
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1

From Fine- to Coarse-Grained Dynamic Information Flow
Control and Back

MARCO VASSENA, Chalmers University of Technology, Sweden

ALEJANDRO RUSSO, Chalmers University of Technology, Sweden

DEEPAK GARG, Max Planck Institute for Software Systems, Germany

VINEET RAJANI, Max Planck Institute for Software Systems, Germany

DEIAN STEFAN, University of California San Diego, USA

We show that fine-grained and coarse-grained dynamic information-flow control (IFC) systems
are equally expressive. To this end, we mechanize two mostly standard languages, one with a
fine-grained dynamic IFC system and the other with a coarse-grained dynamic IFC system, and
prove a semantics-preserving translation from each language to the other. In addition, we derive
the standard security property of non-interference of each language from that of the other, via our
verified translation. This result addresses a longstanding open problem in IFC: whether coarse-
grained dynamic IFC techniques are less expressive than fine-grained dynamic IFC techniques
(they are not!). The translations also stand to have important implications on the usability of IFC
approaches. The coarse- to fine-grained direction can be used to remove the label annotation burden
that fine-grained systems impose on developers, while the fine- to coarse-grained translation shows
that coarse-grained systems—which are easier to design and implement—can track information as
precisely as fine-grained systems and provides an algorithm for automatically retrofitting legacy
applications to run on existing coarse-grained systems.

Additional Key Words and Phrases: Information-flow control, verified source-to-source transforma-

tions, Agda

1 INTRODUCTION

Dynamic information-flow control (IFC) is a principled approach to protecting the confiden-
tiality and integrity of data in software systems. Conceptually, dynamic IFC systems are
very simple—they associate security levels or labels with every bit of data in the system
to subsequently track and restrict the flow of labeled data throughout the system, e.g., to
enforce a security property such as non-interference [Goguen and Meseguer 1982]. In practice,
dynamic IFC implementations are considerably more complex, where the granularity of
the tracking system alone has important implications for the usage of IFC technology in
practice.Indeed, until somewhat recently [Roy et al. 2009; Stefan et al. 2017], granularity was
the main distinguishing factor between dynamic IFC operating systems and programming
languages. Most IFC operating systems (e.g., [Efstathopoulos et al. 2005; Krohn et al. 2007b;
Zeldovich et al. 2006]) are coarse-grained, i.e., they track and enforce information flow at the
granularity of a process or thread. Conversely, most programming languages with dynamic
IFC (e.g., [Austin and Flanagan 2009; Hedin et al. 2014; Hritcu et al. 2013a; Yang et al.
2012; Zdancewic 2002]) track the flow of information in a more fine-grained fashion, e.g., at
the granularity of program variables and references.

Authors’ addresses: Marco Vassena, Chalmers University of Technology, Sweden; Alejandro Russo, Chalmers
University of Technology, Sweden; Deepak Garg, Max Planck Institute for Software Systems, Germany;

Vineet Rajani, Max Planck Institute for Software Systems, Germany; Deian Stefan, University of California

San Diego, USA.

2019. 2475-1421/2019/1-ART1 $15.00
https://doi.org/

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2019.

https://doi.org/

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2 Marco Vassena, Alejandro Russo, Deepak Garg, Vineet Rajani, and Deian Stefan

Dynamic coarse-grained IFC systems in the style of LIO [Buiras et al. 2015; Heule et al.
2015; Stefan et al. 2012, 2017, 2011; Vassena et al. 2017] have several advantages over
dynamic fine-grained IFC systems. Such coarse-grained systems are often easier to design
and implement—they inherently track less information. For example, LIO protects against
control-flow-based implicit flows by tracking information at a coarse-grained level—to
branch on secrets, LIO programs must first taint the context where secrets are going to
be observed. Finally, coarse-grained systems often require considerably fewer programmer
annotations—unlike fine-grained ones. More specifically, developers often only need to
annotate a single-label to protect everything in the scope of a thread or process responsible
to handle sensitive data.
Unfortunately, these advantages of coarse-grained systems give up on the many benefits

