Principal Type Specialization of
Dynamic Sum-Types

Computer Sciences Department
Facultad de Ciencias Exactas, Ingenieria y Agrimensura
Universidad Nacional de Rosario
Argentina

250 Pellegrini Avenue, Rosario. (2000) Santa Fe. Argentina.
Tel.: +54-341-4802656 int, 116
e-mail: fceia@fceia.unr.edu.ar

Principal Type Specialization of
Dynamic Sum-Types

Graduate Thesis

to obtain the degree of Licentiate in Computer Sciences at the
National University of Rosario,
August 2004

by
Alejandro C. Russo

Santa Fe, Argentina.

Supervisor: Msc. Pablo E. Martinez Lopez
LIFIA Laboratory

National University of La Plata

50 Street intersection 115 Street, First Floor
(1900) Buenos Aires, Argentina

Computer Sciences Department
Facultad de Ciencias Exactas, Ingenieria y Agrimensura
Universidad Nacional de Rosario
Argentina

Copyright (©) 2004 by Alejandro C. Russo
e-mail:russo@fceia.unr.edu.ar
http://www.fceia.unr.edu.ar/ russo/

For my grandfather Antonio,
who was an skilled worker that always worked to improve my country.

Contents

Agradecimientos xi
Acknowledgments xiii
1 Introduction 1
1.1 Program Specialization Lo 1
1.2 Principal Type Specialization 3
1.3 Contribution of this Work 3
1.4 Overview 4

2 Specialization 5
2.1 Type Specializationo 5
2.1.1 Source Language)

2.1.2 Residual Language 6

2.1.3 Specializing L 7

2.1.4 Examples 7

2.2 Qualified Types 9
2.2.1 Predicates and Entailment 9

2.2.2 Type inference with Qualified Types 11

2.2.3 Coherence and Evidence 13

2.3 Principal Type Specialization 14
2.3.1 Residual Language 14

2.3.2 Residual Types 16

2.3.3 Specifying Principal Type Specialization 17

234 Algorithm 21

2.3.5 Extensionso 23

3 Principal Specialization of Dynamic Sum-Types 27
3.1 Extending Source and Residual Language 27
3.2 Extending Source And Residual Types 29
3.3 Extending RT Relation L. 30

vil

3.4 Specializations Rules for Dynamic Sum-Types
3.4.1 Entailment Relationship
3.4.2 Source-Residual Relationship
3.4.3 Rules for Constructors and Case

3.0 Examples

4 The Algorithm and the Proof, Extended
4.1 Extension of The Syntax Directed System, S
4.2 Extension of The Inference Algorithm, W
4.2.1 An entailment algorithm
4.2.2 An algorithm for source-residual relationship
4.2.3 An algorithm for type specialisation
4.3 Examples

5 Extension to the Prototype
5.1 Implementation Language,
5.2 Previous Work
5.3 Extensions
5.4 Potential Improvements Lo
5.5 Conclusions of the Implementation

6 Conclusions and Future Work

7 Simplification and Constraint Solving
7.1 Simplification e
7.1.1 Motivation
7.1.2 Specification
7.1.3 Implementing a Simplification
7.1.4 Simplification during specialisation
7.1.5 Extension to Simplification.00
7.2 Constraint Solving
7.2.1 Motivation
7.2.2 Specifying Solutionso
7.2.3 Solving and Specialisation
7.2.4 Extending the Algorithm for Constraint Solving

8 An Interpreter With Error Handling
Todo...
8.1 Running Exampleo oo

Bibliography

A Proofs
A.1 Proof of proposition 3.7 from section 3.3
A.2 Proof of theorem 3.8 from section 3.3
A.3 Proof of lemma 3.9 from section 3.4
A.4 Proof of proposition 3.11 from section 3.4

viil

33

43
43
45
45
46
46
48

57
o7
o7
o8
28
28

61

63
63
63
64
66
67
68
70
70
71
71
72

75
6]
6]

79

A.5 Proof of proposition 3.12 from section 3.4 86

A.6 Proof of theorem 3.13 from section 3.4 86
A.7 Proof of theorem 3.14 from section 3.4 86
A.8 Proof of theorem 3.15 from section 3.4 88
A.9 Proof of proposition 3.16 from section 3.4 88
A.10 Proof of proposition 3.17 from section 3.4 89
A.11 Proof of lemma 3.18 from section 3.4 90
A.12 Proof of lemma 3.19 from section 3.4 91
A.13 Proof of proposition 4.2 from section 4.1 91
A.14 Proof of proposition 4.3 from section 4.1 91
A.15 Proof of proposition 4.4 from section 4.1 91
A.16 Proof of theorem 4.5 from section 4.1 91
A.17 Proof of theorem 4.6 from section 4.1 92
A.18 Proof of proposition 4.7 from section 4.2 97
A.19 Proof of proposition 4.8 from section 4.2 97
A.20 Proof of proposition 4.9 from section 4.2 97
A.21 Proof of proposition 4.10 from section 4.2 98
A.22 Proof of proposition 4.11 from section 4.2 98
A.23 Proof of lemma 4.12 from section 4.2 99
A .24 Proof of theorem 4.13 from section 4.2 100
A .25 Proof of theorem 4.14 from section 4.2 100
A.26 Proof of theorem 7.11 from section 7.1 111
A.27 Proof of theorem 7.12 from section 7.1 112
A.28 Proof of theorem 7.16 from section 7.2 113
Index 115

X

Chapter 1

Introduction

“ — Mire: dentro del movimiento de la democracias la carta mds peligrosa
que se juega es precisamente la de la revolucion. Una revolucion se sabe siempre

donde comienza, pero nunca se puede saber donde ird a terminar ”

Lo que me dijo el general Uriburu
J.M. Espigares Moreno
Buenos Aires, 1933

In this chapter we briefly present the concepts behind program specialization and how it
can be carried out by type specialization. In addition, we also explain the contribution
of this work to the field.

1.1 Program Specialization

“There is a trade-off between efficiency and generality” was always the phrase said by
teachers in several courses when I tried to write a program that solved many instances
of a given problem and was efficient at the same time.

Programers usually want to write the minimum lines of code while possible. One
way to obtain this is to write general programs, that is, a program that solves many
similar problems. General programs are often clearer, more understandable and easier
to implement than specific ones and we can assume that it is better to write general
programs. However there exists a very important entity that does not combine neatly
with general programs, in the sense of time of computing them: the computer. General
programs are less efficient than specific ones, so we want to write general programs but at
the same time we want efficient ones. The idea of program specialization is to provide an
automatic form to go from a general and non-efficient program to a specific and efficient
one. This is done by a program, here called specializer, whose input is a program and
whose output is one or more particular versions of it. The program used as input is
called source program, and those produced as output are called residual programs. The
classic example is the recursive power function calculating z”

power n x = if n ==
then x
else x * power (n-1) x

whose computation involves several comparisons and recursive calls, but when the input
parameter n is known for example let us say it is 3 it can be specialized to a
non-recursive residual version which can only computes powers of that particular n
the function

power3 x = x * (x * Xx)

2 Chapter 1. Introduction

in our example. It is clear that the residual version is much more efficient than the
source version when computing cubes. Program specialization has been studied from
several different approaches; among them, Partial Evaluation [Jones et al., 1993; Consel
and Danvy, 1993] is by far the most popular and well-known.

Partial evaluation is a technique that produces residual programs by using a general-
ized form of reduction: subexpressions with known arguments are replaced by the result
of their evaluation, and combined with those computations that cannot be performed
statically. That is, a partial evaluator works with the text of the source program by
fixing some of the input data (the static data) and performing a mixture of computation
and code generation to produce a new program. The programs produced, when run on
the remaining data — called dynamic data because they are not known until run-time —
yield the same result as the original program run on all the data. Partial evaluation may
sound like a sophisticated form of constant folding, but in fact, a wide variety of power-
ful techniques are needed to do it successfully, and these may completely transform the
structure of the original program. An area where partial evaluation is particularly suc-
cessful is the automatic production of compilers: compilation is obtained by specializing
an interpreter for a language to a given program [Futamura, 1971; Jones et al., 1985;
Jones et al., 1989; Wand, 1982; Hannan and Miller, 1992]. In this case, the interpreter is
used as the source program, the object program is used as the static data, and then the
residual program is the compiled version of the object program; so, the specialization
of the interpreter yields compilation. Another layer of complexity can be added when
the partial evaluator is written in the language it specializes: self-application becomes
possible, and thus compilers can be generated as well. The (code of the) partial evalu-
ator is the source program and the interpreter is the static data; the resulting residual
program performs specialization of the interpreter mentioned above: a compiler! This
is very useful in the area of domain-specific languages [Thibault et al., 1998|, where the
cost of generating a compiler must be kept to a minimum.

An important notion in the program specialization approach is that of inherited limit
[Mogensen, 1996; Mogensen, 1998]. An inherited limit is some limitation in the residual
program imposed by the structure of the source program and the specialization method;
that is, the form of obtainable generated programs is limited by the form of the program
to be specialized. For example, the number of functions (supposed that each function
in the source language be specialized in a unique way), the number of variables, the
number of types, etc. Mogensen has argued that historical developments in program
specialization gradually remove inherited limits, and suggest how this principle can be
used as a guideline for further development [Mogensen, 1996].

One good way to detect the presence or absence of inherited limits is to specialize
a self-interpreter and compare the residual programs with the source one: if they are
essentially the same, then we can be confident that no inherited limits exist. We then say
that the specialization was optimal (or Jones-optimal, after Neil Jones [Jones, 1988]).
Partial evaluation, in the case of self-interpreters written in untyped languages, can
obtain optimality; but for typed interpreters things are different. As partial evaluation
works by reduction, the type of the residual program is restricted by that of the source
one; thus, the residual code will contain type information coming from the representation
of programs in the interpreter: optimality cannot be achieved, and the inherited limit

1.2. Principal Type Specialization 3

of types is exposed. This problem was stated by Neil Jones in 1987 as one of the open
problems in partial evaluation [Jones, 1988].

1.2 Principal Type Specialization

Type Specialization is a different form of program specialization introduced by John
Hughes in 1996 as a solution for optimal specialization of typed interpreters. It has also
proved to be a rich approach to program specialization. For example, it is possible to use
the same interpreter for a given object language L. to obtain automatically a compiler for
both untyped and typed version of L with just a change on static or dynamic information
[Hughes, 1998]. This cannot be obtained by traditional techniques of partial evaluation.

Types in programming languages capture different properties about expressions and
this is the key to this approach: the information marked static in an expression will
be moved into the residual type, expressing more detailed facts about expressions than
source types; we need a more powerful residual type system for expressing that more
detailed information. To illustrate this fact, we can think of an expression with type
Int; the facts we know about it is that, if the computation of the expression finishes,
the result will be an integer. But if we know more about the expression, for example
that it is a constant 28, a better type associated to it is one capturing that information
— let us call this type 2A8, and allow residual types to be extended with that kind of
types. Having all the information in the type, there is no need to execute the program
anymore, and thus, we can replace the integer constant by a dummy constant having
type 28 that is, the source expression 28 : Int can be specialized to e : 28, where o is
the dummy constant.

In the original formulation of type specialization, presented like a generalized form of
type inference [Hughes, 1996], both the source and residual type systems are monomor-
phic, imposing an inhereted limit: the residual programs cannot be polymorphic, they
cannot have more polymorphism than the source program. Other drawback is the lack
of principality because of the monomorphic and non-syntax directed nature of the rules,
which has important undesirable consequences. In [Martinez Lépez and Hughes, 2004]
and [Martinez Lopez, 2004] these problems were fixed for a subset of the language pre-
sented by John Hughes. The inherited limit of polymorphism was removed and was
proved that his syntaz directed system has a notion of principality, called principal spe-
cialization. The specialization process was divided in two independent phases: constraint
generation and constraint solving. The first phase tries to flow information as much as
it can, and when there is some absent information which must flow from the code to
the type, constraints play a crucial role. In the second phase, when this information
is present, the right residual program can be calculated using heuristics [Badenes and
Martinez Lépez, 2002].

1.3 Contribution of this Work

The main contribution of this work is to extend the language described in [Martinez
Loépez and Hughes, 2004] and [Martinez Lépez, 2004] to be able to manipulate dynamic

4 Chapter 1. Introduction

sum-types. According to the definition of sum-types given by [Jones et al., 1993], they
are basically data types without names and recursion. However, we consider sum-types
with names but without recursion — recursion is out of the scope of this work.

All formal system rules and proofs presented in [Martinez Lépez and Hughes, 2004]
and [Martinez Loépez, 2004] are extended in order to incorporate dynamic sum-types
to the language, and all proofs are completed to show that the notion of principality
is preserved by the extension. With respect to the constraint solving phase, we leave
formalization of rules involving dynamic sum-types as future work but provide an im-
plementation instead.

Dynamic data types are needed to write interpreters to untyped languages under the
type specialization and principal type specialization approaches. Martinez Lopez’ work
has not yet been extended to obtain principal type specialization of dynamic data types
and thus, we can consider this work as a small step towards the achievement of this
goal.

1.4 Overview

This work is divided in five chapters.

In Chapter 2 we describe briefly the ideas behind specialization and explain the
theory of qualified types developed by Mark Jones [Jones, 1994a], which is the techni-
cal fundation used in [Martinez Lépez and Hughes, 2004] and [Martinez Lépez, 2004].
Additionally, we present Martinez Lopez’ reformulation of type specialization to obtain
principality. In Chapter 3 we present our extension to his approach to deal with dy-
namic sum-types. After that, in Chapter 4 we develop the extension of the algorithm
that obtains principal specializations. Then, in Chapter 5 we show some details of the
extension that were made to the existing prototype implementing principal type special-
ization in the functional language Haskell [Peyton Jones and Hughes (editors), 1999].
Finally, in Chapter 6 we talk about future work and conclusions.

An appendix with formal proofs is given as an addition in order to allow a more
smooth reading of this work.

Chapter 2

Specialization

“Tu pensabas de mino, que es mago aquel que puede hacer cualquier cosa.

Eso pensé yo, alguna vez. Y todos nosotros. Y la verdad es que a medida que un

hombre adquiere mds poder y sabiduria, se le estrecha el camino, hasta que al fin
no elige, y hace pura y simplemente lo que tiene que hacer”

La sombra en libertad

Un mago de Terramar

Ursula K. Le Guin

In this chapter we sumarize the concepts behind type specialization, the theory of
qualified types and principal type specialization.

2.1 Type Specialization

Type Specialization is an approach to program specialization introduced by John Hughes
in 1996 [Hughes, 1996]. The main idea of type specialization is to specialize both the
source program and its type to a residual program and residual type. In order to do
this, instead of a generalized form of evaluation, type specialisation uses a generalized
form of type inference.

2.1.1 Source Language

The source language we consider is a A-calculus enriched with local definitions and
arithmetic constants and operations. Furthermore, there are two kind of annotations
for constructs: _° or _”. We also have lift, poly and spec, which are another kind
of annotation whose purpose will be explained later. So, the definition of the source

language is the following.

DEFINITION 2.1. Let = denote a source term wvariable from a countable infinite set of
variables, and let n denote an integer number. A source term, denoted by e, is an
element of the language defined by the following grammar:

€= | n” le+"e
| lift e | n® le+7e
| Nz.e le@”e | let” z=ecine
| (e,...,e)" | Wg,ne
| poly e | spec e
where (e1,...,€,)” is a finite tuple of e’s for every possible arity n. The projections

71y e and 755 e may be abbreviated fst” e and snd” e respectively.

5

6 Chapter 2. Specialization

It is expected that static terms be removed from the source program by computing
and moving them into their residual types, while dynamic terms be kept in the residual
code. Annotations are provided by the programer and are part of the input to the
specializer they cannot be calculated as in partial evaluation, more details can be
found in [Hughes, 1996].

The construction lift is responsible for changing the information that has been moved
to residual types back to residual code — see Example 2.6 — poly introduces polyvariant
expressions, and spec — see example Example 2.9 — is applied to polyvariant terms in
order to produce different specializations of the same source term.

Source types will reflect the static or dynamic nature of expressions the type of
constants, functions and operators will be consistent with the types of arguments. The
source types are defined as follows.

DEFINITION 2.2. A source type, denoted by 7, is an element of the language defined by
the following grammar:

7= Int” | Int® | (r,...,7)7 | 7="7 | poly T
where the type (71,...,7,)” is a finite tuple for every possible arity n.

This language is a small subset of the language of the type specializer from [Hughes,
1996], but contains enough constructs to illustrate the basic notions.

2.1.2 Residual Language

The residual language has constructs and types corresponding to all the dynamic con-
structs and types in the source language, plus additional ones used to express the result
of specializing static constructs. Residual terms are defined as follows.

DEFINITION 2.3. Let 2’ denote a residual term variable from a countable infinite set of
variables. A residual term, denoted by €, is an element of the language defined by the
following grammar:

e = a2 | n e +¢€ | e
Al | Qe | let &' =€ in €
! !
(ee) [e
As in the source language, (€},...,€!) is a finite tuple of e’s for every possible arity n,

and 79 €' and 71y € may be abbreviated fst ¢’ and snd €' respectively.

The expression e corresponds to the residual of static constants, the numbers n to
the residual of dynamic numbers, lambda abstraction and application and let constructs
are the residual of corresponding dynamic ones, and finally, tuples and projections cor-
responds to both the residual of tuples and the residual of polyvariant expressions and
their specializations. It is important to mention that [Hughes, 1996] makes no distinc-
tion between static and dynamic tuples, so both the residual of dynamic tuples and the
tuples introduced by polyvariance will be eliminated in a postprocessing phase called
arity raising.

Residual types reflect the definition of source types.

2.1. Type Specialization 7

DEFINITION 2.4. A residual type, denoted by 7/, is an element of the language defined
by the grammar:
Te=Int | n |7 =7 | (..., 7)

where (71,...,7)) is a finite tuple of 7's for every possible arity n.

r'n

The novel feature of this language is the use of an infinite number of one-point types
— being the one-point type n the residual type corresponding to some static integer
whose value is known to be n.

2.1.3 Specializing

In order to express the result of the specialization procedure, [Hughes, 1996] introduced
a new kind of judgment, and a system of rules to infer valid judgments. These judg-
ments, similarly to typing judgments in the source language, make use of assignments
to determine the specialization of free variables.

DEFINITION 2.5. A specialization assignment, denoted by I, is a (finite) list of special-
ization statements of the form x : 7 < €' : 7/, where no source variable appears more
than once.

The specialization of a given program is expressed by type inference with a judgement

of the form
FFe:T—e: 7

which denotes that the program e with source type 7 can be specialized to a residual
program ¢’ with residual type 7', under the hypothesis I' (containing assumptions about
the specialization of free variables).

Instead of showing the rules that specify the specialization process, which can be
found in [Hughes, 1996], we explain through examples its capability and limits that
motivate the need for principality.

2.1.4 Examples

ExAMPLE 2.6. Observe how every expression annotated as dynamic appears in the
residual term (in fact, we have that a fully dynamic expression, that is one in which
every annotation is _”, specializes to a copy of itself with the annotations removed).

1. 427 : Int® < 42 : Int

2. F42° i Int® < e: 42

3. F (27 +717) 4717 i Int” — (2+ 1)+ 1: Int
4. F(2° +515)+°1° . Int® < e : 4
5. Flift (2° +°1%) +717 : Int” — 3+ 1: Int

Also observe in 5 how the use of lift allows us to cast a static integer into a dynamic
one, thus inserting the result of the static computation back into the residual term.

8 Chapter 2. Specialization

ExXAMPLE 2.7. Assignments provide the information for the specialization of free vari-
ables, which allows the specialization of functions.

l.o:Int° — e:3Fx4°1° : Int® — e: 4
2. F (Nz.x+51%)@" (25 +51%) : Int® — (\z'.e)Qe : 4
3. F (Wzlift z +717) @" (2° +°1%) : Int” — (A2’.3+ 1)Qe : Int

In 3 there is information that was moved from the context of the function to the func-
tion’s body, where lift places it.

ExAMPLE 2.8. One feature of type specialization is that there exist correctly annotated
terms that cannot be specialized; consider

let” f = Xulift z +°17
in (f @”42°, f @ 17%)" : (Int”, Int")".

As we have seen in Example 2.7-3, the body of the function is specialized according to
the parameter, but f has two different parameters!. In order to allow f to be specialized
in more than one way, we must use the annotation poly.

EXAMPLE 2.9. Observe the use of poly in the definition of f (and how that annotation
produces a tuple for the definition of f’ in the residual codes of both specializations),
and the use of spec in every application of f to an argument (and how that produces
the corresponding projections).

1. Flet” f=poly (Nazlift x +”1")
in (spec f @”42° spec f @Q"17%)"” : (Int”,Int")" —
let f'= (A2’ 424 1, A2’ 174 1)
in (fst f'Qe snd f'@e) : (Int, Int)

2. Flet” f=poly (Nalift z +"1")
in (spec f @"42° spec f @Q"17%)" : (Int”,Int")" —
let f'= (A2’ 174 1, 2’55 + 1, \z".42 + 1)
in (735 f'Qe, 7y 3 f'Qe) : (Int, Int)

The size and order of the residual tuple is arbitrary, provided that it has at least two
elements (Az'.42 + 1 and Az’.17 + 1), and that the projections select the appropriate
element, as can be seen when contrasting specialization 2 against specialization 1. In
this way, we can obtain a potentially infinite number of specializations from a given
source program.

The following example show the problems that were solved in [Martinez Lépez and
Hughes, 2004].

EXAMPLE 2.10. Observe that in all cases there is some static information missing.

1. Xz.z +51° : Int® =P Int®

2.2. Qualified Types 9

2. poly (Nz.lift z +”1”) : poly (Int® —" Int")
3. Xf.spec f @”13° : poly (Int® —" Int”) —" Int”

All have many different unrelated specializations! For example, the function in Exam-
ple 2.10-1 has one specialization for each possible value for x in particular, \z'.e :
n — 7', for every value of n and n' such that n’ = n + 1. If this function appears in
one module, but is applied in another one, then the specialization should wait until the
value n of the argument is known in order to decide its residual type. The same problem
appears in the case of polyvariance where the generation of the tuple or the selection
of the right projection should be deferred until all the information is available. This
problem is called lack of principality and fixing it requires a big change in the residual
language.

2.2 Qualified Types

The theory of qualified types [Jones, 1994a] is a framework that allows the develop-
ment of constrained type systems in an intermediate level between monomorphic and
polymorphic type disciplines.

Martinez L.opez used this concept deeply when he reformulated type specialization
to obtain principality [Martinez Lépez and Hughes, 2004].

Qualified types can be seen in two ways: either as a restricted form of polymorphism,
or as an extension of the use of monotypes (commonly described as overloading, in which
a function may have different interpretations according to the types of its arguments).
Predicates are used to restrict the use of type variables, which are allowed as a type.

The theory explains how to enrich types with predicates, how to perform type in-
ference using the enriched types, and which are the minimal properties that predicates
must satisfy in order for the resulting type system to have similar properties as the
Hindley-Milner one [Milner, 1978]. In particular, it has been shown that any well typed
program has a principal type that can be calculated by an extended version of Milner’s
algorithm.

2.2.1 Predicates and Entailment

Polymorphism is the ability to treat some terms as having many different types. We
can express a polymorphic type by means of a type scheme [Damas and Milner, 1982],
using universal quantification to abstract those parts of a type that may vary. That is,
if f(t) is a type for every possible value of type variable ¢, then giving the type scheme
Vt.f(t) to a term means that the term can receive any of the types in the set

{f(7) s.t. T is a type}

But sometimes that is not enough: not all the types can replace ¢ and still express a
possible type for the term. For those cases, a form of restricted quantification can be
used. If P(t) is a predicate on types, we use the type scheme V¢.P(t) = f(t) to represent
the set of types

{f(7) s.t. 7 is a type and P(7) holds}

10 Chapter 2. Specialization

and accurately reflect the desired types for a given term.

The key feature in the theory is the use of a language of predicates to describe sets of
types (or, more generally, relations between types). The exact set of predicates may vary
from one application to another — predicates that we use are described in Section 2.3.1.

In [Jones, 1994a), Mark Jones uses several notations of conventions, in particular
regarding lists of elements, lists of pairs, the usual operations on lists, and their use on
type expressions.

NOTATION 2.11. Let L and L' be any kind of (finite) lists or sets, and [be an element.
We write L, L' for the result of the union of sets L and L' or the append of lists L and
L'. We write [, L for the result of the inclusion of element [to set L or the cons of [to
list L. Finally, we write () for the empty set or list, and assume that), L = L,() = L.

As a consequence of all these conventions, a use of [could represent an element or a
singleton list, depending on the context.

Another point where conventions are convenient is when working with qualified types;
there are two possible ways to add predicates to the basic syntax: one by one, or all
toghether in a set. For example, this amounts to define either that p ::= 4§ = p| 7 or
p=A = 7, being A the list of predicates ¢;,...,d,. We will use the first form as the
definition and the second as an abbreviation (although the other way is also possible).

NOTATION 2.12. Assuming that a list of predicates A = §q,---,d,,, a list of type vari-
ables @ = aq, - -+, ay,, a list of evidence variables h = hq,--- , h,,, and a list of evidence
expressions v = vy, - -+ , U, we use the abbreviations:
Object Expression Abbreviation(s)

Qualified type 0, = ---0,, = 7' A=T

Type scheme Yay. - -Voau,.p Ya.p

Evidence abstr. Ahy.---Ah,,.€ Ah.e

Bvidence app. ((¢'(v1))) - - -) (vm)) ¢'(v)

In the special case when m = 0, all the sequences are empty, and then the abbreviations
stand for the enclosed element (e.g. €'((v)) represents e’). This implies, for example, that
a type 7 can be understood as a qualified type () = 7) or a type scheme (V(.0 = 7)
depending on the context of use.

