not know in advan
e if it is either true or false.We will need the following lemma for our formal proofs in the next 
hapter.
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ipal Spe
ialization of Dynami
 Sum-TypesLemma 3.9. If h1 : �1 `̀ v2 : �2 and h : � `̀ v1 : C k 2 � 0?�1; v
s : ConstrsOf � 0 thenh : � `̀ ifv C k 2 v
s then v2[v1=h1℄ else � : C k 2 � 0?�23.4.2 Sour
e-Residual RelationshipThe sour
e-residual relationship, expressed by the judgment � S̀R � ,! � 0, ensures arelation between a sour
e type and a residual one in order to a
hive prin
ipality togetherwith system P. We have previously introdu
ed new sour
e types on De�nition 3.4, sothrough this relation we have to express whi
h residual types are related to them | seeFigure 3.3.The symbol D usually represents a dynami
 sum-type but sometimes, depending onthe 
ontext, it also represents a set of indi
es of the 
onstru
tors of the 
orrespondingdynami
 sum-type used | remember that 
onstru
tors are enumerated sequentiallystarting from one. Additionally, D(C k) is the sour
e type of C Dk 's argument in thede�nition of the sum-type DD .The rule (SR-DDT), presented in Figure 3.3, establishes the 
onditions that have tohold in order to DD be related to a residual sum-type � 0. It establishes that for ea
hresidual 
onstru
tor C k belonging to the de�nition of � 0, its argument has the residualtype � 0k | 
aptured by C k 2 � 0?HasC � 0 C k � 0k. Observe that we also need predi
atesrestri
ting � 0k. We are 
apturing the posibility of a 
onstru
tor not being needed, andthe residual sum-type will not in
lude it | the 
orresponding guarded predi
ates willbe trivially proved with eviden
e � in 
onstraint solving.Example 3.10. In this example we show predi
ates that are generated when applyingrule (SR-DDT). We have the sum-type de
larationdata DD= LeftD IntS j RightD BoolSand the judgementP̀ �De:e : DD !DDD,! �h1; h2; h3; h4; h5:�e0:e0 : 8t1; t2; t3:h1 : Right 2 t1?HasC t1 Right t2;h2 : Right 2 t1?IsBool t2;h3 : Left 2 t1?HasC t1 Left t3;h4 : Left 2 t1?IsInt t3;h5 : ConstrsOf t1 ) t1 ! t1If we apply this term to (LeftD 10S ), 1̂0 will be the residual type of Left's argument.This last fa
t 
an be appre
iated in the following judgementP̀ (�De:e) �D (LeftD 10S ) : DD !DDD,! �h1; h2; h3; h4; h5; h6:(�e0:e0)�(Lefth6 �): 8t1; t2; t3:h1 : Right 2 t1?HasC t1 Right t2;h2 : Right 2 t1?IsBool t2;h3 : Right 2 t1?HasC t1 Right t3;h4 : Right 2 t1?IsBool t3;h5 : ConstrsOf t1;h6 : HasC t1 Left 1̂0) t1
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(SR-DDT) (�k S̀R D(C k) ,! � 0k)k2D(� `̀ C k 2 � 0?�k;C k 2 � 0?HasC � 0 C k � 0k)k2D� `̀ ConstrsOf � 0� S̀R DD ,! � 0Figure 3.3: Rule de�ning the sour
e-residual relationship for dynami
 sum-typeswhere a predi
ate HasC restri
ting Left has been added to the 
ontext. Entailment rulesare responsible for eliminating guarded predi
ates. Note how eviden
e h6 indi
ates, inLefth6, whi
h one of the several possible spe
ializations of the given sour
e sum-type weare refering to.The following properties of the system SR are useful. We show that they are preservedafter our addition.Proposition 3.11. If � S̀R � ,! � then S� S̀R � ,! S �.Proposition 3.12. If � S̀R � ,! � and �0 `̀ �, then �0 S̀R � ,! �.Theorem 3.13. If � S̀R � ,! � and C : (� j �) � (�0 j �0) then �0 S̀R � ,! �0.This last theorem shows that if a residual type 
an be obtained from a sour
e one,any instan
e of it 
an be obtained too.3.4.3 Rules for Constru
tors and CaseThe rules to spe
ify spe
ialization of 
onstru
tors and 
ase's appear in Figure 3.4.Observe how (DCONSTR) spe
ializes the 
onstru
tor's argument e to e0 and introdu
esresidual types � 0k for the other arguments that belong to the same sum-type. If we havea 
onstru
tor's argument with di�erent residual types, they have to be uni�ed as statedthe rule (UNIFY-HASC) | see Examples 3.22 and 3.23.Observe that the 
onstru
tor appearing in rule (DCONSTR) is always applied to anargument. This is enough be
ause non-applied 
onstru
tors are 
onsidered �-expanded,obtaining fun
tions whose bodies always have applied 
onstru
tors. After all spe
ializa-tion and post-pro
essing phases have been 
arried out, �-redu
tions 
an be performed toget a more elegant residual 
ode. This last remark is important in order to understandhow some sour
e 
odes are spe
ialized | see Examples 3.24 and 3.25.The dual rule of (DCONSTR) is (DCASE), the most 
omplex one. The sour
e term e isspe
ialized to e0 with residual type � 0e, whi
h 
ould have information about the residualtypes of the 
onstru
tors' arguments | see Examples 3.26 and 3.27. In addition to thespe
ialization of e, every bran
h is spe
ialized assuming that ea
h 
onstru
tor has anargument whose residual type is � 0k. However, we do not know a priori if a 
onstru
toris ever applied to an argument; but if there is someone, it has to have the residualtype � 0k. We obtain this e�e
t by means of guards, (UNIFY-HASC) and (HASC-GUARD) | seeExample 3.28.It 
ould happen that all the eviden
e that 
orrespond to a bran
h are just � | seeentailment rule (GUARD-FALSE) | leaving a meaningless residual bran
h. Nevertheless,
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(DCONSTR) � j � P̀ e : D(C j) ,! e0 : � 0j(�k S̀R D(C k) ,! � 0k)k2D^k 6=j(� `̀ vk : C k 2 � 0e?�k; vmk : C k 2 � 0e?HasC � 0e C k � 0k)k2D^k 6=j� `̀ vmj : HasC � 0e C j � 0j; v
s : ConstrsOf � 0e� j � P̀ C Dj e : DD ,! C jvmj e0 : � 0e

(DCASE)
� S̀R � ,! � 0� j � P̀ e : DD ,! e0 : � 0e(hk : �k j � P̀ �Dxk:ek : D(C k)!D � ,! �x0k:e0k : � 0k ! � 0)k2B(� `̀ vmk : C k 2 � 0e?HasC � 0e C k � 0k; vk : C k 2 � 0e?�k)k2B� `̀ v
s : ConstrsOf � 0e� j � P̀ 
ase e of(C Dk xk ! ek)k2B: �,!proto
asev e0 with v
s of(C kvmk x0k ! e0k[vk=hk℄)k2B: � 0Figure 3.4: Spe
ialization rules for 
ase and 
onstru
tor appli
ationproto
asev e0 with fC j gj2J^J 6=; of(C kvmk x0k ! e0k)k2B . 
ase e0 of(C jvmj x0j ! e0j)j2B\Jproto
asev e0 with fg of(C kvmk x0k ! e0k)k2B . error \There are no bran
hes."Figure 3.5: Redu
tion rule for a proto
asevthe proto
asev has all the ne
essary information to be transformed into a 
ase whereevery bran
h is meaningful. In Figure 3.5 we have the redu
tion rules that obtain thise�e
t; observe how the only bran
hes preseved in the transformation are those whose
onstru
tors belong to the de�niton of a given residual sum-type | see Example 3.28.We use the 
onstru
t error, de�ned in [Mart��nez L�opez, 2004℄, to produ
e 
ontrolederrors in residual 
ode. On the other hand, we also need to extend the de�nition ofequality between residual terms in order to establish that two proto
asev are equal ifand only if they 
an produ
e the same residual 
ases | see Figures 3.6 and 3.7.Now, we need to extend the proof of the proposition that system P is well behavedwith respe
t to systems SR and RT.Theorem 3.14. If � j � P̀ e : � ,! e0 : �, and for all x : �x ,! x0 : � 0x 2 �,� S̀R �x ,! � 0x, then � S̀R � ,! �.Given a spe
ialisation assignment, � = [xi : �i ,! x0i : �i j i = 1::n℄, we de�ne theproje
tion of � to the residual language to be �(RT) = [x0i : �i j i = 1::n℄.Theorem 3.15. If � j � P̀ e : � ,! e0 : �, then � j �(RT) R̀T e0 : �.
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asev e0 with fC k gk2I of(C kvmk x0k ! e0k)k2B = proto
asev e00 with fC k gk2I of(C kv0mk x00k ! e00k)k2Bi�e0 = e00(vmk = v0mk)k2B\I(�x0k:e0k = �x00k:e00k)k2B\IFigure 3.6: Equality Rule I for proto
asevproto
asev e0 with h of(C kvmk x0k ! e0k)k2B = proto
asev e00 with h of(C kv0mk x00k ! e00k)k2Bi� for all Dn with the form fC k gk2Ie0[Dn=h℄ = e00[Dn=h℄(vmk [Dn=h℄ = v0mk [Dn=h℄)k2B\I(�x0k:e0k[Dn=h℄ = �x00k:e00k[Dn=h℄)k2B\IFigure 3.7: Equality Rule II for proto
asevAdditionally, we also extend the following propertiesProposition 3.16. If h : � j � P̀ e : � ,! e0 : � 0 and h0 : �0 `̀ v : �, thenh0 : � j � P̀ e : � ,! e0[h=v℄ : � 0Proposition 3.17. If � j � P̀ e : � ,! e0 : � then S� j S � P̀ e : � ,! e0 : S �.Lemma 3.18. If h : � j � P̀ e : � ,! e0 : � then EV(e0) � hLemma 3.19. If � j � P̀ e : � ,! e0 : � then there exist �j, ��, and � 0 su
h that� = 8�j:�� ) � 0.3.5 ExamplesIn this se
tion we show examples of spe
ializations using the rules des
ribed, providingalso useful observations whi
h will help to better understand ideas behind spe
ializationof sum-types. In this se
tion we start with basi
 examples. Then, in next 
hapter, we willshow more interesting examples, with intera
tions between sum-types and polyvariantexpressions, stati
 fun
tions, stati
 re
ursion, et
. We will spe
ialize ground terms.Example 3.20. Observe in this example how it is possible to produ
e two instan
es ofa given dynami
 sum-type. We have two predi
ates HasC, one of them on t and 4̂6, andthe other on t0 and 9̂9.We have the sum-type de
larationdata DD= LeftD IntS j RightD IntD



36 Chapter 3. Prin
ipal Spe
ialization of Dynami
 Sum-Typesin the sour
e 
odeletD d1 = ifDTrueD then LeftD 46S else RightD 40Din letD d2 = ifDFalseD then RightD 20D else LeftD 99Sin 4D: IntDand one of its spe
ializations is�h1; h2; h3; h4; h5; h6:let d1 = if True then Lefth1 � else Righth2 40in let d2 = if False then Righth4 20 else Lefth5 �in 4with residual type 8t; t0:h1 : HasC t Left 4̂6;h2 : HasC t Right Int;h3 : ConstrsOf t;h4 : HasC t0 Right Int;h5 : HasC t0 Left 9̂9;h6 : ConstrsOf t0 ) IntConstraint solving will dete
t that between t and t0 there is no intera
tion, so twodi�erent residual sum-types 
an be de�ned. Additionally, we are able to dete
t whereea
h residual sum-type is used by looking at the lower index of ea
h 
onstru
tor. The
onstraint solving phase will produ
e the following residual 
odedata D1= Left1 4̂6 j Right1 Intdata D2= Left2 9̂9 j Right2 Intlet d1 = if True then Left1 � else Right1 40in let d2 = if False then Right2 20 else Left2 �in 4Example 3.21. Here, we for
e information to 
ow from a 
ontru
tor whose argumenthas residual type 7̂5 to another whose argument is the argument of the en
losing fun
tion,�xing in this way whi
h argument has to be taken by the fun
tion.We have the sum-type de
larationdata DD= LeftD IntS j RightD IntDin the sour
e 
ode�Db:letD d1 = LeftD 75Sin letD d2 = LeftD 11Sin letD d3 = LeftD bin letD u = ifDTrueD then d3 else d1in 4D: IntS !D IntD



3.5. Examples 37and one of its spe
ializations is�h1; h2; h3; h4; h5; h6:�b:let d1 = Lefth4 �in let d2 = Lefth1 �in let d3 = Lefth4 bin let u = if True then d3 else d1in 4: 8t; t0:h1 : HasC t Left 1̂1;h2 : Right 2 t?HasC t Right Int;h3 : ConstrsOf t;h4 : HasC t0 Left 7̂5;h5 : Right 2 t0?HasC t0 Right Int;h6 : ConstrsOf t0 ) 7̂5! IntNote that the guarded predi
ates are needed be
ause there is no information 
on
erningRight. Constraint solving will eliminate them, produ
ingdata D1= Left1 7̂5data D2= Left2 1̂1�b:let d1 = Left1 �in let d2 = Left2 �in let d3 = Left1 bin let u = if True then d3 else d1in 4: 7̂5! IntExample 3.22. It is possible that some 
onstru
tors do not appear in the sour
e 
ode,and in 
onsequen
e there are no information about the residual type of their arguments.We have the sum-type de
larationdata DD= LeftD IntS j RightD IntSand the judgementP̀ LeftD 57S : DD,! �h1; h2; h3; h4:Lefth1 � : 8t; t0:h1 : HasC t Left 5̂7;h2 : Right 2 t?HasC t Right t0;h3 : Right 2 t?IsInt t0;h4 : ConstrsOf t) tIf the 
onstru
t Right is eventually applied to an argument, its type should unify to t0by appli
ation of the entailment rules (HASC-GUARD) and (UNIFY-HASC).Example 3.23. We present an example that involves dynami
 
onstru
tors where spe-
ialization is possible, but where predi
ates 
annot be satis�ed during 
onstraint solvingbe
ause two di�erent residual types are assigned to the same 
onstru
tor's argument.
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ipal Spe
ialization of Dynami
 Sum-TypesWe have the sum-type de
larationdata DD= OnlyD IntSand the judgementP̀ ifDTrue then OnlyD 7S else OnlyD 89S : DD,! �h1; h2; h3:if True then Onlyh1 � else Onlyh2 � : 8t:h1 : HasC t Only 7̂;h2 : HasC t Only 8̂9;h3 : ConstrsOf t) tThe entailment rule (UNIFY-HASC) says that we need to prove 7̂ � 8̂9 to satisfy su

essfullythe predi
ates in 
ontext; but that is impossible, and so 
onstraint solving will fail.Example 3.24. In this example we 
an see how any information that pro
eed fromthe 
ontext of the fun
tion (by means of t0) must unify with ^101 to su

essfully solvepredi
ates.We have the sum-type de
larationdata DD= OnlyD IntSand the judgement P̀ �Dx:letD f = OnlyDin (f �D 101S ; f �D x)D: IntS !D (DD ;DD )D,!�h1; h2; h3; h4:�x:let f = Onlyh2in (f��; f��): 8t; t0:h1 : IsInt t0;h2 : HasC t Only ^101;h3 : HasC t Only t0;h4 : ConstrsOf t) t0 ! (t; t)Example 3.25. All 
onstru
tors are �-expanded before the spe
ialization and �-redu
edafter all post-pro
essing phases. We just analyze and show sour
e programs without �-expansions, but it is important to be aware of this to understand how spe
ialization ofa sour
e 
onstru
tor is 
arried out.We have the sum-type de
larationdata DD= OnlyD IntSand the judgementP̀ OnlyD : IntS !DDD,! �h1; h2:Onlyh2 : 8t; t0:h1 : IsInt t0;h2 : HasC t Only t0;h3 : ConstrsOf t) t0 ! t



3.5. Examples 39Example 3.26. Spe
ialization and entailment rules were designed to enable 
onstraintsolving to dete
t when a 
ase bran
h never re
eives information related to it, erasingthem to obtain less dead 
ode. Here, we show an example where this happens.We have the sum-typedata DD= LeftD IntS j RightD BoolSin the sour
e 
ode letD 
 = 
aseD (LeftD 33S ) ofLeftD n ! lift nRightD b ! 7Din 4D: Intand one of its spe
ializations is�h1; h2; h3; h4:let 
 = proto
asev (Lefth1 �) with h4 ofLefth1 n ! 33Righth2 n ! 7in 4with residual type 8t; t0:h1 : HasC t Left 3̂3;h2 : Right 2 t?HasC t Right t0;h3 : Right 2 t?IsBool t0;h4 : ConstrsOf t) IntConstraint solving will produ
edata D1= Left1 3̂3let 
 = 
ase (Left1 �) ofLeft1 n ! 33in 4where the bran
h 
on
erning Right was eliminated.Example 3.27. In this example we show a 
ase 
onstru
t with no information to spreadthrough any of its bran
hes. We 
an observe that all predi
ates HasC are guarded |they were generated by appli
ation of (SR-DDT) and (DCASE) rules.We have the sum-type de
larationdata DD= LeftD IntS j RightD BoolS



40 Chapter 3. Prin
ipal Spe
ialization of Dynami
 Sum-Typesand the judgement̀ P �De:
aseD e ofLeftD n ! lift n: DD !D IntD,!�h1; h2; h3; h4; h5; h6; h7:�e:proto
asev e with h7 ofLefth5 n ! h6: 8t1; t2; t3; t4:h1 : Left 2 t1?HasC t1 Left t2;h2 : Left 2 t1?IsInt t2;h3 : Right 2 t1?HasC t1 Right t3;h4 : Right 2 t1?IsBool t3;h5 : Left 2 t1?HasC t1 Left t4;h6 : Left 2 t1?IsInt t4;h7 : ConstrsOf t1 ) t1 ! IntThe 
onstru
tor Left 
an have an argument of residual type 2̂, for instan
e, by justapplying the previous sour
e term to (LeftD 2S ). In this 
ase we 
an 
on
lude by(HASC-GUARD) and (UNIFY-HASC) that t2 and t4 have to be uni�ed to 2̂. The entailmentrules (HASC-GUARD) and (UNIFY-HASC) have an important rôle during 
onstraint solving| they are responsible for spreading information between 
onstru
tors that have equalnames and belong to the same residual sum-type.It is also possible that we never re
eive information 
on
erning Left's argument,whi
h is easily a
hived, for example, applying the previous sour
e abstra
tion to thesour
e term (RightD TrueS ).Example 3.28. Bran
hes are spe
ialized assuming that 
onstru
tor C k has an argumentof residual type � 0k. First, we present an example where a dynami
 sum-type is abstra
tedand then we show what happen when we apply it to two di�erent sour
e terms.We have the sum-type de
larationdata DD= LeftD IntS j RightD BoolSin the sour
e 
ode�De:
aseD e ofLeftD n ! letD id = �Dx:xin letD for
e = (id �D n; id �D 44S )Din lift nRightD b ! ifS b then 10D else 70D: DD !D IntDand one of its spe
ializations is�h1; h2; h3; h4; h5; h6; h7; h8; h9:�e:proto
asev e with h12 ofLefth5 n ! let for
e = (id�n; id��)in h6Righth7 b ! ifv h8 then 10 else 70