of fine-grained ones. For instance, one main drawback of coarse-grained systems is that
it requires developers to compartmentalize their application in order to avoid both false
alarms and the label creep problem, i.e., wherein the program gets too “tainted” to do
anything useful. To this end, fine-grained systems often create special abstractions (e.g.,
event processes [Efstathopoulos et al. 2005], gates [Zeldovich et al. 2006], and security
regions [Roy et al. 2009]) that compensate for the conservative approximations of the coarse-
grained tracking approach. Furthermore, fine-grained systems do not impose the burden of
focusing on avoiding the label creep problem on developers. By tracking information at fine
granularity, such systems are seemingly more flexible and do not suffer from false alarms
and label creep issues [Austin and Flanagan 2009] as coarse-grained systems do. Indeed,
fine-grained systems such as JSFlow [Hedin et al. 2014] can often be used to secure existing,
legacy applications; they only require developers to properly annotate the application.
This paper removes the division between fine- and coarse-grained dynamic IFC systems

and the belief that they are fundamentally different. In particular, we show that dynamic
fine-grained and coarse-grained IFC are equally expressive. Our work is inspired by the
recent work of Rajani et al. [2017]; Rajani and Garg [2018], who prove similar results for
static fine-grained and coarse-grained IFC systems. Specifically, they establish a semantics-
and type-preserving translation from a coarse-grained IFC type system to a fine-grained
one and vice-versa. We complete the picture by showing a similar result for dynamic IFC
systems that additionally allow introspection on labels at run-time. While label introspection
is meaningless in a static IFC system, in a dynamic IFC system this feature is key to both
writing practical applications and mitigating the label creep problem [Stefan et al. 2017].

Using Agda, we formalize a traditional fine-grained system (in the style of [Austin and
Flanagan 2009]) extended with label introspection primitives, as well as a coarse-grained
system (in the style of [Stefan et al. 2017]). We then define and formalize modular semantics-
preserving translations between them. Our translations are macro-expressible in the sense
of Felleisen [1991].

We show that a translation from fine- to coarse-grained is possible when the coarse-grained
system is equipped with a primitive that limits the scope of tainting (e.g., when reading
sensitive data). In practice, this is not an imposing requirement since most coarse-grained
systems rely on such primitives for compartmentalization. For example, Stefan et al. [2012,
2017], provide toLabeled blocks and threads for precisely this purpose. Dually, we show
that the translation from coarse- to fine-grained is possible when the fine-grained system has
a primitive taint(·) that relaxes precision to keep the program counter label synchronized
when translating a program to the coarse-grained language. While this primitive is largely
necessary for us to establish the coarse- to fine-grained translation, extending existing
fine-grained systems with it is both secure and trivial.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2019.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

From Fine- to Coarse-Grained Dynamic Information Flow Control and Back 1:3

Types: 𝜏 ::= unit | 𝜏1 → 𝜏2 | 𝜏1 + 𝜏2 | 𝜏1 × 𝜏2 | L | Ref 𝜏
Labels: ℓ, pc ∈ L
Addresses: n ∈ N
Environment: 𝜃 ∈ Var ⇀ Value
Raw Value: 𝑟 ::= () | (x .e, 𝜃) | inl(𝑣) | inr(𝑣) | (𝑣1, 𝑣2) | ℓ | nℓ
Value 𝑣 ::= 𝑟ℓ

Expressions: e ::= x |𝜆x .e | e1 e2 | () | ℓ | inl(e) | inr(e) | case(e, x .e1, x .e2)
| (e1, e2) | fst(e) | snd(e) | getLabel | labelOf(e) | taint(e1, e2)
| new(e) | ! e | e1 := e2 | labelOfRef(e) | e1 ⊑? e2

Configuration: c ::= ⟨Σ, e⟩
Store: Σ ∈ (ℓ : Label)→ Memory ℓ
Memory ℓ: M ::= [] | 𝑟 :M

Fig. 1. Syntax of 𝜆𝑑𝐹𝐺.