Another convention is concerned with lists of pairs.

NoOTATION 2.13. Lists of pairs may be abbreviated by a pair of lists in the following way.
If h=nhy,...,h, and A = 6y,...,0,, the list hy : 61,..., h, : 6, may be abbreviated as
h : A or as A depending on the context. The latter is also used for a list of predicates
— no explicit remotion of the variables (first components of pairs) will be used.

The union (concatenation) of two sets (lists) of pairs h : A and A’ : A" will be denoted
h: A h': A’ (as an alternative to h, b’ : A; A’, which may also be used).

Despite the possible source of confusion that these conventions may be for a casual
reader, they can be easily mastered with very little practice.

2.2. Qualified Types 11
Fst) h:AR :A'Hh:A

(snd) h:A R AH- B A

h:AHO A h:AH" A"
h: AH oA 0" A"

(Univ)

h:AHV A h o A H-o" A"
h: AHO"[R V] A"

(Trans)

h:AH oA
h:SAHV:SA

(Close)

Figure 2.1: Structural laws satisfied by entailment.

The minimun required properties of predicates are captured by using an entailment
relation (H-) between (finite) sets of predicates satisfying a few simple laws. The judge-
ment A; H A, means that predicates belonging to A; can be used to construct evidence
for all the predicates in A,.

The basic properties that entailment must satisfy are:

Monotonicity: A H A’ whenever A O A’
Transitivity: if A - A’ and A’ H A", then A = A"
Closure property: if A H A’, then SA H SA'.

The last condition is needed to ensure that the system of predicates is compatible
with the use of parametric polymorphism. These properties can be expressed by a system
containing the rules in Figure 2.1. Observe that if § € A, then A H- § by monotonicity
of = AH-{d} is also written as A H- ¢ by virtue of Notation 2.11.

2.2.2 Type inference with Qualified Types

In the theory of qualified types, the language of types and type schemes is stratified in a
similar way as in the Hindley-Milner system, where the most important restriction is that
qualified or polymorphic types cannot be argument of functions; that is, types (denoted
by 7) are defined by a grammar with at least these productions 7 ::= ¢t |7 — 7. On
top of types are constructed qualified types of the form A = 7 (denoted by p), and
then type schemes of the form V{«a;}.p (denoted by o). We use freely the conventions
defined in Notation 2.12. Using that notation, any type scheme can be written in the
form Va;.A = 7, representing the set of qualified types

{Ala;/7] = 7ai/7] s.t. 7 is a type}

The language of terms denoted by e is based on the untyped A-calculus (it has,
at least, variables, applications, abstractions, and the let construct); it is called OML,

12 Chapter 2. Specialization

AJd|THe:p
A|lTFe:d=p

(QIN)

A|TFe:0=p AH

(QOUT)

AlTke:p
BITFC:0 sy
GEN ol U
(GEN) A|TFe:Vao
A|TFe:VYao
(INST) (dom(S)=a)
AlTke:So

Figure 2.2: Related variables and predicates typing rules for OML.

abbreviating ‘Overloaded ML’. Type inference uses judgements extended with a context
of predicates

AllTke:o

representing the fact that when the predicates in A are satisfied, and the types of the
free variables of e are as specified by I', then the term e has type o. The type system is
in essence similar to a Hindley-Milner one, with the rules showed in Figure 2.2 added.
The rules (gEN) and (nsT) are used to generalize and instantiate type variables in type
schemes, and (QIN) and (QouT) to manage predicates.

DEFINITION 2.14. A constrained type scheme is an expression of the form (A | o) where
A is a set of predicates and o is a type scheme.

In order to find all the ways in which a particular e can be used within a given I', the
theory have to deal with sets of the form

{(A]o)st. A|TFe:o}

The main tool used to deal with these sets is a preorder > pronounced more
general defined on pairs of constrained type schemes, and whose intended meaning
is that if (A | o) > (A’]o') then it is possible to use an object which can be treated
as having type o in an environment satisfying the predicates in A whenever an object
of type ¢’ is required in an environment satisfying the predicates in A’. To define it
formally, the notion of generic instance is needed.

DEFINITION 2.15. A qualified type A, = 7 is a generic instance of the constrained type
scheme (A | Va;. A" = 7') if there are types 7; such that

A B A ANlai/7] and 7 = 7' /7]

In particular, a qualified type A = 7 is instance of another qualified type A’ = 7' if
and only if A = A’ and 7 = 7'. Now we are in position to define the “more general”
ordering (>) on constrained type schemes.

2.2. Qualified Types 13

Ah:6|Tke—=e:p
A|TFe— Ahe:0=0p

(QIN)

AlTFe—=e:6=p AHKHwv:J
AlTkFe=é(v):p

(QOUT)

Figure 2.3: Translation rules from OML to OP that involves predicates.

DEFINITION 2.16. The constrained type scheme (A | o) is said to be more general than
the constrained type scheme (A’ | ¢’), written (A | o) > (A’ | ¢’), if every generic in-
stance of (A" | ¢’) is a generic instance of (A | o).

2.2.3 Coherence and Evidence

In order to give semantics to the terms in the system, [Jones, 1994a] introduces the notion
of evidence, and provide a translation from the original language of terms, OML, to one
manipulating evidence explicitely — called OP, for ‘Overloaded Polymorphic A-calculus’.
The essential idea is that an object of type A = 7 can only be used if it is supplied with
suitable evidence that predicates in A do indeed hold. The treatment of evidence can be
ignored in the basic typing algorithm, but is essential to provide coherence, that is, the
meaning of a term does not depend on the way it is typechecked [Breazu-Tannen et al.,
1991]. The properties of predicate entailment must be extended to deal with predicate
assignments and evidence expressions (in particular, the rules given in Figure 2.1 already
contained this extension, where h denote an evidence variable, and v denotes an evidence
expression). Observe that we are using the conventions introduced in Notation 2.13, so
predicate assignments are written as h : A meaning hy : 9y, ..., h, : J,, and similarly for
v A.

Unfortunately, there exist OML terms for which the translation gives more than one
non-equivalent term, showing that the meaning of those OML terms depend in the way
they are typed. In order to characterize terms with a unique meaning when possible,
OP typings have to be studied; thus, reduction and equality of OP terms are defined,
and then, the central notion of conversion is provided. A conversion from o to ¢’ is a
collection of OP terms that allow the transformation of any OP term of type ¢ into an
OP term of type o' by manipulating evidence; this is an extension of the notion of >
defined before. The motivation for using this notion is that an important property of
the ordering relation > used to compare types in OML breaks down in OP, due to the
presence of evidence: a term with a general type can be used as having an instance of
that type only after adjusting the evidence it uses.

The definition of conversions extends the definition of > (Definition 2.16) with the
treatment of evidence.

DEFINITION 2.17. Let 0 = Va,;. A, = 7 and o' = Vf3;,.A!. = 7' be two type schemes, and
suppose that none of the f; appears free in o, A, or A’. A closed OP term C of type
(A | o) — (A"] 0'), such that erasing all evidence from it returns the identity function,
is called a conversion from (A | o) to (A" | o'), written C : (A | o) > (A" | o'), if there

14 Chapter 2. Specialization

are types 7;, evidence variables h' and h!, and evidence expressions v and v’ such that:

o 7' =7a;/Ti
o W AR AL H v Ajv ALa; /7], and
o C = (Ax. AN, B z((v)(v")

Conversions are only used in the theory of qualified types to relate different translations
for the same term.

Finally, Jones define the notions of simplification and improvement on predicate sets.
These notions will also appear in principal type specialization.

2.3 Principal Type Specialization

As we saw in Section 2.1, Hughes’ formulation of type specialization forces an algorithm
to wait until all the context is known before making any attempt to specialize a given
expression [Hughes, 1996]. The problem, called by us lack of principality, is very similar
to the problem appearing in simply typed A-calculus when typing an expression like
Az.z, where the type of x is determined by the context of use different typings for
this expression have no relation between them expressible in the system. The solution
to the latter is to extend the type language in order to allow polymorphism — by
introducing type variables and defining a notion of instantiation for types.

Martinez Lopez’ work finds principal type specializations for each term in the source
language such that every other valid specialization of this term can be obtained by
instantiation of it [Martinez Lopez and Hughes, 2004]. Thus, specialization can be done
in isolation, without any context. A first step in this direction is to use residual type
variables to defer the specialization of expressions depending on the context. However,
this is not enough, as subtle dependencies between types (as the relation between n and
n’ in the specialization of Example 2.10-1), cannot be expressed. The theory of qualified
types, briefly described in Section 2.2, presents a type framework that allows expressing
conditions relating universally quantified variables [Jones, 1994a].

2.3.1 Residual Language

Extending the residual type language with predicates implies that the residual term
language must also be extended to manipulate evidence. The extensions have two parts:
the “structural” components taken from the theory of qualified types, and the particular
constructs needed to express specialization features.

Following the theory of qualified types, the residual type language is extended with
type variables (¢), and the syntactic categories of qualified types (p) and type schemes
(0); also particular predicates (§) are defined. The most important innovations with
respect to the theory of qualified types are the new type construct poly o, and the use
of scheme variables (s), both used to express polyvariance.

DEFINITION 2.18. Let t denote a type variable from an countable infinite set of variables,
and s a type scheme variable from another countable infinite set of variables, both

2.3. Principal Type Specialization 15
(B) (Ah.€i)((v)) > € [h/v]
() Ah.e\(h) > € (hgEV(e)))
(let,) let, z =€) in €, > eh[x/e}]

(00) (v10w)[€'] > v[vale’]]
(if,-True) if, True then €| else €}, > ¢}

(if -False) if, False then ¢) else ¢, > ¢}

Figure 2.4: Reduction for residual terms.

disjoint with any other set of variables already used. A residual type, denoted by 7', is
an element of the language given by the grammar

o=t Int|n| =7 |(,...,7") | poly o
pu=0=pl|T

o = s|Vs.o|Vto|p

§ v=Islnt 7' | 7" :=7" 4+ 7" | IsMG 0 o

The residual term language is extended with evidence (v), including evidence variables
(h), evidence abstractions (Ah.e'), and evidence applications (¢/((v))). Evidence is very
important in this formulation of type specialization because it allows us to abstract
differences among different residual terms of a given source term, and is one of the
cornerstones for the principality result. Two particular kinds of evidence are used:
numbers, as evidence for predicates of the form IsInt and _:= _+ _, and conversions, as
evidence for predicates of the form IsMG. Observe that conversions, denoted by C, are
defined separately from other elements in the language, and that they are contexts —
instead of (families of) terms, as in [Jones, 1994a].

DEFINITION 2.19. A residual term, denoted by €', is an element of the language defined
by the following grammar:

e = a | n | e +¢€ | e

| Az'.e | e@e' | let ' =€ in €

| (€1, en) | Tnm €

| h | vle'] | Ahe | €(v) | let, x=¢"in ¢
v u=h | n | C | vouw
C =] | Ah.C | C((v)) | let, x = C in ¢

We will be working under a equivalence = on residual terms, defined as the minimal rela-
tion that contains a-conversions for both A and A-abstractions, and rules in Figure 2.4.
Equivalence is also extended to conversions, defining that C = C" if for all expressions €',
C[e'] = C'[¢']. The meaning of H-, whose structural propierties are given in Figure 2.1,
is completed with the rules that show, in Figure 2.5, how the evidence for particular
predicates is constructed. The predicate IsInt is provable when the type is a one-point

16 Chapter 2. Specialization
(sint) A H-n : IsInt n
(IsOp) AHn:n:= ﬁl —+ ﬁQ (whenever n=n1-+ns)

(soptsint) A, h 7' := 71 + 15, A"H= h : IsInt 7’

C:(A]d")>(A]o)
AH C:IsMG o' o

(IsMG)

A H v IsMG o, 09 A H v IsMG o9 03
AHv'owv:IsMG o, o3

(Comp)

Figure 2.5: Entailment for evidence construction.

type representing a number and the evidence is the value of that number. Similarly, the
predicate _:= _+ _ is provable when the three arguments are one-point types with the
corresponding numbers related by addition and the evidence is the number correspond-
ing to the result of that addition. The predicate IsSMG internalizes the ordering > and
the evidence is the corresponding conversion. The composition of evidence used in this
rule was defined in Figure 2.4.

2.3.2 Residual Types

As we discussed in Section 2.2.3, the relation between different types and scheme types
is expressed by >. We define conversions as a special kind of contexts, rather than as
terms in the residual language. Additionally, we use conversions as part of the evidence
language, which prove some kind of predicates with a similar semantics to relation >.
This evidence will be applied to terms, so we need to slightly modify the definition of
conversion as follows:

DEFINITION 2.20. Let 0 = V. A, = 7 and o' = Vf3,. Al = 7’ be two type schemes,
and suppose that none of the 3; appears free in o, h : A, or A’ : A’. A term C is called a
conversion from (A | o) to (A" | ¢'), written C : (A | o) > (A’ | ¢'), if and only if there
are types 7;, evidence variables h, and h!, and evidence expressions v and v’ such that:

o 7' =T7a;/Ti]
e W AR AL H v Ajv ALJa; /7], and
e C = (let, x = Ah.[] in AR, .x((v)(v")

The most important property of conversions is that they can be used to transform an

object € of type o under a predicate assignment A into an element of type ¢’ under a

predicate assignment A’, changing only the evidence that appears at top level of €.
The following assertions hold when o, o', 6" are scheme variables:

L[:(Alo)=(A]0)

2.3. Principal Type Specialization 17

2.iff C:(A]o)>(A"|o')and C': (A" | o) > (A" | 0")
then C'o C : (A o) > (A" | o")

ExamMPLE 2.21. Conversions are used to adjust the evidence demanded by different type
schemes. For all A it holds that

1. [J(42)) : (A | VtIsInt t = t — Int) > (A | 42 — Int)

2. C: (A | th,tQ.ISIDt tl,ISIDt to = 1t — tQ) > (A ‘ VtIsInt t =t — t)
where C = AR.[J(R)(h)

3. Ah[]: (A |42 — Int) > (A | Vt.IsInt t = 42 — Int)

In [Martinez Lépez and Hughes, 2004], a type system to infer the type of a residual
expresion is also presented, proving later that specialization is well behaved with respect
to it. This system of rules is not able to infer the type of any residual expresion
only to check it. The expressions that will be verified are those that come from the
specialization process: the programmer does not write any piece of residual code; instead,
the specialization obtains the residual code together with its residual type. This last
remark justifies why it is reasonable to provide the form of higher-order polymorphism,
controlled by annotations poly and spec.

2.3.3 Specifying Principal Type Specialization

The system specifying type specialisation is composed by two sets of rules.

The first one relates source types with residual types, expressing which residual types
can be obtained by specialising a given source one. This system, which is called SR —
see Figure 2.6 is important because it is needed to restrict the possible choices of
residuals for bound variables when specializing lambda-abstractions and specializations
of polyvariant expressions; without these restrictions we can obtain more specializations
than expected — for example the source term X’z.z : Int® —” Int® can be specialized
to Ax'.x" : Bool — Bool.

The second one is the specialization process itself and appears in Figures 2.7 and 2.8.
Judgements have the structure A |T'F, e: 7 — €' : 0, expanding notions explained in
Section 2.1 for the use of qualified types.

Rules (Qin) and (qQouT) incorporate the notion of evidence introduced in Section 2.2.3
and allow us to move information from the context (as predicates) into the residual
terms (adding predicates in the type and abstracting evidence) and back. Observe that
these are dual rules, so it is possible to eliminate the effect produced by one of them by
using the other one.

We revisit here some examples of Section 2.1, but now using the rules that appear
in Figures 2.7 and 2.8.

EXAMPLE 2.22. The source term in Example 2.10-1 can now be specialized as follows
F Nza +51° Int® =P Int® < Ahy, hy Mg’ by -Vt IsInt ¢, =t 4+ 1=t =1

Observe the use of evidence abstractions to wait for the residual of static information.
This is one of the keys allowing principal specialisation. The evidence will be the num-
bers corresponding to the static values of x and resulting operations.

18 Chapter 2.

Sr-DINT) A b, Int” — Int

A H- IsInt 7/
Ak, Int® — 7'

(SR-SINT)

AR, — 7 AR, T — 7

SR-DFUN
(: Ab,m—="1 — 17—
(SR-TUPLE) (A7 = Tiimtm
Aby (11,00, 1)7 = (11,...,7))
AR, 7 = o A H IsMG ¢' o
(SR-POLY)
Ak, poly 7 — poly o
AdH, T = p
(SR-QIN)
AR, T = d=p
AR, T —=>0=>p AHI
(SR-QOUT)
AR, T = p
AR, T = 0
(SR-GEN) (agFV(A))
AR, T = Yao
AR, T = Voo
(SR-INST) (dom(S)=a)

AR, T — So

Figure 2.6: Rules defining the source-residual relationship.

Specialization

2.3. Principal Type Specialization 19

A R S =

(VAR)
AT z:7 — 2': 7

miNT) A | TH n” :Int’ < n:Int
P

(A|TH e:Int” — e :Int)—1o
A|TH e +"ey: Int” — €} +¢€),: Int

(D+)

ATk e:Int® — ¢ :7 AH v :IsInt 7/
A|TH lift e: Int” < v :Int

(LIFT)

sint) A|ThH n® Int® < e:n

(A|TH e :Int® < e :1)icie AHuv:7T =71 +7)

S+
(54) A|TH e +%ey: Int® < o:7
(A|THe:m = €:7)ic1,.n
DTUPLE
(: A|TH (e, yen)” (T, sm)” = (e, oyel) (.., 7h)
AlTHe:(r,...,7)" <= €:(r,...,7})
(DPRJ)

A|TH WZRBZ’TZ‘ — Tp€ T

AT z:m—a ke n — 7 AR, T = 7 /
(DLAM) D D [N i li (a" fresh)
A|TH XNee:n—="n <= A1 —1

ATk e :nn—="1 <= € :7—=1 A|ITK ey:m < €7
P 172 1 P 2t Ty

(DAPP) D SR
A|TH e @Q7ey:m — e Qe
. ! . !
A|ThH e:m — €7
! !/ ! !
T —r ke i — el T
(DLET) A | F’T ik 2 e 7l ! 1 1 (z' fresh)

A|TH let” x=eyine; :7 — let 2’ =€, ine| : 7

A|The:m = €:0 AHv:ISMGo' o
A|TFH, poly e: poly 7 — vle'] : poly o

(POLY)

A|THe:polyr — ¢ :polyoc AHv:IsMGo7r Ak, 7 < 7

SPEC
(SPEC) A|TFH spece: 7 — vle]: 7

Figure 2.7: Specialisation rules (first part)

20 Chapter 2. Specialization

Ahs:d|ThHe:m = €:p
A|THe:7 = Ahse :d=p

(QIN)

AlTHe:T = €:0=p AHwvs:6
A|THe:m = €(vs):p

(QOUT)

A|lTHe:T — €:0
(GEN) (agFV(A)UFV(T))
AlTHe:7 = € :Vao

AlTHe:7 = € :Vao
(INST) (dom(S)=a)
AlTHe:T = €:S0

Figure 2.8: Specialisation rules (second part).

ExXAMPLE 2.23. The expression in Example 2.10-2 is a polyvariant term that cannot
be specialized by Hughes’ formulation [Hughes, 1996], but in this other approach its
principal specialization is:

F, poly (Xz.lift +°17) : poly (Int® —" Int”)
— Ah.h[Ah, X2 h, +1]
Vs.IsMG (Vt.IsInt t = ¢ — Int) s = poly s

In this example, the polyvariant function is abtracted by conversion h, which abstracts
the evidence of the type (Vt.IsInt ¢ = ¢ — Int), being more general than any possible
instance for s. At the same time, the real value of x in each possible expression obtained
from this polivariant function is abstracted using the evidence variable h,.

EXAMPLE 2.24. In this example, the same polyvariant function that appears in the
previous example is instantiated twice, receiving different static information each time.

- let” f = poly (Nz.lift z +717)
in (spec f @"”42° spec f @"17%)"
: (Int” | Int”)"
<
let ' = Ahy A hy + 1
n (/(42) e, f/(17)a0)
: (Int, Int)

Observe the interaction between annotations poly and spec, which introduces abstrac-
tion and application of evidence corresponding to the values that variable x assumes.

ExaMPLE 2.25. Finally, we show how Example 2.10-3 is specialized, obtaining:

= X f.spec f @”13° : poly (Int® —" Int”) —" Int”
— Ahy, iy Ay [f' Qe Vs ISMG (VtIsInt ¢ = t — Int) s,
IsMG s (13 — Int),= poly s — Int

2.3. Principal Type Specialization 21

This example shows a higher-order function that recieves a polyvariant function as its
argument to apply it to a specific static value. The argument function must be an
instance of Vt.IsInt ¢ = ¢t — Int, but at least as general as 13 — Int. These conditions
are represented with evidence variables, which manipulate the residual code according
to evidence that prove predicates when we determine the value of s.

The system K, is stable under substitutions, an essential property for principality.
PROPOSITION 2.26. IfA|T'H e:7 — ¢ :0then SA|STHe:7 — ¢:So.
Specialization also respects the H- relation.

PrROPOSITION 227. If h : A | ' e: 7 — € 7 and b’ : A" H v : A, then
h ATk e:rm — €v/hl:7

2.3.4 Algorithm

Additionally to the specification rules given in Figures 2.7 and 2.8, Martinez Ldpez
presents an algorithm for principal specialization, previously defining a syntaz directed
system similar to that used in [Jones, 1994a]. This algorithm is based on the Milner’s
W algorithm [Milner, 1978], and the rules can be interpreted as an attribute grammar
[Remy, 1989]. The system of rules is showed in Figures 2.9 and 2.10. This algorithm
uses a number of auxiliaries subsystems which can be summarized as follows:

Unification: The unification algorithm is based on Robinson’s algorithm, with modifi-
cations to deal with substitution under quantification (that is, inside polyvariant
residual types). We use a kind of “skolemisation” of quantified variables to avoid
substituting them — in order to do this, we extend residual type schemes with
skolem constants, ranging over ¢, and belonging to a countable infinite set with no
intersection with other variables. In order to specify the unification algorithm, we
use a system of rules to derive judgments of the form o, ~V 0., with U ranging
over substitutions. The rules are presented in Figure 2.11.

Entailment: The idea of an algorithm for entailment is to calculate a set of predicates
that should be added to the current predicate assignment A in order to be able
to entail a given predicate §. The input is the current predicate assignment and
the predicate d to entail, and the output is the set of predicates to add and the
evidence proving 6. The result can be easily achieved by adding 6 to A with a
new variable h. So, the only rule that is necessary for this algorithm is

h:0 | AH-wh:d (hfresh)

that is, generate a new fresh variable h and add h : § to the current predicate
assignment.

More refined algorithms can be designed to handle ground predicates (such as
IsInt 72) or predicates already appearing in A, but all these cases can be handled by
simplification and constraint solving phases [Badenes and Martinez Lépez, 2002].

22 Chapter 2. Specialization

r:1T e .7 el
0| IdTr K, z:7 — € : 7

(W-VAR)

w-nint) (| IdT F, n” : Int” — n:Int

Ay | SiTR, e :Int” — e :Int Ay | Sy(SiT) kK, ez: Int” — e, : Int

WD
(*) SQ Al, AQ | SQSl r I_W €1 +D€2 . IHtD — 6'] + 6’2 : Int
A|STH, e:Int® — ¢€:7' A" AHw v IsInt 7/
(W-LIFT) - —
AA| ST R, lift e: Int” — v : Int
(w-sint) @ |IdT K, n® : Int® — e: 7
AI |51F|—W el:IntS — 6’127'{
Ay | Sy (SiT) Ky e Int® < €)1y
(WS+) A Sy Ay, AgHwvit:=Syr + 74 (t fresh)
A,SQA],AQ ‘ SQS] r |_W €1 —|—S€2 . IHtS — eo:t
A DLAM) ARy T2 — T ASTyrnm—or:n)hken — €7 (@ resh)
7 AVSA|ST R, NVre:n—="1n < e : St —m
A SiITH e:m—="1 — €7
(W-PAPP) Ny | S (S1T) K, e — ¢y Sorl AV st (¢ fresh)
USQAl,UAQ ‘ USgSlF l_w €1 @D€2 1T — 6’1@6’2 Ut
h:A|STH,e:7 — ¢e:71
' . /
W-POLY) A" D Hw v: IsMG (Gengr(A = 7)) s (s fresh)
A"| ST K, poly e: poly 7 — wv[Ah.¢'] : poly s
A|SThye:polyT < ¢ :7. 7.~V poly s
(W-SPEC) AN A" |UA A" Hw v:IsMG (Us) 7' (s fresh)

A" UAA |UST K, spece:7 — vle']: 7

Figure 2.9: Type Specialisation Algorithm (first part).

2.3. Principal Type Specialization 23

A]|S]F|_W€]§T] ‘—)6,137']’
ANy | Sy Sn1.. .S TRy en:mn — € 7
SpoSa Ay AL Sy ST
b (€15 oyen)” (T, m)?
— (e, . eh) (Sp... 897, Sn. .. S3Thy ..., T,)

’n r'n

(W-DTUPLE)

A|STk e:(r,...,m)" — e :7 7~V (t;,...t
(W-DPRJ) | s (1 n) (1 n) (t1;.ustn fresh)

UA|UST R, 7w, e — mine UL,

AQ‘Sgrl_WengQ — 6’227'2’

Ay | S (Solyz i —a'irh) ke :m — e 7
(W-DLET) D ; (z' fresh)
Sl AQ,Al | 5152F|_W let T =€y In e T

— let 2’ =€, ine] : 7]

Figure 2.10: Type Specialisation Algorithm (second part).