3.5. Examples 41with residual type 8t1; t2; t3; t4:h1 : Left 2 t1?HasC t1 Left t2;h2 : Left 2 t1?IsInt t2;h3 : Right 2 t1?HasC t1 Right t3;h4 : Right 2 t1?IsBool t3;h5 : Left 2 t1?HasC t1 Left 4̂4;h6 : Left 2 t1?IsInt 4̂4;h7 : Right 2 t1?HasC t1 Right t4;h8 : Right 2 t1?IsBool t4;h9 : ConstrsOf t1 ) t1 ! IntObserve that there are two guarded HasC for ea
h 
onstru
tor, one of them generatedby (SR-DDT) and the other one by (DCASE).If we apply the previous fun
tion to the 
odeP̀ ifDFalseD then RightD TrueS else LeftD 44S : DD,!�h1; h2; h3:if False then Righth1 � else Lefth2 � :8t:h1 : HasC t Right ^True; h2 : HasC t Left 4̂4; h3 : ConstrsOf t) tspe
ialization and 
onstraint solving will be 
arried out without problems. However, ifthe 
ode we apply it to isP̀ LeftD 6S : DD,!�h1; h2; h3; h4:Lefth1 �: 8t; t0:h1 : HasC t Left 6̂; h2 : Right 2 t?HasC t Right t0; h3 : Right 2 t?IsBool t0;h4 : ConstrsOf t) tspe
ialization 
an pro
eed, but 
onstraint solving will fail be
ause it is impossible tounify 4̂4 with 6̂ | whi
h is for
ed by the entailment rules (UNIFY-HASC) and (HASC-GUARD).Example 3.29. In this example, we have two 
ase's. The �rst one re
eives informationwhi
h is useful for the bran
h involving Left, while the se
ond does not re
eive anyinformation for its bran
h.We have the following sum-types de
larationsdata D1D= LeftD IntS j RightD BoolSdata D2D= OnlyD IntSused in the sour
e 
odeletD f1 = �De:
aseD e ofLeftD n ! lift n +D 1DRightD n ! 2Din letD f2 = �De:
aseD e ofOnlyD n ! lift nin letD g = f1 �D (LeftD 10S )in 4D: IntD



42 Chapter 3. Prin
ipal Spe
ialization of Dynami
 Sum-Typesand one of its spe
ializations is� h1; h2; h3; h4; h5; h6; h7; h8; h9; h10; h11; h12; h13:let f1 = �e:proto
asev e with h5 ofLefth11 n ! 10 + 1Righth3 n ! 2in let f2 = �e:proto
asev e with h10 ofOnlyh8 n ! h9in let g = f1�(Lefth11 �)in 4with residual type8t1; t2; t3; t4; t5; t6; t7:h1 : Right 2 t1?HasC t1 Right t2; h2 : Right 2 t1?IsBool t2;h3 : Right 2 t1?HasC t1 Right t3; h4 : Right 2 t1?IsBool t3; h5 : ConstrsOf t1;h6 : Only 2 t4?HasC t4 Only t5; h7 : Only 2 t4?IsInt t5;h8 : Only 2 t4?HasC t4 Only t6; h9 : Only 2 t4?IsInt t6; h10 : ConstrsOf t4;h11 : HasC t1 Left 1̂0; h12 : Right 2 t1?HasC t1 Right t7;h13 : Right 2 t1?IsBool t7 ) IntConstraint solving will dete
t these fa
ts and will pro
eed deleting the Right and Onlybran
hes, giving the following residual 
odedata D1= Left1 1̂0let f1 = �e:
ase e ofLeft1 n ! 10 + 1in let f2 = �e:error \There are no bran
hes."in let g = f1�(Left1 �)in 4We have eliminated unneeded bran
hes from 
ases, not in
luding Right in de�nition ofD1 be
ause it will not be used, thus obtaining more 
on
ise 
ode.



Chapter 4The Algorithm and the Proof, Extended\ | La primera le

i�on en Roke, y la �ultima, es �Haz lo que sea ne
esario�.<Y no m�as!| Las le

iones intermedias han de 
onsistir, enton
es, en aprender qu�e es lone
esario. " Los hijos de la mar abiertaLa 
osta mas lejana�Ursula K. Le GuinIn this 
hapter we extend the proof for prin
ipality of system P (Theorem 2.28) toin
lude dynami
 sum-types.Basi
ally, we have to make the following extensions: �rst, in Se
tion 4.1, we extendS̀, a syntax dire
ted version of P̀, to take a

ount of dynami
 sum-types, and we provethat both systems are still equivalent in the same way as before (Theorems 4.5 and 4.6).Then, in Se
tion 4.2, we extend the algorithm Ẁ and the proof that S̀ is still equivalentto Ẁ (Theorems 4.13 and 4.14).The main result is obtained as a 
orollary, 
ombining the four theorems des
ribedabove, so we do not need to extend its proof separately.4.1 Extension of The Syntax Dire
ted System, SThe syntax dire
ted versions of rules (DCONSTR) and (DCASE) respe
t the equivalen
ebetween systems P̀ and S̀, in su
h a way that results on one of the systems 
an betranslated into results of the other. Rules that belong to a syntax dire
ted system arealways better suited for an algorithm.First, we must review some de�nitions and properties of system P, whi
h were pre-viously stated in [Mart��nez L�opez and Hughes, 2004℄. They are needed to introdu
e away to generalize as mu
h type variables as possible under a 
ertain assignment.Definition 4.1. Let A = (FV(�) [ FV(� 0))=(FV(�) [ FV(�0)). We de�neGen�;�0(�) � 0) = 8A:�) � 0When �0 = ;, we may 
hoose to write Gen�(�) � 0).The 
orresponden
e of this notion of generalization with several appli
ations of therule (GEN) 
an be stated as the following property.Proposition 4.2. If �0 j � P̀ e : � ,! e0 : � ) � 0, then �0 j � P̀ e : � ,! e0 :Gen�;�0(�) � 0), and both derivations only di�er in the appli
ation of rule (GEN).43



44 Chapter 4. The Algorithm and the Proof, ExtendedAdditionally, type s
hemes obtained by generalization with Gen 
an be related by theordering �, as stated in the following assertions that hold for all � and � 0:1. if h0 : �0 `̀ v : � and C = [℄((v)) then C : Gen�(�) � 0) � (h0 : �0 j � 0)2. if h0 : �0 `̀ v : � and C = �h0:[℄((v)) then C : Gen�(�) � 0) � Gen�(�0 ) � 0)3. for all substitutions R and all 
ontexts �,[℄ : RGen�(�) � 0) � GenR�(R�) R � 0)The system S does not produ
e type s
hemes but residual types only. The rules inFigure 3.4 do not 
ontain either quali�ed types or type s
hemes, thus our extensions tosystem S are trivial | see Figure 4.1.
(S-DCONSTR) �s j � S̀ e : D(C j) ,! e0s : � 0js(�sk S̀R D(C k) ,! � 0ks)k2D^k 6=j(�s `̀ vsk : C k 2 � 0es?�sk; vsmk : C k 2 � 0es?HasC � 0es C k � 0ks)k2D^k 6=j�s `̀ vsmj : HasC � 0es C j � 0js; vs
s : ConstrsOf � 0es�s j � S̀ C Dj e : DD ,! C jvsmj e0s : � 0js

(S-DCASE)
�s S̀R � ,! � 0s�s j � S̀ e : DD ,! e0s : � 0es(hsk : �sk j � S̀ �Dxk:ek : D(C k)!D � ,! �x0ks:e0ks : � 0ks ! � 0s)k2B(�s `̀ vsmk : C k 2 � 0es?HasC � 0es C k � 0ks; vsk : C k 2 � 0es?�sk)k2B�s `̀ vs
s : ConstrsOf � 0es�s j � S̀ 
ase e of(C Dk xk ! ek)k2B: �,!proto
asev e0s with vs
s of(C kvsmk x0ks ! e0ks[vsk=hsk℄)k2B: � 0sFigure 4.1: Syntax Dire
ted Spe
ialisation Rules.Now, we have to prove that our extensions to system S do not modify the followingproperties.Proposition 4.3. If h : � j � S̀ e : � ,! e0 : � 0 then h : S� j S � S̀ e : � ,! e0 : S � 0Proposition 4.4. If h : � j � S̀ e : � ,! e0 : � 0 and �0 `̀ v : �, then�0 j � S̀ e : � ,! e0[h=v℄ : � 0whi
h show that system S is well behaved with respe
t to entailment and substitutions.Below, we are able to establish the equivalen
e between systems S and P.Theorem 4.5. If � j � S̀ e : � ,! e0 : � 0 then � j � P̀ e : � ,! e0 : � 0.



4.2. Extension of The Inferen
e Algorithm, W 45� �U � 0ConstrsOf � �U ConstrsOf � 0�1 �U � 01 U �2 �V U � 02HasC �1 C k �2 �V U HasC � 01 C k � 02� �U � 0 U Æ �V U Æ0C k 2 �?Æ �V U C k 2 � 0?Æ0Figure 4.2: Rules for uni�
ation.Theorem 4.6. If h : � j � P̀ e : � ,! e0 : �, then there exist h0s;�0s; e0s; � 0s, and C 0ssu
h thata) h0s : �0s j � S̀ e : � ,! e0s : � 0sb) C 0s : Gen�(�0s ) � 0s) � (h : � j �)
) C 0s[�h0s:e0s℄ = e0Observe that Theorem 4.5 establishes that a derivation in S is also a derivation in P.But the 
onverse is not true: not every derivation in P is a derivation in S; however,there is a way to relate derivations in both systems by using generalizations, 
onversionsand the � ordering, as stated in Theorem 4.6.4.2 Extension of The Inferen
e Algorithm, WHere, we extend the algorithm presented in [Mart��nez L�opez and Hughes, 2004℄ to
onstru
t a type spe
ialization for a given sour
e term 
ontaining dynami
 sum-types,and prove that every spe
ialization obtained by the extended P̀ 
an be expressed interms of the output of this algorithm.We also have to extend the following properties establishing that the result of uni�-
ation, if it exists, is really a uni�er.Proposition 4.7. If � �U �0 then U � = U �0.Proposition 4.8. If S � = S �0, then � �U �0 and there exists a substitution T su
hthat S = TU .4.2.1 An entailment algorithmIn addition to the entailment algorithm given in Se
tion 2.3.4, we need to 
onsider thefollowing proposition | easily veri�ed | for formal proofs.Proposition 4.9. If �0 j � `̀ W Æ then �0;� `̀ Æ.



46 Chapter 4. The Algorithm and the Proof, Extended(WSR-DDT) (�wk Ẁ-SR D(C k) ,! � 0wk)k2DConstrsOf t;(C k 2 t?�wk ;C k 2 t?HasC t C k � 0wk)k2D Ẁ-SR DD ,! t t freshFigure 4.3: Rule 
al
ulating prin
ipal sour
e-residual relationship4.2.2 An algorithm for sour
e-residual relationshipWe add a rule to the algorithm des
ribed in Figure 2.12 so as to 
ompute the residualtype synthesized from a sour
e type DD | see Figure 4.3.The following propositions are also extended to relate the algorithm Ẁ-SR with thespe
i�
ation of the S̀R but 
onsidering dynami
 sum-types.Proposition 4.10. If � Ẁ-SR � ,! � 0 then � S̀R � ,! � 0.Proposition 4.11. If � S̀R � ,! � then �0w Ẁ-SR � ,! � 0w with all the residualvariables fresh, and there exists C 0w su
h that C 0w : Gen;(�0w ) � 0w) � (� j �).This last property establishes that the residual type produ
ed by Ẁ-SR 
an be generalizedto a type that is more general than any other to whi
h the sour
e term 
an be spe
ialized.This is important when using Ẁ-SR to 
onstraint the type of a lambda-bound variablein rule (W-DLAM).4.2.3 An algorithm for type spe
ialisationThe rules that extend the algorithm W are shown in Figure 4.4. The rule (W-DCONSTR)has a similar stru
ture to (S-DCONSTR) but involves some uni�ers and the entailmentalgorithm. On the other hand, (W-DCASE) is 
ompli
ated be
ause of the need for a lot ofuni�ers to pass information between bran
hes. On a

ount of this 
omplexity, we haveintrodu
ed the abbreviationAmn = � Umm�1 Twm�1 � � � Unn�1 Twn; if n � mId; otherwisein (W-DCASE) to express 
omplex 
ompositions of uni�ers. Moreover, the hypothesis ofthe (W-DCASE) must be ordered following the data dependen
ies.The results obtained by W are equivalent, in the sense established in Theorems 4.13and 4.14, to the results obtained by S. To establish the equivalen
e we will use, following[Mart��nez L�opez and Hughes, 2004℄, a notion of similarity between substitutions de�nedas in [Jones, 1994a℄, that is, two substitutions R and S are similar (written R � S), ifthey only di�er in a �nite number of new variables. This is useful in order to 
omparesubstitutions produ
ed by the algorithm, given that it introdu
es several fresh variablesthat will be substituted.We extend the following lemma and theoremsLemma 4.12. If h : � j S � Ẁ e : � ,! e0 : � 0 then EV(e0) � hTheorem 4.13. If � j S � Ẁ e : � ,! e0 : � 0 then � j S � S̀ e : � ,! e0 : � 0.
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(W-DCONSTR)
�wj j Twj � Ẁ e : D(C j) ,! e0 : � 0wj(�wk S̀R D(C k) ,! � 0wk)k2D^k 6=j�w j �wj `̀ W(hwvk : C k 2 t?�wk)k2D^k 6=j;(hwvmk : C k 2 t?HasC t C k � 0wk)k2D^k 6=j;hwvmj : HasC t C j � 0wj ; hwv
s : ConstrsOf t�w;�wj j Twj � Ẁ C Dj e : DD ,! C jhwvmj e0 : t t fresh

(W-DCASE)

�w0 Ẁ-SR � ,! � 0wo0�we j Twe � Ẁ e : DD ,! e0w : � 0we(hwwk : �wk j Twk (Ak�11 Twe �)Ẁ �Dxk:ek : D(C k)!D � ,! �x0k:e0wk : � 0wik ! � 0wok )k=1:::B� 0wo1 �U10 � 0wo0(� 0wok �Ukk�1 Twk Uk�1k�2 � 0wok�1)k=2:::B�w j AB1 �we; AB2 U10 �w0 `̀ W(hwvmk : C k 2 AB1 � 0we?HasC (AB1 � 0we) C k (ABk+1 Ukk�1 � 0wik))k=1:::B;(hwvk : C k 2 AB1 � 0we?ABk+1 Ukk�1�wk)k=1:::B;hwv
s : ConstrsOf AB1 � 0we�w; AB1 �we; AB2 U10 �w0 j AB1 Twe �Ẁ 
ase e of(C Dk xk ! ek)k=1:::B: �,!proto
asev e0w with hwv
s of(C khwvmk x0k ! e0wk [hwvk=hwwk ℄)k=1:::B: UBB�1 � 0wBFigure 4.4: Extension of Type Spe
ialization Algorithm.



48 Chapter 4. The Algorithm and the Proof, ExtendedTheorem 4.14. If h : � j S � S̀ e : � ,! e0 : � 0, then h0w : �0w j T 0w � Ẁ e : � ,! e0w :� 0w and there exists a substitution R and eviden
e v0w su
h thata) S � RT 0wb) � 0 = R � 0w
) h : � `̀ v0w : R�0wd) e0 = e0w[h0w=v0w℄The meaning of this last theorem is that every residual term and type obtained by thesyntax dire
ted system 
an be expressed as a parti
ular 
ase of the residual term andtype produ
ed by the algorithm.We are �nally in a position to say that our extensions to Mart��nez L�opez' workmantain the property of prin
ipality as it is stated in Theorem 2.28. To prove this weonly need the properties that we have already proved here and in the pre
eding 
hapter.More details of the proof 
an be found in [Mart��nez L�opez and Hughes, 2004℄.4.3 ExamplesIn this se
tion we present the prin
ipal type spe
ialization of some examples as they wereprodu
ed by the algorithm, with some simpli�
ation based on the entailment rules. It isnotorious that the set of predi
ates produ
ed is usually larger than the one expe
ted, sit-uation that is managed by the notions of simpli�
ation and 
onstraint solving dis
ussedin [Badenes and Mart��nez L�opez, 2002℄.Example 4.15. A 
onstru
tor 
an be applied to another 
onstru
tor belonging to an-other dynami
 sum-type. We use dynami
 tuples to provide 
onstru
tors with severaldi�erent arguments.Given the following de
larationsdata D DA = Only DA (IntS ;D DB )Ddata D DB = Only DB (BoolS ;D DC )Ddata D DC = Only DC IntSin the sour
e 
odeletD d1 = Only DA (14S ;Only DB (FalseS ;Only DC 59S )D )Din letD d2 = Only DB (TrueS ;Only DC 77S )Din letD d3 = Only DC 22Sin 4D: IntD ;its prin
ipal spe
ialization is�h1; h2; h3; h4; h5; h6; h7; h8; h9; h10; h11; h12:let d1 = OnlyAh1(�;OnlyBh3(�;OnlyCh5�))in let d2 = OnlyBh7(�;OnlyCh9�)in let d3 = OnlyCh11�in 4



4.3. Examples 49with residual type 8t1; t2; t3; t4; t5; t6:h1 : HasC t1 OnlyA (1̂4; t2); h2 : ConstrsOf t1;h3 : HasC t2 OnlyB ( ^False; t3); h4 : ConstrsOf t2;h5 : HasC t3 OnlyC 5̂9; h6 : ConstrsOf t3;h7 : HasC t4 OnlyB ( ^True; t5); h8 : ConstrsOf t4;h9 : HasC t5 OnlyC 7̂7; h10 : ConstrsOf t5;h11 : HasC t6 OnlyC 2̂2; h12 : ConstrsOf t6 ) IntConstraint solving produ
es the following de
larationsdata D1= OnlyA1 (1̂4;D2)data D2= OnlyB2 ( ^False;D3)data D3= OnlyC3 5̂9data D4= OnlyB4 ( ^True;D5)data D5= OnlyC5 7̂7data D6= OnlyC6 2̂2and the residual 
ode let d1 = OnlyA1 (�;OnlyB2 (�;OnlyC3 �))in let d2 = OnlyB4 (�;OnlyC5 �)in let d3 = OnlyC6 �in 4The example shows how stati
 information was removed while dynami
 
onstru
torswere preserved in the residual 
ode.Example 4.16. Here, we have an example where the residual type of 
onstru
tor Only'sargument depends on an unknown stati
 value. The rôle of the if then else predi
ateis to di�er the de
ision of whi
h residual type has the Only's argument until the valueof b is known.We have the dynami
 sum-type de
larationdata DD= OnlyD IntSused in the sour
e 
ode�Db:OnlyD (ifS b then 3S else 5S ): BoolS !DDDand its prin
ipal spe
ializa
ion is�h1; h2; h3; h4; h5:�b:Onlyh1 (ifv h2 then � else �)



50 Chapter 4. The Algorithm and the Proof, Extendedwith the residual type 8t1; t2; t3:h1 : HasC t2 Only t3;h2 : IsBool t1:h3 : t3 := if t1 then 3̂ else 5̂;h4 : IsInt t3;h5 : ConstrsOf t2 ) t1 ! t2Example 4.17. It is possible to make a polyvariant expression from a 
onstru
tor | itshould be remembered that they are treated as dynami
 fun
tions. Here, we 
an see how
onversion h1 will manipulate eviden
e h0 in order to determine whi
h residual instan
eof DD will be 
onsidered.We have the dynami
 sum-type de
larationdata DD= OnlyD IntSand the judgementP̀ letD f = poly OnlyD in 4D : IntD,! �h1:let f = h1[�h; h0; h00:Onlyh0 ℄ in 4: 8s:IsMG (8t; t0:h : IsInt t; h0 : HasC t0 Only t; h00 : ConstrsOf t0 ) t! t0) s) IntConstraint solving produ
es let f = �h; h0; h00:Onlyh0 in 4where there is no de
laration of residual sum-types; this happens be
ause 
onstru
torOnly was applied to no argument. The variable f in the residual 
ode will be redu
edto 
onstant � in the eviden
e elimination stage.Example 4.18. As in Example 4.17, we have a polyvariant 
onstru
tor, but this timeit is used twi
e, generating in this way two lower bounds to the type variable s.We have the dynami
 sum-type de
larationdata DD= OnlyD IntSused in the sour
e 
ode letD f = poly OnlyDin letD d1 = spe
 f �D 49Sin letD d2 = spe
 f �D 62Sin 4D: IntDand its prin
ipal spe
ialization is�h1; h2; h3; h4; h5; h6; h7; h8; h9:let f = h1[�h; h0; h00:Onlyh0℄in let d1 = h5[f ℄��in let d2 = h9[f ℄��in 4