The implications of our results are multi-fold. The fine- to coarse-grained translation
formally confirms an old OS-community hypothesis that it is possible to restructure a system
into smaller compartments to address the label creep problem—indeed our translation is
a (naive) algorithm for doing so. This translation also allows running legacy fine-grained
IFC compatible applications atop coarse-grained systems like LIO. Dually, the coarse- to
fine-grained translation allows developers building new applications in a fine-grained system
to avoid the annotation burden of the fine-grained system by writing some of the code in
the coarse-grained system and compiling it automatically to the fine-grained system with
our translation.

The technical contributions of this paper are:

∙ A pair of semantics-preserving translations between traditional dynamic fine-grained
and coarse-grained IFC systems equipped with label introspection (Theorems 3 and 5).
∙ Two different proofs of termination-insensitive non-interference (TINI) for each calculus:
one is derived directly in the usual way (Theorems 1 and 2), while the other is recovered
via our verified translation (Theorems 4 and 6).
∙ Mechanized Agda proofs of our results (˜4,000 LOC)1.

The rest of this paper is organized as follows. Our dynamic fine- and coarse-grained
IFC calculi are introduced in Sections 2 and 3, respectively. We also prove their soundness
guarantees (i.e., termination-insensitive non-interference). Section 4 presents the translation
from the fine- to the coarse-grained calculus and recovers the non-interference of the former
from the non-interference theorem of the latter. Section 5 has similar results in the other
direction. Related work is described in Section 6 and Section 7 concludes the paper.

2 FINE-GRAINED CALCULUS

In order to compare in a rigorous way fine- and coarse-grained dynamic IFC techniques, we
formally define the operational semantics of two 𝜆-calculi that respectively perform fine-
and coarse-grained IFC dynamically. Figure 1 shows the syntax of the dynamic fine-grained
IFC calculus 𝜆𝑑𝐹𝐺, which is inspired by Austin and Flanagan [Austin and Flanagan 2009]
and extended with a standard (security unaware) type system Γ ⊢ e : 𝜏 (omitted), sum and

1Artifact available at https://hub.docker.com/r/marcovassena/granularity/

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2019.

https://hub.docker.com/r/marcovassena/granularity/

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

1:4 Marco Vassena, Alejandro Russo, Deepak Garg, Vineet Rajani, and Deian Stefan

product data types and security labels ℓ ∈ L that form a lattice (L ,⊑).2 In order to
capture flows of information precisely at run-time, 𝜆𝑑𝐹𝐺 features intrinsically labeled values,
written, 𝑟ℓ, meaning that raw value 𝑟 has security level ℓ. Compound values, e.g., pairs and
sums, carry labels to tag the security level of each component, for example a pair containing
a secret and a public boolean would be written (trueH , falseL).3 Functional values are
closures (x .e, 𝜃), where x is the variable that binds the argument in the body of the function
e and all other free variables are mapped to some labeled value in the environment 𝜃. 𝜆𝑑𝐹𝐺

features a labeled partitioned stored, i.e., Σ ∈ (ℓ :L)→ Memory ℓ, where Memory ℓ is the
memory that contains values at security level ℓ. Each reference carries an additional label
annotation that records the label of the memory it refers to—reference nℓ points to the n-th
cell of the ℓ-labeled memory, i.e., Σ(ℓ). Notice that this label has nothing to do with the

intrinsic label that decorates the reference itself. For example, a reference (nH)
L
represents

a secret reference in a public context, whereas (nL)
H

represents a public reference in a secret
context. Notice that there is no order invariant between those labels—in the latter case, the
runtime monitor enforcing IFC prevents writing data to the reference to avoid implicit flows.
A program can create, read and write a labeled reference via constructs new(e), !e and
e1 := e2 and inspect its subscripted label with the primitive labelOfRef(·).