Source-Residual Relationship: The relationship between source and residual types
is calculated by providing the algorithm with the source type as its input, so it
produces as output the residual type and a predicate assignment expressing the
restrictions on type variables. It can be interpreted as an attribute grammar with

judgments of the form A &, . 7 < 7', where 7 is an inherited attribute (i.e.

input to the algorithm),and A and 7' are synthesized ones (i.e. output). The rules

are given in Figure 2.12.

Finally, we present the most important property which is the reason for these systems
principality:

THEOREM 2.28. If we have A |T'k, e : 7 — €' : 0, then there exist e, and o, satisfying
' e:7 < e 0, such that for all A", ", 0" with A" | T K, e:7 — € :0"
there exists a conversion C and a substitution R satisfying C : (| Roy,) > (A" | 0") and

Cle',] =¢".

The meaning of this theorem is that every residual term and type obtained by the system
I, can be expressed as a particular case of the residual term and type produced by the
algorithm. We can found technical details of this proof in [Martinez Lépez and Hughes,
2004].

Principality allows us to specialize programs in a modular way, specializing each
piece of code independently from the context where it will be used.

2.3.5 Extensions

The language considered in Section 2.3.1 is a small subset of a real programming lan-
guage. In order to consider examples of some interest, such as the interpreter for lambda-
calculus, Martinez Ldpez extends the language with new constructs [Martinez Lépez,
2004], considering how to obtain principal specialization for them. Some simple exten-
sions that we can mention are:

24

/ T /
T~ Ty

Chapter 2. Specialization

Int ~' Int

1d

o~ o

a ¢ FV(o)

o el o

a ¢ FV(o)

5 ~la/dl o

/ T /

"
T

~U Ty

/ /

/ Ty /
Tl Ti9 ™~ T1 To9

T -1
T

! n

/ T, /
Tnfl---TlT]nN " Tnfl---TITQn

(T{IJ s ,T{n) ~Tne T (7-2,17 s ,7'2,”)

o

~U U'

poly o ~V poly o'

ola/c ~Y o'la' /]

Va.o ~Y Yao!.o!

(s ~U (;/

(¢ fresh)

P ~U p/

b= p~Ud =)

U 1

T~ T

IsInt 7 ~Y IsInt 7'

T

r~Tr T~V T

Ul 71y~ UT 7

T.=T1+ Ty~

(o] ~T 09

vuoT 7_/

P ! !
=T +7

To, ~VTo),

IsMG o, o] ~UT IsMG oy 0},

Figure 2.11: Rules for unification.

2.3. Principal Type Specialization 25

IsInt ¢t K, o, Int® < ¢ (¢ fresh)

0 by Int” — Int
A] l_W—SR. T “— 7']’ AQ l_W—SR. Ty 7’2’

D
AL Ao Ryag o= 11— Ty =T

(A] l_W—SR. T = T]’)iih---,n
Ao A By (T,)" = (1,0, 7))
ARy T — 7

(0=Gengy(A=7") and s fresh)
IsMG o sk, , poly 7 — poly s

Figure 2.12: Rules calculating principal source-residual relationship.

e Booleans as a base type (together with its primitives).

e Static sum-like types, with contructors and pattern-matching as part of a case.
There are extensions that are not straightforward to obtain, for example, we have:
e Recursion (dynamic and static one)

e Static functions

e Polymorphism

We have summarized the principal ideas, definitions and theorems behind principal
type specialization. We proceed in the next chapter with our work, that is, extending
principal type specialization to handle dynamic sum-types.

Chapter 3

Principal Specialization of Dynamic
Sum-Types

“ Mas no transformards una sola cosa, un guijarro, un grano de arena hasta
que no sepas cudl serd el bien y el mal que resultard. El mundo se mantiene en
Equilibrio. El poder de Transformacion y de Invocacion de un mago puede romper
ese equilibrio. Tiene que ser guiado por el conocimiento, y servir a la necesidad.”

La escuela de hechiceria
Un mago de Terramar
Ursula K. Le Guin

In this chapter we present our proposal to deal with dynamic sum-type in the frame-
work developed in [Martinez Lopez and Hughes, 2004].

First, in Sections 3.1 and 3.2, we extend the grammars describing source and residual
terms as well as source and residual types. Then, in Section 3.3, we give two rules to
type the extensions made in the residual code. Finally, in Section 3.4, we present the
rules to specicialize terms related to dynamic sum-types. We also extend all the proofs
of lemmas, propositions and theorems that appear in Sections 3.3 and 3.4 to prove that
they hold after our additions.

3.1 Extending Source and Residual Language

In order to introduce dynamic sum-types we first have to extend the source language
described in [Martinez Lépez and Hughes, 2004]. We use the same notation and conven-
tions for dynamic sum-types used in [Hughes, 1996], where constructors are distinguished
lexically and take only one argument. However, instead of anonymous sum-types, we
will use named ones. Moreover, our dynamic sum-types have arity zero, i.e. with no
parameters. We extend the source language as follows.

DEFINITION 3.1. Let D denote a sum-type name and C a constructor name. A source
term, denoted by e, is an element of the language defined by the following abstract
grammar:

e = [ddc]" e,
ddcl ::= data D” = c¢s
cs w=0C 7. |]|C T
ep = ...

| C°

| case” e, of [br |*
br = C 1z — ¢

27

28 Chapter 3. Principal Specialization of Dynamic Sum-Types

where e, is the grammar describing source terms in [Martinez Lopez and Hughes, 2004]
but with two extra constructs. A sequence of none, one or more e items is denoted
by [e]*. The non-terminal symbol cs denotes just an enumeration of contructors (the
symbol || is used to avoid confusion with the symbol | used for choice).

Declarations of dynamic sum-types are only allowed at the begining of the program.
The reason for this is only simplicity and it is not hard to construct a new grammar
that enable us to declare dynamic sum-types in any other part of the program.

Because we are dealing with dynamic constructs, we have to add them to the residual
language too.

DEFINITION 3.2. Let D denote a sum-type name and C a constructor name. A residual
term, denoted by €', is an element of the language defined by the following grammar:

e’ n=[ddd' " e
ddcl' := data D = cs'
cs' u= C’7},p7'|| ||C:;p7'
e,
| C

| case ¢, of [br' |*

| protocase, ¢, with v, of [br' |*
br' = Czx — e,
7);) L= ‘ {Ck }kET

where ¢ is the grammar describing residual terms in [Martinez Lopez and Hughes,
2004] but with three extra constructs. On the other hand, v, is the grammar defined
in [Martinez Lépez and Hughes, 2004] for evidence but with a new kind of evidence: a
set of constructors names. The non-terminal symbol ¢s’ denotes just an enumeration of
contructors. The purpose of the construct protocase, will be explain later.

The function of upper and lower indexes of residual constructors needs further ex-
planation. If there is a dynamic constructor in our source program, said CkD, the spe-
cialization process put it in the residual program as C*, without the dynamic tag and
with the upper index being the same as the lower index in the source program. On the
other hand, the lower index in the residual program, denoted by evidence v, indicates

which of the several specializations of the sum-type we are refering — see next example.

ExAMPLE 3.3. The goal of the lower index in a residual dynamic constructor is impor-
tant because it determines which specialization of D" is considered. For example, if we
have the following sum-type declaration

data D" = C” Int®
in the source code
let” d, = C” 29°

in let” d, = C” 71°
in 4°

3.2. FExtending Source And Residual Types 29

The residuals of C,” are applied to two arguments with different residual types. Then it
is necessary to consider two different specialization of D”, where C' can be applied to
arguments with types 29 and 71 respectively. After specialization and constraint solving,
the residual type is Int, and thus there are no possibilities for new restrictions affecting
the residual code produced. So, constraint solving can completely and safely solve all
the predicates [Badenes and Martinez Lépez, 2002], producing the residual program

data D; = C| 29
data Dy, = C} 71

let d] = C]] []
inletd,=C) o
in 4

Observe how C, belongs to D.

3.2 Extending Source And Residual Types
It is also necessary to extend the source and residual types. We do this as follows.

DEFINITION 3.4. A source type, denoted by 7, is an element of the language defined by
the following grammar:

o= Int” | Int® | (r,...,7)" | 7="7 | poly 7 | D"

where the type (71,...,7,)"” is a finite tuple for every possible arity n. The name D
cannot be any name that already exist, like Int, etc.

DEFINITION 3.5. Let ¢ denote a type variable from a countable infinite set of variables
and s a type scheme variable from another countable infinite set of variables, all of them
disjoint with any other set of variables already used. A residual type, denoted by 7', is
an element of the language given by the grammar

!, /

o=t Int|n|r =7 (r,...,7") | poly o | D,
pu=0=pl|1

o = s|Vs.o|Vto|p

6 w=1IsInt 7' | 7' :=7" 4+ 7" | IsMG 0 0 | d4

We are free of choosing any form of a residual sum-type name (except those that
already exist, like Int, etc.) because residual programs are generated automatically, not
by hand. We choose that a residual sum-type name is composed of two parts: a string,
denoted by D, and a number, denoted by n. A residual constructor will have its lower
index identical to the lower index of its residual sum-type name.

New predicates are introduced in order to establish relations between residual types,
helping us to determine which is the residual type of the argument of each residual
constructor.

30 Chapter 3. Principal Specialization of Dynamic Sum-Types

N : 7'7’-
A H- 1)k Ck € T'7Ak,vmk C* € 7/2HasC 7! C% 7)) renarsi
A H vy, : HasC 7 CJ 7' , Vs - ConstrsOf 7/

AL K, Cloe:r

Vm; e

A
(

(RT-DCONSTR)

e
A ‘ R RT ° Te
! ! ! !
(hi : A | T b A€t T — T ken
(A vy, : C* € 7/2HasC 7, C* 7, v : CF € T/2Ap)ren

A H v : ConstrsOf 7,

(RT-DCASE)
AN [N A protocase ¢’ with v, of
(C’fmk r, — e.lve/hi])ken
/!
T

Figure 3.1: Residual type rules of case and constructor application

DEFINITION 3.6. The new predicates, denoted in Definition 3.5 as J,, are defined as

follows
dq ::= ConstrsOf 7/

| HasC 7' C* 7'
| Ce1'?§

Residual sum-types will be determined during constraint solving, so we need to put
information into predicates in order to use it when this phase is performed. The purpose
of each predicate is explained later in Section 3.4.

3.3 Extending RT Relation

The typing of residual terms is defined by a separate system, called RT, as we explained
in Section 2.3.2.

There is no need of type inference for residual terms because the specialization pro-
cess is well behaved with respect to system RT. In Figure 3.1 we define the rules for
typing expressions that involve sum-types constructs.

We extend the proof of the following properties. They show that contexts can be
weakened in residual judgments, and that conversions indeed relate types o and o' in
their contexts.

PROPOSITION 3.7. Ifh: A | K€ 10, and A"H-v: A, then A" | T, K, €'[v/h] : o

THEOREM 3.8. If h : A | L k. ¢ 10, and C : (h: A|o) > (b : A"|d'), then
h' A" Lk, Cle]: o’

3.4 Specializations Rules for Dynamic Sum-Types
The system specifying type specialization is composed by two system of rules, called

SR and P. In order to specialize sum-types we have to extend both systems and the
entailment relationship (H-).

3.4. Specializations Rules for Dynamic Sum-Types 31

AHD,(CF)~ 7'
)AH—n:HaSCDn ck 7

(HASC

Dn - {Ck }kEI
A H {C* }er - ConstrsOf D,

(CONSTRS-OF)

CkeD, AHv:A
AHov:CFeD,?A

(GUARD-TRUE)

Cc* ¢ D,
AHeo:CFe D,?7A’

(GUARD-FALSE)

A, h:HasC 7' CFk AT~
: A,h:HasC 7' C* 7/, A"H h:HasC 7' CF 7

(UNIFY-HASC

A,HasC 7" C* 7", A"H v : A"
: A,HasC 7" C* 7/ A'Hv:CFer?2A"

(HASC-GUARD

h:AHv A" A"H v, : ConstrsOf 7/
VAT CF e 77A - if, CF € v,, then o' else o : CF € 777

(ENTL-GUARD

Figure 3.2: Entailment for evidence construction

3.4.1 Entailment Relationship

Evidence is used in residual code for capturing differences between all possible special-
izations of a given source program.

We add several entailment rules to specify how to construct evidence for predicates
involving sum-types see Figure 3.2. The evidence of (HAsc) is just the number of the
specialized instance obtained from D”. The rule (consTrs-or) has as its evidence the
names of constructors that are in a residual sum-type definition. On the other hand,
rules (GUARD-TRUE) and (GUARD-FALSE) say that if a constructor belongs to a residual sum-
type definition, each of the predicates under the guard has to be proved accordingly, but
if this is not the case, they can be proved trivially using evidence e.

Additionally, (untFY-HASC) is expressing that if we have two predicates HasC which
are relating a constructor of the same sum-type with two different residual types, these
types have to unify, being consistent with the idea explained in Example 3.3. Observe
that a predicate HasC is preserved in the hypothesis of that rule, because it will help
constraint solving to construct residual sum-types definitions. The rule (HASC-GUARD)
is used for constructing the evidence of a conditional predicate when we are sure that
a constructor belongs to a sum-type. Finally, (EnTL-GUARD) shows how to construct
evidence of a guard that we do not know in advance if it is either true or false.

We will need the following lemma for our formal proofs in the next chapter.

32 Chapter 3. Principal Specialization of Dynamic Sum-Types

LEMMA 3.9. If hy : Ay H vy 0 Ay and h: A H vy 0 CF € 772, vy : ConstrsOf 7' then
h: AH-if, CF € v, then vl /hi] else o : CF € 774,

3.4.2 Source-Residual Relationship

The source-residual relationship, expressed by the judgment A k., 7 < 7', ensures a
relation between a source type and a residual one in order to achive principality together
with system P. We have previously introduced new source types on Definition 3.4, so
through this relation we have to express which residual types are related to them — see
Figure 3.3.

The symbol D usually represents a dynamic sum-type but sometimes, depending on
the context, it also represents a set of indices of the constructors of the corresponding
dynamic sum-type used remember that constructors are enumerated sequentially
starting from one. Additionally, D(C¥) is the source type of C,”’s argument in the
definition of the sum-type D" .

The rule (sr-pDDT), presented in Figure 3.3, establishes the conditions that have to
hold in order to D” be related to a residual sum-type 7’. It establishes that for each
residual constructor C* belonging to the definition of 7/, its argument has the residual
type 7. captured by C* € 7/?HasC 7' C* 7,. Observe that we also need predicates
restricting 7,. We are capturing the posibility of a constructor not being needed, and
the residual sum-type will not include it — the corresponding guarded predicates will
be trivially proved with evidence e in constraint solving.

ExAaMPLE 3.10. In this example we show predicates that are generated when applying
rule (sr-pDDT). We have the sum-type declaration

data D” = Left” Int® | Right” Bool’
and the judgement

E Xee: D” =" D"
< Ahy, ho, hs, hy, hs. Ne'.€' . Vit ty,t3.hy : Right € t,?HasC t; Right t,,
hs = Right € t,?IsBool t,,
hs : Left € t;7HasC t; Left ts,
hy : Left € t17IsInt t3,
hs : ConstrsOf ¢ = t; =t

If we apply this term to (Left® 10%), 10 will be the residual type of Left’s argument.
This last fact can be appreciated in the following judgement

=, (Ne.e) @Q° (Left” 10°) : D” =" D"
< Ahy, ha, hg, hy, hs, he.(\e'.€')@Q(Lefty, o)

Vty, ta, t3.hy : Right € t;7HasC t; Right t,
hy : Right € t,71sBool t,,
hs : Right € t;7HasC t; Right t3,
hs : Right € t,71sBool t3,
hs : ConstrsOf ¢4,
he : HasC t; Left 10 = t,

3.4. Specializations Rules for Dynamic Sum-Types 33

(Ak l_SR, D(Ck) — TI;)kED
(AH-C* e 7?77y, CF € 7"?HasC 7' C* 7))ken
A H ConstrsOf 7/

AN D” — 7

(SR-DDT)
Figure 3.3: Rule defining the source-residual relationship for dynamic sum-types

where a predicate HasC restricting Left has been added to the context. Entailment rules
are responsible for eliminating guarded predicates. Note how evidence hg indicates, in
Lefty,, which one of the several possible specializations of the given source sum-type we
are refering to.

The following properties of the system SR are useful. We show that they are preserved
after our addition.

ProproOsITION 3.11. If A, 7 < o then SA, 7 — So.
PrROPOSITION 3.12. If A, 7 — o0 and A'H A, then A', 7 — 0.
THEOREM 3.13. If A, 7 — o and C: (A]o) > (A" | o') then A"+, 7 — o'

This last theorem shows that if a residual type can be obtained from a source one,
any instance of it can be obtained too.

3.4.3 Rules for Constructors and Case

The rules to specify specialization of constructors and case’s appear in Figure 3.4.
Observe how (bconsTR) specializes the constructor’s argument e to €' and introduces
residual types 7, for the other arguments that belong to the same sum-type. If we have
a constructor’s argument with different residual types, they have to be unified as stated
the rule (unFy-HASC) — see Examples 3.22 and 3.23.

Observe that the constructor appearing in rule (pconstr) is always applied to an
argument. This is enough because non-applied constructors are considered n-expanded,
obtaining functions whose bodies always have applied constructors. After all specializa-
tion and post-processing phases have been carried out, n-reductions can be performed to
get a more elegant residual code. This last remark is important in order to understand
how some source codes are specialized — see Examples 3.24 and 3.25.

The dual rule of (bconsTR) is (DcASE), the most complex one. The source term e is
specialized to ¢’ with residual type 7., which could have information about the residual
types of the constructors’ arguments see Examples 3.26 and 3.27. In addition to the
specialization of e, every branch is specialized assuming that each constructor has an
argument whose residual type is 7,. However, we do not know a priori if a constructor
is ever applied to an argument; but if there is someone, it has to have the residual
type 7. We obtain this effect by means of guards, (UNTFv-HASC) and (HASC-GUARD) see
Example 3.28.

It could happen that all the evidence that correspond to a branch are just ¢ see
entailment rule (GuArD-FALSE) — leaving a meaningless residual branch. Nevertheless,

34 Chapter 3. Principal Specialization of Dynamic Sum-Types

A[TH e:D(C7) — €7
(Ag b D(CY) = 7)) keprkz;
(A v CF e TI2A, 0, : CF € T/7HasC 77 CF 7)) repnks;

A K vy, : HasC 7, C7 7}, v, : ConstrsOf 7,

DCONSTR ‘
(: A|TH C”e:D” — C €:1
- J
Ab,m < 7
A|ITH e:D” < ¢:7
(h,k : Ak | r l_P)\Dmk.ek : D(Ck) -7 -)\T;Ce;g : Tl’c — T’)keB
(A K-, : C"e Té?HlasC 0 C* 1l v CF € T2 ken
A H- v 1 ConstrsOf 7,
(DCASE)

A |TF, case e of
(CkD Tp — €g)ken
T
N
protocase, ¢ with v, of
(Co. % = e loe/me))ken

Umy,
. /!
T

Figure 3.4: Specialization rules for case and constructor application

protocase, ¢’ with {C7 },c .79 of > case ¢ of
(Cy,, ¥k = €ren (G, ©5 = €j)jesns
protocase, ¢ with {} of > error “There are no branches.”
(Ch., Tk = €i)ren

Uy,

Figure 3.5: Reduction rule for a protocase,

the protocase, has all the necessary information to be transformed into a case where
every branch is meaningful. In Figure 3.5 we have the reduction rules that obtain this
effect; observe how the only branches preseved in the transformation are those whose
constructors belong to the definiton of a given residual sum-type see Example 3.28.
We use the construct error, defined in [Martinez Lépez, 2004], to produce controled
errors in residual code. On the other hand, we also need to extend the definition of
equality between residual terms in order to establish that two protocase, are equal if
and only if they can produce the same residual cases — see Figures 3.6 and 3.7.

Now, we need to extend the proof of the proposition that system P is well behaved
with respect to systems SR and RT.

THEOREM 3.14. If A | T' K e: 7 — € : 0, and forall xz : 7, — 2’ : 7, € T,
Ak, 7o — 7, then A, 7 — 0.

Given a specialisation assignment, I' = [z; : 7, < x} : 0; | i = 1..n], we define the

projection of I' to the residual language to be I, = [z} : 0; | i = 1..n].

THEOREM 3.15. If A [T e:7 — €0, then A|T. . Fk.¢€:0.

(RT) ' RT

3.5. Ezamples 35

protocase, ¢ with {C* },c; of = protocase, ¢” with {C* },; of
(G Tk = Ci)ren (Cy,, 7k = €Qken
iff
el — e/l
(Vm, = 7);nk)kel?m
(A\xh.el, = A€l kennr
Figure 3.6: Equality Rule I for protocase,
protocase, ¢/ with h of = protocase, ¢” with h of
(CE,, 7k = chies (G = licn
iff for all D,, with the form {C* }¢;
e'[D,/h] = €"[D,/h]
(vm[Dn/h] = 5, [Dn/h])kenrr
(Ary-€,[Dn/h] = Avg.ex[Dn/h])kenn

Figure 3.7: Equality Rule II for protocase,

Additionally, we also extend the following properties

PrROPOSITION 3.16. If h : A | ' e: 7 — € 7 and h' : A" H v : A, then
h ATk e:rm — €[hfv]:7

PROPOSITION 3.17. IfA|T K e:7 — € :0then SA| STk e:7 — €:So0.
LEmMMA 3.18. If h: A|TH e:7 < ¢ :0 then EV(e') Ch

LEMMA 3.19. If A | T' K e: 7 <= € : o then there exist B;, A,, and 7' such that
o=Vp; A, = T

3.5 Examples

In this section we show examples of specializations using the rules described, providing
also useful observations which will help to better understand ideas behind specialization
of sum-types. In this section we start with basic examples. Then, in next chapter, we will
show more interesting examples, with interactions between sum-types and polyvariant
expressions, static functions, static recursion, etc. We will specialize ground terms.

ExaMPLE 3.20. Observe in this example how it is possible to produce two instances of
a given dynamic sum-type. We have two predicates HasC, one of them on ¢ and 46, and
the other on ¢ and 99.

We have the sum-type declaration

data D” = Left” Int® | Right” Int”

36 Chapter 3. Principal Specialization of Dynamic Sum-Types

in the source code

let” d, = if” True” then Left” 46° else Right” 40”

in let” d, = if” False” then Right” 20" else Left” 99°
in 4"

. Int”

and one of its specializations is

Ahy, hy, hs, hy, hs, he let dy = if True then Left, e else Right,, 40
in let d, = if False then Right,, 20 else Left o
in 4

with residual type
Vt, t'.hy : HasC ¢ Left 46,
hs : HasC t Right Int,
hsz : ConstrsOf ¢,
hy : HasC t' Right Int,
hs : HasC t' Left 99,
he : ConstrsOf ¢ = Int

Constraint solving will detect that between ¢ and t' there is no interaction, so two
different residual sum-types can be defined. Additionally, we are able to detect where
each residual sum-type is used by looking at the lower index of each constructor. The
constraint solving phase will produce the following residual code

data D, = Left, 46 | Right, Int
data D,= Left, 99 | Right., Int

let d; = if True then Left; o else Right, 40
in let dy = if False then Right, 20 else Left, o
in 4

ExaMPLE 3.21. Here, we force information to flow from a contructor whose argument
has residual type 75 to another whose argument is the argument of the enclosing function,
fixing in this way which argument has to be taken by the function.

We have the sum-type declaration

data D” = Left” Int® | Right” Int”
in the source code

Xb.let” d; = Left” 75°
in let” dy, = Left” 11°
in let” ds = Left” b
in let” u = if” True” then d; else d;
in 4"
: Int® =" Int”

3.5. Ezamples 37

and one of its specializations is

Ahy, ho, hs, hy, hs, hg. Ab.let d = Left,, o
in let dy = Lefty,, o
in let d3 = Lefty, b
in let v = if True then d; else d;
in 4
Vt,t'.hy : HasC t Left 11,
hs : Right € t?HasC t Right Int,
hs : ConstrsOf t,
hy : HasC t' Left 75,
hs : Right € t'7HasC t' Right Int,
he : ConstrsOf ¢ = 75 — Int

Note that the guarded predicates are needed because there is no information concerning
Right. Constraint solving will eliminate them, producing

data D, = Left, 75
data D,= Left, 11

Ab.let di = Left, o
in let dy = Left, o
in let d; = Left; b
in let © = if True then d; else d;
in 4
. 75 — Int

ExAaMPLE 3.22. It is possible that some constructors do not appear in the source code,
and in consequence there are no information about the residual type of their arguments.
We have the sum-type declaration

data D” = Left” Int® | Right” Int®
and the judgement

E, Left” 57° : D
< Ahy, hy, hs, hy.Left, o : Yt t'.hy : HasC t Left 57,
hs : Right € t?7HasC t Right t',
hs : Right € t7IsInt t',
hy : ConstrsOf t = ¢

If the construct Right is eventually applied to an argument, its type should unify to #'
by application of the entailment rules (HAsSc-GUARD) and (UNIFY-HASC).

ExAaMPLE 3.23. We present an example that involves dynamic constructors where spe-
cialization is possible, but where predicates cannot be satisfied during constraint solving
because two different residual types are assigned to the same constructor’s argument.

38 Chapter 3. Principal Specialization of Dynamic Sum-Types

We have the sum-type declaration
data D” = Only” Int®
and the judgement

k-, if” True then Only” 7° else Only” 89° : D"
> Ahy, hy, hs.if True then Only, e else Only,, o : Vi.h; : HasC ¢t Only 7,
hs : HasC t Only 89,
hs : ConstrsOf ¢
=t

The entailment rule (UNTFY-HASC) says that we need to prove 7 ~ 89 to satisfy successfully
the predicates in context; but that is impossible, and so constraint solving will fail.