4.3. Examples 51with the residual type8s; t1; t2; t3; t4:h1 : IsMG (8t; t0:h : IsInt t;h0 : HasC t0 Only t;h00 : ConstrsOf t0 ) t! t0)s;h2 : Only 2 t1?HasC t1 Only t2;h3 : Only 2 t1?IsInt t2;h4 : ConstrsOf t1;h5 : IsMG s (4̂9! t1);h6 : Only 2 t3?HasC t3 Only t4;h7 : Only 2 t3?IsInt t4;h8 : ConstrsOf t3;h9 : IsMG s (6̂2! t3)) IntConstraint solving produ
es the sum-type de
larationsdata D1= Only1 6̂2data D2= Only2 4̂9and the residual 
ode let f = �h; h0; h00:Onlyh0in let d1 = f((49; 2; fOnlyg))��in let d2 = f((62; 1; fOnlyg))��in 4The �rst eviden
e given to f proves a predi
ate IsInt while the se
ond one proves apredi
ate HasC indi
ating the residual instan
e of DD 
onsidered.Example 4.19. In this example we have a polyvariant 
onstru
tor used twi
e. De�ni-tion of sour
e variable d1 is responsible for for
ing the 
onstru
tors' arguments to be 2̂and 3̂ respe
tively. Additionally, the de�nition of d2 only involves information 
on
ern-ing one 
onstru
tor; thus all the bran
hes of 
1 will be preserved while some bran
hesof 
2 will be deleted. On the other hand, set of 
onstru
tor names appears as eviden
eto prove the predi
ate ConstrsOf. More predi
ates than expe
ted are generated, butsome of them are proved with eviden
e � and others are just repla
ed by simpler onesat 
onstraint solving.We have the dynami
 sum-type de
larationdata DD= LeftD IntS j RightD IntS



52 Chapter 4. The Algorithm and the Proof, Extendedin the sour
e 
odeletD f = poly LeftDin letD d1 = ifDTrue then spe
 f �D 85S else RightD 15Sin letD d2 = spe
 f �D 92Sin letD 
1 = 
aseD d1 ofLeftD n ! lift nRightD n ! lift nin letD 
2 = 
aseD d2 ofLeftD n ! lift nRightD n ! lift nin 4D: IntDand its prin
ipal spe
ialization is�h1; h2; h3; h4; h5; h6; h7; h8; h9; h10; h11; h12; h13; h14; h15; h16; h17; h18; h19; h20:let f = h1[�ha; hb; h
; hd; he:Lefthb℄in let d1 = if True then h4[f ℄� � else Righth5 �in let d2 = h14[f ℄��in let 
1 = proto
asev d1 with h8 ofLefth15 n ! h16Righth5 n ! 15in let 
2 = proto
asev d2 with h13 ofLefth17 n ! h18Righth19 n ! h20in 4with the residual type8s; t1; t2; t3; t4; t5; t6; t7; t8; t9:h1 : IsMG (8t1; t2; t3:ha : IsInt t1;hb : HasC t2 Left t1;h
 : Right 2 t2?HasC t2 Right t3;hd : Right 2 t2?HasC t2 Right IsInt t3;he : ConstrsOf t2 ) t1 ! t2) s;h2 : Left 2 t1?HasC t1 Left t2; h3 : Left 2 t1?IsInt t2;h4 : IsMG s (8̂5! t1);h5 : HasC t1 Right 1̂5;h6 : Left 2 t1?HasC t1 Left t3; h7 : Left 2 t1?IsInt t3;h8 : ConstrsOf t1;h9 : Left 2 t4?HasC t4 Left t5; h10 : Left 2 t4?IsInt t5;h11 : Right 2 t4?HasC t4 Right t6; h12 : Right 2 t4?IsInt t6;h13 : ConstrsOf t4;h14 : IsMG s (9̂2! t4);h15 : Left 2 t1?HasC t1 Left t7; h16 : Left 2 t1?IsInt t7;h17 : Left 2 t4?HasC t4 Left t8; h18 : Left 2 t4?IsInt t8;h19 : Right 2 t4?HasC t4 Right t9; h20 : Right 2 t4?IsInt t9 ) Int



4.3. Examples 53Constraint solving produ
es the sum-type de
larationsdata D1= Left1 9̂2data D2= Left2 8̂5 j Right2 1̂5and the residual 
odelet f = �ha; hb; h
; hd; he:Lefthbin let d1 = if True then f((85; 2; 2; 15; fLeft;Rightg))� � else Right2 �in let d2 = f((92; 1; �; �; fLeftg))��in let 
1 = 
ase d1 ofLeft2 n ! 85Right2 n ! 15in let 
2 = 
ase d2 ofLeft1 n ! 92in 4The �rst two eviden
es for f 
on
ern the 
onstru
tor Left and the other two, the 
on-stru
tor Right. We 
an appre
iate that Right's argument does not have any residualtype in de�nition of d2 (looking at eviden
e �). The predi
ates 
orreponding to eviden
evariables h8 and h13 were proved with fLeft;Rightg and fLeftg respe
tively.Example 4.20. This is an interesting example showing how the uni�
ation produ
ed by
onstru
t ifD is responsible for for
ing the 
onstru
tor Just to be applied to a fun
tionwith type (8t:IsInt t) t! t! t).We have the following sum-type de
larationsdata D1D= OnlyD D2Ddata D2D= JustD poly (IntS !D IntS !D IntS )in the sour
e 
odeletD dummy = ifDTruethen OnlyD (JustD (poly (�Dxy:y)))else OnlyD (JustD (poly (�Dxy:x)))in 4D: IntDand its prin
ipal spe
ialization is�h1; h2; h3; h4; h5; h6:let dummy = if Truethen Onlyh2 (Justh4 (h1[�hd; he:�x0y0:y0℄))else Onlyh2 (Justh4 (h6[�hf ; hg:�x0y0:x0℄))in 4



54 Chapter 4. The Algorithm and the Proof, Extendedwith residual type8s; t; t0:h1 : IsMG (8t; t0:hd : IsInt t; he : IsInt t0 ) t! t0 ! t0) s;h2 : HasC t1 Only t2;h3 : ConstrsOf t1;h4 : HasC t2 Just (poly s);h5 : ConstrsOf t2;h6 : IsMG (8t; t0:hf : IsInt t; hg : IsInt t0 ) t! t0 ! t) s) IntConstraint solving produ
esdata D1= Only1 D2data D2= Just2 poly (8t:h : IsInt t) t! t! t)let dummy = if Truethen Only1 (Just2 (�h:�x0y0:y0))else Only1 (Just2 (�h:�x0y0:x0))in 4Observe the use of poly in the de
laration of the residual sum-type D2.Example 4.21. Here, we 
an observe the intera
tion between stati
 fun
tions and dy-nami
 sum-types. We de�ne a stati
 fun
tion that returns the same 
onstru
tor butapplied to di�erent stati
 values. In the residual 
ode, f 
an return two di�erent valuesbelonging to di�erent instan
es of DD . Observe that the residual of f is the 
onstant� | this is be
ause it has no free variables. Again, as Example 4.19 shows, there areseveral predi
ates but they will be managed by 
onstraint solving.Given the following sum-type de
larationdata DD= OnlyD IntSin the sour
e 
odeletD f = �Sb:ifS b then OnlyD 33S else OnlyD 72Sin letD p = (f �STrueS ; f �SFalseS )Din 4D: IntDits prin
ipal spe
ialization is�h1; h2; h3; h4; h5; h6;7 ; h8; h9:let f = �in let p = (h5�vf�v�; h9�vf�v�)in 4



4.3. Examples 55with the residual type8t1; t2; t3; t4; t5; t6; t7; t8; t9:IsFunS 
los(�ha; hb; h
; hd; he; hf ; hg; hh; hi; hj; hk; hl; hm:�f 0:�b0:ifv ha then Onlyhg � else Onlyhk �: 8t1; t2; t3; t4; t5; t6; t7; t8; t9:ha : IsBool t1;hb : t2 := if t1 then t3 else t4;h
 : Only 2 t2?HasC t2 Only t5;hd : Only 2 t2?IsInt t5;he : ConstrsOf t2;hf : t1?IsInt t6;hg : t1?HasC t7 Only t6;hh : t1?ConstrsOf t7;hi : t1?(t6 ! t7) � (3̂3! t3);hj :!t1?IsInt t8;hk :!t1?HasC t9 Only t8;hl :!t1?ConstrsOf t9;hm :!t1?(t8 ! t9) � (7̂2! t4)) t1 ! t2)t1;h2 : Only 2 t2?HasC t2 Only t3;h3 : Only 2 t2?IsInt t3;h4 : ConstrsOf t2;h5 : IsFunS t 
los(t5 : ^True! t2);h6 : Only 2 t6?HasC t6 Only t7;h7 : Only 2 t6?IsInt t7;h8 : ConstrsOf t6;h9 : IsFunS t 
los(t9 : ^False! t6)) IntConstraint solving produ
es the sum-type de
larationsdata D1= Only1 3̂3data D2= Only2 7̂2used in let f = �in let p = (Only1 �;Only2 �)in 4: IntNote how the stati
 appli
ations were repla
ed by their results.Example 4.22. We have a re
ursive stati
 fun
tion that generates as many appli
ationsof the 
onstru
tor Only as the value on its input argument. We only show here the sour
e
ode and the produ
ed residual 
ode at 
onstraint solving, ex
luding the predi
atesgenerated be
ause they are too many. To get a grasp of the number of predi
ates, this



56 Chapter 4. The Algorithm and the Proof, Extendedexample 
an be tried with the provided prototype.data DD= OnlyD IntSletD f = �xS (�Sg:�Sn:ifS n == S 0Sthen 4Delse letD d = OnlyD nin g �S (n �S 1S ))in f �S 5SConstraint solving produ
esdata D1= Only1 1̂data D2= Only2 2̂data D3= Only3 3̂data D4= Only4 4̂data D5= Only5 5̂let f = �in let d = Only5 �in let d = Only4 �in let d = Only3 �in let d = Only2 �in let d = Only1 �in 4



Chapter 5 Extension to the Prototype\ En 
ambio ahora 
reo que lo importante es el primer borrador; lo dem�as es
uest�on de t�e
ni
a, de aligerar las frases, evitar repeti
iones." Jorge Luis BorgesJorge Luis Borges habla de los dem�asCon�rmado, N�umero 240, 1970
5.1 Implementation LanguageThe implementation of the prototype was written in the fun
tional language Haskell[Peyton Jones and Hughes (editors), 1999℄. This prototype was developed using theinterpreter Hugs [Jones and Reid, 1994-2003℄ under GNU/Linux [Torvalds and Stallman,2004℄; but when eÆ
ien
y was needed, gh
 [The University Court of the University ofGlasgow, 2004℄ was 
hosen.Working on fun
tional languages enables us to represent data stru
tures in exa
tlythe same way as we think about them, whi
h is ideal for writing our language andspe
ialization 
onstru
ts. Additionally, referen
ial transparen
y and programming withequations make de�nitions of pre- and post-
onditions easier than other paradigms |for example imperative or obje
t oriented programming, where the semanti
s of ea
h
ontru
t depends on a global state and not just on its input arguments.The spe
ializer was based on a state monad [Wadler, 1995℄ whi
h has a lot of infor-mation 
on
erning the spe
ialization state (variables, substitutions, et
.). The monadi
style of programming abstra
ts the 
arried state and the side-e�e
ts produ
ed, allowingus to 
on
entrate better on the goal of ea
h fun
tion.5.2 Previous WorkThe prototype used as a stepping stone was implemented in [Mart��nez L�opez and Hughes,2004℄ and extended in [Badenes and Mart��nez L�opez, 2002℄, whi
h already has datastru
tures to represent sour
e and residual terms and types, type s
hemes and predi-
ates, in addition to all the other elements handled by the spe
ialization pro
ess. Theimplemented fun
tionality in
ludes the kernel of the spe
ializer, whi
h spe
ializes sour
eterms a

ording to the algorithm W spe
i�ed in Figure 2.10, and the post-pro
essingphases: simpli�
ation and 
onstraint solving [Badenes and Mart��nez L�opez, 2002℄, evi-den
e elimination [Badenes, 2003℄. 57



58 Chapter 5. Extension to the Prototype5.3 ExtensionsThe prototype des
ribed implements relations and algorithms that we brie
y re
alled inChapter 2. In order to add dynami
 sum-types, it was ne
essary to extend every moduleof the implementation.In what follows, we summarize ea
h module extended by us, des
ribing also all the
apabilities of the prototype.� parsing sour
e language, de�ning internal representation of sour
e and residualterms and types | see De�nition 3.1, De�nition 3.2, De�nition 2.2 and De�ni-tion 2.18 | and pretty-printing fun
tions.� infering and 
he
king types of both languages and the sour
e-residual relationship| see Figures 3.1 and 4.3.� prin
ipal type spe
ialization of sour
e terms, using W algorithm des
ribed in Fig-ures 2.10 and 4.4, produ
ing residual programs with quali�ed types and eviden
e.� simpli�
ation of 
onstraints as a needed intermediate stage for a
hieving eÆ
ien
y,implementing basi
ally the rules des
ribed in [Badenes and Mart��nez L�opez, 2002℄.The entailment rules 
on
erning dynami
 sum-types | see Figure 3.2 | wereimplemented, but their formalization into the formal system developed in [Badenesand Mart��nez L�opez, 2002℄ was left out the s
ope of this work.� 
onstraint solving is performed a

ording to the heuristi
s des
ribed in [Badenesand Mart��nez L�opez, 2002℄. An heuristi
 to solve 
onstraints that involve pred-i
ates HasC, ConstrsOf and C 2 � 0?� was also implemented, but as before, itsformalization was left out the s
ope of this work.5.4 Potential ImprovementsThe prototype is really far from its �nal version. Many improvements remain to bedone. First, we 
ould optimize the algorithms already implemented: the eÆ
ien
y ofthe prototype is not optimal. This task may involve pro�ling in order to �nd points inthe 
ode to speed up, e.g. memorizing values without re
al
ulating them, �nding pointswhere we 
ould for
e a fun
tion to be stri
t (avoiding lazy evaluation) so as to save upheap spa
e, or even reimplementing all the prototype in other language, su
h as ML oran imperative or obje
t oriented one.Another possible improvement is to make extensions to the sour
e language so as tospe
ialize terms that would be 
loser to those used daily by programmers, thus redu
ingthe distan
e between the prototype as a laboratory toy and the prototype as a reallyprodu
tive tool in a spe
i�
 domain.5.5 Con
lusions of the ImplementationOne important 
ontribution of the implementation phase was \putting into e�e
t" manyof the 
on
epts developed in the theory.



5.5. Con
lusions of the Implementation 59The exe
ution of the prototype was a key element to view the results produ
ed whenspe
ialization rules were applied, in parti
ular, the rules developed in this work. Wewere able to �ne-tune our de�nitions, whi
h were introdu
ed in a theoreti
al world.Sometimes, we found in
onvenien
es in our de�nitions that were in
ompatible with therest of the work, dete
ting these problems only in the implementation stage.It is very important to put into e�e
t ideas that 
ome from a theoreti
al frameworkin order to obtain a 
ontinuous feedba
k between the theory and the pra
ti
e, two worldsthat must �t together.





Chapter 6 Con
lusions and Future Work\ Hay que sopesar los argumentos de uno y otro bando para determinar su 
on-sisten
ia y plantear supuestos pr�a
ti
os, puramente hipot�eti
os en m�as de un 
aso.Si pare
iera que algunos de estos supuestos van demasiado lejos, soli
itamos delle
tor que tenga pa
ien
ia, pues estamos tratando de forzar las diversas posturashasta su punto de ruptura a �n de advertir sus debilidades y fallos." Aborto :>es posible tomar al mismo tiempo partido por la vida y la ele

i�on?Miles de MillonesCarl SaganType spe
ialization, whi
h was 
reated by John Hughes [Hughes, 1996℄, was presentedas a new and alternative approa
h to over
ome some inherited limits.Mart��nez L�opez' work [Mart��nez L�opez and Hughes, 2004℄ 
ontinued that work de-veloping a framework that in
ludes the use of quali�ed types [Jones, 1994a℄ to 
apturethe notion of prin
ipality, whi
h means that any possible spe
ialization of a given sour
eterm 
ould be obtained as an instan
e of its most general spe
ialization.We summarize the prin
ipal 
ontribution of this work as the introdu
tion of dynami
sum-types (data types without re
ursion) to the sour
e language des
ribed in [Mart��nezL�opez and Hughes, 2004℄ preserving prin
ipality.In Chapters 3 and 4 were introdu
ed all the te
hni
al tools needed to deal with anew sour
e language 
onstru
t (extension of the sour
e and residual languages grammars,new sour
e and residual types de�nitions, new predi
ates 
apturing fa
ts about dynami
sum-types, et
.) as well as how the spe
ialization of dynami
 
onstru
tors and 
aseshave to be 
arried out by the spe
ializer. We also extended the systems P and S, andthe algorithm W, proving formally that prin
ipality was preserved. Additionally, wealso implement our theoreti
al ideas into the existing prototype of [Mart��nez L�opez andHughes, 2004℄.The information 
aptured by the predi
ates introdu
ed in Chapter 3 give us thefollowing advantages,� dete
t whi
h 
onstru
tors are used and whi
h are not in the sour
e program,obtaining de�nitions of residual sum-types with only the useful 
onstru
tors; thuseliminating useless ones.� erase bran
hes from 
ases whi
h are never exe
uted, leaving only the needed ones.� freely 
ombine polyvarian
e with dynami
 sum-types.One disadvantage of this approa
h is that residual sum-types are monomorphi
,avoiding polymorphism inside of sum-type de�nitions in order to obtain a more eÆ
ient61



62 Chapter 6. Con
lusions and Future Workand simpler residual language. Despite eÆ
ien
y and simpli
ity, this is a new inheritedlimit imposed by our heuristi
 used at 
onstraint solving phase and it will be a futurework to eliminate it.Some aspe
ts related to the whole pro
ess of spe
ialization were left as future work;for example, we do not spe
ify formally the simpli�
ation and 
onstraint solving rules |even though they were implemented in the prototype. So, there is a theoreti
al work tobe done in the future using the framework developed in [Badenes and Mart��nez L�opez,2002℄.This work is a �rst step towards the in
lusion of dynami
 re
ursive sum-types to theprin
ipal spe
ialization pro
ess.