2.1 Dynamics

The operational semantics of 𝜆𝑑𝐹𝐺 includes a security monitor that propagates the label
annotations of input values during program execution and assigns security labels to the
result accordingly. The monitor prevents information leakage by stopping the execution of
potentially leaky programs, which is reflected in the semantics by not providing reduction
rules for the cases that may cause insecure information flow.4 The relation ⟨Σ, e⟩ ⇓𝜃pc ⟨Σ′, 𝑣⟩
denotes the evaluation of program e with initial store Σ that terminates with labeled value 𝑣
and final store Σ′. The environment 𝜃 stores the input values of the program and is extended
with intermediate results during function application and case analysis. The subscript pc
is the program counter label [Sabelfeld and Myers 2003]— it is a label that represents the
security level of the context in which the expression is evaluated. The semantics employs the
program counter label to 1) propagate and assign labels to values computed by a program
and 2) prevent implicit flow leaks that exploit the control flow and the store (explained
below).
In particular, when a program produces a value, the monitor tags the raw value with

the program counter label in order to record the security level of the context in which it
was computed. For this reason all the introduction rules for ground and compound types
([Unit,Label,Fun,Inl,Inr,Pair]) assign security level pc to the result. Other than that,
these rules are fairly standard—we simply note that rule [Fun] creates a closure by capturing
the current environment 𝜃.
When the control flow of a program depends on some intermediate value, the program

counter label is joined with the value’s label so that the label of the final result will be
tainted with the result of the intermediate value. For instance, consider case analysis, i.e.,
case e x .e1 x .e2. Rules [Case1] and [Case2] evaluate the scrutinee e to a value (either

2 The lattice is arbitrary and fixed. In examples we will often use the two point lattice {L,H }, which only
disallows secret to public flow of information, i.e., H ̸⊑ L.
3We define the boolean type bool = unit + unit, boolean values as raw values, i.e., true = inl(()L),

false = inr(()L) and if e then e1 else e2 = case e .e1 .e2.
4In this work we ignore leaks that exploit program termination. This is accounted for in the termination

insensitive security condition satisfied by 𝜆𝑑𝐹𝐺 (Theorem 1).

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2019.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

From Fine- to Coarse-Grained Dynamic Information Flow Control and Back 1:5

(Var)

⟨Σ, x ⟩ ⇓𝜃pc ⟨Σ, 𝜃(x) ⊔ pc⟩
(Unit)

⟨Σ, ()⟩ ⇓𝜃pc ⟨Σ, ()
pc⟩

(Label)

⟨Σ, ℓ⟩ ⇓𝜃pc ⟨Σ, ℓpc⟩

(Fun)

⟨Σ, 𝜆x .e⟩ ⇓𝜃pc ⟨Σ, (x .e, 𝜃)
pc⟩

(App)

⟨Σ, e1⟩ ⇓𝜃pc ⟨Σ′, (x .e, 𝜃′)
ℓ⟩ ⟨Σ′, e2⟩ ⇓𝜃pc ⟨Σ′′, 𝑣2⟩ ⟨Σ′′, e⟩ ⇓𝜃

′[x ↦→𝑣2]
pc ⊔ ℓ ⟨Σ′′′, 𝑣⟩

⟨Σ, e1 e2⟩ ⇓𝜃pc ⟨Σ′′′, 𝑣⟩

(Inl)

⟨Σ, e⟩ ⇓𝜃pc ⟨Σ′, 𝑣⟩
⟨Σ, inl(e)⟩ ⇓𝜃pc ⟨Σ′, inl(𝑣)

pc⟩

(Inr)

⟨Σ, e⟩ ⇓𝜃pc ⟨Σ′, 𝑣⟩
⟨Σ, inr(e)⟩ ⇓𝜃pc ⟨Σ′, inr(𝑣)

pc⟩

(Case1)