EXAMPLE 3.24. In this example we can see how any information that proceed from
the context of the function (by means of ¢') must unify with 101 to successfully solve
predicates.

We have the sum-type declaration

data D” = Only” Int®
and the judgement

F, XNalet” f = Only”
in (f @”101°, f @"x)”
: Int® =" (D" ,D")"
—
Ahy, hy, hs, hy. Az let f = Only,,
in (f@e, fae)
. Vi, t'.hy : IsInt ¢,
hs : HasC t Only 101,
hs : HasC ¢ Only ¢,
hy : ConstrsOf t = t' — (t,t)

ExamMpLE 3.25. All constructors are n-expanded before the specialization and n-reduced
after all post-processing phases. We just analyze and show source programs without 7-
expansions, but it is important to be aware of this to understand how specialization of
a source constructor is carried out.

We have the sum-type declaration

data D” = Only” Int®
and the judgement

F, Only” : Int® =" D"
— Ahy, hy.Only,, © Vt,t'.hy : IsInt ¢/,
hs : HasC ¢ Only t',
hsz : ConstrsOf t = ' — ¢

3.5. Ezamples 39

EXAMPLE 3.26. Specialization and entailment rules were designed to enable constraint
solving to detect when a case branch never receives information related to it, erasing
them to obtain less dead code. Here, we show an example where this happens.

We have the sum-type
data D” = Left” Int® | Right” Bool®

in the source code
let” ¢ = case” (Left” 33°) of
Left’ n — lift n
Right” b — 7°
in 4"
: Int

and one of its specializations is

Ah‘]a h‘?a h’3a h‘4-
let ¢ = protocase, (Left,, o) with h, of
Left,, n — 33

Right, n — 7
in 4

with residual type

Vt,t'.hy : HasC ¢ Left 33,
hs : Right € t?7HasC ¢ Right t',
hs : Right € t?IsBool t',
ha : ConstrsOf ¢ = Int

Constraint solving will produce
data D,= Left, 33
let ¢ = case (Left; o) of
Lefty n — 33
in 4

where the branch concerning Right was eliminated.

ExXAMPLE 3.27. In this example we show a case construct with no information to spread
through any of its branches. We can observe that all predicates HasC are guarded
they were generated by application of (sr-pDDT) and (bcasg) rules.

We have the sum-type declaration

data D” = Left” Int® | Right” Bool®

40 Chapter 3. Principal Specialization of Dynamic Sum-Types

and the judgement

=, Xe.case” e of
Left” n — lift n

: D” =" Int”

—

Ahy, ha, hs, hy, hs, he, h7.

Ae.protocase, e with h; of

Left,, n — hg

. Vi, to, t3,t4.hy : Left € t;7HasC t, Left t,
ho : Left € t,7IsInt to,
hs : Right € t,?HasC t,; Right ts,
h4 @ Right € t,7IsBool t3,
hs : Left € t17HasC t, Left t,,
he : Left € t,7IsInt t4,
hy : ConstrsOf ¢, = t; — Int

The constructor Left can have an argument of residual type 2, for instance, by just
applying the previous source term to (Left” 2°). In this case we can conclude by
(HASC-GUARD) and (UNTFv-HAsC) that o and ¢, have to be unified to 2. The entailment
rules (mAsc-GuaRrD) and (UNIFY-HASC) have an important role during constraint solving
— they are responsible for spreading information between constructors that have equal
names and belong to the same residual sum-type.

It is also possible that we never receive information concerning Left’s argument,
which is easily achived, for example, applying the previous source abstraction to the
source term (Right” True®).

EXAMPLE 3.28. Branches are specialized assuming that constructor C* has an argument
of residual type 7;. First, we present an example where a dynamic sum-type is abstracted
and then we show what happen when we apply it to two different source terms.

We have the sum-type declaration

data D” = Left” Int® | Right” Bool®
in the source code

Ne.case” e of
Left® n — let” id = Nz.x
in let” force = (id Q" n,id Q" 44°%)"
in lift n
Right” b — if°b then 10" else 70"
: D” =" Int”
and one of its specializations is

Ahy, hy, hs, ha, hs, he, hr, hg, hy.
Ae.protocase, e with hy of
Left,, n — let force = (id@Qn, idQe)
in hg
Right, b — if, hg then 10 else 70

3.5. Ezamples 41

with residual type
Vi1, to, s, Ly
hy : Left € ty?7HasC t, Left t,
ho : Left € t171sInt to,
hs : Right € t,?HasC t,; Right ts,
h4 @ Right € t,?1sBool t3,
hs : Left € t,7HasC t; Left 4A4,
he : Left € t;?IsInt 44,
h7 : Right € t,7HasC t; Right t4,
hg : Right € t,?1sBool t4,
hg : ConstrsOf t; = t; — Int

Observe that there are two guarded HasC for each constructor, one of them generated
by (sr-DDT) and the other one by (bcasE).
If we apply the previous function to the code

k-, if” False” then Right” True® else Left” 44° : D”
(_>
Ahy, hy, h3.if False then Right, e else Left,, e :
Vt.hy : HasC t Right True, hy : HasC t Left 44, hy : ConstrsOf ¢ = ¢

specialization and constraint solving will be carried out without problems. However, if
the code we apply it to is

-, Left” 6° : D"
—
Ahi, ha, ha, ha.Left,,
© Vi, t'.hy : HasC t Left 6, hy : Right € t?HasC t Right t', hy : Right € t?IsBool ¢/,
hy : ConstrsOf ¢t = ¢

specialization can proceed, but constraint solving will fail because it is impossible to
unify 44 with 6 which is forced by the entailment rules (uNn1Fy-mAsc) and (HASC-GUARD).

ExAMPLE 3.29. In this example, we have two case’s. The first one receives information
which is useful for the branch involving Left, while the second does not receive any
information for its branch.

We have the following sum-types declarations

data D" = Left” Int® | Right” Bool®
data Dy” = Only” Int®

used in the source code

let” f; = Ne.case” e of

Left® n — lift n +”17

Right” n — 2”
in let” f, = Xe.case” e of

Only” n — lift n
in let” g = f; Q" (Left” 10°)
in 4°

: Int”

42 Chapter 3. Principal Specialization of Dynamic Sum-Types

and one of its specializations is

A ha, ho, by, ha, hs, b, by, hs, ho, Bao, ha, haa, has.
let f; = Ae.protocase, e with h; of
Left,,, n — 10+1
Right, . n — 2
in let f, = Ae.protocase, e with h;, of
Only, n — hy
in let g = f,Q(Lefty,, o)
in 4

with residual type

Vi, to, s, ta, ts, T, t1.
hy : Right € t;7HasC t; Right t,, ho : Right € t,7IsBool s,
hs : Right € t;7HasC t; Right t3, hy : Right € t,7IsBool t3, hs : ConstrsOf %,
he : Only € t47HasC t, Only t5, hy : Only € t,71sInt ts,
hg : Oﬂly € t,7HasC t4 OH]Y tg, hg : OH]Y € t,71IsInt tg, hig : ConstrsOf 4,
hiy : HasC ¢, Left 10, h1o : Right € t,?HasC ¢, Right t;,
hiz : Right € t,7IsBool t; = Int

Constraint solving will detect these facts and will proceed deleting the Right and Only
branches, giving the following residual code

data D, = Left,; 10

let f; = A\e.case e of
Left;n — 10+1
in let f, = Ae.error “There are no branches.”
in let g = f1Q(Left;)
in 4

We have eliminated unneeded branches from cases, not including Right in definition of
D, because it will not be used, thus obtaining more concise code.

Chapter 4
The Algorithm and the Proof, Extended

“ La primera leccion en Roke, y la iltima, es < Haz lo que sea necesario>>.

;Y no mas!

Las lecciones intermedias han de consistir, entonces, en aprender qué es lo

necesario. ”

Los hijos de la mar abierta
La costa mas lejana
Ursula K. Le Guin

In this chapter we extend the proof for principality of system P (Theorem 2.28) to
include dynamic sum-types.

Basically, we have to make the following extensions: first, in Section 4.1, we extend
., a syntax directed version of I, to take account of dynamic sum-types, and we prove
that both systems are still equivalent in the same way as before (Theorems 4.5 and 4.6).
Then, in Section 4.2, we extend the algorithm K, and the proof that K is still equivalent
to F, (Theorems 4.13 and 4.14).

The main result is obtained as a corollary, combining the four theorems described
above, so we do not need to extend its proof separately.

4.1 Extension of The Syntax Directed System, S

The syntax directed versions of rules (pconsTr) and (pcAsk) respect the equivalence
between systems F, and K, in such a way that results on one of the systems can be
translated into results of the other. Rules that belong to a syntax directed system are
always better suited for an algorithm.

First, we must review some definitions and properties of system P, which were pre-
viously stated in [Martinez Lépez and Hughes, 2004]. They are needed to introduce a
way to generalize as much type variables as possible under a certain assignment.

DEFINITION 4.1. Let A = (FV(A)UFV(r"))/(FV(I') U FV(A')). We define
Genr,A/(A = 7',) =VAA =7

When A’ = (}, we may choose to write Genp (A = 7').
The correspondence of this notion of generalization with several applications of the
rule (GEN) can be stated as the following property.

PrOPOSITION 4.2. IfA' [T H e:7 — ¢ :A=7,then A | K e:7 — ¢
Genr a/(A = 7'), and both derivations only differ in the application of rule (GEN).

43

44 Chapter 4. The Algorithm and the Proof, Extended

Additionally, type schemes obtained by generalization with Gen can be related by the
ordering >, as stated in the following assertions that hold for all I' and 7"

Lifh: A"Hv:Aand C = [|(v)) then C : Genp(A=7") > (W : A"| 7)
2. if A A"H v : A and C = AR [](v) then C : Genp(A = 7') > Genp(A' = 7')

3. for all substitutions R and all contexts A,
]: RGenp(A = 7") > Gengr(RA = RT')

The system S does not produce type schemes but residual types only. The rules in
Figure 3.4 do not contain either qualified types or type schemes, thus our extensions to
system S are trivial see Figure 4.1.
Ay ThHe:D(CY) < €
(A% K D(CY) = Th)kennrs
(At vy CRer, ?A} v, - CF e, THasC 7, CF T)kepakr

Ay H= vy, HasC 7, C7 7l v, : ConstrsOf 7.,
Ay |TH CP e:D” — Gl e 7

S
Uiy 8]

(S-DCONSTR)

Ashe T = 74
Ay |THe:D” < ¢ 7.
(hy - AL | Tk Nageep : D(CF) =" 1 — Mahoehe : The = T ken
(A H g, : CF e 7l MHasC 7/, CF 7,05 CF € 7L A})ken
Ay H vl ConstrsOf 7,
A | T K case e of

(CkD Tk — €r)ken

(S-DCASE)

T
—

/ s S
protocase, e, with v}, of

(Cy,, ke = ehalvi/Di])ken

. !
T

Figure 4.1: Syntax Directed Specialisation Rules.

Now, we have to prove that our extensions to system S do not modify the following
properties.

ProrosiTION 43. Ifh: A|T'He:7 — € :7' thenh: SA|STHe:7 — €:57
PROPOSITION 44. Ifh: A|THe:7 — € :7 and A'H v : A, then
A'|THe:Tm < €[h/v]:7

which show that system S is well behaved with respect to entailment and substitutions.
Below, we are able to establish the equivalence between systems S and P.

THEOREM 4.5. If A [T e:7 — € : 7' then A|[ThH e:7 — € :7.

4.2. Extension of The Inference Algorithm, W 45

7_NU 7_/

ConstrsOf 7 ~V ConstrsOf 7/

U -1 |4 /
T~ T Uty ~V Uy

HasC 7, C* 7, ~VV HasC 7| CF 7}

rUr UsS~V U
Ck e 176 ~VU CF € 7176

Figure 4.2: Rules for unification.

THEOREM 4.6. If h: A |T kK, e: 7 — € : o, then there exist h,, A e\ 1., and C
such that

a) i : Al |THe:T — e 7]

b) C!:Genp(AL =71))>(h:A|0)

c) ClLARL.e]=¢

Observe that Theorem 4.5 establishes that a derivation in S is also a derivation in P.
But the converse is not true: not every derivation in P is a derivation in S; however,

there is a way to relate derivations in both systems by using generalizations, conversions
and the > ordering, as stated in Theorem 4.6.

4.2 Extension of The Inference Algorithm, W

Here, we extend the algorithm presented in [Martinez Lépez and Hughes, 2004] to
construct a type specialization for a given source term containing dynamic sum-types,
and prove that every specialization obtained by the extended F, can be expressed in
terms of the output of this algorithm.

We also have to extend the following properties establishing that the result of unifi-
cation, if it exists, is really a unifier.

PROPOSITION 4.7. If o ~V ¢’ then Uo = Uo'.

PROPOSITION 4.8. If So = So', then o ~Y o' and there exists a substitution T such
that S =TU.

4.2.1 An entailment algorithm

In addition to the entailment algorithm given in Section 2.3.4, we need to consider the
following proposition easily verified for formal proofs.

PROPOSITION 4.9. If A" | A H-w § then A', A H- 6.

46 Chapter 4. The Algorithm and the Proof, Extended

(Awk l_W—SR D(Ck) — quuk)keD
ConstrsOf ¢,
(C* € t?A,,,C* € t?HasC t C* 7] Jpep by D — 1

(WSR-DDT) t fresh

Figure 4.3: Rule calculating principal source-residual relationship

4.2.2 An algorithm for source-residual relationship

We add a rule to the algorithm described in Figure 2.12 so as to compute the residual
type synthesized from a source type D" see Figure 4.3.

The following propositions are also extended to relate the algorithm Ik
specification of the I, but considering dynamic sum-types.

with the

R

PropOSITION 4.10. If AR, 7 — 7 then A, 7 — 7.

R

PropPOSITION 4.11. If A, 7 — o then Al, k, ox T — 7., with all the residual

variables fresh, and there exists C! such that C! : Geng(Al = 7.) > (A] o).

This last property establishes that the residual type produced by F, ., can be generalized
to a type that is more general than any other to which the source term can be specialized.
This is important when using to constraint the type of a lambda-bound variable

W-SR
in rule (w-pLAM).

4.2.3 An algorithm for type specialisation

The rules that extend the algorithm W are shown in Figure 4.4. The rule (w-DCONSTR)
has a similar structure to (s-pconsTr) but involves some unifiers and the entailment
algorithm. On the other hand, (w-ncasg) is complicated because of the need for a lot of
unifiers to pass information between branches. On account of this complexity, we have
introduced the abbreviation

A™ — Un-1Tw, - Uy Ty, ifn<m
" Id, otherwise

in (W-DCASE) to express complex compositions of unifiers. Moreover, the hypothesis of
the (w-pcase) must be ordered following the data dependencies.

The results obtained by W are equivalent, in the sense established in Theorems 4.13
and 4.14, to the results obtained by S. To establish the equivalence we will use, following
[Martinez Lépez and Hughes, 2004], a notion of similarity between substitutions defined
as in [Jones, 1994a], that is, two substitutions R and S are similar (written R ~ 5), if
they only differ in a finite number of new variables. This is useful in order to compare
substitutions produced by the algorithm, given that it introduces several fresh variables
that will be substituted.

We extend the following lemma and theorems

LEMMA 4.12. If h: A | ST K, e:7 — € : 7' then EV(¢') Ch

THEOREM 4.13. If A | STk, e:7 — € 7' then A| ST He:7 — € : 7.

4.2. Extension of The Inference Algorithm, W

Ay, | T, T Ky e:D(CY) < € 1),
k / !
(Au, Fp D(CT) = 7, keDnkzj
A'w ‘ ij H—W
(h:f; : Ck € t?A'zl;k)kED/\k7éj7
(hy,,, + C* € t?HasC t C* 7, Jrepnkrs,
h, :HasCt C’ 7, , hy :ConstrsOf ¢
"]

w;

- t fresh
Ay, Ay, | Ty, T, CjD e: D" — C,z;f et
mj

(W-DCONSTR)

Awo l_W—SR T — 7_1’1)8
Ay, | Ty ThHye:D” — e, 7,
(ha, + Ay | Ty (AT 1T, T)
Ry N Tp-ep D(CH ="1 —)\m;.eguk : Tq’ui — T,IIHZ Vk=1..B
Ty~ g
(T’ o NUII:fl ka UII;721 7—1’11")k:2---B

'll)k — k—1

Aw | AlB Awe; AQB U(} A;uo H—W
w . k B _1 9 B _1 k B k !
(h"umk M OANS Al Twe'HaSC (Al T,) C (Ak—l—l kal Tq;)i))k:1~~~37

We
w o, k B 1 B k
(h'”k 1 CY e AV T, TAL L U Ay k=18,

We

hY : ConstrsOf AP 7!
cs €

(W-DCASE)

B Bl B
Aw:Al Awe;AQ U(] Awg ‘ Al CZﬂ’wg F
Hy case e of

D
(Cy e — ex)r=1.8
T
—
! : w
protocase, ¢, with i} of

(Chy, w = €l [l /i, i

Vi
. 77B N
Ug 4 Twg

Figure 4.4: Extension of Type Specialization Algorithm.

47

48 Chapter 4. The Algorithm and the Proof, Extended

THEOREM 4.14. Ifh: A | ST He: 7 — € : 7', then h]

‘w

7,, and there exists a substitution R and evidence v,, such that

a) S~ RT)

ATy Ty e = el

w “w t

b) 7' =R,

c) h: AH v, RA!
d) ¢ =e,[h, /v,

The meaning of this last theorem is that every residual term and type obtained by the
syntax directed system can be expressed as a particular case of the residual term and
type produced by the algorithm.

We are finally in a position to say that our extensions to Martinez Lopez’ work
mantain the property of principality as it is stated in Theorem 2.28. To prove this we
only need the properties that we have already proved here and in the preceding chapter.
More details of the proof can be found in [Martinez Lépez and Hughes, 2004].

4.3 Examples

In this section we present the principal type specialization of some examples as they were
produced by the algorithm, with some simplification based on the entailment rules. It is
notorious that the set of predicates produced is usually larger than the one expected, sit-
uation that is managed by the notions of simplification and constraint solving discussed
in [Badenes and Martinez Lépez, 2002].

EXAMPLE 4.15. A constructor can be applied to another constructor belonging to an-
other dynamic sum-type. We use dynamic tuples to provide constructors with several
different arguments.

Given the following declarations

data D = Only, (Int®, D)"
data Dj; = Only, (Bool®, D/})"
data D5 = OnlyS Int®

in the source code

let” d, = Only, (14°,Onlyy (False®, Only; 59°)")"
in let” dy = Onlyy (True®, Only/ 77°)"
in let” d3 = Onlyj 22°
in 4"
: Int"”,
its principal specialization is

Ahy, hy, b3, by, hs, he, ha, hg, hg, hao, Bty o,
let d; = Only; (e, Only} (e, Only} o))
in let d, = Only,]f;(o7 Onlyfgo)
in let d3 = Onlyj, e
in 4

4.3. Ezamples

with residual type

Vfl) f?a f3a f4a 7(-57 fﬁ

hy

: HasC ¢; Only, (14 ta), hy : ConstrsOf ¢y,
hs :
hs :
hy:
hg :
hay

HasC t, Only,, (False, t3), hy : ConstrsOf t,,
HasC t3 Only, 59, he : ConstrsOf t3,
HasC ¢4 Onlyy (True, t5), hg : ConstrsOf t4,
HasC t5 Only, 77, hyo : ConstrsOf t;,

: HasC t¢ Only, 22, hyy : ConstrsOf t5 = Int

Constraint solving produces the following declarations

and the residual code

data D, = Only:' (14, D,)
data D,= Only? (False, Ds)
data D;= Only$'59

data D,= Only?(True, D)
data Ds= OnlyS 77

data Dg= Only§'22

let d; = Only’ (e, Only? (e Only3
in let d, = OanB Only5
in let d; = On]y6
in 4

49

The example shows how static information was removed while dynamic constructors
were preserved in the residual code.

EXAMPLE 4.16. Here, we have an example where the residual type of constructor Only’s
argument depends on an unknown static value. The role of the if_then_else_ predicate
is to differ the decision of which residual type has the Only’s argument until the value

of b is known.

We have the dynamic sum-type declaration

data D” = Only” Int®

used in the source code

X°b.Only” (if°b then 3° else 5°)
: Bool® —" D"

and its principal specializacion is

A]’L],]’LQ, h,g,]’L4, h,5.)\b.OH1yh1 (ifv]’LQ then e else .)

50 Chapter 4. The Algorithm and the Proof, Extended

with the residual type
Vi1, to, ts.
hy : HasC ty Only t3,
hy : IsBool t;.
hs : ty :=if ; then 3 else 5,
hy : IsInt t3,
hs : ConstrsOf t, = t; — ty

ExXAMPLE 4.17. It is possible to make a polyvariant expression from a constructor — it
should be remembered that they are treated as dynamic functions. Here, we can see how
conversion h; will manipulate evidence A’ in order to determine which residual instance
of D” will be considered.

We have the dynamic sum-type declaration
data D” = Only” Int®
and the judgement

F let” f =poly Only” in 4" : Int"
< Ahydet f = hy[Ah, B, 1" Only,] in 4
: Vs IsMG (Vt,t'.h : IsInt ¢, h' : HasC t' Only ¢, h" : ConstrsOf ' =t — t') s = Int

Constraint solving produces
let f - Ah/, hll, h”.OHlyh/ in 4

where there is no declaration of residual sum-types; this happens because constructor
Only was applied to no argument. The variable f in the residual code will be reduced
to constant e in the evidence elimination stage.

EXAMPLE 4.18. As in Example 4.17, we have a polyvariant constructor, but this time
it is used twice, generating in this way two lower bounds to the type variable s.
We have the dynamic sum-type declaration

data D” = Only” Int®
used in the source code

let” f = poly Only”
in let” d, = spec f @”49°
in let” d, = spec f @Q”62°
in 4"
: Int”

and its principal specialization is

Ahy, hy. hs, ha, hs. hs. he, h. he.
let f = hi[Ah, B, h".Only,,]
in let dy = hs[f]Qe
in let dy = hy[f]Qe

in 4

4.3. Ezramples 51
with the residual type

Vs, ty, to, ts, ty.

hy @ IsMG (Vt,¢t.
h : Isint t,
h' : HasC t' Only t,
h" : ConstrsOf # =t — 1)
S,

hy : Only € ty7HasC t; Only t,,

hs : Only € t;71sInt 5,

hy : ConstrsOf ¢,

hs : IsMG s (49 — t,),

he : Only € t37HasC t3 Only ty,

h7 @ Only € t371sInt t4,

hg : ConstrsOf t3,

hg : IsMG s (62 — t3) = Int

Constraint solving produces the sum-type declarations

data D;= Only, 62
data D,= Only, 49

and the residual code

let f = Ah, b/, h".Only,,
in let d, = f((49,2,{Only}) Qe
in let d? - f((62a 17 {Only}))@.
in 4

The first evidence given to f proves a predicate IsInt while the second one proves a
predicate HasC indicating the residual instance of D” considered.

ExAMPLE 4.19. In this example we have a polyvariant constructor used twice. Defini-
tion of source variable d; is responsible for forcing the constructors’ arguments to be 2
and 3 respectively. Additionally, the definition of dy only involves information concern-
ing one constructor; thus all the branches of ¢; will be preserved while some branches
of ¢y will be deleted. On the other hand, set of constructor names appears as evidence
to prove the predicate ConstrsOf. More predicates than expected are generated, but
some of them are proved with evidence e and others are just replaced by simpler ones
at constraint solving.

We have the dynamic sum-type declaration

data D” = Left” Int® | Right” Int’

52 Chapter 4. The Algorithm and the Proof, Extended

in the source code

let” f = poly Left”
in let” d, = if” True then spec f @”85° else Right” 15°
in let” d, = spec f @"”92°
in let” ¢, = case”d; of
Left” n — lift n
Right” n — lift n
in let” ¢y = case” d, of
Left” n — lift n
Right” n — lift n
in 4"
. Int”
and its principal specialization is

Ahy, ho, hs, ha, hs, he, hy, hg, hg, hig, hit, hag, hag, huia, has, hag, iz, has, hag, hog.
let f = hy[Aha, hy, he, ha, he.Left, |
in let d, = if True then h[f|Q e else Right,_ e
in let dy = hy[f|Qe
in let ¢; = protocase, d; with hg of
Leﬂjh15 n — hlﬁ
Right, n — 15
in let ¢, = protocase, d, with h3 of
Leftn,, n — hisg
R'jghth19 n — hgo
in 4
with the residual type

Vs, b1, to, ta, ta, ts, te, t1, s, Lo
hy : IsMG (Vtq, ty, t3.
h, : Isint tq,
hy : HasC ty Left tq,
h. : Right € t37HasC t, Right t3,
hq : Right € t,7HasC ty, Right IsInt t3,
he : ConstrsOf ¢y = t; — 19) s,
hy : Left € t;7HasC t, Left ty, hy : Left € t,?IsInt t,,
hy : IsMG s (85 — ty),
hs : HasC t; Right 15,
he : Left € t,7HasC t, Left t5, hy : Left € t,?IsInt t3,
hg : ConstrsOf ¢y,
hg : Left € t,7HasC t, Left ts, hqg : Left € t,71sInt t5,
hi1 @ Right € t,7HasC t, Right tg, hio : Right € t,71sInt g,
hy3 : ConstrsOf t4,
hiy : IsSMG s (92 — 1),
his : Left € t;7HasC t; Left t;, hig : Left € t;?1sInt 5,
hy7 : Left € t,7HasC t, Left tg, h1g : Left € t,71sInt tg,
hig @ Right € t,7HasC t, Right tg, hog : Right € t,71sInt ty = Int

4.3. Ezramples 53

Constraint solving produces the sum-type declarations

data D, = Left; 92
data D,= Left, 85 | Right, 15

and the residual code

let f = Ah,a, hb, hc, h,d, h,e.Lefthb
in let d; = if True then f((85,2,2,15, {Left, Right}))@ e else Right, e
in let dy = f((92,1, 0,0, {Left}) Qe
in let ¢; = case d; of
Lefty n — 85
Right, n — 15
in let ¢y, = case d, of
Lefty n — 92
in 4

The first two evidences for f concern the constructor Left and the other two, the con-
structor Right. We can appreciate that Right’s argument does not have any residual
type in definition of dy (looking at evidence @). The predicates correponding to evidence
variables hg and hy3 were proved with {Left, Right} and {Left} respectively.