Chapter 7Simpli�
ation and Constraint Solving\ ??? ???The algorithm presented in Chapter 4 and extended in Chapter 2 to produ
e prin
i-pal spe
ialisation introdu
es potentially many predi
ates, several of whi
h are redundantor expressible in simpler forms. In order to redu
e a predi
ate assignment to anothersimpler, two phases are de�ned in [Mart��nez L�opez and Hughes, 2004℄. The �rst one,
alled simpli�
ation, is responsable for taking a predi
ate assigment and solves thosevariables whose solution are unique. This phase is the base for the se
ond one, 
alled
onstraint solving, whi
h purpose is to take the de
isions that were deferred during spe-
ialisation when possible (observe that in general, some de
isions depend on 
ontextualinformation that may still not be present).With this separation, the spe
ialisation 
an be regarded as a stati
 analysis of theprogram, performed lo
ally and 
olle
ting the restri
tions that spe
ify the properties ofthe �nal residual program; the 
onstraint solving phase 
an be viewed as the implemen-tation of the a
tual 
al
ulation of the residual.Our extension to deal with dynami
 sum-types also introdu
es redundant predi
ates.For instan
e, a guarded predi
ate whose 
ondition is true. Additionally, our algorithmdefers the de
laration of residual sum-types to be done when all the predi
ates HasCare 
olle
ted. Thus, an extension of the simpli�
ation and 
onstraint solving phases areneed.We begin, in Se
tion 7.1.1,7.1.2,7.1.3, and 7.1.4, by des
ribing the pro
ess of sim-pli�
ation as given in [Mart��nez L�opez and Hughes, 2004℄. In Se
tion 7.1.5 we presentour extension to this phase. Constraint solving is explained in Se
tion 7.2.1, 7.2.2, and7.2.3, and our extension is dis
ussed in Se
tion 7.2.4.7.1 Simpli�
ation7.1.1 MotivationThe algorithm 
al
ulating the prin
ipal spe
ialisation of an expression introdu
es sev-eral predi
ates to express the dependen
ies of subexpressios to stati
 data. But, asthis algorithm operates lo
ally, often redundant predi
ates are introdu
ed. With thegoal of redu
ing the number of predi
ates, both be
ause of legibility and to lower the
omputational e�ort of subsequent phases, we introdu
e a pro
ess of simpli�
ation ofpredi
ates. 63



64 Chapter 7. Simpli�
ation and Constraint SolvingFor example, with the algorithm W presented in Figures 2.9 and 2.10, the spe
iali-sation of the term �Dx:lift ((x +S 1S ) +S (x +S 1S )) : IntS !D IntDis the following residual term and type:�ht ha hb h
:�x:h
 : 8t t0 t00: IsInt t;t0 := t+ 1̂;t00 := t + 1̂;t000 := t00 + t0 ) t! Intwhere the redundan
e of predi
ates 
an be observed.By the use of a simpli�
ation pro
ess, this residual 
an be 
onverted into this otherone: �h; h0:�x:h0 : 8t; t0; t000:t0 := t+ 1̂; t000 := t0 + t0 ) t! Intwhi
h, in some sense, is `simpler' than the original, but equivalent.7.1.2 Spe
i�
ationIn order to establish formally the notion of simpli�
ation, we will re
all the propertieswe expe
t of a simpli�
ation relation. We will also use a spe
ial notation.Notation 7.1. In a simpli�
ation we use 
onversions of the form (�h:[℄)((v)) and 
om-positions of these. To simplify the reading, we will use a parti
ular notation for thisrestri
ted form of 
onversions (we 
all them repla
ements): h v will be denoting theprevious 
onversion, and the 
omposition of repla
ements will be written h v �C to de-note (�h:C)((v)) (the operator � will asso
iate to the right) In this way, h1 v1�: : :�hn vnwill denote the 
onversion (�h1 : : : hn:[℄)((v1 : : : vn)).The following property of the operator (�) will be very useful:Lemma 7.2. A 
onversion h h is neutral for � (observe that [℄ is a parti
ular 
ase ofthis.) That is, for every 
onversion C and eviden
e variable h, it holds that h h �C =C = C � h h.Proposition 7.3. (�h:e0)((h))=e0Now we are ready to de�ne simpli�
ation:Definition 7.4. A relation S;C j h : � � h0 : �0 is a simpli�
ation for � if C = h vand the following 
onditions hold:(i) h0 : �0 `̀ v : S�(ii) S� `̀ �0



7.1. Simpli�
ation 65The 
onditions establish that the predi
ate assignments are equivalent with respe
tto entailment (under S); as we intend to use this pro
ess to repla
e one predi
ateassignment with another, it is a natural 
ondition to ask. The 
ondition about theform of 
onversion C expresses that it 
an be used to transform an expression assumingpredi
ates in � into another one assuming predi
ates in �0.Observe that with this de�nition, Id; [℄ j � � � is a valid simpli�
ation for �.However, we expe
t that any interesting simpli�
ation will be able to do more work, asthe following example shows.Example 7.5. Given�1 = h1 : IsInt 9̂; h2 : IsInt t000; h3 : t := 1̂ + 2̂; h4 : t0 := t+ 3̂; h5 : t000 := t00 + t0�2 = h5 : t000 := t00 + 6we would like our implementation of � to satisfyS;C j �1 � �2where S = [t=3̂℄[t0=6̂℄ and C = h1 9 � h2 h5 � h3 3 � h4 6; the reasons for that are:� h1 : IsInt 9̂ 
an be trivially simpli�ed by (IsInt), and 9 is its eviden
e.� h2 : IsInt t000 is entailed by the �fth predi
ate.� h3 : t := 1̂ + 2̂ 
an be simpli�ed 
al
ulating the result of 1 + 2 and generating thesubstitution that 
hanges t for 3̂ in the fourth predi
ate.� h4 : t0 := t + 3̂, 
an be simpli�ed in a similar way, on
e the value of t is known(from the previous predi
ate).To 
on
lude this subse
tion, we present a 
losure property of the simpli�
ation rela-tion with respe
t to substitutions. It states that if two predi
ate assignments are related,the instan
es of them will be related (provided the substitutions are `well behaved').Definition 7.6. Two substitutions S and T are said to be 
ompatible with respe
t to atype � , denoted S �� T , if TS� = ST� . This notion extends naturally to type s
hemes�, predi
ates Æ, and predi
ate assignments �.Lemma 7.7. Let T ;C j � � �0 be a simpli�
ation for �. If S and T are 
ompatibleunder �, i.e. S �� T , then T ;C j S� � S�0 is a simpli�
ation for S�.This property is important to ensure that sequential steps of an algorithm give asound solution. This is presented in Se
tion 7.2, where we will 
ombine simpli�
ationwith 
onstraint solving.



66 Chapter 7. Simpli�
ation and Constraint Solving(SimEntl) h : � `̀ vÆ : ÆId; hÆ vÆ j h : �; hÆ : Æ � h : �(SimTrans) S;C j h : � � h0 : �0 S 0;C 0 j h0 : �0 � h00 : �00S 0S;C 0 Æ C j h : � � h00 : �00(SimCtx) S;C j h1 : �1 � h2 : �2S;C j h1 : �1; h0 : �0 � h2 : �2; h0 : S�0(SimPerm) S; h1; h2 v1; v2 j h1 : �1; h2 : �2 � h01 : �01; h02 : �02S; h2; h1 v2; v1[h2=v2℄ j h2 : �2; h1 : �1 � h02 : �02; h01 : �01Figure 7.1: Stru
tural rules for simpli�
ation7.1.3 Implementing a Simpli�
ationOur next step is to de�ne a set of rules implementing a simpli�
ation relation.We start with stru
tural rules, whi
h should be present in any good simpli�
ation;they are presented in Figure 7.1. Rule (SimEntl) allows the elimination of redundantpredi
ates; this in
ludes both predi
ates that are dedu
ible from others, but also thosethat are true by their form. For example, predi
ates of the form IsInt n̂ for known n̂s,or predi
ates IsMG � �0 for whi
h it 
an be shown that C : � � �0. The se
ond rule,(SimTrans), provides transitivity, giving us a way to 
ompose simpli�
ations. The thirdrule, (SimCtx), expresses how to simplify only part of an assignment; it is important tonote the use of the substitution S on the right hand side in order to 
an
el variablesthat may have been simpli�ed. Finally, the last rule, (SimPerm), establishes that predi
ateassignments 
an be treated as if they had no order, 
losing the relation with respe
t topermutations.The last two rules are 
omplementary, and usually used together. In order to expressthis, we de�ne a derived rule, (SimCHAM), whi
h allows the appli
ation of simpli�
ation inany 
ontext, following the ideas of the Chemi
al Abstra
t Ma
hine [Berry and Boudol,1990℄. (SimCHAM) �01 � �1 S;C j �1 � �2 �2 � �02S;C� j �01;� � �02; S�In this last rule ((SimCHAM)), the equivalen
e � is de�ned as the least 
ongruen
e onpredi
ate assignments 
ontaining �; Æ; Æ0;�0 � �; Æ0; Æ;�0, allowing assignments to be
onsidered as lists without order for the appli
ation of the simpli�
ation rules. It isimportant to note that the order of predi
ates 
an be 
hanged only when they arestill labelled with eviden
e variables in a predi
ate assignment (h : Æ); after they areintrodu
ed in a type with the (QIN) rule of quali�ed types theory, the link from thevariables to their predi
ates is only given by the order in whi
h they appear in theexpressions (�h: in terms and Æ ) in types).We have to prove that the given stru
tural rules (on Figure 7.1) indeed de�ne asimpli�
ation relation a

ording to De�nition 7.4.
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ation 67(SimOpres) t �S n̂S; hÆ n j hÆ : t := n̂1 
 n̂2 � ; (n=n1
n2)(SimMGU) C : �2 � �1Id; h2 h1 Æ C j h1 : IsMG �1 s; h2 : IsMG �2 s � h1 : IsMG �1 sFigure 7.2: Language-dependent simpli�
ation rulesTheorem 7.8. The rules (SimEntl), (SimTrans), (SimCtx), and (SimPerm) (of Figure 7.1) de�nea simpli�
ation relation, and the derived rule (SimCHAM) is 
onsistent with it.As a se
ond step in implementing a simpli�
ation, we 
omplete the relation de�nedby the stru
tural rules with those given in Figure 7.2, dealing with some 
onstru
ts ofour language. Rule (SimOpres) internalizes the 
omputation of binary operators, when allthe operands are known. A similar rule will exist for unary operators as well. The rule(SimMGU) eliminates redundant uses of predi
ate IsMG, when two upper bounds of thesame variable are 
omparable. A similar rule for lower bounds would not make sense inthis system: as lower bounds are produ
ed by the rules (SPEC), they have types insteadof s
hemes; in addition, eviden
e elimination will need to use all the lower bounds (seeSe
tion ??). Regarding predi
ates as IsInt n̂ or IsMG � �0 when both � and �0 are nots
heme variables, they 
an be simpli�ed using rule (SimEntl), as the entailment relation
an deal with them.Again we have to show that these rules de�ne a simpli�
ation relation.Theorem 7.9. A system de�ning a simpli�
ation relation, extended with rules (SimOpres)and (SimMGU) still de�nes a simpli�
ation relation.Although the rules presented here as an implementation may seem restri
ted, itsgoal is to simplify exa
tly the predi
ates generated by the spe
ialisation algorithm (notin
luding a rule for lower bounds is an example of this tailoring). When designing asystem as this one, the trade o� between generality and spe
i�
ity has to be taken intoa

ount { in one end, a very general but useless simpli�
ation, and in the other one, anon-tra
table or unsolvable simpli�
ation would be obtained.Extensions to the system presented here are possible, and in the 
ase of extendingthe language of predi
ates, ne
essary.7.1.4 Simpli�
ation during spe
ialisationIn order to use simpli�
ation during the spe
ialisation phase, we need to add a rule tothe system P; this rule 
an be used in any pla
e, but in pra
ti
e is only needed beforethe use of a (POLY), or at the end of the derivation.(SIMP) h : � j � P̀ e : � ,! e0 : � S;C j h : � � h0 : �0h0 : �0 j S� P̀ e : � ,! C[e0℄ : S�We 
an prove that the new rule is 
onsistent with the rest of the system
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ation and Constraint SolvingTheorem 7.10. If h : � j � P̀ e : � ,! e0 : � and S;C j h : � � h0 : �0 thenh0 : �0 j S� P̀ e : � ,! C[e0℄ : S�.As we have seen, the relation of simpli�
ation is not ne
essarily fun
tional, and thenthere is the possibility to 
hoose among di�erent assignments to repla
e the 
urrentone. In pra
ti
e, we use a fun
tion simplify su
h that simplify(h;�) returns a triple
v : �0; S; C� su
h that S;C j h : � � v : �0. This follows Mark Jones' work [Jones,1994a℄.Continuing with this idea, we also extend the spe
ialisation algorithm with the fol-lowing rule:(W-POLY) h : � j S � Ẁ e : � ,! e0 : � 0h00 : IsMG � s j TS � Ẁ poly e : poly � ,! e00 : poly swhere: e00 = h00[�h0:C[e0℄℄(h0 : �0; T; C) = simplify(h : �)� = TS�;(T�0 ) T� 0)s and h00 freshWith this version of the algorithm, predi
ate assignments are simpli�ed before theirintrodu
tion in the type s
hemes of poly s. It is important to note, however, that notall predi
ates 
an be 
ompletely simpli�ed before being introdu
ed in the type s
hemes:predi
ates with free variables will remain unsolved, and will not be simpli�ed until
onstraint solving (although the free variables 
an take their �nal value mu
h earlier).With these rules we have 
ompleted our goal of in
orporating the simpli�
ation tothe spe
ialisation pro
ess. Additional features and more possible rules will be dis
ussedas new 
onstru
ts are added to the spe
ialiser.7.1.5 Extension to Simpli�
ationThe rules to simplify the predi
ates introdu
es in Se
tion 3.2 are given in Figure 7.3. Therules (SHASC) and (SCTS) extra
ts the lower index and the 
onstru
tors used in a residualsum-type de
laration. The simpli�
ation of guards are given by the rules (SG-TRUE) and(SG-FALSE). This rules require, for te
hni
al reasons, a new entailment rule to be added{ see Figure 7.4. Lastly, the rule (SU-HC) for
es the arguments' residual types of twopredi
ates HasC with the same 
onstru
tors to be the same.As before, we have to show that these new rules de�ne a simpli�
ation relation:Theorem 7.11. A system de�ning a simpli�
ation relation, extended with rules (SHASC),(SCTS), (SG-TRUE), (SG-FALSE), and (SU-HC) still de�nes a simpli�
ation relation.The Lemma 7.2, Proposition 7.3, Lemma 7.7, Theorem 7.8, Theorem 7.9, and The-orem 7.10 hold by our extension. They are proved by de�nitions and propierties thatwere properly extended in Se
tions 3 and 4 { see [Mart��nez L�opez, 2004℄ for details inthe proofs.
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ation 69(SG-TRUE) C k 2 DnId; [℄ j h : C k 2 Dn?� � h : �(SHASC) Dn(C k ) �S � 0S; h n j h : HasC Dn C k � 0 � ;(SCTS) Dn = fC k gk2IId; h fC k gk2I j h : ConstrsOf Dn � ;(SG-FALSE) C k =2 DnId; h � j h : C k 2 Dn?� � ;(SU-HC) � 001 �S � 002S; h2  h1 j h1 : HasC � 0 C k � 001 ;h2 : HasC � 0 C k � 002� h1 : HasC S� 0 C k S� 001Figure 7.3: Sum-Types dependent simpli�
ation rules(INTO-GUARD-TRUE) C k 2 Dn �;�0 `̀ �00�;C k 2 Dn?�0 `̀ �00Figure 7.4: Additional entailment rule (part I)(SHC-G) Id; [℄ j h1 : HasC � 0 C k � 00;h2 : C k 2 � 0?�� h1 : HasC � 0 C k � 00; h2 : �(SENTL-G) Id; h v j h : � � h0 : �0Id; h vif j h : C k 2 � 0?�;h
 : ConstrsOf � 0 �h0 : C k 2 � 0?�0;h
 : ConstrsOf � 0where vif = ifv C k 2 h
 then v else �Figure 7.5: Additional sum-types simpli�
ation rules(ELIM-HASC-GUARD) �;HasC � 0 C k � 00;�0 `̀ �00�;HasC � 0 C k � 00;C k 2 � 0?�0 `̀ �00Figure 7.6: Additional entailment rule (part II)



70 Chapter 7. Simpli�
ation and Constraint SolvingDis
ussionAlthough the simpli�
ation rules presented previously are enough to simplify predi
atesrelated to sum-types, it is possible to perform simpli�
ation of predi
ates inside ofguarded predi
ates. However, we need to guarantee that the substitutions produ
ed donot alter variables that 
an 'es
ape' a given guard, be
ause if that guard is going to takea false value, the predi
ate will simply dissapear, and the value assigned to the variablewill be unsound. On the other hand, we 
an also dete
t before hand that a guard wouldbe true and thus simplifying it.The rules to perform those kind of simpli�
ation are given in Figure 7.5. We needto add another entailment rule to te
hni
ally prove that (SHC-G) and (SENTL-G) are sim-pli�
ation rules { see Figure 7.6. The de
ision to in
lude or not these rules produ
esan eager or lazy simpli�
ation phase. In other words, a phase that 
an simplify or notinside of guarded predi
ates even though values of guards are not yet known.Again, we have to prove that these two extra rules de�ne a simpli�
ation relation:Theorem 7.12. A system de�ning a simpli�
ation relation, extended with rules (SHC-G)and (SENTL-G) still de�nes a simpli�
ation relation.7.2 Constraint Solving7.2.1 MotivationIn this se
tion, we present the 
onstraint solving phase, a pro
ess for de
iding the �-nal values of s
heme and type variables that 
annot be de
ided by simpli�
ation, andthus 
annot be performed arbitrarily during spe
ialisation (in the general 
ase, be
auseglobal information is needed). In [Mart��nez L�opez, 2004℄, this phase is separated in twoparts: a spe
i�
ation part, where a des
ription of the problem is 
onstru
ted, and animplementation part, where a solution for the 
onstru
ted des
ription is foundConstraint solving is 
leary used in the presen
e of poly and spe
 annotations,be
ause the spe
ialiser does not de
ide the �nal form of polyvariant expressions, butabstra
ts it with eviden
e variables (used in every de�nition point poly and use pointspe
 until all the information 
an be gathered. A 
omplete des
ription of the pro
edureto de
ide the values of s
heme variables 
an be found in [Mart��nez L�opez, 2004℄.The predi
ates generated by our extension allow the implementation of di�erentheuristi
s for 
onstraint solving. Some heuristi
s 
an produ
e spe
i�
 (monomorphi
)residual sum-types de�nitions, while other heuristi
s 
an produ
e general (polymorphi
)residual ones. We have implemented the heuristi
 to produ
e monomorphi
 de�nitions,explained and formalized with detail here, and we are also going to explain how otherheuristi
s may work.The 
onstraint solving phase is responsible for introdu
ing de�nitions of residual sum-types based on the predi
ates found in residual types. It will dete
t all the predi
ates ofthe form HasC t C � 0, and will assign to t a value Dn with those 
onstru
tors appearingin the predi
ates 
orresponding to that residual type.We 
an see that this approa
h treats type spe
ialisation as a stati
 program analysiswhere ea
h part of the program is analyzed lo
ally, and then allows the appli
ation of
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hniques for the generated 
onstraints. In the �eld of type spe
ialisation,this approa
h provides a language allowing to express problems and to look for solutionsin a uniform way.As we have done with simpli�
ation, we will �rst spe
ify the idea of 
onstraint solv-ing, and then we will implement an heuristi
 for de
iding type variables that representresidual sum-types.7.2.2 Spe
ifying SolutionsTo begin with, we de�ne when a substitution mapping s
heme variables and type vari-ables to type s
hemes and types 
an be 
alled a solution, when it 
an be performed, andwhat other 
omponents are needed.Definition 7.13. [Solving℄ A solving from a predi
ate assignment �1 to �2, requiringthe predi
ates of �0 is a relationS; T ;C j �1 +�0 �V �2where S and T are substitutions, C a 
onversion and V a set of type variables, su
hthat (i) T ;C j S�1;�0 � �2(ii) dom(S) \ (V [ FTV(�0)) = ;We will say that S is the solution of the solving, and that V restri
ts the appli
ationof SWhile solving may appear similar to simplifying at a �rst glan
e its 
onsequen
esare stronger The substitution S, the solution may de
ide the values of some s
hemevariables and it is not required that the new (solved) predi
ate assignment entails theorigina one (in 
ontrast to simplifying, where both predi
ate assignment are equivalentin some sense)7.2.3 Solving and Spe
ialisationWe now study how solving 
an be performed during spe
ialisation, by in
orporating itto system P(SOLV) �1 j � P̀ e : � ,! e0 : � S; T ;C j �1 +�0 �FTV(�;�) �2�2 j T� P̀ e : � ,! C[e0℄ : T�In 
ontrast with the 
ase of simpli�
ation, some 
autions have to be taken to avoidunsound results: if a variable is de
ided when some of the information a�e
ting its setof possible values is missing { whi
h 
an happen if a s
heme variable o

urs anywhere inthe residual type or in the type assignment �{ then it must not be solved. This situationis 
aptured in the rule by the use of the set FTV(�; �) in the solving premise (and thereused for 
ondition (ii) of De�nition 7.13).As with simpli�
ation, the rule (SOLV) is sound respe
t to spe
ialisation.