⟨Σ, e⟩ ⇓𝜃pc ⟨Σ′, inl(𝑣1)
ℓ⟩ ⟨Σ′, e1⟩ ⇓𝜃[x ↦→𝑣1]

pc ⊔ ℓ ⟨Σ′′, 𝑣⟩
⟨Σ, case(e, x .e1, x .e2)⟩ ⇓𝜃pc ⟨Σ′′, 𝑣⟩

(Case2)

⟨Σ, e⟩ ⇓𝜃pc ⟨Σ′, inr(𝑣2)
ℓ⟩ ⟨Σ′, e2⟩ ⇓𝜃[x ↦→𝑣2]

pc ⊔ ℓ ⟨Σ′′, 𝑣⟩
⟨Σ, case(e, x .e1, x .e2)⟩ ⇓𝜃pc ⟨Σ′′, 𝑣⟩

(Pair)

⟨Σ, e1⟩ ⇓𝜃pc ⟨Σ′, 𝑣1⟩ ⟨Σ′, e2⟩ ⇓𝜃pc ⟨Σ′′, 𝑣2⟩
⟨Σ, (e1, e2)⟩ ⇓𝜃pc ⟨Σ′′, (𝑣1, 𝑣2)

pc⟩

(Fst)

⟨Σ, e⟩ ⇓𝜃pc ⟨Σ′, (𝑣1, 𝑣2)
ℓ⟩

⟨Σ, fst(e)⟩ ⇓𝜃pc ⟨Σ′, 𝑣1 ⊔ ℓ⟩

(Snd)

⟨Σ, e⟩ ⇓𝜃pc ⟨Σ′, (𝑣1, 𝑣2)
ℓ⟩

⟨Σ, snd(e)⟩ ⇓𝜃pc ⟨Σ′, 𝑣2 ⊔ ℓ⟩

(Taint)

⟨Σ, e1⟩ ⇓𝜃pc ⟨Σ′, ℓℓ
′
⟩ ℓ′ ⊑ ℓ ⟨Σ′, e2⟩ ⇓𝜃ℓ ⟨Σ′′, 𝑣⟩

⟨Σ, taint(e1, e2)⟩ ⇓𝜃pc ⟨Σ′′, 𝑣⟩

Fig. 2. Big-step semantics for 𝜆𝑑𝐹𝐺 (part I).

inl(𝑣)
ℓ
or inr(𝑣)

ℓ
), add the value to the environment, i.e., 𝜃[x ↦→ 𝑣], and then execute

the appropriate branch with a program counter label tainted with 𝑣’s security label, i.e.,
pc ⊔ ℓ. As a result, the monitor tracks data dependencies across control flow constructs
through the label of the result. Function application follows the same principle. In rule
[App], since the first premise evaluates the function to some closure (x .e, 𝜃′) at security
level ℓ, the third premise evaluates the body with program counter label raised to pc ⊔ ℓ.
The evaluation strategy is call-by-value: it evaluates the argument before the body in the
second premise and binds the corresponding variable to its value in the environment of the
closure, i.e., 𝜃′[x ↦→ 𝑣2]. Notice that the security level of the argument is irrelevant at this

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2019.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

1:6 Marco Vassena, Alejandro Russo, Deepak Garg, Vineet Rajani, and Deian Stefan

(LabelOf)

⟨Σ, e⟩ ⇓𝜃pc ⟨Σ′, 𝑟ℓ⟩
⟨Σ, labelOf(e)⟩ ⇓𝜃pc ⟨Σ′, ℓℓ⟩

(GetLabel)

⟨Σ,getLabel⟩ ⇓𝜃pc ⟨Σ′′, pcpc⟩

(⊑?-T)