ExXAMPLE 4.20. This is an interesting example showing how the unification produced by
construct if” is responsible for forcing the constructor .Just to be applied to a function
with type (Vt.IsInt t =t — ¢t — t).

We have the following sum-type declarations

data D;” = Only” D,”
data Do” = Just” poly (Int® —" Int® —" Int®)

in the source code

let” dummy = if” True
then Only” (Just” (poly (Xzy.y)))
else Only” (Just” (poly (Nzy.x)))
in 4"
: Int”

and its principal specialization is

Ahy, ho, hs, ha hs, he.
let dummy = if True
then Only,, (Justy, (hi[Ahg, he.A2'y'y']))
else Only,, (Justy, (he[Ahys, hg.A2'y'.2']))
in 4

54 Chapter 4. The Algorithm and the Proof, Extended

with residual type

Vs, t,t.
hy : IsSMG (Vt, ' .hg : IsInt t, he : IsInt ' =t — ' = t') s,

hy : HasC t; Only t,,

hs : ConstrsOf ¢,

hy : HasC ty Just (poly s),

hs : ConstrsOf 2o,

he : IsMG (Vt,t".hy : IsInt ¢, hy : IsInt ' =t —t' - t) s = Int

Constraint solving produces

data D;= Only, Ds
data D,= Justy poly (Vt.h:IsInt t =t —t — t)

let dummy = if True
then Only, (Justy (Ah.Ax'y'.y"))

else Only, (Justy (AhAx'y'.'))
in 4

Observe the use of poly in the declaration of the residual sum-type Ds.

ExXAMPLE 4.21. Here, we can observe the interaction between static functions and dy-
namic sum-types. We define a static function that returns the same constructor but
applied to different static values. In the residual code, f can return two different values
belonging to different instances of D”. Observe that the residual of f is the constant
e — this is because it has no free variables. Again, as Example 4.19 shows, there are
several predicates but they will be managed by constraint solving.

Given the following sum-type declaration

data D” = Only” Int®

in the source code

let” f = Xb.if°b then Only” 33° else Only” 72°
in let” p = (f @° True®, f @° False®)"

in 4"
: Int”

its principal specialization is

Ahla h‘?a h’3a h‘4a h‘57 h’6a7) h’Sa h’9-
let f=e
in let p= (h5@1)f@1).7 hg@'uf@'u.)

in 4

4.3. Ezramples 95

with the residual type

Vi1, to, ts, ta, ts, te, t7, tss to.

IsFunS ClOS(Ah(L7 hb, hc, hd, he, hf, hg, hh, h,;, hj, hk, hl, hm.
ALV Gf, h, then Only, e else Only, e
© Yy, to, 3, 1, ts, te, t1, ts, Lo

h, : IsBool %1,

hy : to :=if t; then t3 else 1,4,

he : Only € t9?HasC t, Only t5,

hq : Only € ty71IsInt t5,

he : ConstrsOf t,,

hy : t,71sInt tg,

hg : t17HasC t7 Only ts,

hy, : t1?7ConstrsOf 7,

hi s t1?2(tg — t7) ~ (33 = t3),

hj 't ?1sInt tg,

hy :'t17HasC tg Only tg,

h; :1t,7ConstrsOf tg,

B M2 (s — to) ~ (T2 = t4) =t — ty)
11,

ho : Only € ty?7HasC ty Only t3,

hz : Only € t57IsInt t3,

hy : ConstrsOf t,,

hs : IsFun$ t clos(ts : True — t,),

he : Only € tg7HasC tg Only t7,

h7 : Only € tg?1sInt t7,

hg : ConstrsOf tg,

hg : IsFunS t clos(ty : False — te) = Int

Constraint solving produces the sum-type declarations

data D, = Only, 33
data D,= Only, 72

used in
let f=e
in let p = (Only, e, Only, o)
in 4
: Int

Note how the static applications were replaced by their results.

ExXAMPLE 4.22. We have a recursive static function that generates as many applications
of the constructor Only as the value on its input argument. We only show here the source
code and the produced residual code at constraint solving, excluding the predicates
generated because they are too many. To get a grasp of the number of predicates, this

56 Chapter 4. The Algorithm and the Proof, Extended

example can be tried with the provided prototype.

data D” = Only” Int®

let” f=fix® (Xg.Xn.if°n=="°0°
then 4"
else let” d = Only” n
in g @° (n =°1%))
in f @5°

Constraint solving produces

data D;= Only,
data D,= Only,
data D;= Only,
data Dy= Only,
data Ds;= Only;

QU = GO D> =

let f =
in let d = Only; o
inlet d = Only, o
in let d = Only;
in let d = Only,
in let d = Only, o
in 4

Chapter 5

Extension to the Prototype

“ En cambio ahora creo que lo importante es el primer borrador; lo demds es
cueston de técnica, de aligerar las frases, evitar repeticiones.”

Jorge Luis Borges
Jorge Luis Borges habla de los demds
Confirmado, Numero 240, 1970

5.1 Implementation Language

The implementation of the prototype was written in the functional language Haskell
[Peyton Jones and Hughes (editors), 1999]. This prototype was developed using the
interpreter Hugs [Jones and Reid, 1994-2003] under GNU/Linux [Torvalds and Stallman,
2004]; but when efficiency was needed, ghc [The University Court of the University of
Glasgow, 2004] was chosen.

Working on functional languages enables us to represent data structures in exactly
the same way as we think about them, which is ideal for writing our language and
specialization constructs. Additionally, referencial transparency and programming with
equations make definitions of pre- and post-conditions easier than other paradigms —
for example imperative or object oriented programming, where the semantics of each
contruct depends on a global state and not just on its input arguments.

The specializer was based on a state monad [Wadler, 1995] which has a lot of infor-
mation concerning the specialization state (variables, substitutions, etc.). The monadic
style of programming abstracts the carried state and the side-effects produced, allowing
us to concentrate better on the goal of each function.

5.2 Previous Work

The prototype used as a stepping stone was implemented in [Martinez Lépez and Hughes,
2004] and extended in [Badenes and Martinez Lépez, 2002], which already has data
structures to represent source and residual terms and types, type schemes and predi-
cates, in addition to all the other elements handled by the specialization process. The
implemented functionality includes the kernel of the specializer, which specializes source
terms according to the algorithm W specified in Figure 2.10, and the post-processing
phases: simplification and constraint solving [Badenes and Martinez Lépez, 2002], evi-
dence elimination [Badenes, 2003].

57

58 Chapter 5. FExtension to the Prototype

5.3 Extensions

The prototype described implements relations and algorithms that we briefly recalled in
Chapter 2. In order to add dynamic sum-types, it was necessary to extend every module
of the implementation.

In what follows, we summarize each module extended by us, describing also all the
capabilities of the prototype.

e parsing source language, defining internal representation of source and residual
terms and types — see Definition 3.1, Definition 3.2, Definition 2.2 and Defini-
tion 2.18 and pretty-printing functions.

e infering and checking types of both languages and the source-residual relationship
— see Figures 3.1 and 4.3.

e principal type specialization of source terms, using W algorithm described in Fig-
ures 2.10 and 4.4, producing residual programs with qualified types and evidence.

e simplification of constraints as a needed intermediate stage for achieving efficiency,
implementing basically the rules described in [Badenes and Martinez Lépez, 2002].
The entailment rules concerning dynamic sum-types see Figure 3.2 were
implemented, but their formalization into the formal system developed in [Badenes
and Martinez Lépez, 2002] was left out the scope of this work.

e constraint solving is performed according to the heuristics described in [Badenes
and Martinez Lépez, 2002]. An heuristic to solve constraints that involve pred-
icates HasC, ConstrsOf and C € 7'7A was also implemented, but as before, its
formalization was left out the scope of this work.

5.4 Potential Improvements

The prototype is really far from its final version. Many improvements remain to be
done. First, we could optimize the algorithms already implemented: the efficiency of
the prototype is not optimal. This task may involve profiling in order to find points in
the code to speed up, e.g. memorizing values without recalculating them, finding points
where we could force a function to be strict (avoiding lazy evaluation) so as to save up
heap space, or even reimplementing all the prototype in other language, such as ML or
an imperative or object oriented one.

Another possible improvement is to make extensions to the source language so as to
specialize terms that would be closer to those used daily by programmers, thus reducing
the distance between the prototype as a laboratory toy and the prototype as a really
productive tool in a specific domain.

5.5 Conclusions of the Implementation

One important contribution of the implementation phase was “putting into effect” many
of the concepts developed in the theory.

5.5. Conclusions of the Implementation 59

The execution of the prototype was a key element to view the results produced when
specialization rules were applied, in particular, the rules developed in this work. We
were able to fine-tune our definitions, which were introduced in a theoretical world.
Sometimes, we found inconveniences in our definitions that were incompatible with the
rest of the work, detecting these problems only in the implementation stage.

It is very important to put into effect ideas that come from a theoretical framework
in order to obtain a continuous feedback between the theory and the practice, two worlds
that must fit together.

Chapter 6

Conclusions and Future Work

“ Hay que sopesar los argumentos de uno y otro bando para determinar su con-
sistencia y plantear supuestos prdcticos, puramente hipotéticos en mds de un caso.
Si pareciera que algunos de estos supuestos van demasiado lejos, solicitamos del
lector que tenga paciencia, pues estamos tratando de forzar las diversas posturas
hasta su punto de ruptura a fin de advertir sus debilidades y fallos.”

Aborto :

jes posible tomar al mismo tiempo partido por la vida y la eleccion?
Miles de Millones

Carl Sagan

Type specialization, which was created by John Hughes [Hughes, 1996], was presented
as a new and alternative approach to overcome some inherited limits.

Martinez Lépez’ work [Martinez Lépez and Hughes, 2004] continued that work de-
veloping a framework that includes the use of qualified types [Jones, 1994a] to capture
the notion of principality, which means that any possible specialization of a given source
term could be obtained as an instance of its most general specialization.

We summarize the principal contribution of this work as the introduction of dynamic
sum-types (data types without recursion) to the source language described in [Martinez
Lépez and Hughes, 2004] preserving principality.

In Chapters 3 and 4 were introduced all the technical tools needed to deal with a
new source language construct (extension of the source and residual languages grammars,
new source and residual types definitions, new predicates capturing facts about dynamic
sum-types, etc.) as well as how the specialization of dynamic constructors and cases
have to be carried out by the specializer. We also extended the systems P and S, and
the algorithm W, proving formally that principality was preserved. Additionally, we
also implement our theoretical ideas into the existing prototype of [Martinez Lopez and
Hughes, 2004].

The information captured by the predicates introduced in Chapter 3 give us the
following advantages,

e detect which constructors are used and which are not in the source program,
obtaining definitions of residual sum-types with only the useful constructors; thus
eliminating useless ones.

e crase branches from cases which are never executed, leaving only the needed ones.
e freely combine polyvariance with dynamic sum-types.

One disadvantage of this approach is that residual sum-types are monomorphic,
avoiding polymorphism inside of sum-type definitions in order to obtain a more efficient

61

62 Chapter 6. Conclusions and Future Work

and simpler residual language. Despite efficiency and simplicity, this is a new inherited
limit imposed by our heuristic used at constraint solving phase and it will be a future
work to eliminate it.

Some aspects related to the whole process of specialization were left as future work;
for example, we do not specify formally the simplification and constraint solving rules
even though they were implemented in the prototype. So, there is a theoretical work to
be done in the future using the framework developed in [Badenes and Martinez Lépez,
2002].

This work is a first step towards the inclusion of dynamic recursive sum-types to the
principal specialization process.

Chapter 7
Simplification and Constraint Solving

“29¢

77

The algorithm presented in Chapter 4 and extended in Chapter 2 to produce princi-
pal specialisation introduces potentially many predicates, several of which are redundant
or expressible in simpler forms. In order to reduce a predicate assignment to another
simpler, two phases are defined in [Martinez Lépez and Hughes, 2004]. The first one,
called simplification, is responsable for taking a predicate assigment and solves those
variables whose solution are unique. This phase is the base for the second one, called
constraint solving, which purpose is to take the decisions that were deferred during spe-
cialisation when possible (observe that in general, some decisions depend on contextual
information that may still not be present).

With this separation, the specialisation can be regarded as a static analysis of the
program, performed locally and collecting the restrictions that specify the properties of
the final residual program; the constraint solving phase can be viewed as the implemen-
tation of the actual calculation of the residual.

Our extension to deal with dynamic sum-types also introduces redundant predicates.
For instance, a guarded predicate whose condition is true. Additionally, our algorithm
defers the declaration of residual sum-types to be done when all the predicates HasC
are collected. Thus, an extension of the simplification and constraint solving phases are
need.

We begin, in Section 7.1.1,7.1.2,7.1.3, and 7.1.4, by describing the process of sim-
plification as given in [Martinez Lopez and Hughes, 2004]. In Section 7.1.5 we present
our extension to this phase. Constraint solving is explained in Section 7.2.1, 7.2.2, and
7.2.3, and our extension is discussed in Section 7.2.4.

7.1 Simplification

7.1.1 Motivation

The algorithm calculating the principal specialisation of an expression introduces sev-
eral predicates to express the dependencies of subexpressios to static data. But, as
this algorithm operates locally, often redundant predicates are introduced. With the
goal of reducing the number of predicates, both because of legibility and to lower the
computational effort of subsequent phases, we introduce a process of simplification of
predicates.

63

64 Chapter 7. Simplification and Constraint Solving

For example, with the algorithm W presented in Figures 2.9 and 2.10, the speciali-
sation of the term

Nxlift ((z +°1%) +%(x +°1%)) : Int® =" Int”
is the following residual term and type:

Ah; hg hy he Ax.h, : ¥Vt t' t". Isint ¢,
t=t+1,
"=t 41,
= 1" 4t =t — Int

where the redundance of predicates can be observed.
By the use of a simplification process, this residual can be converted into this other
one:
Ab W X b Ve " =t +1,t" =t +t =t — Int

which, in some sense, is ‘simpler’ than the original, but equivalent.

7.1.2 Specification

In order to establish formally the notion of simplification, we will recall the properties
we expect of a simplification relation. We will also use a special notation.

NOTATION 7.1. In a simplification we use conversions of the form (Ah.[])((v)) and com-
positions of these. To simplify the reading, we will use a particular notation for this
restricted form of conversions (we call them replacements): h<wv will be denoting the
previous conversion, and the composition of replacements will be written h<v-C to de-
note (Ah.C)((v)) (the operator - will associate to the right) In this way, hy<—v;-...-hy<v,
will denote the conversion (Ahy ... h,.[])(v1 ... v,)).

The following property of the operator (-) will be very useful:

LEMMA 7.2. A conversion h<—h is neutral for - (observe that [| is a particular case of
this.) That is, for every conversion C and evidence variable h, it holds that h<h - C =

C =C:h«h.
PROPOSITION 7.3. (Ah.e¢')((h)) =€

Now we are ready to define simplification:

DEFINITION 7.4. A relation S;C | h: A > h': A is a simplification for A if C = h«v
and the following conditions hold:

i) A :A"Hwv:SA
(ii) SAH A’

7.1. Simplification 65

The conditions establish that the predicate assignments are equivalent with respect
to entailment (under S); as we intend to use this process to replace one predicate
assignment with another, it is a natural condition to ask. The condition about the
form of conversion C expresses that it can be used to transform an expression assuming
predicates in A into another one assuming predicates in A’

Observe that with this definition, Id;[] | A = A is a valid simplification for A.
However, we expect that any interesting simplification will be able to do more work, as
the following example shows.

EXAMPLE 7.5. Given
Ay =hy IsInt 9, hy - IsInt ¢ by :t:=1+2,hy 1t ==t +3, hy: t" =1t" +1
Ay =hs:t" :=t"+6
we would like our implementation of > to satisfy
S;C | Ay > Ay

where S = _[t/3][t'/6] and C' = hy<=9 - hy<—hs - h3¢3 - hy<—6; the reasons for that are:

e £y : IsInt 9 can be trivially simplified by @smt), and 9 is its evidence.

e hy : IsInt ¢ is entailed by the fifth predicate.

e hy:t:=1+2 can be simplified calculating the result of 1 + 2 and generating the
substitution that changes ¢ for 3 in the fourth predicate.

e hy:t' :=t+3, can be simplified in a similar way, once the value of ¢ is known
(from the previous predicate).

To conclude this subsection, we present a closure property of the simplification rela-
tion with respect to substitutions. It states that if two predicate assignments are related,
the instances of them will be related (provided the substitutions are ‘well behaved’).

DEFINITION 7.6. Two substitutions S and 7" are said to be compatible with respect to a
type 7, denoted S ~, T, if T'ST = ST7. This notion extends naturally to type schemes
o, predicates ¢, and predicate assignments A.

LEMMA 7.7. Let T;C | A = A" be a simplification for A. If S and T are compatible
under A, i.e. S ~a T, then T;C | SA = SA" is a simplification for SA.

This property is important to ensure that sequential steps of an algorithm give a
sound solution. This is presented in Section 7.2, where we will combine simplification
with constraint solving.

66 Chapter 7. Simplification and Constraint Solving

h:AH vs:6
Id; hs<vs | h: Ayhs: 6> h: A

(SimEntl)

S;Clh:A>h" A" SEC | R A >R A

(SimTrans)
S'S;C'oC |h:A>h": A"
S:C | hy: Ay hy: A
SimCtx
) G O hy - Av = A > By« Ag, < SA
(SimPorm) S;]’L],hg(—w],'l)g‘h]:A],hgiAQEh’]ZA’],héZAIQ

S, h27h1<_v2,vl[h2/v2] | h2 : AQ, hl : Al > h’Q : AIQ,h,] : A’]
Figure 7.1: Structural rules for simplification

7.1.3 Implementing a Simplification

Our next step is to define a set of rules implementing a simplification relation.

We start with structural rules, which should be present in any good simplification;
they are presented in Figure 7.1. Rule (simentl) allows the elimination of redundant
predicates; this includes both predicates that are deducible from others, but also those
that are true by their form. For example, predicates of the form IsInt n for known ns,
or predicates IsSMG o ¢’ for which it can be shown that C' : ¢ > ¢'. The second rule,
(simTrans), provides transitivity, giving us a way to compose simplifications. The third
rule, (simCtx), expresses how to simplify only part of an assignment; it is important to
note the use of the substitution S on the right hand side in order to cancel variables
that may have been simplified. Finally, the last rule, (Simperm), establishes that predicate
assignments can be treated as if they had no order, closing the relation with respect to
permutations.

The last two rules are complementary, and usually used together. In order to express
this, we define a derived rule, (simcuam), which allows the application of simplification in
any context, following the ideas of the Chemical Abstract Machine [Berry and Boudol,
1990].

S.C~ | AT A > AL, SA

(SimCHAM)

In this last rule ((simcuam)), the equivalence & is defined as the least congruence on
predicate assignments containing A, d,0", A" =~ A, 4,6, A’, allowing assignments to be
considered as lists without order for the application of the simplification rules. It is
important to note that the order of predicates can be changed only when they are
still labelled with evidence variables in a predicate assignment (h : §); after they are
introduced in a type with the (Qin) rule of qualified types theory, the link from the
variables to their predicates is only given by the order in which they appear in the
expressions (Ah._in terms and § = _ in types).

We have to prove that the given structural rules (on Figure 7.1) indeed define a
simplification relation according to Definition 7.4.

7.1. Simplification 67

t~5n
(SimOpres) ~ — (n=n1®nz2)
Sihsen | hs:t:=1; Qs> 0

C:o9>0
Id; ho<—hy o C' | hy : ISMG 0y 8, hy : ISMG 09 s & hy : ISMG o7 s

(SImMG)

Figure 7.2: Language-dependent simplification rules

THEOREM 7.8. The rules (SimEntl), (SimTrans), (SimCtx), and (SimPerm) (of Figure 7.1) define
a simplification relation, and the derived rule (SimCHAM) s consistent with it.

As a second step in implementing a simplification, we complete the relation defined
by the structural rules with those given in Figure 7.2, dealing with some constructs of
our language. Rule (simOp,) internalizes the computation of binary operators, when all
the operands are known. A similar rule will exist for unary operators as well. The rule
(simMGyp) eliminates redundant uses of predicate [sMG, when two upper bounds of the
same variable are comparable. A similar rule for lower bounds would not make sense in
this system: as lower bounds are produced by the rules (spEc), they have types instead
of schemes; in addition, evidence elimination will need to use all the lower bounds (see
Section ?7). Regarding predicates as IsInt n or IsMG o ¢’ when both ¢ and ¢’ are not
scheme variables, they can be simplified using rule (simEnt1), as the entailment relation
can deal with them.

Again we have to show that these rules define a simplification relation.

THEOREM 7.9. A system defining a simplification relation, extended with rules (SimOp;es)
and (SimMGy) still defines a simplification relation.

Although the rules presented here as an implementation may seem restricted, its
goal is to simplify exactly the predicates generated by the specialisation algorithm (not
including a rule for lower bounds is an example of this tailoring). When designing a
system as this one, the trade off between generality and specificity has to be taken into
account in one end, a very general but useless simplification, and in the other one, a
non-tractable or unsolvable simplification would be obtained.

Extensions to the system presented here are possible, and in the case of extending
the language of predicates, necessary.

7.1.4 Simplification during specialisation

In order to use simplification during the specialisation phase, we need to add a rule to
the system P; this rule can be used in any place, but in practice is only needed before
the use of a (poLy), or at the end of the derivation.

h:A|The:m = ée:0 S;C|h:Axh:A
h:A"|STHe:r — Cle']: So

(STMP)

We can prove that the new rule is consistent with the rest of the system

68 Chapter 7. Simplification and Constraint Solving

THEOREM 7.10. If h : A | 'K e:7 — € 10 and S;C | h: A > h : A’ then
h A" |STHe:7 — Cle]: So.

As we have seen, the relation of simplification is not necessarily functional, and then
there is the possibility to choose among different assignments to replace the current
one. In practice, we use a function simplify such that simplify(h, A) returns a triple
(v: A, S, C) such that S;C | h : A= v : A’ This follows Mark Jones’ work [Jones,
1994a].

Continuing with this idea, we also extend the specialisation algorithm with the fol-
lowing rule:

h:A|SThH,e:7 — €7
h" :1sMG o s | TST K, poly e : poly 7 — ¢": poly s

(W-POLY)

where:
e’ = h"[AN.C[e]]
(b A", T,C) = simplify(h : A)
o=TSTHTA =TT
s and h" fresh

With this version of the algorithm, predicate assignments are simplified before their
introduction in the type schemes of poly s. It is important to note, however, that not
all predicates can be completely simplified before being introduced in the type schemes:
predicates with free variables will remain unsolved, and will not be simplified until
constraint solving (although the free variables can take their final value much earlier).

With these rules we have completed our goal of incorporating the simplification to
the specialisation process. Additional features and more possible rules will be discussed
as new constructs are added to the specialiser.

7.1.5 Extension to Simplification

The rules to simplify the predicates introduces in Section 3.2 are given in Figure 7.3. The
rules (suasc) and (scts) extracts the lower index and the constructors used in a residual
sum-type declaration. The simplification of guards are given by the rules (sG-TrUE) and
(sG-FALSE). This rules require, for technical reasons, a new entailment rule to be added
see Figure 7.4. Lastly, the rule (su-nc) forces the arguments’ residual types of two
predicates HasC with the same constructors to be the same.
As before, we have to show that these new rules define a simplification relation:

THEOREM 7.11. A system defining a simplification relation, extended with rules (SHASC),
(SCTS), (SG-TRUE), (SG-FALSE), and (Su-HC) still defines a simplification relation.

The Lemma 7.2, Proposition 7.3, Lemma 7.7, Theorem 7.8, Theorem 7.9, and The-
orem 7.10 hold by our extension. They are proved by definitions and propierties that
were properly extended in Sections 3 and 4 see [Martinez Lépez, 2004] for details in
the proofs.