72 Chapter 7. Simpli�
ation and Constraint SolvingTheorem 7.14. Given �1 j � P̀ e : � ,! e0 : �, and if S; T ;C j �1 +�0 �FTV(�;�) �2then, it is also the 
ase that�2 j TS� P̀ e : � ,! C[e0℄ : TS�:In order to perform the 
onstraint solving, we pro
eed in
rementally. We justify thein
remental nature with the following lemma.Lemma 7.15. Composition of solvings is a solving.That is, if S2 �S1�1;�0 T1, S1; T1;C1 j �1+�0 �V �2, and S2; T2;C2 j �2+�00 �V �3then S2S1; T2T1;C2 Æ C1 j �1 + (S2�0;�00) �V �3The Lemma 7.15, and Theorem 7.14 holds by our extension sin
e their proofs usede�nitions and properties already extended in previous 
hapters { see [Mart��nez L�opez,2004℄ for details.In presen
e of dynami
 re
ursion, we need a more powerful method. A dis
ussionabout this is given in Chapter 9 in [Mart��nez L�opez, 2004℄.7.2.4 Extending the Algorithm for Constraint SolvingWe have already de�ned the notion of resolution. An algorithmi
 implementation of aheuristi
 to �nd, in those 
ases when it is possible, a resolution for all the predi
ates in aspe
ialisation judgement was given in [Mart��nez L�opez, 2004℄. However, that algorithmdoes not �nd values for those types variables that represent sum-types.In this se
tion we give an algorithmi
 implementation of a heuristi
 to introdu
e sum-type de
laration in su
h a way that the predi
ates HasC and C k 2 t?� 
an be solved.The goal of the presentation is to establish the form in whi
h sum-type de
laration areintrodu
ed. However, we are not going to give a detailed exe
utable implementation. Wepresent several fun
tions expressed in a pseudo-fun
tional 
ode as in [Mart��nez L�opez,2004℄.The 
onstraint solving is de�ned by the fun
tion stepSolve, that, given a predi
ateassignment and a type variable used in a set of HasC predi
ates to solve, �nds a solutionfor it.Fun
tion stepSolve will be de�ned in terms of an auxiliary fun
tion that introdu
esmonomorphi
 sum-types { polymorphi
 sum-types 
an be obtaining by only 
hanginghow this fun
tion works.Monomorphi
ST : it re
eives a list of predi
ates of the form (HasC t C k � 0k)k2I , andintrodu
es a fresh sum-type Dn where ea
h 
onstru
tor Ckn is applied to elementsof residual type � 0k.stepSolve : it is the main step of our 
onstraint solving heuristi
. It takes a predi
ateassignment of the form � = fhk : HasC t C k � 0kgk2I;�t



7.2. Constraint Solving 73and a variable t with t =2 FTV(�t; f� 0kgk2I), it returns a substitution S, a 
on-version C , a predi
ate assignment �0 su
h that the following resolution holdsS; T ;C j �+�0 �V ; for any V not 
ontaining t. It is implemented as follows:stepSolve t (fhk : HasC t C k � 0kgk2I;�t) =let Dn = Monomorphi
ST fhk : HasC t C k � 0kgk2Iin ([Dn=t℄; Id; hk  n; ;;�t)Theorem 7.16. The heuristi
 presented is 
orre
t wrt. the de�nition of the 
onstraintsolving relation. That is:1. Monomorphi
ST �nds a solution for t, respe
ting the predi
ates HasC.2. If (S; T; C;�f ;�0) = stepSolve t � and s =2 V thenS; T ;C j �+�f �V �0:It is important to remark that the algorithm solve, obtained by the repeated 
om-position of solveStep with itself, it is not de�ned for every predi
ate assignment. Forinstan
e, to solve a s
heme variables is ne
essary to have an assigment with upper andlower bound for su
h variable { see [Mart��nez L�opez, 2004℄ for details. Our requiere-ment, on the other hand, is to have predi
ates HasC in the 
ontext. Other 
onstru
tionsin the language 
an establish other requierements for the predi
ate assignment.





Chapter 8An Interpreter With Error Handling\ ??? ???To do: *8.1 Running ExampleOur work is a step forwards towards pra
ti
al usability of prin
ipal type spe
ialisation.In that spirit, we are going to show the spe
ialisation of a simple interpreter for numeri
alexpression with error handle of division by zero.The interpreter is shown in Figure ??. It is inspired in the interpreter shown [?℄ tomotivate the introdu
tion of a monad to handle errors. Observe that errors are handleddynami
ally. This de
ision was based on the fa
t that ex
eptions and error-handleme
hanism are triggered in runtime.Example 8.1. The following expression 
ompletes the de�nitions given in Figure 8.1.ueval �S (LamS 'f'S(AppS (VarS 'f'S )(AppS (VarS 'f'S )(ConstS 0S ))))The spe
ialisation using Hughes' formulation isFun (�v :
ase v of Fun f !f�(
ase v of Fun f !f�(Num 0))) : ValueObserve how ea
h fun
tion requires a Fun tag, ea
h appli
ation require s a 
ase, andea
h number requires a Num tag.Sin
e we are 
ompiling by spe
ialisation, the way the residual program is produ
edindi
ates that the resulting 
ompilation is for untyped lambda-
al
ulu s | that is, thereare type 
he
ks at run-time, and thus the possibility to produ
 e errors during programexe
ution. To illustrate this point, let us 
onsider the 
odeueval �S (AppS (ConstS 2S ) (ConstS 3S ))to 
omplete the de�nitions given in Figure 8.1. The spe
ialisation using Hughes' formu-lation is 75
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data ExpS = Var CharSj Cte IntSj Add ExpS ExpSj Div ExpS ExpSdataMaybeIntD = Raise StringD j Value IntSletS bind = �S x :�S v :�S env :�S y :if S x == y then v else env �S yinletS preeval =�xS (�S eval :�S expr :�S env :
aseS expr ofVar x ! env �S xCte n ! ValueD nAdd e1 e2 ! 
aseD (eval �S e1 �S env) ofRaise e ! RaiseD eValue n ! 
aseD (eval �S e2 �S env) ofRaise e ! RaiseD eValue m ! ValueD (n +Sm)Div e1 e2 ! 
aseD (eval �S e1 �S env) ofRaise e ! RaiseD eValue n ! 
aseD (eval �S e2 �S env) ofRaise e ! RaiseD eValue m ! ifD (lift m) == D 0D )then RaiseD "Div. by zero"else ValueD (n divSm)inletS ueval = preeval �S (DivD (CteD 10D )(AddD (VarD 0S )(CteD 2S )))in h. . . i Figure 8.1: An evaluator for untyped lambda-
al
ulus
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ase (Num 2) ofFun f ! f�(Num 3)Observe that the 
ase is evaluated in run-time, and when this happens an error willbe produ
ed sin
e the number 2 is not a fun
tion.
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Appendix A Proofs\ Lo 
re��a, pero la semilla de la duda estaba ah��, y permane
i�o, y de vez en
uando e
haba una peque~na ra��z. Esa semilla que 
re
��a lo 
ambi�o todo. Hizo queEnder prestara m�as aten
i�on a lo que la gente quer��a de
ir, no a lo que de
��a. Lehizo m�as sabio." VIII RataEl juego de EnderOrson S
ott CardIn this appendix, we present the proofs of propositions, lemmas, and theorems usedto prove the property of prin
ipality for the spe
ialization of dynami
 sum-types.A.1 Proof of proposition 3.7 from se
tion 3.3Proposition 3.7. If h : � j �R R̀T e0 : �, and �0 `̀ v : �, then �0 j �R R̀T e0[v=h℄ : �.Proof: By indu
tion on the RT derivation.Extending Proposition 6:11 from [Mart��nez L�opez, 2004℄.Case (RT-DCONSTR): We know that� j �R R̀T e0 : � 0j(� `̀ vk : C k 2 � 0e?�k; vmk : C k 2 � 0e?HasC � 0e C k � 0k)k2D^k 6=j� `̀ vmj : HasC � 0e C j � 0j; v
s : ConstrsOf � 0e� j �R R̀T C jvmj e0 : � 0eBy IH on the hypothesis of the rule, we know that�0 j �R R̀T e0[v=h℄ : � 0j (A.1)Additionally, applying (Trans) to �0 `̀ � and the entailments on the hypothesis ofthe rule, we obtain�0 `̀ (vk[v=h℄ : C k 2 � 0e?�k; vmk [v=h℄ : C k 2 � 0e?HasC � 0e C k � 0k)k2D^k 6=j�0 `̀ vmj [v=h℄ : HasC � 0e C j � 0j; v
s [v=h℄ : ConstrsOf � 0e (A.2)Using A.1 and A.2 in order to apply (RT-DCONSTR), we have�0 j �R R̀T C jvmj [v=h℄ e0[v=h℄ : � 0eThe result follows from C jvmj [v=h℄ e0[v=h℄ = (C jvmj e0)[v=h℄.83



84 Appendix A. ProofsCase (RT-DCASE): We know that� j �R R̀T e0 : � 0e(hk : �k j �R R̀T �x0k:e0k : � 0k ! � 0)k2B(� `̀ vmk : C k 2 � 0e?HasC � 0e C k � 0k; vk : C k 2 � 0e?�k)k2B� `̀ v
s : ConstrsOf � 0e� j �R R̀T proto
asev e0 with v
s of(C kvmk x0k ! e0k[vk=hk℄)k2B: � 0Applying (Trans) to �0 `̀ � and the entailments on the hypothesis of the rule, weobtain�0 `̀ (vmk [v=h℄ : C k 2 � 0e?HasC � 0e C k � 0k; vk[v=h℄ : C k 2 � 0e?�k)k2B�0 `̀ v
s [v=h℄ : ConstrsOf � 0e (A.3)By IH, we have �0 j �R R̀T e0[v=h℄ : � 0e (A.4)Using A.3, A.4 and residual typing of lambda abstra
tions on the hypothesis ofthe rule in order to apply (RT-DCASE), we have�0 j �R R̀T proto
asev e0[v=h℄ with v
s [v=h℄ ofC kvmk [v=h℄ x0k ! e0k[vk[v=h℄=hk℄ : � 0The result follows from the fa
t that e0k[vk[v=h℄=hk℄ = (e0k[vk=hk℄)[v=h℄ sin
e hk 6= hand proto
asev e0[v=h℄ with v
s [v=h℄ ofC kvmk [v=h℄ x0k ! e0k[vk[v=h℄=hk℄ = (proto
asev e0 with v
s of(C kvmk x0k ! e0k[vk=hk℄)k2B)[v=h℄A.2 Proof of theorem 3.8 from se
tion 3.3Theorem 3.8. If h : � j �R R̀T e0 : �, and C : (h : � j �) � (h0 : �0 j �0), thenh0 : �0 j �R R̀T C [e0℄ : �0.Proof: The extension that we made to system RT does not modify the proof of Theorem6:12 from [Mart��nez L�opez, 2004℄. That proof only applies De�nition 2.20, (RT-QIN),(RT-QOUT), (RT-GEN), letv and Proposition 3.7.A.3 Proof of lemma 3.9 from se
tion 3.4Lemma 3.9. If h1 : �1 `̀ v2 : �2 and h : � `̀ v1 : C k 2 � 0?�1; v
s : ConstrsOf � 0 thenh : � `̀ ifv C k 2 v
s then v2[v1=h1℄ else � : C k 2 � 0?�2



A.4. Proof of proposition 3.11 from se
tion 3.4 85Proof: By hypothesis we have thath1 : �1 `̀ v2 : �2 (A.5)and h : � `̀ v
s : ConstrsOf � 0 (A.6)Now, applying (ENTL-GUARD) to A.5 and A.6, we obtainh : �; h1 : C k 2 � 0?�1 `̀ ifv C k 2 v
s then v2 else � : C k 2 � 0?�2 (A.7)It is also trivially true thath : � `̀ h : �; v1 : C k 2 � 0?�1 (A.8)The result follows from applying (Trans) to A.7 and A.8, and sin
e EV(v
s) � h.A.4 Proof of proposition 3.11 from se
tion 3.4Proposition 3.11. If � S̀R � ,! � then S� S̀R � ,! S �.Proof: By indu
tion on the SR derivation.Extending Proposition 6:13 from [Mart��nez L�opez, 2004℄.Case (SR-DDT): We know that(�k S̀R D(C k) ,! � 0k)k2D(� `̀ C k 2 � 0?�k;Ck 2 � 0?HasC � 0 C k � 0k)k2D� `̀ ConstrsOf � 0� S̀R DD ,! � 0Applying IH and (Close) on the hypothesis, we obtain that(S�k S̀R D(C k) ,! S � 0k)k2D (A.9)and (S� `̀ S (C k 2 � 0?�k); S (C k 2 � 0?HasC � 0 C k � 0k))k2DS� `̀ S (ConstrsOf � 0)These last two entailments are equivalent to(S� `̀ C k 2 S � 0?S�k;C k 2 S � 0?HasC (S � 0) C k (S � 0k))k2DS� `̀ ConstrsOf (S � 0) (A.10)Finally, applying (SR-DDT) with A.9 and A.10, we obtainS� S̀R DD ,! S � 0



86 Appendix A. ProofsA.5 Proof of proposition 3.12 from se
tion 3.4Proposition 3.12. If � S̀R � ,! � and �0 `̀ �, then �0 S̀R � ,! �.Proof: By indu
tion on the SR derivation.Extending Proposition 6:14 from [Mart��nez L�opez, 2004℄.Case (SR-DDT): We know that(�k S̀R D(C k) ,! � 0k)k2D(� `̀ C k 2 � 0?�k;Ck 2 � 0?HasC � 0 C k � 0k)k2D� `̀ ConstrsOf � 0� S̀R DD ,! � 0and we obtain (�0 `̀ C k 2 � 0?�k;C k 2 � 0?HasC � 0 C k � 0k)k2D�0 `̀ ConstrsOf � 0 (A.11)by applying (Trans) to �0 `̀ � and(� `̀ C k 2 � 0?�k;C k 2 � 0?HasC � 0 C k � 0k)k2D� `̀ ConstrsOf � 0where �k satis�es (�k S̀R D(C k) ,! � 0k)k2D (A.12)The result follows from applying (SR-DDT) with A.11 and A.12 , proving�0 S̀R DD ,! � 0A.6 Proof of theorem 3.13 from se
tion 3.4Theorem 3.13. If � S̀R � ,! � and C : (� j �) � (�0 j �0) then �0 S̀R � ,! �0.Proof: The extension that we have made to system SR does not modify the proof ofTheorem 6:15 from [Mart��nez L�opez, 2004℄. This proof uses De�nition 2.20, (SR-INST),(SR-QIN), (SR-QOUT), (SR-GEN) and Proposition 3.12.A.7 Proof of theorem 3.14 from se
tion 3.4Theorem 3.14. If � j � P̀ e : � ,! e0 : �, and for all x : �x ,! x0 : � 0x 2 �,� S̀R �x ,! � 0x, then � S̀R � ,! �.Proof: By indu
tion on the P derivation.Extending Theorem 6:19 from [Mart��nez L�opez, 2004℄.



A.7. Proof of theorem 3.14 from se
tion 3.4 87Case (DCONSTR): We know that� j � P̀ e : D(C j) ,! e0 : � 0j(�k S̀R D(C k) ,! � 0k)k2D^k 6=j(� `̀ vk : C k 2 � 0e?�k; vmk : C k 2 � 0e?HasC � 0e C k � 0k)k2D^k 6=j� `̀ vmj : HasC � 0e C j � 0j; v
s : ConstrsOf � 0e� j � P̀ C Dj e : DD ,! C jvmj e0 : � 0eBy IH we know that � S̀R D(C j) ,! � 0jand by hypothesis we also know that(�k S̀R D(C k) ,! � 0k)k2D^k 6=jSo, de�ning �j = �, we have that(�k S̀R D(C k) ,! � 0k)k2D (A.13)Now, we have to prove that(� `̀ C k 2 � 0e?�k;C k 2 � 0e?HasC � 0e C k � 0k)k2D� `̀ ConstrsOf � 0e (A.14)By (Univ), it is enough to prove(� `̀ C k 2 � 0e?�k;C k 2 � 0e?HasC � 0e C k � 0k)k2D^k 6=j (A.15)� `̀ C j 2 � 0e?�;C j 2 � 0e?HasC � 0e C j � 0j (A.16)� `̀ ConstrsOf � 0e (A.17)Item A.15) holds trivially by hypothesis.For item A.16) we know that � `̀ HasC � 0e C j � 0j and so� `̀ �;HasC � 0e C j � 0j (A.18)�;HasC � 0e C j � 0j `̀ � (A.19)�;HasC � 0e C j � 0j `̀ HasC � 0e C j � 0j (A.20)are trivially true. Applying (HASC-GUARD) to A.19 and A.20, we obtain�;HasC � 0e C j � 0j `̀ C j 2 � 0e?� (A.21)�;HasC � 0e C j � 0j `̀ C j 2 � 0e?HasC � 0e C j � 0j (A.22)Then, applying (Univ) to A.21 and A.22 , we have�;HasC � 0e C j � 0j `̀ C j 2 � 0e?�;C j 2 � 0e?HasC � 0e C j � 0j (A.23)Finally, we apply (Trans) to A.18 and A.23.Item A.17) holds trivially by hypothesis.The result follows from applying (SR-DDT) to A.13 and A.14.Case (DCASE): It holds trivially by hypothesis.