⟨Σ, e1⟩ ⇓𝜃pc ⟨Σ′, ℓ1
ℓ′1⟩ ⟨Σ′, e2⟩ ⇓𝜃pc ⟨Σ′′, ℓ2

ℓ′2⟩ ℓ1 ⊑ ℓ2

⟨Σ, e1 ⊑? e2⟩ ⇓𝜃pc ⟨Σ′′, inl(()
pc
)
ℓ′1 ⊔ ℓ′2⟩

(⊑?-F)

⟨Σ, e1⟩ ⇓𝜃pc ⟨Σ′, ℓ1
ℓ′1⟩ ⟨Σ′, e2⟩ ⇓𝜃pc ⟨Σ′′, ℓ2

ℓ′2⟩ ℓ1 ̸⊑ ℓ2

⟨Σ, e1 ⊑? e2⟩ ⇓𝜃pc ⟨Σ′′, inr(()
pc
)
ℓ′1 ⊔ ℓ′2⟩

Fig. 3. Big-step semantics for 𝜆𝑑𝐹𝐺 (part II).

stage and that this is beneficial to not over-tainting the result: if the function never uses
its argument then the label of the result depends exclusively on the program counter label,

e.g., (𝜆x .()) y ⇓y ↦→42H

L ()
L
. The elimination rules for variables and pairs taint the label

of the corresponding value with the program counter label for security reasons. In rules
[Var,Fst,Snd] the notation, 𝑣 ⊔ ℓ′ upgrades the label of 𝑣 with ℓ′—it is a shorthand for

𝑟ℓ ⊔ ℓ′ with 𝑣 = 𝑟ℓ. Intuitively, public values must be considered secret when the program

counter is secret, for example x ⇓x ↦→()L

H ()
H
.

Label Introspection. The 𝜆𝑑𝐹𝐺 calculus features primitives for label introspection, namely
getLabel, labelOf(·) and ⊑?—see Figure 3. These operations allow to respectively retrieve
the current program counter label, obtain the label annotations of values, and compare two
labels (inspecting labels at run-time is useful for controlling and mitigating the label creep
problem).
Enabling label introspection raises the question of what label should be assigned to the

label itself (in 𝜆𝑑𝐹𝐺 every value, including all label values, must be annotated with a label).
As a matter of fact, labels can be used to encode secret information and thus careless label
introspection may open the doors to information leakage [Stefan et al. 2017]. Notice that in
𝜆𝑑𝐹𝐺, the label annotation on the result is computed by the semantics together with the
result and thus it is as sensitive as the result itself (the label annotation on a value depends
on the sensitivity of all values affecting the control-flow of the program up to the point
where the result is computed). This motivates the design choice to protect each projected
label with the label itself, i.e., ℓℓ and pcpc in rules [GetLabel] and [LabelOf] in Figure 2.
We remark that this choice is consistent with previous work on coarse-grained IFC languages
[Buiras et al. 2014; Stefan et al. 2017], but novel in the context of fine grained IFC.

Finally, primitive taint(e1, e2) temporarily raises the program counter label to the label
given by the first argument in order to evaluate the second argument. The fine-to-coarse
translation in Section 4 uses taint(·) to loosen the precision of 𝜆𝑑𝐹𝐺 in a controlled way and
match the coarse approximation of our coarse-grained IFC calculus (𝜆𝑑𝐶𝐺) by upgrading the
labels of intermediate values systematically. In rule [Taint], the constraint ℓ′ ⊑ ℓ ensures

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2019.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