7.1. Simplification

Cc*eD,
Id;[] | h: CF € D,?2A>h: A

(SG-TRUE)

Dn(Ck)NST’
S:h<n|h:HasC D, C* 7'>0

(SHASC)

) Dn = {Ck }kEI
Id; h « {C* }er | h: ConstrsOf D, & ()

(SCTS

Cc* ¢ D,
Id;h < e |h:CF e D,?2A > ()

(SG-FALSE)

S _n
Ty

7 ~
: S:hy < hy | hy:HasC 71 C* 7/,
hy : HasC 7' C* 1)

> hy : HasC ST/ C*F S/

(SU-HC

Figure 7.3: Sum-Types dependent simplification rules

CteD, AANHA
A, CP e D,?2A H A

(INTO-GUARD-TRUE)

Figure 7.4: Additional entailment rule (part I)

Id;[] | A, :HasC 1 C* 7",
(SHC-G) hy : CF e 7'7A
> hy : HasC 7' CF 7" hy: A

Id;h+v|h:Ah A
Id;h < v | h:CFer?A,
h. : ConstrsOf 7/ >
B CF e A,
h. : ConstrsOf 7/
where v;; = if,, C* € h. then v else o

(SENTL-G)

Figure 7.5: Additional sum-types simplification rules

A,HasC 7' C* 7" A" H- A
"AHasC 7 CF 7. CF € 77N i A

(ELIM-HASC-GUARD

Figure 7.6: Additional entailment rule (part II)

69

70 Chapter 7. Simplification and Constraint Solving

Discussion

Although the simplification rules presented previously are enough to simplify predicates
related to sum-types, it is possible to perform simplification of predicates inside of
guarded predicates. However, we need to guarantee that the substitutions produced do
not alter variables that can 'escape’ a given guard, because if that guard is going to take
a false value, the predicate will simply dissapear, and the value assigned to the variable
will be unsound. On the other hand, we can also detect before hand that a guard would
be true and thus simplifying it.

The rules to perform those kind of simplification are given in Figure 7.5. We need
to add another entailment rule to technically prove that (suc-¢) and (SENTL-G) are sim-
plification rules see Figure 7.6. The decision to include or not these rules produces
an eager or lazy simplification phase. In other words, a phase that can simplify or not
inside of guarded predicates even though values of guards are not yet known.

Again, we have to prove that these two extra rules define a simplification relation:

THEOREM 7.12. A system defining a simplification relation, extended with rules (SHC-G)
and (SENTL-G) still defines a simplification relation.

7.2 Constraint Solving

7.2.1 Motivation

In this section, we present the constraint solving phase, a process for deciding the fi-
nal values of scheme and type variables that cannot be decided by simplification, and
thus cannot be performed arbitrarily during specialisation (in the general case, because
global information is needed). In [Martinez Lépez, 2004], this phase is separated in two
parts: a specification part, where a description of the problem is constructed, and an
implementation part, where a solution for the constructed description is found

Constraint solving is cleary used in the presence of poly and spec annotations,
because the specialiser does not decide the final form of polyvariant expressions, but
abstracts it with evidence variables (used in every definition point poly and use point
spec until all the information can be gathered. A complete description of the procedure
to decide the values of scheme variables can be found in [Martinez Ldopez, 2004].

The predicates generated by our extension allow the implementation of different
heuristics for constraint solving. Some heuristics can produce specific (monomorphic)
residual sum-types definitions, while other heuristics can produce general (polymorphic)
residual ones. We have implemented the heuristic to produce monomorphic definitions,
explained and formalized with detail here, and we are also going to explain how other
heuristics may work.

The constraint solving phase is responsible for introducing definitions of residual sum-
types based on the predicates found in residual types. It will detect all the predicates of
the form HasC ¢ C 7/, and will assign to ¢ a value D,, with those constructors appearing
in the predicates corresponding to that residual type.

We can see that this approach treats type specialisation as a static program analysis
where each part of the program is analyzed locally, and then allows the application of

7.2. Constraint Solving 71

resolution techniques for the generated constraints. In the field of type specialisation,
this approach provides a language allowing to express problems and to look for solutions
in a uniform way.

As we have done with simplification, we will first specify the idea of constraint solv-
ing, and then we will implement an heuristic for deciding type variables that represent
residual sum-types.

7.2.2 Specifying Solutions

To begin with, we define when a substitution mapping scheme variables and type vari-
ables to type schemes and types can be called a solution, when it can be performed, and
what other components are needed.

DEFINITION 7.13. [Solving] A solving from a predicate assignment A; to Ay, requiring
the predicates of A’ is a relation

S,TIC|A1+AI >y AQ

where S and T are substitutions, C' a conversion and V a set of type variables, such
that
(ii) dom(S)N(VUFTV(A")) =10

We will say that S is the solution of the solving, and that V restricts the application
of S

While solving may appear similar to simplifying at a first glance its consequences
are stronger The substitution S, the solution may decide the values of some scheme
variables and it is not required that the new (solved) predicate assignment entails the
origina one (in contrast to simplifying, where both predicate assignment are equivalent
in some sense)

7.2.3 Solving and Specialisation

We now study how solving can be performed during specialisation, by incorporating it
to system P

A |The:m = e€e:0 ST;C[A +A eprvre A
Ny |TT H e:7 — Cle]: To

(SOLV)

In contrast with the case of simplification, some cautions have to be taken to avoid
unsound results: if a variable is decided when some of the information affecting its set
of possible values is missing — which can happen if a scheme variable occurs anywhere in
the residual type or in the type assignment I' then it must not be solved. This situation
is captured in the rule by the use of the set FTV(I", o) in the solving premise (and there
used for condition (ii) of Definition 7.13).

As with simplification, the rule (soLv) is sound respect to specialisation.

72 Chapter 7. Simplification and Constraint Solving

THEOREM 7.14. Given Ay [T e:7 = € 10, and if S, T;C | Ay + A cpryre) Ag
then, it is also the case that

Ay | TST K, e:7 — Cle']: TSo.

In order to perform the constraint solving, we proceed incrementally. We justify the
incremental nature with the following lemma.

LEMMA 7.15. Composition of solvings is a solving.
That is, if Sy ~s,a,,a0 T, S1. T Cr | A+ AT by Ay, and Sy, Ty Cy | Ag+ A" oy Ay
then
S2S81, ToT1; Cy 0 Cy | Ay 4 (SoA", A") by Ag

The Lemma 7.15, and Theorem 7.14 holds by our extension since their proofs use
definitions and properties already extended in previous chapters — see [Martinez Lopez,
2004] for details.

In presence of dynamic recursion, we need a more powerful method. A discussion
about this is given in Chapter 9 in [Martinez Lépez, 2004].

7.2.4 Extending the Algorithm for Constraint Solving

We have already defined the notion of resolution. An algorithmic implementation of a
heuristic to find, in those cases when it is possible, a resolution for all the predicates in a
specialisation judgement was given in [Martinez Lopez, 2004]. However, that algorithm
does not find values for those types variables that represent sum-types.

In this section we give an algorithmic implementation of a heuristic to introduce sum-
type declaration in such a way that the predicates HasC and C* € t?A can be solved.
The goal of the presentation is to establish the form in which sum-type declaration are
introduced. However, we are not going to give a detailed executable implementation. We
present several functions expressed in a pseudo-functional code as in [Martinez Lépez,
2004].

The constraint solving is defined by the function stepSolve, that, given a predicate
assignment and a type variable used in a set of HasC predicates to solve, finds a solution
for it.

Function stepSolve will be defined in terms of an auxiliary function that introduces
monomorphic sum-types polymorphic sum-types can be obtaining by only changing
how this function works.

MonomorphicST : it receives a list of predicates of the form (HasC ¢t C* 7/)c;, and
introduces a fresh sum-type D,, where each constructor Cfl is applied to elements
of residual type 7;.

stepSolve : it is the main step of our constraint solving heuristic. It takes a predicate
assignment of the form

A = {hy :HasC t C* 7/} per, A

7.2. Constraint Solving 73

and a variable ¢ with ¢t ¢ FTV(Ay, {7} }rer), it returns a substitution S, a con-
version C, a predicate assignment A’ such that the following resolution holds
S,T;C | A+ A’ >y) for any V not containing ¢. It is implemented as follows:

stepSolve t ({hy : HasC t C* 1 }rer, A)) =
let D, = MonomorphicST {hy, : HasC t C* 7/}4c;
in ([Dﬂ/t]i Id; hk —n, Q)J Af)

THEOREM 7.16. The heuristic presented is correct wrt. the definition of the constraint
solving relation. That is:

1. MonomorphicST finds a solution for t, respecting the predicates HasC.
2. If (S,T,C, Ay, A") = stepSolve t A and s ¢ V' then

S,T:C|A+A;py A

It is important to remark that the algorithm solve, obtained by the repeated com-
position of solveStep with itself, it is not defined for every predicate assignment. For
instance, to solve a scheme variables is necessary to have an assigment with upper and
lower bound for such variable — see [Martinez Ldopez, 2004] for details. Our requiere-
ment, on the other hand, is to have predicates HasC in the context. Other constructions
in the language can establish other requierements for the predicate assignment.

Chapter 8
An Interpreter With Error Handling

“92¢
777

To do: ¥

8.1 Running Example

Our work is a step forwards towards practical usability of principal type specialisation.
In that spirit, we are going to show the specialisation of a simple interpreter for numerical
expression with error handle of division by zero.

The interpreter is shown in Figure ??. It is inspired in the interpreter shown [?] to
motivate the introduction of a monad to handle errors. Observe that errors are handled
dynamically. This decision was based on the fact that exceptions and error-handle
mechanism are triggered in runtime.

ExaMPLE 8.1. The following expression completes the definitions given in Figure 8.1.

ueval @Q° (Lam® *£°°
(App® (Var® 2£°7%)
(App® (Var® °£°%)
(Const® 0%))))

The specialisation using Hughes’ formulation is

Fun (Mv.case v of Fun f —
f@(case v of Fun [—
f@(Num 0))) : Value

Observe how each function requires a Fun tag, each application require s a case, and
each number requires a Num tag.

Since we are compiling by specialisation, the way the residual program is produced
indicates that the resulting compilation is for untyped lambda-calculu s — that is, there
are type checks at run-time, and thus the possibility to produc e errors during program
execution. To illustrate this point, let us consider the code

ueval @Q° (App® (Const® 2°) (Const® 3%))

to complete the definitions given in Figure 8.1. The specialisation using Hughes’ formu-
lation is

75

76 Chapter 8. An Interpreter With Error Handling

data Exp® = Var Char®
| Cte Int®
| Add Exp® Exp’
| Div Exp® Exp®
data Maybelnt” = Raise String” | Value Int®
let® bind = X 2.)\° v.\% env. \° y.if° == y then v else env Q% y
in
let® preeval =
fix® (* eval * expr \® env.
case’ expr of
Var z — env @° g
Cte n — Value” n
Add e e, — case” (eval @°¢; @Q° env) of
Raise e — Raise” e
Value n — case” (eval Q° e; @Q° env) of
Raise ¢ — Raise” ¢
Value m — Value® (n +°m)
Div e; e — case” (eval @Q°e; @Q° env) of
Raise e — Raise” ¢
Value n — case” (eval Q° e; @° env) of
Raise ¢ — Raise” e
Value m — if” (lift m) == "0")
then Raise” ”Div. by zero’
else Value” (n div®m)

’

in
let® ueval = preeval @° (Div” (Cte” 10")(Add” (Var” 0%)(Cte” 2%)))
in (...)

Figure 8.1: An evaluator for untyped lambda-calculus

8.1. Running Fxrample 7

case (Num 2) of
Fun f — fQ(Num 3)

Observe that the case is evaluated in run-time, and when this happens an error will
be produced since the number 2 is not a function.

Bibliography

“ El camino es largo y lleno de dificultades. A veces, por extraviar la ruta, hay
que retroceder; otras, por caminar demasiado aprisa, nos separamos de las masas;
en ocasiones, por hacerlo lentamente, sentimos el aliento cercano de los que nos
pisan los talones. Fs nuestra ambicion de revolucionarios, tratamos de caminar
tan aprisa como sea posible, abriendo caminos, pero sabemos que tememos que
nutrirnos de las masa y que ésta solo podrd avanzar mds rdpido si la alentamos
con nuestro ejemplo.”

La Educacién Directa, El Socialismo y el Hombre en Cuba (semanario Marcha,
12 de Marzo de 1965)

Ernesto Che Guevara - La Revolucion, Escritos Esenciales

Seleccién y Prélogo de Marcos Mayer

[Badenes and Martinez Lépez, 2002] Hernan Badenes and Pablo E. Martinez Lépez. Simpli-
fying and solving qualified types for principal type specification. In WAIT 2002, Argentine
Workshop on Theoretical Computer Science, 2002.

[Badenes, 2003] Hernédn Badenes. Simplifying and solving qualified types for principal type
specification, 2003. Licentiate Final Work, UNLP.

[Berry and Boudol, 1990] G. Berry and G. Boudol. The chemical abstract machine. In Pro-
ceedings of the 17th ACM Symposium on Principles of Programming Languages, 1990.

[Bjorner et al., 1988] Dines Bjgrner, Andrei P. Ershov, and Neil D. Jones, editors. Partial
Evaluation and Mized Computation, North Holland, 1988. IFIP World Congress Proceed-
ings, Elsevier Science Publishers B.V.

[Breazu-Tannen et al., 1991] Val Breazu-Tannen, Thierry Coquand, Carl A. Gunter, and An-
dre Scedrov. Inheritance as implicit coercion. Information and Computation, 93:172 221,
1991.

[Consel and Danvy, 1993] Charles Consel and Olivier Danvy. Tutorial notes on partial eval-
uation. In Susan L. Graham, editor, Proceedings of 20th ACM SIGPLAN-SIGACT An-
nual Symposium on Principles of Programming Languages (POPL ’93), pages 493-501,
Charleston, South Carolina, USA, January 1993. ACM Press.

[Damas and Milner, 1982] Luis Damas and Robin Milner. Principal type-schemes for func-
tional languages. In Proceedings of the Ninth Annual ACM Symposium on Principles of
Programming Languages, pages 207-212, Albuquerque, New Mexico, January 1982.

[Danvy et al., 1996] Olivier Danvy, Robert Gliick, and Peter Thiemann, editors. Selected pa-
pers of the International Seminar “Partial Evaluation”, volume 1110 of Lecture Notes in
Computer Science, Dagstuhl, Germany, February 1996. Springer-Verlag, Heidelberg, Ger-
many.

[Futamura, 1971] Yoshihiko Futamura. Partial evaluation of computation process - An ap-
proach to a compiler-compiler. Computer, Systems, Controls, 2(5):45 50, 1971.

79

80 Bibliography

[Hannan and Miller, 1992] John Hannan and Dale Miller. From operational semantics to ab-
stract machines. Mathematical Structures in Computer Science, 2(4):415 459, 1992.

Hughes, 1996] John Hughes. Type specialisation for the A-calculus; or, a new paradigm for
g g g
partial evaluation based on type inference. In Danvy et al. [1996], pages 183-215.

[Hughes, 1998] John Hughes. Type specialization. In ACM Computing Surveys, volume 30.
ACM Press, September 1998. Article 14. Special issue: electronic supplement to the Septem-
ber 1998 issue.

[Jones and Reid, 1994-2003] Mark P Jones and Alastair Reid. Haskell interpreter hugs98,
1994-2003. http://www.haskell.org/hugs/.

[Jones et al., 1985] Neil D. Jones, Peter Sestoft, and Harald Sgndergaard. An experiment
in partial evaluation: The generation of a compiler generator. In Jean-Pierre Jouannaud,
editor, Proceedings of the 1st International Conference on Rewriting Techniques and Appli-
cations, volume 202 of Lecture Notes in Computer Science (LNCS), pages 124 140, Dijon,
France, May 1985. Springer-Verlag.

[Jones et al., 1989] Neil D. Jones, Peter Sestoft, and Harald Sgndergaard. MIX: A self-
applicable partial evaluator for experiments in compiler generation. Lisp and Symbolic
Computation, 2(1):9 50, February 1989.

[Jones et al., 1993] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation

and Automatic Program Generation. Prentice Hall International Series in Computer Science,
1993. Available online at URL: http://www.dina.dk/“sestoft/pebook/pebook.html.

[Jones, 1988] Neil D. Jones. Challenging problems in partial evaluation and mixed computa-
tion. In Bjgrner et al. [1988], pages 1 14.

[Jones, 1994a] Mark P. Jones. Qualified Types: Theory and Practice. Distinguished Disserta-
tions in Computer Science. Cambridge University Press, 1994.

[Jones, 1994b] Mark P. Jones. Simplifying and improving qualified types, June 1994. Research
Report YALEU/DCS/RR-1040, Yale University.

[Martinez Lépez and Hughes, 2004] Pablo E. Martinez Lépez and John Hughes. Principal
type specialisation. In Proceedings of Asian Symposium on Partial Evaluation and Semantic
-Based Program Manipulation (ASIA-PEPM). ACM Press, September 2004.

[Martinez Lépez, 2004] Pablo E. Martinez Lépez. Type Specialisation of Polymorphic Lan-
guages. PhD thesis, University of Buenos Aires, 2004. (In preparation).

[Milner, 1978] Robin Milner. A theory of type polymorphism in programming. In Journal of
Computer and System Sciences, volume 17 of 3, 1978.

[Mogensen, 1996] Torben /E. Mogensen. Evolution of partial evaluators: Removing inherited
limits. In Danvy et al. [1996], pages 303-321.

[Mogensen, 1998] Torben A. Mogensen. Inherited limits. ACM Computing Surveys, 30(3),
September 1998.

[Peyton Jones and Hughes (editors), 1999] Simon Peyton Jones and John Hughes (editors).
Haskell 98: A non-strict, purely functional language, February 1999.

URL: http://www.haskell.org/onlinereport/.

[Remy, 1989] Didier Remy. Typechecking records and variants in a natural extension of ML.
In Sixteenth Annual ACM Symposium on Principles of Programming Languages, January
1989. Austin, Texas.

[The University Court of the University of Glasgow, 2004] The University Court of the Uni-
versity of Glasgow. Haskell Compiler GHC, 2004. http://www.haskell.org/ghc/.

Bibliography 81

[Thibault et al., 1998] Scott Thibault, Charles Consel, and Gilles Muller. Safe and efficient
active network programming. In Proceedings of the 17th IEEE Symposium on Reliable
Distributed Systems, pages 135-143, West Lafayette, Indiana, USA, October 1998.

[Torvalds and Stallman, 2004] Linus Torvalds and Richard Stallman. Operating system
GNU/Linux, 2004. http://www.gnu.org and http://www.linux.org.

[Wadler, 1995] Philip Wadler. Advanced functional programming, first international spring
school on advanced functional programming techniques, bastad, sweden, may 24-30, 1995,
tutorial text. In Advanced Functional Programming, volume 925 of Lecture Notes in Com-
puter Science. Springer, 1995.

[Wand, 1982] Mitchell Wand. Deriving target code as a representation of continuation se-

mantics. ACM Transactions on Programming Languages and Systems, 4(3):496 517, July
1982.

Appendix A

Proofs

“ Lo creia, pero la semilla de la duda estaba ahi, y permanecio, y de vez en
cuando echaba una pequena raiz. Fsa semilla que crecia lo cambio todo. Hizo que
Ender prestara mds atencion a lo que la gente queria decir, no a lo que decia. Le
hizo mds sabio.”

VIII Rata
El juego de Ender
Orson Scott Card

In this appendix, we present the proofs of propositions, lemmas, and theorems used
to prove the property of principality for the specialization of dynamic sum-types.

A.1 Proof of proposition 3.7 from section 3.3
PROPOSITION 3.7. If h: A |L k. ¢ 10, and A"H-v: A, then A" | T, k.. €'[v/h] : 0.

Proof: By induction on the RT derivation.
Extending Proposition 6.11 from [Martinez Lépez, 2004].

Case (RT-DCONSTR): We know that

AL ke TJI-

(AH-v,: CFe T Ak, Uy ck e 7.7HasC 7. ck Th) ke DAkA]
AR vy, HasC 7, C7 71 v, : ConstrsOf 7]

Ji 1.
A ‘]‘—]‘? I_R.T C’”mi € 7—8

By IH on the hypothesis of the rule, we know that
A" T k., €v/h] TJI- (A1)

Additionally, applying (trans) to A’ H= A and the entailments on the hypothesis of
the rule, we obtain

A" H- (vp[v/h] - C* € To! Ak, U [0/ D] - C* € 7'7HasC 7! C* T)repans; (A2)
A"t vy, [v/h] s HasC 7, C7 7}, ve5[v/h] : ConstrsOf 7,

Using A.1 and A.2 in order to apply (RT-DCONSTR), we have

AI | Il; l_R’T C]

U [v/h

p€'v/h] T,

The result follows from C’gm wym) € 0/h] = (Cgm]_ e')[v/hl].

'J

83

84

Appendiz A. Proofs

Case (RT-DCASE): We know that

AL k€Tl

(hk : Ak ‘]; "RT)\T;e;c : 7',; — Tl)keg

(A H- v, : CF € 7/?2HasC 7/ CF 7/ v, : CF € 7'2A))ren
A H v ConstrsOf 7/

A | T, k. protocase, ¢’ with v, of
(Ch, @k = eilvn/hu])ren

s’

Applying (Trans) to A’ H= A and the entailments on the hypothesis of the rule, we
obtain

A" W= (v, [v/h] : CF € 712HasC 7! CF 7], vi[v/h] : CF € T12A) ken (A.3)
A" H veslv/h] : ConstrsOf 7/

By IH, we have
A"|T by €efv/h] 7. (A4)

Using A.3, A.4 and residual typing of lambda abstractions on the hypothesis of
the rule in order to apply (RT-DCASE), we have

A" | I k. protocase, €¢'[v/h] with v [v/h]| of : 7'
Cory fo/n] Tk = €klve[v/h]/hy]

The result follows from the fact that e [vg[v/h]/h] = (€}.[ve/hi])[v/h] since hy, # h
and

protocase, €'[v/h] with v.[v/h] of = (protocase, ¢’ with v, of
Co o Tk = €i[velv/h]/hi] (Cr x = eilve/M])ren)

Uy, Vmy,

[v/h]

A.2 Proof of theorem 3.8 from section 3.3

THEOREM 3.8. If h : A | L k. ¢ 10, and C : (h: A|o) > (b : A"|d'), then
' A"k, Cle'] =o'

Proof: The extension that we made to system RT does not modify the proof of Theorem
6.12 from [Martinez Lépez, 2004]. That proof only applies Definition 2.20, (rRT-QIN),
(RT-QOUT), (RT-GEN), let, and Proposition 3.7.

A.3 Proof of lemma 3.9 from section 3.4

LEMMA 3.9. If hy : At H vy : Ay and h : A H vy : Ck ¢ 7'?A1, v, : ConstrsOf 7' then
h: AH-if, C* € v, then vl /hi] else o : CF € 774,

A.4. Proof of proposition 3.11 from section 3./ 85

Proof: By hypothesis we have that
hl . AI H- Vg AQ (A5)

and

h: A H v : ConstrsOf 7/ (A.6)

Now, applying (ENTL-GUARD) to A.5 and A.6, we obtain
h:A hy:CFer?A Hif, CF € v, then v, else o : CF € 7/7A, (A7)
It is also trivially true that
h:AHh:Awv :CFer'?A; (A.8)

The result follows from applying (trans) to A.7 and A.8, and since EV(v.) C h.

A.4 Proof of proposition 3.11 from section 3.4

ProproSITION 3.11. If A, 7 < o then SAH, 7 — So.

Proof: By induction on the SR derivation.
Extending Proposition 6.13 from [Martinez Lépez, 2004].

Case (SrR-DDT): We know that

(Ak I_SR D(Ck) — Tli)kGD
(AH CF e 7'?A, CF € 7'?HasC 7' C* 7))ien
A H ConstrsOf 7/

Ak, D" < 7

Applying IH and (close) on the hypothesis, we obtain that
(S Ay by D(C*) — ST)ken (A.9)
and
(SAHS(C* e 7?7A), S (CF € "?HasC 7' C* 7)))ren
S A H S (ConstrsOf 7')

These last two entailments are equivalent to

(SAH C*e ST'?7S Ay, CF € ST'7HasC (S7') CF (ST0))ken (A.10)
S A H- ConstrsOf (S 7')

Finally, applying (sk-ppT) with A.9 and A.10, we obtain

SAk, D” < S7

86 Appendixz A. Proofs

A.5 Proof of proposition 3.12 from section 3.4

PROPOSITION 3.12. If Ak, 7 — o and A'H A, then A", 7 — 0.

Proof: By induction on the SR derivation.
Extending Proposition 6.14 from [Martinez Lépez, 2004].

Case (SrR-DDT): We know that

(Ak l_SR D(Ck) — T];)kED
(AH-C* e 1'?7A, CF € 7"7HasC 7' CF 7)kep
A H- ConstrsOf 7'

Ak, D? — 7

and we obtain

(A"H- C* € 777y, CF € 77HasC 7' C* 7))en (A.11)
A" H ConstrsOf 7/

by applying (Trans) to A’ H- A and

(AH- CF e 7?7A,, CF € 7"?HasC 7' C* 7))ren
A H ConstrsOf 7/

where A, satisfies
(Ag = D(C*) = T)ken (A.12)

The result follows from applying (sr-ppT) with A.11 and A.12 , proving

A’ Fr D” — 7

A.6 Proof of theorem 3.13 from section 3.4

THEOREM 3.13. If Ak, 7 — o and C: (A |o)> (A" |0') then A", 7 — o'

Proof: The extension that we have made to system SR does not modify the proof of
Theorem 6.15 from [Martinez Lépez, 2004]. This proof uses Definition 2.20, (SrR-INST),
(SR-QIN), (SR-QOUT), (SR-GEN) and Proposition 3.12.

A.7 Proof of theorem 3.14 from section 3.4

THEOREM 3.14. If A | T K e: 7 — € : 0, and for allz : 7, — ' : 7, € T,
AR, 7 — 7., then A, 7 — 0.

Proof: By induction on the P derivation.
Extending Theorem 6.19 from [Martinez Lépez, 2004].

A.7. Proof of theorem 3.1/ from section 3./ 87

Case (bDconNsTR): We know that

A[THe:D(C7) < €7

(Ak l_SR, D(Ck) — TI;)kED/\/ﬁé]'

(A H- vy : ck e ch?Ak,j)mk ke 7.7HasC 7. ck T4) ke DAkA]
AR vy, HasC 7] C7 7/ v, 1 ConstrsOf 7]

A|TH Ce:D” — Cl €7

By IH we know that ‘
Ak, D(CY) = 7

and by hypothesis we also know that
(Ak e D(CY) = T)kennns
So, defining A; = A, we have that
(Ag b D(CY) — 7)gen (A.13)

Now, we have to prove that

(AH- C* € 717A,, C* € 717HasC 7! C* 7))ken (A.14)
A H- ConstrsOf 7.