88 Appendix A. ProofsA.8 Proof of theorem 3.15 from se
tion 3.4Theorem 3.15. If � j � P̀ e : � ,! e0 : �, then � j �(RT) R̀T e0 : �.Proof: By indu
tion on the P derivation.Extending Theorem 6:20 from [Mart��nez L�opez, 2004℄. The proof is trivial by applyingIH when ne
essary.A.9 Proof of proposition 3.16 from se
tion 3.4Proposition 3.16. If h : � j � P̀ e : � ,! e0 : � 0 and h0 : �0 `̀ v : �, thenh0 : � j � P̀ e : � ,! e0[h=v℄ : � 0Proof: By indu
tion on the P derivation.Extending Proposition 6:21 from [Mart��nez L�opez, 2004℄.Case (DCONSTR): We know that� j � P̀ e : D(C j) ,! e0 : � 0j(�k S̀R D(C k) ,! � 0k)k2D^k 6=j(� `̀ vk : C k 2 � 0e?�k; vmk : C k 2 � 0e?HasC � 0e C k � 0k)k2D^k 6=j� `̀ vmj : HasC � 0e C j � 0j; v
s : ConstrsOf � 0e� j � P̀ C Dj e : DD ,! C jvmj e0 : � 0eBy IH, we have �0 j � P̀ e : D(C j) ,! e0[v=h℄ : � 0e (A.24)Applying (Trans) to �0 `̀ � and the entailments on the hypothesis, we have that(�0 `̀ vk[v=h℄ : C k 2 � 0e?�k; vmk [v=h℄ : C k 2 � 0e?HasC � 0e C k � 0k)k2D^k 6=j�0 `̀ vmj [v=h℄ : HasC � 0e C j � 0j�0 `̀ v
s [v=h℄ : ConstrsOf � 0e (A.25)Applying (DCONSTR) to A.24, A.25 and the SR derivations in the hypothesis, weobtain �0 j � P̀ C Dj e : DD ,! C jvmj [v=h℄ e0[v=h℄ : � 0e (A.26)The result follows sin
e C jvmj [v=h℄ e0[v=h℄ = (C jvmj e0)[v=h℄.



A.10. Proof of proposition 3.17 from se
tion 3.4 89Case (DCASE): We know that� S̀R � ,! � 0� j � P̀ e : DD ,! e0 : � 0e(hk : �k j � P̀ �Dxk:ek : D(C k)!D � ,! �x0k:e0k : � 0k ! � 0)k2B(� `̀ vmk : C k 2 � 0e?HasC � 0e C k � 0k; vk : C k 2 � 0e?�k)k2B� `̀ v
s : ConstrsOf � 0e� j � P̀ 
ase e of(C Dk xk ! ek)k2B: �,!proto
asev e0 with v
s of(C kvmk x0k ! e0k[vk=hk℄)k2B: � 0By Proposition 3.12, IH and applying (Trans) to �0 `̀ � and the entailments onthe hypothesis, we have that�0 S̀R � ,! � 0�0 j � P̀ e : DD ,! e0[v=h℄ : � 0e(�0 `̀ vmk [v=h℄ : C k 2 � 0e?HasC � 0e C k � 0k; vk[v=h℄ : C k 2 � 0e?�k)k2B�0 `̀ v
s [v=h℄ : ConstrsOf � 0eNow, applying (DCASE) to these last fa
ts and the third hypothesis, we obtainproto
asev e0[v=h℄ with v
s [v=h℄ of(C kvmk [v=h℄ x0k ! e0k[vk[v=h℄=hk℄)k2BThe result follows sin
e e0k[vk[v=h℄=hk℄ = (e0k[vk=hk℄)[v=h℄ and hk 6= h.A.10 Proof of proposition 3.17 from se
tion 3.4Proposition 3.17. If � j � P̀ e : � ,! e0 : � then S� j S � P̀ e : � ,! e0 : S �.Proof: By indu
tion on the P derivation.Extending Proposition 6:22 from [Mart��nez L�opez, 2004℄.Case (DCONSTR): It holds by applying Proposition 3.11 on all judgements from systemSR in the hypothesis of the rule, IH and (Close). Finally, we must apply (DCONSTR).Case (DCASE): It holds by applying Proposition 3.11, IH on all judgements from systemP in the hypothesis of the rule and (Close). Finally, we must apply (DCASE).



90 Appendix A. ProofsA.11 Proof of lemma 3.18 from se
tion 3.4Lemma 3.18. If h : � j � P̀ e : � ,! e0 : � then EV(e0) � hProof: By indu
tion on the P derivation.Extending Lemma 6:23 from [Mart��nez L�opez, 2004℄.Case (DCONSTR): We know that� j � P̀ e : D(C j) ,! e0 : � 0j(�k S̀R D(C k) ,! � 0k)k2D^k 6=j(� `̀ vk : C k 2 � 0e?�k; vmk : C k 2 � 0e?HasC � 0e C k � 0k)k2D^k 6=j� `̀ vmj : HasC � 0e C j � 0j; v
s : ConstrsOf � 0e� j � P̀ C Dj e : DD ,! C jvmj e0 : � 0eLet us take h as eviden
e of �. Applying IH we have that EV(e0) � h and we alsoknow, by entailment, that EV(vmj ) � h, so the result follows sin
e EV(C jvmj e0) =EV(vmj )SEV(e0).Case (DCASE): We know that� S̀R � ,! � 0� j � P̀ e : DD ,! e0 : � 0e(hk : �k j � P̀ �Dxk:ek : D(C k)!D � ,! �x0k:e0k : � 0k ! � 0)k2B(� `̀ vmk : C k 2 � 0e?HasC � 0e C k � 0k; vk : C k 2 � 0e?�k)k2B� `̀ v
s : ConstrsOf � 0e� j � P̀ 
ase e of(C Dk xk ! ek)k2B: �,!proto
asev e0 with v
s of(C kvmk x0k ! e0k[vk=hk℄)k2B: � 0Let us take h as eviden
e of �. The eviden
e variables of the residual termprodu
ed areEV(e0)[EV(v
s)[(EV(vmk))k2B[(EV(e0k[vk=hk℄))k2B (A.27)By IH on all judgements from system P in the hypothesis of the rule we obtain thatEV(e0) � h and (EV(e0k) � hk)k2B. We have that (EV(e0k[vk=hk℄) = EV(vk))k2B,by substitution. Be
ause of entailments of predi
ates in the hypothesis of the rule,we have that (EV(vk) � h)k2B, EV(v
s) � h and (EV(vmk) � h)k2B. Finally, theresult follows from A.27 and the des
ribed remarks.



A.12. Proof of lemma 3.19 from se
tion 3.4 91A.12 Proof of lemma 3.19 from se
tion 3.4Lemma 3.19. If � j � P̀ e : � ,! e0 : � then there exist �j, ��, and � 0 su
h that� = 8�j:�� ) � 0.Proof: By indu
tion on the P derivation.Extending Lemma 6:24 from [Mart��nez L�opez, 2004℄.Case (DCONSTR): It holds trivially by just taking � = 8;:; ) � 0e.Case (DCASE): It holds trivially by just taking � = 8;:; ) � 0.A.13 Proof of proposition 4.2 from se
tion 4.1Proposition 4.2. If �0 j � P̀ e : � ,! e0 : � ) � 0, then �0 j � P̀ e : � ,! e0 :Gen�;�0(�) � 0), and both derivations only di�er in the appli
ation of rule (GEN).Proof: The extension that we have made to the system P does not modify the proof ofProposition 7:2 from [Mart��nez L�opez, 2004℄. This proof uses repeated appli
ations of(GEN).A.14 Proof of proposition 4.3 from se
tion 4.1Proposition 4.3. If h : � j � S̀ e : � ,! e0 : � 0 then h : S� j S � S̀ e : � ,! e0 : S � 0Proof: By indu
tion on the S derivation.Extending Proposition 7:4 from [Mart��nez L�opez, 2004℄. The proof follows the samestru
ture that Proposition 3.17.A.15 Proof of proposition 4.4 from se
tion 4.1Proposition 4.4. If h : � j � S̀ e : � ,! e0 : � 0 and �0 `̀ v : �, then�0 j � S̀ e : � ,! e0[h=v℄ : � 0Proof: By indu
tion on the S derivation.Extending Proposition 7:5 from [Mart��nez L�opez, 2004℄. The proof follows the samestru
ture that Proposition 3.16 .A.16 Proof of theorem 4.5 from se
tion 4.1Theorem 4.5. If � j � S̀ e : � ,! e0 : � 0 then � j � P̀ e : � ,! e0 : � 0.Proof: By indu
tion on the S derivation.Extending Proposition 7:6 from [Mart��nez L�opez, 2004℄. The proof is trivial using IH.



92 Appendix A. ProofsA.17 Proof of theorem 4.6 from se
tion 4.1Theorem 4.6. If h : � j � P̀ e : � ,! e0 : �, then there exist h0s;�0s; e0s; � 0s, and C 0ssu
h thata) h0s : �0s j � S̀ e : � ,! e0s : � 0sb) C 0s : Gen�(�0s ) � 0s) � (h : � j �)
) C 0s[�h0s:e0s℄ = e0Proof: By indu
tion on the P derivation.Extending Proposition 7:7 from [Mart��nez L�opez, 2004℄.Case (DCONSTR): We know that� j � P̀ e : D(C j) ,! e0 : � 0j(�k S̀R D(C k) ,! � 0k)k2D^k 6=j(� `̀ vk : C k 2 � 0e?�k; vmk : C k 2 � 0e?HasC � 0e C k � 0k)k2D^k 6=j� `̀ vmj : HasC � 0e C j � 0j; v
s : ConstrsOf � 0e� j � P̀ C Dj e : DD ,! C jvmj e0 : � 0eBy IH, we have that there exist hse, �se, e0s, � 0js and C se su
h that�se j � S̀ e : D(C j) ,! e0s : � 0js (A.28)C se : Gen�(�se ) � 0js) � (� j � 0j) (A.29)C se[�hse:e0s℄ = e0 (A.30)By De�nition 2.20 and A.29, we also know that there exist a substitution Sse andeviden
e vse su
h that� 0j = Sse� 0js (A.31)� `̀ vse : Sse�se (A.32)C se = letv x = [℄ in x((vse)) (A.33)By hypothesis, we also have that(�k S̀R D(C k) ,! � 0k)k2D^k 6=j (A.34)(� `̀ vk : C k 2 � 0e?�k; vmk : C k 2 � 0e?HasC � 0e C k � 0k)k2D^k 6=j (A.35)� `̀ v
s : ConstrsOf � 0e (A.36)Let us take h0s = (h; hvmj ; hse), �0s = (�;HasC � 0e C j (Sse� 0js); Sse�se), � 0s = � 0e andC 0s = letv x = [℄ in x((h; hvmj ; vse)), so we need to prove thata) �0s j � S̀ C Dj e : DD ,! C jhvmj e0s : � 0e



A.17. Proof of theorem 4.6 from se
tion 4.1 93b) C 0s : Gen�(�0s ) � 0e) � (� j � 0e)
) C 0s[�h0s:C jhvmj e0s℄ = C jvmj e0For item a) we apply Proposition 4.3 with Sse and A.28, obtainingSse�se j Sse� S̀ e : D(C j) ,! e0s : Sse� 0jsBy A.31 and be
ause we do not generalize variables appearing in � (and so,they do not appear in the domain of Sse), this last judgement is equivalent toSse�se j � S̀ e : D(C j) ,! e0s : � 0j (A.37)Then, applying Proposition 4.4 to A.37 and �0s `̀ Sse�se, we have that�0s j � S̀ e : D(C j) ,! e0s : � 0j (A.38)By de�nition of �0s and A.31, it is very easy to verify that�0s `̀ hvmj : HasC � 0e C j � 0j (A.39)Applying (Trans) to �0s `̀ � and A.35 and A.36, we have that(�0s `̀ vk : C k 2 � 0e?�k;vmk : C k 2 � 0e?HasC � 0e C k � 0k)k2D^k 6=j (A.40)�0s `̀ v
s : ConstrsOf � 0e (A.41)Finally, applying (S-DCONSTR) with A.38, A.34, A.40, A.39 and A.41, we obtainthe desired property.For item b) we take the substitution Id and eviden
e v = (h; vmj ; vse). By De�ni-tion 2.20, we need to prove that� 0e = Id� 0e (A.42)� `̀ v : Id�0s (A.43)Item A.42) holds trivially by de�nition of Id.Item A.43) holds by applying (Univ) several times and then de�nition of �0s,A.32 and the hypothesis � `̀ HasC � 0e C j � 0j.For item 
), we have that (�h0s:C jhvmj e0s) = (�h; hvmj ; hse:C jhvmj e0s) by de�nitionof h0s and �0s. Using De�nition 2.20 and eviden
e v, we obtain thatC 0s[�h; hvmj ; hse:C jhvmj e0s℄ = (�h; hvmj ; hse:C jhvmj e0s)((h; vmj ; vse))On the other hand, we have that EV(e0s) � hse by Lemma 3.18 and hse 6= h 6=hvmj , so we 
an rewrite the last equation asC 0s[�h; hvmj ; hse:C jhvmj e0s℄ = C jvmj e0s[vse=hse℄The result follows sin
e e0s[vse=hse℄ = e0 by A.30.



94 Appendix A. ProofsCase (DCASE): We know that� S̀R � ,! � 0� j � P̀ e : DD ,! e0 : � 0e(hk : �k j � P̀ �Dxk:ek : D(C k)!D � ,! �x0k:e0k : � 0k ! � 0)k2B(� `̀ vmk : C k 2 � 0e?HasC � 0e C k � 0k; vk : C k 2 � 0e?�k)k2B� `̀ v
s : ConstrsOf � 0e� j � P̀ 
ase e of(C Dk xk ! ek)k2B: �,!proto
asev e0 with v
s of(C kvmk x0k ! e0k[vk=hk℄)k2B: � 0By IH on the se
ond hypothesis of the rule, we have that there exist hse0s, �se0s, � 0e0sand C e0s su
h thathse0s : �se0s j � S̀ e : DD ,! e0s : � 0e0s (A.44)C e0s : Gen�(�se0s ) � 0e0s) � (� j � 0e) (A.45)C e0s [�hse0s:e0s℄ = e0 (A.46)On the other hand, we apply IH on judgements related to abstra
tions (the thirdhypothesis of the rule), and obtain that for ea
h k, there exist hsk, �sk, � 0ks, � 0s andC k su
h thathsk : �sk j � S̀ �Dxk:ek : D(C k)!D � ,! �x0ks:e0ks : � 0ks ! � 0s (A.47)C k : Gen�(�sk ) � 0ks ! � 0s) � (� j � 0k ! � 0) (A.48)C k[�hsk:�x0ks:e0ks℄ = �x0k:e0k (A.49)By De�nition 2.20 applied to A.45, we know that there exist a substitution Se0sand eviden
e ve0s su
h that� 0e = Se0s� 0e0s (A.50)h : � `̀ ve0s : �se0s (A.51)C e0s = letv x = [℄ in x((ve0s))The 
onversion C k from A.48 implies the existen
e of a substitution Sk and evi-den
e v0k su
h that� 0k ! � 0 = Sk(� 0ks ! � 0s) (A.52)hk : �k `̀ v0k : Sk�sk (A.53)C k = letv x = [℄ in x((v0k))



A.17. Proof of theorem 4.6 from se
tion 4.1 95Let us take h0s = (h; hse0s; (hsvmk ; hsvk)k2B; hsv
s ) and�0s = (�;�se0s;(C k 2 Se0s� 0e0s?HasC (Se0s� 0e0s) C k (Sk� 0ks);C k 2 Se0s� 0e0s?Sk�sk)k2B;ConstrsOf Se0s� 0e0s) (A.54)So, we need to prove thata) �0s j � S̀ 
ase e of(C Dk xk ! ek)k2B : �,! proto
asev e0s with hsv
s of(C khsvmk x0ks ! e0ks[hsvk=hsk℄)k2B : � 0b) C 0s : Gen�(�0s ) � 0) � (� j � 0)
) C 0s[�h0s:proto
asev e0s with hsv
s of(C khsvmk x0ks ! e0ks[hsvk=hsk℄)k2B℄ = proto
asev e0 with v
s of(C kvmk x0k ! e0k[vk=hk℄)k2BItem a) By de�nition of �0s (A.54) and appli
ation of Proposition 3.12 to the�rst hypothesis of the rule and (DCASE) with �0s `̀ �, we have that�0s S̀R � ,! � 0 (A.55)Additionally, by applying Proposition 4.3 to A.44 with Se0s, A.50 , Proposi-tion 4.4 with �0s `̀ Se0s�se0s and the fa
t that dom(Se0s)TFTV(�) = ;, weknow that �0s j � S̀ e : DD ,! e0s : � 0e (A.56)Beside this, by applying Proposition 4.3 to A.47 with Sk, A.52 and the fa
tthat dom(Sk)TFTV(�) = ;, we have that�0s j � S̀ �Dxk:ek : D(C k)!D � ,! �x0ks:e0ks : � 0k ! � 0 (A.57)Besides, by de�nition of �0s, A.50 and A.52, it is very easy to verify that(�0s `̀ hsvmk : C k 2 � 0e?HasC � 0e C k � 0k; hsvk : C k 2 � 0e?Sk�sk)k2B�0s `̀ hsv
s : ConstrsOf � 0e (A.58)The result follows from applying (S-DCASE) with A.55, A.56, A.57 and A.58.Item b) Let us take the substitution Id and eviden
ev = (h; ve0s; (vmk ; ifv C k 2 v
s then v0k[vk=hk℄ else �)k2B; v
s)We have to prove that� 0 = Id� 0 (A.59)� `̀ v : �0s (A.60)Item A.59) holds trivially by de�nition of Id.



96 Appendix A. ProofsFor item A.60), it is enough to prove that (by virtue of A.54)h : � `̀ � (A.61)h : � `̀ �se0s (A.62)(h : � `̀ C k 2 Se0s� 0e0s?HasC (Se0s� 0e0s) C k (Sk� 0ks))k2B (A.63)(h : � `̀ C k 2 Se0s� 0e0s?Sk�sk)k2B (A.64)h : � `̀ ConstrsOf (Se0s� 0e0s) (A.65)Item A.61) holds trivially with eviden
e h.Item A.62) holds by A.51 with eviden
e ve0s.Item A.63) holds by A.50, A.52 and hypothesis with eviden
e vmk .For item A.64), it is very easy to verify by hypothesis that� `̀ vk : C k 2 � 0e?�k; v
s : ConstrsOf � 0eBy A.50 and appli
ation of Lemma 3.9 to this last entailment andA.53, we have that� `̀ ifv C k 2 v
s then v0k[vk=hk℄ else � : C k 2 � 0e?Sk�skItem A.65) holds by A.50 and hypothesis with eviden
e v
s .Finally, by De�nition 2.20 we know thatC 0s = letv x = [℄in x((h; ve0s ; (vmk ; ifv C k 2 v
s then v0k[vk=hk℄ else �)k2B; v
s))For item 
), by de�nition of C 0s and �0s, we have that(proto
asev e0s with hsv
s of(C khsvmk x0ks ! e0ks[hsvk=hsk℄)k2B)[h; ve0s; (vmk ; ifv C k 2 v
s then v0k[vk=hk℄ else �)k2B; v
s=h; he0s; (hsvmk ; hsvk)k2B; hsv
s ℄ (A.66)
Sin
e EV(e0s) � hse0s;EV(v
s) � h, EV(v0k) � hk, EV(v0k[vk=hk℄) � h in addi-tion to EV(e0ks[hsvk=hsk℄) � hsvk and hse0s 6= h 6= hk 6= hsk 6= hsvk 6= hsv
s , so A.66
an be rewritten asproto
asev e0s[ve0s=hse0s℄ with hsv
s [v
s=hsv
s ℄ of(C khsvmk [vmk=hsvmk ℄ x0ks ! e0ks[ifv C k 2 v
s then v0k[vk=hk℄ else � =hsk℄)k2B(A.67)By A.46, A.51 and substitutions, this last term is equivalent toproto
asev e0 with v
s of(C kvmk x0ks ! e0ks[ifv C k 2 v
s then v0k else � =hsk℄[vk=hk℄)k2BSo, we need to prove thatproto
asev e0 with v
s of(C kvmk x0ks ! e0ks[ifv C k 2 v
s then v0k else � =hsk℄[vk=hk℄)k2B= proto
asev e0 with v
s of(C kvmk x0k ! e0k[vk=hk℄)k2BWe have to 
onsider two 
ases a

ordingly to equality of proto
asev.



A.18. Proof of proposition 4.7 from se
tion 4.2 97Case v
s = fC kgk2I) By De�nition 3.6, it is enough to prove that(�x0k:e0k[vk=hk℄ =�x0ks:e0ks [ifv C k 2 v
s then v0k else � =hsk℄[vk=hk℄)k2BT IBy the form of v
s and the redu
tion rule for ifv in Figure 2.4, this lastequation is equivalent to(�x0k:e0k[vk=hk℄ = �x0ks:e0ks [v0k=hsk℄[vk=hk℄)k2BT I (A.68)The result follows from A.49 and A.53.Case v
s = h0) By De�nition 3.7, it is enough to prove that(�x0k:e0k[vk=hk℄[Dn=h0℄ =�x0ks:e0ks[ifv C k 2 h0 then v0k else � =hsk℄[vk=hk℄[Dn=h0℄)k2BT Ifor any Dn of the form fC kgk2I. So, by substitution, EV(v0k) � hk andhk 6= h0, we have that this last equation is equivalent to(�x0k:e0k[vk=hk℄[Dn=h0℄ =�x0ks :e0ks[ifv C k 2 Dn then v0k else � =hsk℄[vk=hk℄[Dn=h0℄)k2BT IFinally, we have to pro
eed in the same way as for v
s = fC kgk2I.A.18 Proof of proposition 4.7 from se
tion 4.2Proposition 4.7. If � �U �0 then U � = U �0.Proof: By indu
tion on the derivation of � �U �0. Extending Proposition 7:8 from[Mart��nez L�opez, 2004℄.The result follows trivially from IH and the de�nition of substitution.A.19 Proof of proposition 4.8 from se
tion 4.2Proposition 4.8. If S � = S �0, then � �U �0 and there exists a substitution T su
hthat S = TU .Proof: Extending Proposition nose from [Mart��nez L�opez, 2004℄.The extension that we have made does not modify the proof of this property. Thisproof 
onsists on showing that every derivation of the form � �U �0 is �nite and thenwe have four 
ases to 
onsider, whi
h are proved using properties of substitutions.A.20 Proof of proposition 4.9 from se
tion 4.2Proposition 4.9. If �0 j � `̀ W Æ then �0;� `̀ Æ.Proof: By de�nition of �0 j � `̀ W Æ and (Fst).



98 Appendix A. ProofsA.21 Proof of proposition 4.10 from se
tion 4.2Proposition 4.10. If � Ẁ-SR � ,! � 0 then � S̀R � ,! � 0.Proof: By indu
tion on the W-SR derivation.Extending Proposition 7:11 from [Mart��nez L�opez, 2004℄.Case (WSR-DDT): It holds trivially by applying IH, taking� = (C k 2 t?�wk ;C k 2 t?HasC t C k � 0wk)k2D;ConstrsOf tand then applying (SR-DDT) be
ause � `̀ �.A.22 Proof of proposition 4.11 from se
tion 4.2Proposition 4.11. If � S̀R � ,! � then �0w Ẁ-SR � ,! � 0w with all the residualvariables fresh, and there exists C 0w su
h that C 0w : Gen;(�0w ) � 0w) � (� j �).Proof: By indu
tion on the SR derivation.Extending Proposition 7:12 from [Mart��nez L�opez, 2004℄.Case (SR-DDT): We know that(�k S̀R D(C k) ,! � 0k)k2D(� `̀ C k 2 � 0?�k;Ck 2 � 0?HasC � 0 C k � 0k)k2D� `̀ ConstrsOf � 0� S̀R DD ,! � 0By IH we know that there exist �wk ; �wk and C wk 
onversions su
h that(C wk : Gen;(�wk ) �wk) � (�k j � 0k))k2Dwhi
h means that there exist substitutions (Sk)k2D and eviden
e (vk)k2D su
h that(� 0k = Sk � 0wk)k2D (A.69)(hk : �k `̀ vk : Sk�wk)k2D (A.70)We are under the assumption that Tk2D FTV(dom(Sk)) = ; | If this is not the
ase, we 
an 
arry out �-
onversions. We also know by hypothesis that(� `̀ vsrk : C k 2 � 0?�k)k2D (A.71)(� `̀ vsrmk : C k 2 � 0?HasC � 0 C k � 0k)k2D (A.72)� `̀ vsr
s : ConstrsOf � 0 (A.73)We de�ne � 0w = t, for t fresh,�0w = ((C k 2 t?�wk ;C k 2 t?HasC t C k � 0wk)k2D;ConstrsOf t)



A.23. Proof of lemma 4.12 from se
tion 4.2 99and the substitution S(t0) = � � 0 if t0 = tSk(t0) if t0 2 dom(Sk)Let us also de�ne eviden
ev = ((ifv C k 2 vsr
s then vk[vsrk =hk℄ else �; vsrmk)k2D; vsr
s )Now, we have to prove thata) � 0 = S tb) � `̀ v : (S (C k 2 t?�wk); S (C k 2 t?HasC t C k � 0wk))k2D; S (ConstrsOf t)in order to establish the existen
e of the desired 
onvertion.Item a) holds trivially by de�nition of S.For item b), distribute S and by its de�nition together with A.69, we obtain that� `̀ C k 2 � 0?Sk �wk ;C k 2 � 0?HasC � 0 C k � 0k;ConstrsOf � 0By (Univ), it is enough to prove that� `̀ C k 2 � 0?Sk�wk (A.74)� `̀ C k 2 � 0?HasC � 0 C k � 0k (A.75)� `̀ ConstrsOf � 0 (A.76)ItemA.74) holds by applying Lemma 3.9 to A.70, A.71 and A.73, obtaining(� `̀ ifv C k 2 vsr
s then vk[vsrk =hk℄ else � : C k 2 � 0?Sk�wk)k2DItem A.75) holds trivially by A.72 with eviden
e vsrmk .Item A.76) holds trivially by A.73 with eviden
e vsr
s .A.23 Proof of lemma 4.12 from se
tion 4.2Lemma 4.12. If h : � j S � Ẁ e : � ,! e0 : � 0 then EV(e0) � hProof: By indu
tion on the W derivation. Extending Lemma 7:13 from [Mart��nez L�opez,2004℄. It holds trivially.



100 Appendix A. ProofsA.24 Proof of theorem 4.13 from se
tion 4.2Theorem 4.13. If � j S � Ẁ e : � ,! e0 : � 0 then � j S � S̀ e : � ,! e0 : � 0.Proof: By indu
tion on the W derivation.Extending Theorem 7:14 from [Mart��nez L�opez, 2004℄.Case (W-DCONSTR): By applying IH, Proposition 4.10 on the SR derivations that wehave in the hypothesis and Proposition 4.4 together with the fa
t that hw 6= hwj .Case (W-DCASE): We have to use a doble indu
tion like in Proposition 4.14.The proof follows easily by applying IH when ne
essary, Proposition 4.10, Propo-sition 4.4, Proposition 3.12, the uni�
ations that we have in our hypothesis andthe fa
t that every eviden
e variable is a fresh one.A.25 Proof of theorem 4.14 from se
tion 4.2Theorem 4.14. If h : � j S � S̀ e : � ,! e0 : � 0, then h0w : �0w j T 0w � Ẁ e : � ,! e0w :� 0w and there exists a substitution R and eviden
e v0w su
h thata) S � RT 0wb) � 0 = R � 0w
) h : � `̀ v0w : R�0wd) e0 = e0w[h0w=v0w℄Proof:By indu
tion on S derivation. Extending Theorem 7:15 from [Mart��nez L�opez, 2004℄.Case (S-DCONSTR): We know that�s j S � S̀ e : D(C j) ,! e0s : � 0js(�sk S̀R D(C k) ,! � 0ks)k2D^k 6=j(�s `̀ vsk : C k 2 � 0es?�sk; vsmk : C k 2 � 0es?HasC � 0es C k � 0ks)k2D^k 6=j�s `̀ vsmj : HasC � 0es C j � 0js; vs
s : ConstrsOf � 0es�s j S � S̀ C Dj e : DD ,! C jvsmj e0s : � 0jsBy IH on the �rst hypothesis of the rule, we have thathwj : �wj j Twj � Ẁ e : D(C j) ,! e0wj : � 0wjand there exist a substitution RIH and eviden
e vIH su
h that



A.25. Proof of theorem 4.14 from se
tion 4.2 101
S � RIHTwj (A.77)� 0js = RIH � 0wj (A.78)hs : �s `̀ vIH : RIH �wj (A.79)e0 = e0wj [vIH =hwj ℄ (A.80)By Proposition 4.11 on the se
ond hypothesis of the rule, we also know that thereexist 
onversions fC wkgk2D^k 6=j su
h that(C wk : Gen;(�wk ) � 0wk) � (�sk j � 0ks))k2D^k 6=j (A.81)By De�nition 2.20, A.81 is equivalent to the existen
e of substitutions Sk andeviden
es vk (for ea
h k) su
h that(� 0ks = Sk� 0wk)k2D^k 6=j (A.82)(hsk : �sk `̀ vk : Sk�wk)k2D^k 6=j (A.83)Without loosing generality, we assume that the sets dom(RIH ), dom(Sk)k2D^k 6=jand ftg are disjoint (if that is not the 
ase, �-
onversions 
an be performed).By appli
ation of `̀ W, we obtain �w su
h that�w = ((C k 2 t?�wk ;Ck 2 t?HasC t C k � 0wk)k2D^k 6=j;HasC t C j � 0wj ;ConstrsOf t) (A.84)

Let us take h0w = ((hwvk ; hwvmk )k2D^k 6=j; hwvmj ; hwv
s ; hwj), �0w = (�w;�wj), T 0w = Twj ,� 0w = t, R(t0) = 8<: � 0es if t0 = tSk(t0) if t0 2 dom(Sk)RIH (t0) otherwiseand v0w = ((ifv C k 2 vs
s then vk[vsk=hsk℄ else �; vsmk)k2D^k 6=j; vsmj ; vs
s ; vIH ). Now,we have to prove thata) S � RTwjb) � 0es = R t
) �s `̀ v0w : R (�w;�wj )d) C jvsmj e0 = (C jhwvmj e0wj)[v0w=hw; hwj ℄Item a) holds by de�nition of R and A.77. Observe that R just behaves as RIHwhen it is 
omposed with Twj | none of the variables that belongs to ftg ordom(Sk) 
an appear in Twj .



102 Appendix A. ProofsItem b) holds trivially by de�nition of R.For item 
), by A.84 we have to prove�s `̀ R ( (C k 2 t?�wk ;C k 2 t?HasC t C k � 0wk)k2D^k 6=j;HasC t C j � 0wj ;ConstrsOf t;�wj )This last entailment is equivalent to�s `̀ (C k 2 Rt?R�wk ;C k 2 Rt?HasC (Rt) C k (R� 0wk))k2D^k 6=j;HasC (Rt) C j (R� 0wj);ConstrsOf (Rt);R�wjwhi
h 
an be rewritten as follows�s `̀ (C k 2 � 0es?Sk�wk ;C k 2 � 0es?HasC � 0es C k (Sk� 0wk))k2D^k 6=j;HasC � 0es C j (RIH � 0wj);ConstrsOf � 0es ;RIH�wjBy A.78 and A.82, we have that�s `̀ (C k 2 � 0es?Sk�wk ;Ck 2 � 0es?HasC � 0es C k � 0ks)k2D^k 6=j;HasC � 0es C j � 0js;ConstrsOf � 0es;RIH�wjIn order to prove this entailment, it is enough to prove(�s `̀ C k 2 � 0es?Sk�wk)k2D^k 6=j (A.85)(�s `̀ C k 2 � 0es?HasC � 0es C k � 0ks)k2D^k 6=j (A.86)�s `̀ HasC � 0es C j � 0js (A.87)�s `̀ ConstrsOf � 0es (A.88)�s `̀ RIH�wj (A.89)A.85) 
an be proved using the third and fourth hypothesis, that is(�s `̀ vsk : C k 2 � 0es?�sk)k2D^k 6=j (A.90)�s `̀ vs
s : ConstrsOf � 0es (A.91)Thus we 
an apply Lemma 3.9 with A.83, A.90 and A.91, proving(�s `̀ ifv C k 2 vs
s then vk[vsk=hsk℄ else � : C k 2 � 0es?Sk�wk)k2D^k 6=jA.86) holds by third hypothesis with eviden
e vsmk .A.87) holds by fourth hypothesis with eviden
e vsmj .A.88) holds by fourth hypothesis with eviden
e vs
s .



A.25. Proof of theorem 4.14 from se
tion 4.2 103A.89) holds by A.79 with eviden
e vIH .Item d) C jvsmj e0 = (C jhwvmj e0wj)[v0w=hw; hwj ℄= (C jhwvmj e0wj)[(ifv C k 2 vs
s then vk[vsk=hsk℄ else �;vsmk)k2D^k 6=j; vsmj ; vs
s ; vIH =hw; hwj ℄= (C jhwvmj e0wj)[(ifv C k 2 vs
s then vk[vsk=hsk℄ else �;vsmk)k2D^k 6=j; vsmj ; vs
s ; vIH=(hwvk ; hwvmk )k2D^k 6=j; hwvmj ; hwv
s ; hwj ℄ (A.92)
We know, by Lemma 4.12, that eviden
e variables hwj appear only in e0wj .Additionally, hmj is a fresh eviden
e variable, so A.92 
an be rewritten asC jvsmj e0 = (C jhwvmj e0wj)[vsmj ; vIH =hwvmj ; hwj ℄whi
h is the same thatC jvsmj e0 = C jhwvmj [vsmj =hwvmj ℄ e0wj [vIH =hwj ℄Applying substitution and A.80, we obtainC jvsmj e0 = C jvsmj e0as we wanted.Case (S-DCASE): A 
ase have several bran
hes. So, it is ne
essary to do indu
tion onnumber of them with a slightly more general property (observe a0)).Case (1� bran
h):�s S̀R � ,! � 0s�s j S � S̀ e : DD ,! e0s : � 0eshs1 : �s1 j S � S̀ �Dx1:e1 : D(C 1)!D � ,! �x01s :e01s : � 01s ! � 0s�s `̀ vsm1 : C 1 2 � 0es?HasC � 0es C 1 � 01s ;vs1 : C 1 2 � 0es?�s1;vs
s : ConstrsOf � 0es�s j S � S̀ 
ase e ofC D1 x1 ! e1: �,!proto
asev e0s with vs
s ofC 1vsm1 x01s ! e01s [vs1=hs1℄: � 0s



104 Appendix A. ProofsBy the outer IH, we obtain a substitution Re and eviden
es ve su
h thathwe : �we j Twe � Ẁ e : DD ,! e0we : � 0we (A.93)S � ReTwe (A.94)� 0es = Re � 0we (A.95)�s `̀ ve : Re�we (A.96)e0s = e0we [ve=hwe℄ (A.97)By the third hypothesis of the rule and A.94, we have thaths1 : �s1 j Re (Twe �) S̀ �Dx1:e1 : D(C 1)!D � ,! �x01s :e01s : � 01s ! � 0s (A.98)Applying the outer IH on A.98, we obtain a substitution R1 and eviden
e v1su
h thathww1 : �w1 j Tw1 (Twe �) Ẁ �Dx1:e1 : D(C 1)!D �,! �x01:e0w1 : � 0wi1 ! � 0wo1 (A.99)Re � R1Tw1 (A.100)� 01s = R1 � 0wi1 (A.101)� 0s = R1 � 0wo1 (A.102)hs1 : �s1 `̀ v1 : R1�w1 (A.103)�x01s :e01s = (�x01:e0w1)[v1=hww1 ℄ (A.104)By Proposition 4.11, there exist a substitution Rsr and eviden
e vsr su
h that�w0 Ẁ-SR � ,! � 0w0 (A.105)� 0s = Rsr � 0w0 (A.106)hs : �s `̀ vsr : Rsr�w0 (A.107)Every type variable appearing in the judgement from system W-SR in thehypothesis of the rule is fresh. So, we know thatdom(Rsr)\FTV(R1) = ; (A.108)and R1 � RsrR1 (A.109)From this last two fa
ts together with A.102 and A.106, we obtain(RsrR1) � 0wo1 = (RsrR1) � 0wo0 (A.110)Now, from this last equation we know that exists an uni�er U10 and a substi-tution R01 su
h thatRsrR1 = R01U10 (A.111)� 0wo1 �U10 � 0wo0 (A.112)



A.25. Proof of theorem 4.14 from se
tion 4.2 105Applying (W-DCASE) rule to A.105, A.93, A.99, A.112, and the predi
ates �w(returned by `̀ W) su
h that�w = (C 1 2 U10 Tw1 � 0we?U10 �w1;C 1 2 U10 Tw1 � 0we?HasC (U10 Tw1 � 0we) C 1 (U10 � 0wi1);ConstrsOf (U10 Tw1 � 0we)) (A.113)we obtain �w; U10 Tw1 �we ; U10 �w0 j U10 Tw1 Twe �Ẁ 
ase e ofC D1 x1 ! e1: �,!proto
asev e0we with hwv
s ofC 1hwvm1 x01 ! e0w1[hwv1=hww1℄: U10 � 0wo1
(A.114)

Let us take R = R01 andv0w = (ifv C 1 2 vs
s then v1[vs1=hs1℄ else �; vsm1 ; vs
s ; ve; vsr)Now, we have to prove thata) S � R01U10Tw1Twea') � 0es = R01 U10 Tw1 Twe � 0web) � 0s = R01 U10 � 0wo1
) �s `̀ v0w : R01 (�w; U10 Tw1 �we ; U10 �w0)d) proto
asev e0s with vs
s ofC 1vsm1 x01s ! e01s [vs1=hs1℄ = (proto
asev e0we with hwv
s ofC 1hwvm1 x01 ! e0w1 [hwv1=hww1℄)[ifv C 1 2 vs
s then v1[vs1=hs1℄ else �; vsm1 ; vs
s ; ve; vsr=hwv1 ; hwvm1 ; hwv
s ; hwe; hw0℄Item a) holds by de�nition of R, A.94, A.100, A.109, and A.111.Item a') holds by de�nition of R, A.95, A.100, A.109, and A.111.Item b) holds by de�nition of R, A.102, A.109, and A.111.Item 
). Using A.113, we have to prove�s `̀ R01 (C 1 2 U10 Tw1 � 0we?U10 �w1;C 1 2 U10 Tw1 � 0we?HasC U10 Tw1 � 0we C 1 U10 � 0wi1 ;ConstrsOf U10 Tw1 � 0we ;U10 Tw1 �we;U10 �w0)whi
h is equivalent to�s `̀ C 1 2 R01 U10 Tw1 � 0we?R01 U10 �w1 ;C 1 2 R01 U10 Tw1 � 0we?HasC (R01 U10 Tw1 � 0we) C 1 (R01 U10 � 0wi1);ConstrsOf (R01 U10 Tw1 � 0we);R01 U10 Tw1 �we;R01 U10 �w0)