By (univ), it is enough to prove

(AW CF e 71?2, CF € 7/7HasC 7/ CF 7)) kennrs; (A.15)
AH CTer)?A, C7 e r)?HasC 7, C7 7] (A.16)
A H ConstrsOf 7, (A.17)

Item A.15) holds trivially by hypothesis.
For item A.16) we know that A H- HasC 7/ C’ 7; and so0

AH A HasC 7, C7 7] (A.18)
A,HasC 7, C7 7 H A (A.19)
A,HasC 7, C7 7; H-HasC 1, C7 7; (A.20)
are trivially true. Applying (HAsc-GuarD) to A.19 and A.20, we obtain
A,HasC 7, C7 7j 1 C7 e 77A (A.21)
A,HasC 7, C7 1) C7 € 7[7HasC 1, C7 7] (A.22)

Then, applying (univ) to A.21 and A.22 , we have
A, HasC 7, ¢/ 7/ 1 C7 € 7)?A, C7 € 7[7HasC 7, C7 7] (A.23)

Finally, we apply (Trans) to A.18 and A.23.
Item A.17) holds trivially by hypothesis.

The result follows from applying (sr-ppT) to A.13 and A.14.

Case (DcasE): It holds trivially by hypothesis.

88 Appendixz A. Proofs

A.8 Proof of theorem 3.15 from section 3.4

THEOREM 3.15. If A [T e:7 — €0, then A|T_ . k. € :0.

(RT) ' RT

Proof: By induction on the P derivation.
Extending Theorem 6.20 from [Martinez Ldopez, 2004]. The proof is trivial by applying
[H when necessary.

A.9 Proof of proposition 3.16 from section 3.4

PROPOSITION 3.16. If h : A | 'k, e : 7 — € 7" and b : A" H v : A, then
h ATk e:rm — €hfv]:7

Proof: By induction on the P derivation.
Extending Proposition 6.21 from [Martinez Lépez, 2004].

Case (bconNsTR): We know that

A\Fl—Pe:D(C'j) — € 7]

(Ak l_SR, D(Ck) — TI;)kGD/\kij

(A H- vy : ck e Té?Ak,j)mk -k e 7.7HasC 7/ Cck Th) ke DAkA]
A M- vy, HasC 7, C7 7/ v : ConstrsOf 7,

AITH Ce:D” — C] €7
¥

By IH, we have
A"|TH e:D(C?) — €v/h]: T (A.24)

Applying (rrans) to A’ H A and the entailments on the hypothesis, we have that

(A" vplv/h] - C* €)20k, v, [v/h] : C* € T/7HasC 7, C* 7 keprir
A" = v, [v/h] : HasC 7, C7 7]
A"H vesv/h] : ConstrsOf 7.

(A.25)

Applying (bconsTr) to A.24, A.25 and the SR derivations in the hypothesis, we
obtain

A"|TH C”e:D"” — Cgmj wyn € [0/R] T (A.26)

The result follows since Cgmj wym € [0/h] = (C’gm]_ e[v/h).

A.10. Proof of proposition 3.17 from section 3.4 89

Case (pcasg): We know that

AR, 7 = 7

A|TH e:D” < ¢:7]

(B : Ay | T H, Nageep, : D(CF) =7 < Aaheh 1) — T)ies
(A H- v, : CF € 7/?2HasC 7! C% 7] 05 : CF € 7'2A) ke
A H v : ConstrsOf 7,

A |T'F, case e of
(Cy =1 = ex)ren
T
(%
protocase, ¢ with v, of
(Ch,, 7 = eilon/hi])ren

Uy,

cr!

By Proposition 3.12, IH and applying (trans) to A’ H= A and the entailments on
the hypothesis, we have that

AT = 7

A'"|TH e:D” < €'v/h]: 7.

(A" H= v, [v/h] : C* € 7/7HasC 7, C* 7}, vp[v/h] - CF € T)2Ap)hes
A"H ve5[v/h] - ConstrsOf 7.

Now, applying (bcasg) to these last facts and the third hypothesis, we obtain

protocase, ¢'[v/h| with v [v/h] of
(cy [v/h] ry, = eplve[v/h]/he])ken

Umk

The result follows since e} [vg[v/h]/hy] = (€}[vr/hi])[v/h] and hy # h.

A.10 Proof of proposition 3.17 from section 3.4

PROPOSITION 3.17. IfA|T K e:7 — € :0then SA|SThH e:7 — €:So0.

Proof: By induction on the P derivation.
Extending Proposition 6.22 from [Martinez Ldopez, 2004].

Case (bconsTR): It holds by applying Proposition 3.11 on all judgements from system
SR in the hypothesis of the rule, [H and (ciose). Finally, we must apply (DCONSTR).

Case (pDcasEg): It holds by applying Proposition 3.11, TH on all judgements from system
P in the hypothesis of the rule and (close). Finally, we must apply (bcasg).

90 Appendixz A. Proofs

A.11 Proof of lemma 3.18 from section 3.4

LEMMA 3.18. If h: ATk e:7 < ¢ :0 then EV(e') Ch

Proof: By induction on the P derivation.
Extending Lemma 6.23 from [Martinez Lopez, 2004].

Case (DconNsSTR): We know that

ATk e:D(CY) — e 7

(Ak R D(CY) = T kenrrz

(At v : CF € T)2Ak, v, : CF € 7)7HasC 7, C* 7)) keprir
A M- vy, HasC 7] C7 7/ v, : ConstrsOf 7/

AITH Ce:D” — Cl €:7
- 7

Let us take h as evidence of A. Applying IH we have that EV(e') C h and we also
know, by entailment, that EV(v,,;) C h, so the result follows since EV(C] ¢€') =

EV(vm,) UEV(e).
Case (pcasg): We know that

Ab, 17 = 7
A‘FI—PBZDD — e';Té
(b : A | T h, Nageep, s D(CF) =7 < Aaheh 1) — T)ies
(At v, : CF € 7J7HasC 7, C* 74, v 1 CF € 720)pen
A H v 0 ConstrsOf 77
A |T'F, case e of
(C) zp — er)ren
i T
N

protocase, ¢ with v, of
(Ch,. @k = lvn/Mu)ren

cr!

Let us take h as evidence of A. The evidence variables of the residual term
produced are

EV(e') | JEV(ves) [JEV(0m)ren | JEV(ELon/hi])ren (A.27)

By IH on all judgements from system P in the hypothesis of the rule we obtain that
EV(e') C h and (EV(e)) C hy)rep. We have that (EV(e}[ve/hi]) = EV(vk))kes,
by substitution. Because of entailments of predicates in the hypothesis of the rule,
we have that (EV(vg) C h)gep, EV(ves) € h and (EV(vp,) € h)kep. Finally, the
result follows from A.27 and the described remarks.

A.12. Proof of lemma 3.19 from section 3.4 91

A.12 Proof of lemma 3.19 from section 3.4

LEMMA 3.19. If A | T' K e: 7 <= € : o then there exist B;, A,, and 7' such that
o=Vp;A; = T

Proof: By induction on the P derivation.
Extending Lemma 6.24 from [Martinez Lépez, 2004].

Case (DCONSTR): It holds trivially by just taking o = V(.00 = 7.

Case (DcasEg): It holds trivially by just taking o = V0.0) = 7'

A.13 Proof of proposition 4.2 from section 4.1

ProrosiTiON 42. If A" [T H e:7 — ¢ :A=17,then A' | [He:7 — ¢€:
Genr a/(A = 7'), and both derivations only differ in the application of rule (GEN).

Proof: The extension that we have made to the system P does not modify the proof of
Proposition 7.2 from [Martinez Lopez, 2004]. This proof uses repeated applications of
(GEN).

A.14 Proof of proposition 4.3 from section 4.1
ProrosiTION 43. Ifh: A|T'He:7 — € :7 then h: SA|STHe:7 — €:57

Proof: By induction on the S derivation.
Extending Proposition 7.4 from [Martinez Ldpez, 2004]. The proof follows the same
structure that Proposition 3.17.

A.15 Proof of proposition 4.4 from section 4.1
PROPOSITION 44. Ifh: A|THe:7 — € :7 and A'H v : A, then
A'|THe:m < €h/v]: 7

Proof: By induction on the S derivation.
Extending Proposition 7.5 from [Martinez Lopez, 2004]. The proof follows the same
structure that Proposition 3.16 .

A.16 Proof of theorem 4.5 from section 4.1
THEOREM 4.5. If A [T e:7 — € : 7 then A|[ThHe:7 — € : 7.

Proof: By induction on the S derivation.
Extending Proposition 7.6 from [Martinez Lépez, 2004]. The proof is trivial using TH.

92

Appendiz A. Proofs

A.17 Proof of theorem 4.6 from section 4.1

THEOREM 4.6. If h: A |T kK, e: 7 — € : o, then there exist h,, A e\ 7., and C’
such that

a) hy

87 87 "8

. ! . (-
A ThHe:m — € 7]

b) C':Genr(AL = 71))>(h:A0)

c) C[Ah,.e]=¢

Proof: By induction on the P derivation.
Extending Proposition 7.7 from [Martinez Lépez, 2004].

Case (DconNsTR): We know that

A|THe: D(Cj)‘—)e’:T]'-

(Ag K D(Ck) > T)keDAk£]

(A H— v CF e T’7Ak,vmk ke 7.7HasC 7. ck T4) ke DAkA]
A K- vy, HasC 7] c? 7i, Ves © ConstrsOf 7/

A|TH C”e:D” — Cl €7

e

By IH, we have that there exist h;, A7, e}, 7, and C7 such that

,57

Ay ThHe:D(CY) < € 7 (A.28)
C:: Genp(A; = 755) > (A | 7)) (A.29)
C2[ARS.e] =€ (A.30)

By Definition 2.20 and A.29, we also know that there exist a substitution S} and
evidence v} such that

7j = S;Tjs (A.31)
AH vl SIAS (A.32)
C:=let, x =[] in z((v)) (A.33)

By hypothesis, we also have that

(A K D(Ck) > Ty) ke DAk (A.34)
(AH-wy,: C* € 728k, vy, : CF € 7/7HasC 7! CF T))repars; (A.35)
A H v, : ConstrsOf 7/ (A.36)

Let us take h} = (h, hy, . h2), Ay = (A, HasC 77 C7 (S}7).), SiAY), 7) = 7, and

675

C! =let, x =[] in x((h hu,,.; ve)), so we need to prove that

a) A'|TH C”e:D° — e’:T'
) s s ¥ hoy s e

A.17. Proof of theorem 4.6 from section 4.1 93

b) C.:Genr(AL=7))> (A7)

c) CLAR,.C] e]=Cl ¢

For item a) we apply Proposition 4.3 with S? and A.28, obtaining
SIAY| ST e: D(CY) < € : ST,

By A.31 and because we do not generalize variables appearing in T" (and so,
they do not appear in the domain of S¥), this last judgement is equivalent to

SIA[The:D(CY) — e (A.37)
Then, applying Proposition 4.4 to A.37 and Al H- S?A?, we have that
AT He:D(CY) < € 7] (A.38)

By definition of A’ and A.31, it is very easy to verify that
y s y y y

Al H- ho,,, + HasC T, CV 7 (A.39)
Applying (Trans) to AL H A and A.35 and A.36, we have that
(A, H- Vi - C S T,?Ak, (A40)
Upn,, - C* € 7/7HasC 7/ C* Th) ke DAk £
Al H vg : ConstrsOf 7, (A.41)

Finally, applying (s-pconsTr) with A.38, A.34, A.40, A.39 and A.41, we obtain
the desired property.

For item b) we take the substitution Id and evidence v = (h, vy, v). By Defini-
tion 2.20, we need to prove that
= 1d7, (A.42)
AH v IdAL (A.43)
Item A.42) holds trivially by definition of Id.
Item A.43) holds by applying (univ) several times and then definition of A{,
A.32 and the hypothesis A i HasC 7, C7 7],

For item c), we have that (Ah.. C7 4 et) = (Ah, hy,, ,hi. C7 4 e') by definition

’Um7 e

of A, and A!. Using Definition 2 20 and evidence v, we obtaln that

Cy[Ah by G, €] = (A, B2CL) (v,)

'l)m)y e g e

On the other hand, we have that EV(e,) C h by Lemma 3.18 and h$ # h #
h so we can rewrite the last equation as

Vm,)

CL[Ah, by, . C y el] = ij]_ el [vs/h]

S

The result follows since €’[v¢/h] = ¢’ by A.30.

94 Appendixz A. Proofs

Case (pcasg): We know that

AR, 7 = 7

ATk e:D” — €:7]

(hk : Ak ‘ r l_P)\Dmk.ek : D(Ck) ")\T;CE;C : Tllc — Tl)kEB
(AH- v, : C* € 7/?2HasC 7/ C* 7/, v : CF € T/2Ap)ren
A H- v : ConstrsOf 7,

A|TF, casee of
(Cy x — er)ren
I T
N
protocase, ¢ with v of
(Cy. = eiloe/me))ken
o7

k

By IH on the second hypothesis of the rule, we have that there exist h,, A?,, 7.,
and C,; such that

h:; : A:; I ThHe:D” — € Té; (A.44)
Co : Genr (A = 7)) > (A7) (A.45)
Co[AR; €] =€ (A.46)

On the other hand, we apply TH on judgements related to abstractions (the third
hypothesis of the rule), and obtain that for each k, there exist hj, A}, 7., 7. and
C}, such that

hi AL | Tk Xagep: D(CF) =1 < M\ho.ehe : oo — 71 (A.47)
Cip:Genp(A; =1 —> 1) > (A7, —7) (A.48)
CrlAR AT, €] = A7).€), (A.49)

By Definition 2.20 applied to A.45, we know that there exist a substitution S
and evidence v, such that

Ty = Se Ty (A.50)
h:AH- v : AZ; (A.51)
Ceo =let, z =[] in z((ve))

The conversion C, from A.48 implies the existence of a substitution S, and evi-
dence v, such that

7 — 7 = Si(1s — 7)) (A.52)
h,k : Ak H- ’I);C : SkAZ (A53)
Cy =let, x =[] in z((v}))

A.17. Proof of theorem 4.6 from section 4.1 95

Let us take bl = (h,h%, (h; ,hy Jeen, h;) and

’vmk 3 Mg

Als = (Aa A:’Sv (A54)
(C* € Se 7l "HasC (Se7l,) CF (Skths), CF € Sl 7Sk} ke,
ConstrsOf S, 7,)

So, we need to prove that

a) Al |T K casee of T
(Cy T — ex)ren
— protocase, ¢ with h; of T
(sz;mk Tps = €y, /i) ke

b) C.:Genr(AL,=1")> (A |7

c) C'[Ah! .protocase, ¢, with h? of = protocase, ¢ with v, of
S S & v S Ves & v
(Chs,, ke = ewlhy /Miwen] (G, i — eylvn/hil)ren

/

Item a) By definition of A’ (A.54) and application of Proposition 3.12 to the
first hypothesis of the rule and (ncask) with AL H- A, we have that

A R (A.55)

S 'SR

Additionally, by applying Proposition 4.3 to A.44 with S.,, A.50 , Proposi-
tion 4.4 with A} H- S, A% and the fact that dom(S.) FTV(I') = 0, we
know that |

Al THe:D” — e .7 (A.56)

Beside this, by applying Proposition 4.3 to A.47 with Sy, A.52 and the fact
that dom(S,) (N FTV(T') =), we have that

AT R Xager: D(CY) =" 7 — Aahoehe i — 7' (A.57)
Besides, by definition of A, A.50 and A.52, it is very easy to verify that

(AL H= Ry 2 CPeriHasC rp CF 7i by 0 CF € 29k A ken (A58)
ALK by : ConstrsOf 7.

The result follows from applying (s-pcask) with A.55, A.56, A.57 and A.58.
Item b) Let us take the substitution Id and evidence

v=(h,ve, (U, ,if, C* € v., then v.|v;/hs] else o keBs Ves
E k k

We have to prove that

' =1d7’' (A.59)
AHv: Al (A.60)

Item A.59) holds trivially by definition of Id.

96 Appendixz A. Proofs

For item A.60), it is enough to prove that (by virtue of A.54)
h:AH A ()
h: AR AL ()
(h: AW C* € Syr, ?HasC (Ser7s) CF (Spmi) ke (A.63)
(h: AW CF € Suth 7Sk}) ken (A.64)
h: At ConstrsOf (S 7)) ()

Item A.61) holds trivially with evidence h.

Item A.62) holds by A.51 with evidence v, .

Item A.63) holds by A.50, A.52 and hypothesis with evidence v,,, .

For item A.64), it is very easy to verify by hypothesis that

AH- v, : CF € 7)7A4, vy : ConstrsOf 7/

By A.50 and application of Lemma 3.9 to this last entailment and
A.53, we have that

A H-if, C* € v,, then v, [v,/h;] else o : CF € 7/25, A%
Item A.65) holds by A.50 and hypothesis with evidence v,;.
Finally, by Definition 2.20 we know that

C' =let, z =
in z((h, ver , (U, , if, C* € v,, then vy [k /i) else @)rep, ves))

For item c), by definition of C/, and A’ we have that

(protocase, €, with h; of (A.66)
(Ch, oo > clulh Jh)ics)
[hy Vet (Vimy,, iy C* € v, then v [vk/hi] else ®)kep, ves/
b, (S S, e b3,
Since EV(e;) C hy, EV(ves) C h, EV(vy) C hy, EV(vi[vg/ht]) C R in addi-
tion to EV(ey:[hy, /hi]) C by, and hi # h # hy # hy # by, # h;_, so A.66
can be rewritten as
protocase, ¢;[v. /hy, | with by [v./h;] of
(C’Iff)mk] zh, — eh[if, CF € v, then v [vg/hy] else o /h])ien
(A.67)

[Umk/h

By A.46, A.51 and substitutions, this last term is equivalent to

protocase, ¢ with v, of
(i, #he — epu[if, CF € v, then vy else o /hi][ve/hi])ren

So, we need to prove that

protocase, ¢ with v of
(C’fmk zh, — e)]if, C* € v, then v}, else o /hi][ve/h])kcn

= protocase, ¢ with v of
(Ch., @ = lvn/hu]ren

We have to consider two cases accordingly to equality of protocase,.

A.18. Proof of proposition 4.7 from section 4.2 97

Case v, = {C*}1cr) By Definition 3.6, it is enough to prove that

(A€ [ve/hi] =
AT}s €} [if, C* € v,, then v, else o /hil[ve/hi))keBn 1

By the form of v., and the reduction rule for if, in Figure 2.4, this last
equation is equivalent to

()\x;ce; [Uk/hk} =)\.Z';cs .6;5 [U;C/hZ] [Uk/hk])keB ali (A68)
The result follows from A.49 and A.53.

Case v.; = h') By Definition 3.7, it is enough to prove that

(At [0/] Do f) =
Az, e}, [if, CF € B then v}, else o /h;][vi/hi][Dn/h ke

for any D,, of the form {C*}.c;. So, by substitution, EV(v}) C hy, and
hir # h', we have that this last equation is equivalent to

(At 40/ 1] Do f] =
AT €} [if, C* € D, then v, else o /h}][vy/hi][Dn/P)kesni

Finally, we have to proceed in the same way as for v, = {C*},e;.

A.18 Proof of proposition 4.7 from section 4.2

PROPOSITION 4.7. If o ~V ¢’ then Uo = U ¢,
Proof: By induction on the derivation of 0 ~V ¢'. Extending Proposition 7.8 from
[Martinez Lépez, 2004].

The result follows trivially from TH and the definition of substitution.

A.19 Proof of proposition 4.8 from section 4.2

PROPOSITION 4.8. If S0 = S¢o', then 0 ~V o' and there exists a substitution T such
that S =TU.

Proof: Extending Proposition nose from [Martinez Lopez, 2004].

The extension that we have made does not modify the proof of this property. This
proof consists on showing that every derivation of the form o ~V ¢’ is finite and then
we have four cases to consider, which are proved using properties of substitutions.

A.20 Proof of proposition 4.9 from section 4.2

PROPOSITION 4.9. If A" | A H-w § then A', A H- 6.
Proof: By definition of A’ | A H-w § and (¥st).

98 Appendixz A. Proofs

A.21 Proof of proposition 4.10 from section 4.2
PrROPOSITION 4.10. If AR, o T < 7 then A, 7 — 7'

Proof: By induction on the W-SR derivation.
Extending Proposition 7.11 from [Martinez Lépez, 2004].

Case (wWsr-DDT): It holds trivially by applying IH, taking

A= (CFet?A,,,C" € t?HasC t CF 7/)rep, ConstrsOf ¢

ka

and then applying (sr-nDT) because A H- A.

A.22 Proof of proposition 4.11 from section 4.2

ProprOSITION 4.11. If A, 7 — o then Al, K, ox T — 7., with all the residual

variables fresh, and there exists C! such that C! : Geng(Al = 7.) > (A] o).

Proof: By induction on the SR derivation.
Extending Proposition 7.12 from [Martinez Lépez, 2004].

Case (sr-DDT): We know that

(A o D(CY) =)ken
(AH-C* e 1?7, CF € 7"7HasC 7' CF 7)kep
A H- ConstrsOf 7'

Ak, D? — 7

By IH we know that there exist A, , 7, and C,, conversions such that
(Cuy Geng(Aw, = Tw,) > (Ak [74))ken

which means that there exist substitutions (Sk)gep and evidence (vg)gep such that

(74 = Sk Tuy ke (A.69)

Wi

(hk : Ak H=vg @ Sk Awk)keD (A-70)

We are under the assumption that ()., FTV(dom(S;)) = @ — If this is not the
case, we can carry out a-conversions. We also know by hypothesis that

(AH-v": C* € 720k)ken (A.71)
(AH- vy C* € 7'MHasC 7' C* 7)gen (A.72)
A H 02 : ConstrsOf 7/ (A.73)

We define 7/, = t, for ¢ fresh,

w

Al = ((C* € 17A,,, C* € 1?HasC t C* 7!)rep, ConstrsOf)

w Wy,

A.23. Proof of lemma 4.12 from section 4.2 99

and the substitution

n_ | T ift' =+t
St) = { Se(#) if ' € dom(Sk)

Let us also define evidence
v = ((if, C* € v*" then v, [vi"/hi] else o, v Vyep, v57)

) T my,

Now, we have to prove that

a) 7' =St
b) AH-w: (S(CFet?A,,),S(CF e t?HasCt C*F 7/

Wi

))kens S (ConstrsOf 1)
in order to establish the existence of the desired convertion.

Item a) holds trivially by definition of S.
For item b), distribute S and by its definition together with A.69, we obtain that

AH CF e 7?78 Ay, C* € 77HasC 7' C* 1{, ConstrsOf 7/

By (Univ), it is enough to prove that

A K- CFe 778 Ay, (A.74)
AH- CF € 7"?7HasC 7' C* 1, (A.75)
A H- ConstrsOf 7/ (A.76)

Item A.74) holds by applying Lemma 3.9 to A.70, A.71 and A.73, obtaining
(A H-if, C* € v then vy[vy"/hy] else o : CF € 778, Ay ken

Item A.75) holds trivially by A.72 with evidence v, .
Item A.76) holds trivially by A.73 with evidence v}!.

A.23 Proof of lemma 4.12 from section 4.2

LEMMA 4.12. If h: A | ST K, e:7 — € : 7' then EV(e') Ch

Proof: By induction on the W derivation. Extending Lemma 7.13 from [Martinez Lépez,
2004]. It holds trivially.

100 Appendixz A. Proofs

A.24 Proof of theorem 4.13 from section 4.2

THEOREM 4.13. If A | STk, e:7 — € :7' then A|STHe:7 — € : 7.

Proof: By induction on the W derivation.
Extending Theorem 7.14 from [Martinez Lépez, 2004].

Case (w-DCONSTR): By applying IH, Proposition 4.10 on the SR derivations that we
have in the hypothesis and Proposition 4.4 together with the fact that h, # hy,.

Case (w-DcaAsg): We have to use a doble induction like in Proposition 4.14.

The proof follows easily by applying IH when necessary, Proposition 4.10, Propo-
sition 4.4, Proposition 3.12, the unifications that we have in our hypothesis and
the fact that every evidence variable is a fresh one.

A.25 Proof of theorem 4.14 from section 4.2

THEOREM 4.14. If h: A | ST He:1m — € : 7', thenhl : Al | T, 'K, e:7 — e :
7,, and there exists a substitution R and evidence v,, such that

a) S~ RT,
b) ' =R7),

' RA!

w w

c) h:AHw
d) e = e,[h,/v,]

Proof:
By induction on S derivation. Extending Theorem 7.15 from [Martinez Lopez, 2004].

Case (s-DconNsTR): We know that

Ay | STHe:D(C?) < ¢ 7l

(A} K D(Ck) — Tl/cS)keD/\k;éj

k' sr
(A Hwp: CF e 7L 7AL vy, + CF € 7, THasC 7, CF 7y)kennkzj
s o7 AT '
Ayt vy, HasC 1 €7 7, g, ConstrsOf 7,
A, |STH G e:D” — CJ, e

J

(-
s Tje

By TH on the first hypothesis of the rule, we have that

Ay, :

J

Ay, | Ty, TRy e: D(C?) — e, 7,

wj wj

and there exist a substitution R and evidence v;5 such that

A.25. Proof of theorem 4.14 from section 4.2 101

S~R"T,, (
Tis = R™ T:U]_ (
hs : AgH v s R A, (

(

e = efwj [,UIH/h‘wj]

By Proposition 4.11 on the second hypothesis of the rule, we also know that there
exist conversions {C,, }kepaks; such that

(Cuy : Geng(Ayy, = 7y) > (AL | Tos) Jke DAk (A.81)

By Definition 2.20, A.81 is equivalent to the existence of substitutions Sy and
evidences vy, (for each k) such that

(Ths = SkTu, ke DAk] (A.82)
(hr + A H vk SkAwy) kennk (A.83)

Without loosing generality, we assume that the sets dom(R™), dom(Sk)renak
and {t} are disjoint (if that is not the case, a-conversions can be performed).