106 Appendix A. ProofsApplying A.95, A.100, A.101, A.108, A.109, and A.111, we obtain�s `̀ C 1 2 � 0es?R1�w1 ;C 1 2 � 0es?HasC � 0e C 1 � 01s ;ConstrsOf � 0es;Re�we ;Rsr �w0In order to prove this entailment, it is enough to prove�s `̀ C 1 2 � 0es?R1�w1 (A.115)�s `̀ C 1 2 � 0es?HasC � 0es C 1 � 01s (A.116)�s `̀ ConstrsOf � 0es (A.117)�s `̀ Re�we (A.118)�s `̀ Rsr �w0 (A.119)Item A.115). By hypothesis, it is very easy to verify that�s `̀ vs1 : C 1 2 � 0es?�s1; vs
s : ConstrsOf � 0es (A.120)Applying Lemma 3.9 with A.103 and A.120, we obtain�s `̀ ifv C 1 2 vs
s then v1[vs1=hs1℄ else � : C 1 2 � 0es?R1�w1Item A.116) holds trivially by hypothesis with eviden
e vsm1 .Item A.118) holds by A.96.Item A.117) holds by hypothesis with eviden
e vs
s .Item A.119) holds by A.107 with eviden
e vsrItem d) We have thatproto
asev e0s with vs
s ofC 1vsm1 x01s ! e01s [vs1=hs1℄ = (proto
asev e0we with hwv
s ofC 1hwvm1 x01 ! e0w1[hwv1=hww1℄)[ifv C 1 2 vs
s then v1[vs1=hs1℄ else �; vsm1 ; vs
s ; ve; vsr=hwv1 ; hwvm1 ; hwv
s ; hwe; hw0℄Sin
e hw0 does not appear in the residual proto
asev, the last equationis equivalent to(proto
asev e0we with hwv
s ofC 1hwvm1 x01 ! e0w1[hwv1=hww1 ℄)[ifv C 1 2 vs
s then v1[vs1=hs1℄ else �; vsm1 ; vs
s ; ve=hwv1 ; hwvm1 ; hwv
s ; hwe ℄By Lemma 4.12 and substitutions, we know that EV(e0we) � hwe andEV(e0w1 [hwv1=hww1℄) � hwv1 , where hwe 6= hww1 6= hwv1 . The eviden
e variableshwvm1 and hwv
s are fresh, so the last equation is equivalent toproto
asev e0we [ve=hwe℄ with hwv
s [vs
s=hwv
s ℄ ofC 1hwvm1 [vsm1=hwvm1 ℄ x01 ! e0w1 [hwv1=hww1 ℄[ifv C 1 2 vs
s then v1[vs1=hs1℄else � =hwv1 ℄



A.25. Proof of theorem 4.14 from se
tion 4.2 107Applying substitutions and A.97, we obtain thatproto
asev e0s with vs
s ofC 1vsm1 x01 ! e0w1 [hwv1=hww1℄[ifv C 1 2 vs
s then v1[vs1=hs1℄ else � =hwv1 ℄Sin
e EV(v1) � hs1, EV(vs1) � hs, EV(vs
s) � hs and hs1 6= hs 6= hwv1 , wehave thatproto
asev e0s with vs
s ofC 1vsm1 x01 ! e0w1[ifv C 1 2 vs
s then v1 else � =hww1 ℄[vs1=hs1℄Summarizing, we have to prove thatproto
asev e0s with vs
s ofC 1vsm1 x01s ! e01s [vs1=hs1℄ = proto
asev e0s with vs
s ofC 1vsm1 x01 ! e0w1 [ifv C 1 2 
ss then v1else � =hww1℄[vs1=h1℄In order to prove this, we have to use the de�nitions appearing in Fig-ures 3.6 and 3.7.Case vs
s = fC kgk2I) By De�nition 3.6, we only need to 
onsider when1 2 I. So, it is enough to prove that�x01s :e01s [vs1=hs1℄ =�x01:e0w1 [ifv C 1 2 vs
s then v1 else � =hww1 ℄[vs1=hs1℄ (A.121)By the form of vs
s and the redu
tion rule for ifv in Figure 2.4, thislast equation is equivalent to�x01s :e01s [vs1=hs1℄ = �x01:e0w1[v1=hww1 ℄[vs1=hs1℄The result follows from A.104.Case vs
s = h0) By De�nition 3.7, it is enough to prove that�x01s :e01s [vs1=hs1℄[Dn=h0℄ =�x01:e0w1 [ifv C 1 2 h0 then v1 else � =hww1℄[vs1=hs1℄[Dn=h0℄ (A.122)for any Dn of the form fC kgk2I . By substitution, EV(v1) � hs1 andh0 6= hs1, we have that this last equation is equivalent to�x01s :e01s [vs1=hs1℄[Dn=h0℄ =�x01:e0w1 [ifv C 1 2 Dn then v1 else � =hww1℄[vs1=hs1℄[Dn=h0℄Finally, we only have to 
onsider when 1 2 Dn, pro
eeding in thesame way as for vs
s = fC kgk2I.Case ((B + 1)� bran
hes): We suppose that this theorem is valid for a set ofindexes B and we will prove that it will be also valid for a set of indexesB + 1, whi
h has one more index than B and this index is the maximum,



108 Appendix A. Proofsbeing also annotated as B + 1. So, observe that B + 1 is overloaded and itsmeaning depends on the 
ontext where it is used.We know that �s j S � S̀ 
ase e of(C Dk xk ! ek)k2B: �,!proto
asev e0s with vs
s of(C kvsmk x0ks ! e0ks [vsk=hsk℄)k2B: � 0s
(A.123)

is related to �Bw ; AB1 �we ; AB2 U10 �w0 j AB1 Twe �Ẁ 
ase e of(C Dk xk ! ek)k2B: �,!proto
asev e0we with hwv
s of(C khwvmk x0k ! e0wk [hwvk=hwwk ℄)k2B: UBB�1 � 0wB
(A.124)

by means of a substitution RIHB and eviden
e vwIHB su
h thatS � RIHBAB1 Twe (A.125)� 0es = RIHBAB1 Twe � 0we (A.126)� 0s = RIHB UBB�1 � 0wB (A.127)�s `̀ vIHB : RIHB (�Bw ; AB1 �we; AB2 U10 �w0) (A.128)proto
asev e0s with vs
s of(C kvsmk x0ks ! e0ks[vsk=hsk℄)k2B= (proto
asev e0we with hwv
s of(C khwvmk x0k ! e0wk [hwvk=hwwk ℄)k2B[vwIHB =hBw ; hwe; hw0 ℄ (A.129)Observe that A.126 is the property that we have added for bran
h indu
tion.Now, we use A.125 in order to rewrite the spe
ialization of the (B + 1)thbran
h in the hypothesis of the S derivation, obtaininghsB+1 : �sB+1 j RIHB(AB1 Twe �) S̀�DxB+1:eB+1 : D(CB+1)!D � ,! �x0B+1s :e0B+1s : � 0B+1s ! � 0s (A.130)We apply the outer IH on A.130, so there exist a substitution RB+1 andeviden
e vB+1 su
h thathwwB+1 : �wB+1 j TwB+1 AB1 Twe � Ẁ�DxB+1:eB+1 : D(CB+1)!D � ,! �x0B+1:e0wB+1 : � 0wiB+1 ! � 0woB+1 (A.131)



A.25. Proof of theorem 4.14 from se
tion 4.2 109RIHB � RB+1TB+1 (A.132)� 0B+1s = RB+1 � 0wiB+1 (A.133)� 0s = RB+1 � 0woB+1 (A.134)�sB+1 `̀ vB+1 : RB+1�wB+1 (A.135)�x0B+1s:e0B+1s = (�x0B+1:e0wB+1)[vB+1=hwwB+1℄ (A.136)Using A.127, A.132, and A.134, we obtainRB+1 � 0woB+1 = RB+1 TB+1 UBB�1 � 0woB (A.137)Then, there exist an uni�er UB+1B and a substitution R0B+1 su
h that� 0woB+1 �UB+1B TwB+1 UBB�1 � 0woB (A.138)RB+1 = R0B+1UB+1B (A.139)We 
an apply (W-DCASE) rule with judgements Ẁ and uni�ers appearing inhypothesis of A.124, A.131, and A.138, obtaining�w; UB+1B TB+1 AB1 �we ; UB+1B TB+1AB2 U10 �w0 j UB+1B TB+1 AB1 Twe �Ẁ 
ase e of(C Dk xk ! ek)k2B+1: �,!proto
asev e0we with hwv
s of(C khwvmk x0k ! e0wk [hwvk=hwwk ℄)k2B+1: UB+1B � 0woB+1 (A.140)We de�ne vIHB = (vBw ; vwe; vsr) where vBw , vwe and vsr 
ome from applying(Univ) three times to A.128. In other words, we have�s `̀ vBw : RIHB �Bw (A.141)�s `̀ vwe : RIHB AB1 �we (A.142)�s `̀ vsr : RIHB AB2 U10 �w0 (A.143)Let us take R = R0B+1 andv0w = (vBw ; ifv CB+1 2 vs
s then vB+1[vsB+1=hsB+1℄ else �; vsmB+1 ; vwe ; vsr)Now, we have to prove thata) S � R0B+1UB+1B TB+1AB1 Twea') � 0es = R0B+1UB+1B TB+1 AB1 Twe � 0web) � 0s = R0B+1 UB+1B � 0woB+1
) �s `̀ v0w : R0B+1 (�w; UB+1B TB+1AB1 �we; UB+1B TB+1 AB2 U10 �w0)Item a) holds by A.125, A.132, and A.139.Item a') holds by A.126, A.132, and A.139.



110 Appendix A. ProofsItem b) holds by A.134, and A.139.For item 
), it is very easy to verify that�w = UB+1B TB+1�Bw ;CB+1 2 UB+1B TB+1AB1 �we?UB+1B �wB+1 ;CB+1 2 UB+1B TB+1AB1 �we?HasC (UB+1B TB+1 AB1 �we) CB+1 (UB+1B � 0wiB+1) (A.144)
Applying (Univ) several times to item 
) and distributing substitutioninside predi
ates, it is enough to prove�s `̀ R0B+1 UB+1B TB+1�Bw (A.145)�s `̀ CB+1 2 R0B+1 UB+1B TB+1AB1 �we?R0B+1 UB+1B �wB+1 (A.146)�s `̀ CB+1 2 UB+1B TB+1AB1 �we?HasC (UB+1B TB+1AB1 �we) CB+1 (UB+1B � 0wiB+1) (A.147)�s `̀ R0B+1 UB+1B TB+1AB1 �we (A.148)�s `̀ R0B+1 UB+1B TB+1AB2 U10 �w0 (A.149)Item A.145) It holds by A.132, A.139, and A.141.For item A.146), it is very easy to verify, by hypothesis, that�s `̀ vsB+1 : CB+1 2 � 0es?�sB+1; vs
s : ConstrsOf � 0es (A.150)By A.135, A.139, item a'), and appli
ation of Lemma 3.9 to A.135and A.150, we obtain�s `̀ ifv CB+1 2 vs
s then vB+1[vsB+1=hsB+1℄ else � :CB+1 2 R0B+1 UB+1B TB+1 AB1 �we?R0B+1 UB+1B �wB+1Item A.147) holds by Item a'), A.133, and A.139, obtaining that�s `̀ CB+1 2 � 0es?HasC � 0es CB+1 � 0B+1s (A.151)whi
h it is true by hypothesis with eviden
e vsB+1.Item A.148) It holds by A.132, A.139, and A.142.Item A.149) It holds by A.132, A.139, and A.143.Item d) We have that(proto
asev e0we with hwv
s of(C khwvmk x0k ! e0wk [hwvk=hwwk ℄)k2B+1)[vBw ; ifv CB+1 2 vs
s then vB+1[vsB+1=hsB+1℄ else �;vsmB+1 ; vwe; vsr=hBw ; hwwB+1; hwvmB+1 ; hwe; hw0℄ (A.152)
Sin
e EV(vs
s) � hs, EV(vB+1[vsB+1=hsB+1℄) � hs, EV(vwe) � hwe in ad-dition to EV(vsr ) � hsr , and hs 6= hwe 6= hsr , we obtain that A.152 isequivalent to(proto
asev e0we with hwv
s of(C khwvmk x0k ! e0wk [hwvk=hwwk℄)k2B+1)[vBw ; vwe ; vsr ; ifv CB+1 2 vs
s then vB+1[vsB+1=hsB+1℄ else �;vsmB+1=hBw ; hwe; hw0; hwwB+1 ; hwvmB+1 ℄ (A.153)



A.26. Proof of theorem 7.11 from se
tion 7.1 111and by de�nition of vIHB , this 
an be rewritten as(proto
asev e0we with hwv
s of(C khwvmk x0k ! e0wk [hwvk=hwwk ℄)k2B+1)[vIHB ; ifv CB+1 2 vs
s then vB+1[vsB+1=hsB+1℄ else �;vsmB+1=hBw ; hwe; hw0; hwwB+1; hwvmB+1 ℄ (A.154)
Be
ause of eviden
e variables hwwB+1 and hwvB+1 appear only in the (B+1)thbran
h, A.154 is equivalent to(proto
asev e0we with hwv
s of(C khwvmk x0k ! e0wk [hwvk=hwwk ℄)k2B)[vIHB=hBw ; hwe; hw0℄(CB+1hwvmB+1 x0B+1 ! e0wB+1 [hwvB+1=hwwB+1 ℄)[ifv CB+1 2 vs
s then vB+1[vsB+1=hsB+1℄ else �; vsmB+1=hwwB+1 ; hwvmB+1 ℄To sum up, we have to prove thatproto
asev e0s with vs
s of(C kvsmk x0ks ! e0ks[vsk=hsk℄)k2B+1= (proto
asev e0we with hwv
s of(C khwvmk x0k ! e0wk [hwvk=hwwk ℄)k2B)[vIHB=hBw ; hwe; hw0℄(CB+1hwvmB+1 x0B+1 ! e0wB+1 [hwvB+1=hwwB+1℄)[ifv CB+1 2 vs
s then vB+1[vsB+1=hsB+1℄ else �; vsmB+1=hwwB+1 ; hwvmB+1 ℄In order to do this, we only need to 
onsider the (B + 1 )th bran
h be-
ause A.129 already satis�es De�nitions 3.6 and 3.7.Case v
s = fC kgk2I) We have to follow the same steps used to proveA.121 but 
onsidering B+1; x0B+1s; e0B+1s; vB+1; hwwB+1, and A.136 in-stead of 1; x01s; e01s ; v1; hww1, and A.104.Case v
s = h0) We have to follow the same steps used to prove A.122but this time 
onsidering B+1; x0B+1s; e0B+1s; vB+1, and hwwB+1 insteadof 1; x01s ; e01s ; v1, and hww1 .A.26 Proof of theorem 7.11 from se
tion 7.1Theorem 7.11. A system de�ning a simpli�
ation relation, extended with rules (SHASC),(SCTS), (SG-TRUE), (SG-FALSE), and (SU-HC) still de�nes a simpli�
ation relation.Proof: The proof is by indu
tion on the derivation, taking one 
ase for ea
h rule:� (SHASC): (i) It holds that ; `̀ n : HasC Dn C k S� 0 by (HASC), and also (ii)HasC Dn C k S� 0 `̀ ;.



112 Appendix A. Proofs� (SCTS): (i) It holds that ; `̀ fC k gk2I : ConstrsOf Dn by (CONSTRS-OF), and also(ii) ConstrsOf Dn `̀ ;.� (SG-FALSE): (i) It holds ; `̀ � : C k 2 Dn?� by applying (GUARD-FALSE) to C k =2 Dn,and also (ii) � : C k 2 Dn?� `̀ ;.� (SU-HC): It trivially holds thath1 : HasC S� 0 C k S� 001 `̀ h1 : HasC S� 0 C k S� 001 (A.155)Additionally, we obtain thath1 : HasC S� 0 C k S� 001 `̀ h1 : HasC S� 0 C k S� 002 (A.156)by applying (UNIFY-HASC) to h1 : HasC S� 0 C k S� 001 `̀ S� 001 � S� 002 . Thus, (i) holdsby applying (Univ) to A.155 and A.156. The item (ii) holds trivially sin
eHasC S� 0 C k S� 001 ;HasC S� 0 C k S� 002 `̀ HasC S� 0 C k S� 001A.27 Proof of theorem 7.12 from se
tion 7.1Theorem 7.12. A system de�ning a simpli�
ation relation, extended with rules (SHC-G)and (SENTL-G) still de�nes a simpli�
ation relation.Proof: The proof is by indu
tion on the derivation, taking one 
ase for ea
h rule:� (SG-TRUE): (i) It holds h : � `̀ h : C k 2 Dn?� by applying (GUARD-TRUE) toC k 2 Dn and � `̀ �, and also (ii)C k 2 Dn?� `̀ � by applying (INTO-GUARD-TRUE)to C k 2 Dn and � `̀ �.� (SHC-G): (i) We know thath1 : HasC � 0 C k � 00; h2 : � `̀ h2 : C k 2 � 0?� (A.157)by applying (HASC-GUARD) to h1 : HasC � 0 C k � 00; h2 : � `̀ h2 : �. Additionally,we trivially know thath1 : HasC � 0 C k � 00; h2 : � `̀ h1 : HasC � 0 C k � 00 (A.158)The result follows by applying (Univ) to A.157 and A.158. (ii) On the other hand,we know thath1 : HasC � 0 C k � 00; h2 : C k 2 � 0?� `̀ h1 : HasC � 0 C k � 00 (A.159)Additionally, we have thath1 : HasC � 0 C k � 00; h2 : C k 2 � 0?� `̀ h2 : � (A.160)by applying (ELIM-HASC-GUARD) to h1 : HasC � 0 C k � 00; h2 : � `̀ h2 : �. The resultfollows by applying (Univ) to A.159 and A.160.



A.28. Proof of theorem 7.16 from se
tion 7.2 113� (SENTL-G): (i) We know thath0 : C k 2 � 0?�0; h
 : ConstrsOf � 0 `̀ h
 : ConstrsOf � 0 (A.161)Additionally, we have thath0 : C k 2 � 0?�0; h
 : ConstrsOf � 0 `̀ vif : C k 2 � 0?� (A.162)by applying (ENTL-GUARD) to h0 : �0 `̀ v : � { whi
h holds by IH applied toId; h  v j h : � � h0 : �0 { and h
 : ConstrsOf � 0 `̀ h
 : ConstrsOf � 0. Theresult follows by applying (Univ) to A.161 and A.162. On the other hand, (ii) weknow that C k 2 � 0?�;ConstrsOf � 0 `̀ ConstrsOf � 0 (A.163)and we also have thatC k 2 � 0?�;ConstrsOf � 0 `̀ C k 2 � 0?�0 (A.164)by applying (ENTL-GUARD) to � `̀ �0 { whi
h holds by IH applied to Id; h v j h :� � h0 : �0 { and ConstrsOf � 0 `̀ ConstrsOf � 0. The result follows by applying(Univ) to A.163 and A.164.A.28 Proof of theorem 7.16 from se
tion 7.2Theorem 7.16. The heuristi
 presented is 
orre
t wrt. the de�nition of the 
onstraintsolving relation. That is:1. Monomorphi
ST �nds a solution for t, respe
ting the predi
ates HasC.2. If (S; T; C;�f ;�0) = stepSolve t � and s =2 V thenS; T ;C j �+�f �V �0:Proof:1. A new sum-type is introdu
ed. It has a 
onstru
tor for ea
h predi
ate HasC foundin the predi
ate assigment. If several predi
ates HasC appear for the same 
on-stru
tor, then the argument's residual type in the de
laration 
an be any of thoseargument's residual type in su
h predi
ates { that is be
ause of all of them wouldbe eventually uni�ed by the rule (SU-HC). Thus, a valid sum-type de�nition isobtained.2. It holds by applying the simpli�
ation rule (SHASC) several times.
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