By application of H—, we obtain A, such that

A, = ((C* e t?A,,,C* € t?HasC t C* 7}, Jkeprnris (A.84)
HasCt C7 7/

w;?

ConstrsOf)

Let us take h;, = ((hy, h;f’mk)keD/\k;éj; h;f)mj hiy b)y A = (A, Ay,), T, = Ty,
T =1,
! ift' =t

R(t) =14 Su(t') if ' € dom(Sy)
R™(#) otherwise

I : k s s /18 s 8 s
and v,, = ((if, C* € v, then vi[v;/h;] else o, v} Jrepakzj, Uy s Vig, Vin). Now,

w

we have to prove that

a) S~ RT,,
b) 7, = Rt
C) As H-vy, : R (Aw; ij)

d) Cgrsn e = (C]zw ‘ 6;,,7,)[1)1'”/}111); h"wj]
Item a) holds by definition of R and A.77. Observe that R just behaves as R

when it is composed with 7, none of the variables that belongs to {t} or
dom(S}) can appear in T,,,.

102 Appendixz A. Proofs

[tem b) holds trivially by definition of R.
For item c), by A.84 we have to prove

A K R((CY e t?A,,,C* € t?HasC t C* 7},)repnnsss
HasCt C7 7/

w;

ConstrsOf ¢,
ij)

This last entailment is equivalent to

A H (C* € Rt?RA,,,, C* € Rt?HasC (Rt) C* (R7),))kennbrss
HasC (Rt) C7 (R7),),
ConstrsOf (Rt),
RA,,

which can be rewritten as follows

Ay H (Ck € TéS?SkAwk, Ck € TéS?HaSC Tés Ck (Skal’uk))kED/\k;éja
HasC 7, CY (RIHT{U].),
ConstrsOf 7, ,
RMA,,.

By A.78 and A.82, we have that

A, H (CF e 70 7Sk, Cck e 7, "HasC 7, C* T) ke DAk,
HasC 7/, C7 7/,
ConstrsOf 7, ,
R A,

In order to prove this entailment, it is enough to prove

(As H CF € 72 251 Aw, ke Daks (A.85)
(A i CF e 7 MHasC 7. C* 71) kepnrsi (A.86)
A, HHasC 7, C7 7, (A.87)
Ay H ConstrsOf 7, ()
Ay H RMA,, ()
A.85) can be proved using the third and fourth hypothesis, that is

(As H v : CF € 70 20}) kepnrsi (A.90)

Ay H vy« ConstrsOf 7, (A.91)

Thus we can apply Lemma 3.9 with A.83, A.90 and A.91, proving

(A Hif, C* € v}, then vi[v/h}] else o : C* € 7! 25, Ay, kennrz

A.86) holds by third hypothesis with evidence v}, .
A.87) holds by fourth hypothesis with evidence U, -
A.88) holds by fourth hypothesis with evidence v?,.

A.25. Proof of theorem 4.14 from section 4.2

A.89) holds by A.79 with evidence vg.

Item d)
cl ¢ = (Cl,
" vm;
= (CIZ;J,J
™

— J
B (Ch:fmj

e"ll))[’ll)/h”llli h”ll)]

e,) (if, C* € v3, then vi[v] /h]] else o,

S S
mk)kei)/\k;éja Umjs Vess Vi [D, hw]-]
w

S S
mk)keD/\kyéj; mj+ Yess VIH

/(b he,)kemk#y»h"’ e s ha]

el [(if, CF € v3, then v;[vi/h:] else e,

103

(A.92)

We know, by Lemma 4.12, that evidence variables h,,, appear only in ew
Additionally, h,,; is a freqh evidence variable, so A.92 can be rewritten as

J ro_ J
C’U:n7 (& - (Chw

which is the same that

/

g, €V, v [,]

J I J !
C’vs e = Ch,, o, /] C (1 [D,
mj g

Applying substitution and A.80, we obtain

J ro_ J !
Cu-:n]_ e = Cvfnj €

as we wanted.

Case (s-DcASE): A case have several branches.

number of them with a slightly more general property (observe a')).

Case (1 — branch):

!
ASl_SRT — Ts

Ay | STHe:D” — e 7
hi A3 | ST H Xay. 612D(C])—>DT — AL .€s 1T =T,

€s

A wg, .C' e 7! HasC 7/ C' 7i.,
7)] C'e T’ AN
COH@TY@Of T,

So, it is necessary to do induction on

A, | S

I' k case e of
CID r1 — €1
T
(_)
pro}tocasev el with v?, of
Cos,, s = €hs[vi/hi]

-
- Ts

104

Appendiz A. Proofs

By the outer IH, we obtain a substitution R, and evidences v, such that

hu, © A, ()
S~ R.[T,, ()
7. = R., (A.95)
(A.96)
(A.97)

Tw.TH,e:D° < e 7,

We We

e We

AgHve: R Ay,
eg = e;ue [7)e/h'we]
By the third hypothesis of the rule and A.94, we have that

By A5 | R, (T, T) b, Nayeg - D(CY) =" 1 — Aals.els i — 7 (A.98)

Applying the outer ITH on A.98, we obtain a substitution R; and evidence v,
such that

he Ay, | Ty (T, T) by Xai.eq : D(CY) =" 1 (A.99)
= AT}.€,,, :71’1)% — Tye

R, ~ R\T), (A.100)

o = Ry 7l (A.101)

Ty = Ri Ty (A.102)

hi: Al H v Ry Ay, (A.103)

A€l = (Axh.e, o1 /by | (A.104)

By Proposition 4.11, there exist a substitution R, and evidence vy, such that

Aug Ryse T < Ty (A.105)
Ty = Ry Ty (A.106)
hs : Ay Hvg 0 Rgr Ay, (A.107)

Every type variable appearing in the judgement from system W-SR in the
hypothesis of the rule is fresh. So, we know that

dom(R,,) [FTV(Ry) =0 (A.108)

and
R~ R, R, (A.109)

From this last two facts together with A.102 and A.106, we obtain
(RSTRl) 7—1’1)$ = (RSTRl) 7—1’1)8 (AIIO)

Now, from this last equation we know that exists an unifier U, and a substi-
tution R} such that

Ry R, = R\U, (A.111)
e Vo gl (A.112)
1 0

A.25. Proof of theorem 4.14 from section 4.2 105

Applying (w-pcask) rule to A.105, A.93, A.99, A.112, and the predicates A,
(returned by H-w) such that

A, = (C' € UlT,, 7., 2} Ay, (A.113)

w1 " we

C' € Uy T, 7, "HasC (Uy Ty, 7,,.) C' (Uy 7.0),

w1 " we w1 " we

ConstrsOf (U Ty, 7))

w1 " we

we obtain
A, Ud Ty, Ay, Ui Ay | U Ty, Ty, T (A.114)
ky case e of
C]D r1 — €1
T
(%
protocase, ¢, with h; of
Cfl}g’m] ay = ey, by /]
: Uy 7'1’”?

Let us take R = R and
S

l . 1 s s s S
v,, = (if, C" € v}, then v;[v]/h}] else o, v, v V., V)

Now, we have to prove that

a) S~ R\U}Ty, Ty,

a’) 7. =R\U; T, Ty, 7,,

b) 7 =Ry U 7

c) Ayl i Ry (Ay, U Ty, Aw,, Ul Ayy)

d) protocase, €, with v}, of = (protocase, €;, with h} of
Cz}fm whs = eha o] /] Cllgj’m zy = ey, [hy) [,])

[if, C' € v%, then v, [v/h}] else o

S S w w w
I 7)m11 ch’ 7)61 UST/h‘U17 h”uml 9 h”ch’ h”we) h”wn]

Item a) holds by definition of R, A.94, A.100, A.109, and A.111.
Item a’) holds by definition of R, A.95, A.100, A.109, and A.111.
Item b) holds by definition of R, A.102, A.109, and A.111.

Item c). Using A.113, we have to prove

A H R, (CY € UL T, 7, 72U Ay,

w1 " we
1 1 19 1 / 1 11
C el Ty 1, "HasC Uy Ty, 7, C° Uy Tuis
1 /
ConstrsOf Uy T, 7, ,
1
U() Crun Awg:

U(} Awo)
which is equivalent to

A M- C' e RIUT,, 7! 7R Ul A,

w1 T,
Cl € B’l U(} CFUH 7—1,1)6 ?H&SC (‘R’l U(} CFUH 7—1’1)6) Cl (Rll U[} T’L’Ui)7
ConstrsOf (R} U Ty, 7,.),
Rll U[} Tiwl Awe;

Ry Uy Auy)

106 Appendixz A. Proofs

Applying A.95, A.100, A.101, A.108, A.109, and A.111, we obtain

AyH Ch et TR Ay,
C' €1/ HasC 7, C' 7.,
ConstrsOf To.s
R. A,
R Ay,

In order to prove this entailment, it is enough to prove

Ay Che Tl 7R Ay, (A.115)
A H C' el ?HasC 7, C' 7, (A.116)
Ay H ConstrsOf 7, (A.117)
AgH R, A, (A.118)
AgH Rg Ay, (A.119)
Item A.115). By hypothesis, it is very easy to verify that
AgH o7 Cl e Tl 7A3, 03, : ConstrsOf 7, (A.120)

Applying Lemma 3.9 with A.103 and A.120, we obtain
A, Hif, C' € vl then vi[v]/h}] else o : C' € 7/ 7R, A,,

Item A.116) holds trivially by hypothesis with evidence v},
Item A.118) holds by A.96.
Item A.117) holds by hypothesis with evidence v5,.
Item A.119) holds by A.107 with evidence v,
Item d) We have that

protocase, ¢, with v, of = (protocase Pw with h;y of
C’ulfnl Ths = €1 [”f/h'] Cl;yml T wi o, /hw 1)
[if, C! € v, then v,[vi/h]] else o
U s Vg Ve 7)Sr/h“’ Y B By B,

w1 'm0 e

Since h,,, does not appear in the residual protocase,, the last equation
is equivalent to

(protocase, e;, w1th hy of
Cf:;ym] ay = ey, by, /ha,])
if, C' € v% then v[vj/hj] else o, v3, v, v./hY hY hY

w1 Um0 TP

huw,]

By Lemma 4.12 and substitutions, we know that EV(e,,) C h,, and
EV(e,, [hy /by 1) C by, where h,, # hly # hv1 The evidence variables
h}j’m1 and h,’ —are fresh, so the last equation is equivalent to

protocase, e, [v./h,, | with b} [v} /by | of
Chw s pw 125 = €l [W2 /h][if, C' € v}, then v[v]/hj]

vmq Lomy vmy
else o /Ny |

A.25. Proof of theorem 4.14 from section 4.2 107

Applying substitutions and A.97, we obtain that

protocase, e, with v?, of
ijfn, zy = e, [k /he [if, C' € v, then vi[vj/hj] else o /hY]
Since EV(vy) C hi, EV(v}) C hy, EV(v},) C hy and h} # h, # b}, we
have that

protocase, €, with v}, of
C’vlﬁn1 zy — e, [if, C' € v, then v, else o /hY J[v;/h]]

Summarizing, we have to prove that

! 3 S _ ! 3 s
proltocasev e, with v5, of = proltocasev e, with v, 1of
! / S S / ! 4 S
Cv?n1 e — e [vi/hg] Cv;"nl zy — e, [if, C*" € cs® then v,
else o /h2][v5/hi]

In order to prove this, we have to use the definitions appearing in Fig-
ures 3.6 and 3.7.

Case v%, = {C*},c;) By Definition 3.6, we only need to consider when
1 € 1. So, it is enough to prove that

A€l [vs/hs] =
At .e! [if, C' € v3, then v, else o /hY][v?/h]]

w1 w1

(A.121)

By the form of v}, and the reduction rule for if, in Figure 2.4, this
last equation is equivalent to

A€, (o7 /hi] = Axt.e), [v1/hy][v7/hi]

w

The result follows from A.104.
Case v¢, = h') By Definition 3.7, it is enough to prove that

A€y [v] /M [Dn /1] =
Ate! [if, C' € W then v, else o /h®][v?/h3][Dy/R]

w1 w1

(A.122)

for any D,, of the form {C¥}.¢;. By substitution, EV(v;) C h{ and
h' # hi, we have that this last equation is equivalent to

AYs €y [vi/h3][D, /1] =
Azh.el, [if, C' € D, then v, else o /h? |[v/hi][D,/R]

Finally, we only have to consider when 1 € D,,, proceeding in the
same way as for v¥, = {C*} ;.

Case ((B + 1) — branches): We suppose that this theorem is valid for a set of
indexes B and we will prove that it will be also valid for a set of indexes
B + 1, which has one more index than B and this index is the maximum,

108 Appendixz A. Proofs

being also annotated as B + 1. So, observe that B + 1 is overloaded and its
meaning depends on the context where it is used.

We know that

Ay | ST K case e of (A.123)
(Cy o = er)ren
T
C_)

! 3 S
protkocasev e, with vJ, of
/ / S S
(Cvfnk Ths = €0/ hi]ren
/

©Ts
is related to
AB ABA,, ABUI A, | APT,, T (A.124)
Ky case e of
(CY v — er)ken
CT
(%

/ 3 w
protocase, ¢, with h; of

(Gl = e 12 /B Drcss

W
. B !
U, Twg

by means of a substitution R'## and evidence Vwyy,, such that

S~ RMBAPT,, (A.125)
7. =R"PAPT, 1., (A.126)
mn=R"P UL T (A.127)
AW v, s R (AB ABA, ABULA,,) (A.128)

protocase, ¢, with v?, of

(Ch e = chulof/Bi])ucs
= (protocase, e, with hY of (A.129)
(Chy ap — ey 02 /B2 Decn

[U“)[HB /hBJ hwe) h"ll)(]]

Observe that A.126 is the property that we have added for branch induction.
Now, we use A.125 in order to rewrite the specialization of the (B + 1)th
branch in the hypothesis of the S derivation, obtaining

s A [Hp(AB
Wpir o Ay | RTP (AP T, T) K
Napirepir: D(CPTY) P71 5 Maly o€lg o 1 Thoys — 71

(A.130)

We apply the outer TH on A.130, so there exist a substitution Rz,; and
evidence vg,q such that

w . B
h,wB+1 VAV \ Typo AV T, Ty

D . B+1 D / / Lo / (A131)
A TB41-€EB41 © D(C)—) T “—)\.TB+].€“)B+1 : T’w’};H Wy

A.25. Proof of theorem 4.14 from section 4.2 109

R™MB ~ Rpi1TB4 ()
T’B+]S - RB"‘I T'u) ()
7o =Rpii7 (A.134)
A vpgrt R A ()
)\‘/E’B+]S'6’B+]S = ()\‘/E’B+] 'e’,LUB+1)|:UB+1/h':ILﬁB+1] ()

Using A.127, A.132, and A.134, we obtain

WR+1

BB+1 w . BB-I—I TB—I—I UB 1 w (A137)
Then, there exist an unifier U;*! and a substitution R/, ; such that
B4+1
Tu, 7 Tupsy Up-1Tug, (A.138)
Rpy1 = R Ug ™ (A.139)

We can apply (w-pcasg) rule with judgements k, and unifiers appearing in
hypothesis of A.124, A.131, and A.138, obtaining

Ap, U Ty AB A, U Tp ABUL A, | U Ty APT,, T
Hy case e of
(Cy zx = er)reBs
I T
s
protocase, ¢, with h; of
(Ch"’ k Tk - Pwk[h;j)k/h;ﬁk])k63+1

B+1
U wBJr]

(A.140)
We define viy, = (v2, vy, vs) where v2 v, and v come from applying

(Univ) three times to A.128. In other words, we have

AgH vl RTME AP (A.141)
A W v, R APA,, (A.142)
Ay H vy RTBAB UL A, (A.143)
Let us take R = R, ; and
v1’u = ('w?lf’U CB+] € v(’e then UB‘H[UB-I—l/h’B-I—l] else o, Um B+1’ Vw5 UST)

Now, we have to prove that

a) S~ RB+1UBJr Tps1 A7 T,
a’) 7, = Ry UG Tp APT,

b) /= Ry, U 7l

c) Agh vl i Ry (A, U Ty AP A, U Tpi AP UG Ayy)
Item a) holds by A.125, A.132, and A.139.
Item a’) holds by A.126, A.132, and A.139.

We w

110 Appendixz A. Proofs

Item b) holds by A.134, and A.139.
For item c), it is very easy to verify that

A, = UPH Ty, AP, (A.144)
CP e UPH Ty AP 7, 2UFT A

CB e U]]33+1 Tps1 A{? Tw, !
HasC (Ug+] TB+1 A]B 7-1115) CB+] (Ug+] T’

w

WRB4+1)

)

Applying (Univ) several times to item c¢) and distributing substitution
inside predicates, it is enough to prove

i
B+1

AgH Ry USH Tpy AB (A.145)

AgH O e Ry UST Tp AP 1, 7Ry U Ay, (AL146)

AgH CPH e U Ty, AP 7, 7 (A.147)
HasC (Ug*! Tpy AP 1,) C7F1 (UF 7,)

Ay Ry UST Tpy AP A, (A.148)

Ay W Ry U Ty ABUS A, (A.149)

Ttem A.145) Tt holds by A.132, A.139, and A.141.
For item A.146), it is very easy to verify, by hypothesis, that

Ay Hvg,, 0 CPTh e r! 2A% vi, « ConstrsOf 7., (A.150)

By A.135, A.139, item a’), and application of Lemma 3.9 to A.135
and A.150, we obtain

Ay H-if, CPT e w2, then vy i[vy,,/h3.,] else o :
B+1 B+1 B B+1
C S R’B+] Ug™ Tp1 AT Tw.? IB’+1 U™ Aupy,

Item A.147) holds by Item a’), A.133, and A.139, obtaining that
AgH CPYY e rl 2HasC 7 CPT 7. (A.151)

which it is true by hypothesis with evidence vg_ ;.
Item A.148) It holds by A.132, A.139, and A.142.
Item A.149) It holds by A.132, A.139, and A.143.
Item d) We have that

(protocase, e, with A} of (A.152)

We
(Cfgm zy, = ey, [l /P Dren1)
k
[wB.if, CP*' € v2, then vp[vg, /b,] else o,

w
B hw

S w
’UmB+1 9 ,U’we’ UST/h‘u)7 le+1’ hva+1 9 h"we’ hwo]

Since EV(v;,) C hy, EV(vp[vg, /b)) C hs, EV(vy,) C hy, in ad-
dition to EV(vg.) C hg., and hg # hy, # hg, we obtain that A.152 is
equivalent to

(protocase, e;, with A} of (A.153)
(Ck;ymk zp = ey lhy [y, eeni)
[0, v v, if, CPT € 03 then vpii[vy /by] else e,

B
U75713+1/hw7 hwga th; h

w w]
WB+17 VUmp

A.26. Proof of theorem 7.11 from section 7.1 111

and by definition of vy, this can be rewritten as

(protocase, e, with A} of (A.154)
(Chy 24 = €l 02 /12 Do)
[U]HB, if, C"" € 0% then vpyi vy, /h%,] else e,
m3+1 /hw? hape , Py s gy hy,]

WR417? 77mB+1

Because of evidence variables b~ and h” _ appear only in the (B+1)th

WR+1 UVB+1

branch, A.154 is equivalent to

(protocase, e, with A} of
(Cl]:w T, = €y [hw /hw Dien) vy /gy B s Ty

B+1 /
w w]

vaﬁ-ll ’LUB+1])
+
if, 7" € v, then vp vy, /h] else o, 05, [hi . h“m3+1

wB+1[UB+1/

To sum up, we have to prove that

/ 3 S
protkocasev e, with v?, of
/ /
(Cvsk T = €[/ M) keB 1

= (protocase, e;, with h; of
(Chy o T e LR, /h“’ Dien)wrm g /g s, sy

B+1
(Chgzl? 1 m’B+] - P’U}B+1 [hZ}B+1/h;ZB+1])
[if, CP' € 03 then vpyi vy, /h%,] else LCHA
/hw hw }
WB+17 " Umpy
In order to do this, we only need to consider the (B + 1)th branch be-
cause A.129 already satisfies Definitions 3.6 and 3.7.

Case v, = {C*}1er) We have to follow the same steps used to prove
A.121 but considering B+1,2% s, €5 15, Vpt1, by, |, and A.136 in-
stead of 1,2, €}, vy, by . and A.104.

Case v,; = h') We have to follow the same steps used to prove A.122
but this time considering B+1, 27 s, €, 15, vp+1, and by instead
of 1,2, e, vy, and hy) .

A.26 Proof of theorem 7.11 from section 7.1

THEOREM 7.11. A system defining a simplification relation, extended with rules (SHASC),
(SCTS), (SG-TRUE), (SG-FALSE), and (su-Hc) still defines a simplification relation.

Proof: The proof is by induction on the derivation, taking one case for each rule:

e (suasc): (i) It holds that () H- n : HasC D, C* S7' by masc), and also (ii)
HasC D, C* S7'H 0.

112 Appendixz A. Proofs

e (scrs): (i) It holds that @ H- {C* },c; : ConstrsOf D, by (constrsor), and also
(ii) ConstrsOf D,, K- 0.

e (saraLse): (i) It holds) H- e : C* € D,?A by applying (GuarD FALSE) to C* ¢ D,
and also (ii) e : C* € D,?A H- (.

e (su-rc): It trivially holds that
hy : HasC St' C* St/ H hy : HasC St C* St/ (A.155)

Additionally, we obtain that
hy : HasC St' C* St/ H hy : HasC St C* S7) (A.156)

by applying (uNtFY-HASC) to hy : HasC ST C* St H= St/ ~ S7. Thus, (i) holds
by applying (Univ) to A.155 and A.156. The item (ii) holds trivially since

HasC S7' C* St/' HasC S7' C* S7) - HasC St/ C*F S/

A.27 Proof of theorem 7.12 from section 7.1

THEOREM 7.12. A system defining a simplification relation, extended with rules (suc-G)
and (SENTL-G) still defines a simplification relation.

Proof: The proof is by induction on the derivation, taking one case for each rule:

e sarruk): (i) It holds h : A W h : C* € D,?A by applying (GUARD TRUE) to
C* € D, and A H A, and also (ii) C* € D,,?A K- A by applying (INTO-GUARD-TRUE)
to C* € D, and A H- A.

e (stc-G): (i) We know that
hy : HasC 7/ C* 7" hy : AH-hy: CF € 7'7A (A.157)

by applying (HASC-GUARD) to hy : HasC 7/ C* 7" hy : A H hy : A. Additionally,
we trivially know that

hy : HasC 7 C* 7" hy: AH hy : HasC 7 C* " (A.158)

The result follows by applying (univ) to A.157 and A.158. (ii) On the other hand,
we know that

hy:HasC 7' C*¥ 7" hy: C* € 7"?A W hy : HasC 7' CF 7" (A.159)
Additionally, we have that
hy : HasC 7" C*¥ 7" hy: C* € 727AH hy: A (A.160)

by applying (ELIM-HASC-GUARD) to hy : HasC 7/ C* 7" hy : A H- hy : A. The result
follows by applying (univ) to A.159 and A.160.

A.28. Proof of theorem 7.16 from section 7.2 113

e (sENTL-G): (i) We know that
n:C* e r"?A' h, : ConstrsOf 7' H= h, : ConstrsOf 7/ (A.161)
Additionally, we have that
B CF e 77N h, : ConstrsOf 7' H- vy : CF € 77A (A.162)

by applying (exTL-GUARD) to A’ : A" H v : A — which holds by IH applied to
Id;h < v | h:A>h: A" —and h, : ConstrsOf 7" H= h. : ConstrsOf 7'. The
result follows by applying (univ) to A.161 and A.162. On the other hand, (ii) we
know that

C* € 7'?A, ConstrsOf 7' H- ConstrsOf 7/ (A.163)

and we also have that
C* € 77A, ConstrsOf 7' H- C*F € 7/72A/ (A.164)

by applying (ENTL-GUARD) to A H= A’ which holds by TH applied to Id; h < v | h :
A>h': A" —and ConstrsOf 7/ H= ConstrsOf 7/. The result follows by applying
(Univ) to A.163 and A.164.

A.28 Proof of theorem 7.16 from section 7.2

THEOREM 7.16. The heuristic presented is correct wrt. the definition of the constraint
solving relation. That is:

1. MonomorphicST finds a solution for t, respecting the predicates HasC.
2. If (S, T,C, Ay, A") = stepSolve t A and s ¢ V' then

S,T:C|A+A;py A

Proof:

1. A new sum-type is introduced. It has a constructor for each predicate HasC found
in the predicate assigment. If several predicates HasC appear for the same con-
structor, then the argument’s residual type in the declaration can be any of those
argument’s residual type in such predicates that is because of all of them would
be eventually unified by the rule (su-nc). Thus, a valid sum-type definition is
obtained.

2. It holds by applying the simplification rule (smasc) several times.

Theorem 2.28, 45, 50
Theorem 4.13, 45, 48
Theorem 4.14, 45, 48
Theorem 4.5, 45, 47
Theorem 4.6, 45, 47

115

Index

116 Index