From Fine- to Coarse-Grained Dynamic Information Flow Control and Back 1:7

New
⟨Σ, e⟩ ⇓𝜃pc ⟨Σ′, 𝑟ℓ⟩ n = |Σ′(ℓ)|

⟨Σ,new(e)⟩ ⇓𝜃pc ⟨Σ′[ℓ ↦→ Σ′(ℓ)[n ↦→ 𝑟]], (nℓ)
pc⟩

Read

⟨Σ, e⟩ ⇓𝜃pc ⟨Σ′,nℓ
ℓ′⟩ Σ′(ℓ)[n] = 𝑟

⟨Σ, !e⟩ ⇓𝜃pc ⟨Σ′, 𝑟ℓ ⊔ ℓ′⟩

Write
⟨Σ, e1⟩ ⇓𝜃pc ⟨Σ′,nℓ

ℓ1⟩ ℓ1 ⊑ ℓ ⟨Σ′, e2⟩ ⇓𝜃pc ⟨Σ′′, 𝑟ℓ2⟩ ℓ2 ⊑ ℓ

⟨Σ, e1 := e2⟩ ⇓𝜃pc ⟨Σ′′[ℓ ↦→ Σ′′(ℓ)[n ↦→ 𝑟]], pc⟩

LabelOfRef

⟨Σ, e⟩ ⇓𝜃pc ⟨Σ′,nℓ
ℓ′⟩

⟨Σ, labelOfRef(e)⟩ ⇓𝜃pc ⟨Σ′, ℓℓ ⊔ ℓ′⟩

Fig. 4. Big-step semantics for 𝜆𝑑𝐹𝐺 (references).

that the label of the nested context ℓ is at least as sensitive as the program counter label
pc. In particular, this constraint ensures that the operational semantics have Property 1
(“the label of the result is at least as sensitive as the program counter label”) even with rule
[Taint].

Property 1. If ⟨Σ, e⟩ ⇓𝜃pc ⟨Σ′, 𝑟ℓ⟩ then pc ⊑ ℓ.

Proof. By induction on the given evaluation derivation.

References. We now extend the semantics presented earlier with primitives that inspect,
access and modify the labeled store via labeled references. See Figure 4. Rule [New] creates
a reference nℓ, labeled with the security level of the initial content, i.e., ℓ in the ℓ-labeled
memory Σ(ℓ) and updates the memory store accordingly.5 Since the security level of the
reference is as sensitive as the content, which is at least as sensitive as the program counter
label by Property 1 (pc ⊑ ℓ) this operation does not leak information via implicit flows.
When reading the content of reference nℓ at security level ℓ′, rule [Read] retrieves the
corresponding raw value from the n-th cell of the ℓ-labeled memory, i.e., Σ′(ℓ)[n] = 𝑟 and
upgrades its label to ℓ ⊔ ℓ′ since the decision to read from that particular reference depends
on information at security level ℓ′. When writing to a reference the monitor performs security
checks to avoid leaks via explicit or implicit flows. Rule [Write] achieves this by evaluating

the reference, i.e., (nℓ)
ℓ1 and replacing its content with the value of the second argument,

i.e., 𝑟ℓ2 , under the conditions that the decision of “which” reference to update does not
depend on data more sensitive than the reference itself, i.e., ℓ1 ⊑ ℓ (not checking this
would leak via an implicit flow)6, and that the new content is no more sensitive than the
reference itself, i.e., ℓ2 ⊑ ℓ (not checking this would leak sensitive information to a less
sensitive reference explicitly). Lastly, rule [LabelOfRef] retrieves the label of the reference
and protects it with the label itself (as explained before) and taints it with the security

5|M | denotes the length of memory M—memory indices start at 0.
6 Notice that pc ⊑ ℓ1 by Property 1, thus pc ⊑ ℓ1 ⊑ ℓ by transitivity. An implicit flow would occur if a
reference is updated in a high branch, i.e., depending on the secret, e.g., let x = new(0) in if secret then x :=

1 else ().

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2019.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

1:8 Marco Vassena, Alejandro Russo, Deepak Garg, Vineet Rajani, and Deian Stefan

(ValueL)

ℓ ⊑ L 𝑟1 ≈L 𝑟2

𝑟1
ℓ ≈L 𝑟2

ℓ

(ValueH)

ℓ1 ̸⊑ L ℓ2 ̸⊑ L

𝑟1
ℓ1 ≈L 𝑟2

ℓ2

(Unit)

() ≈L ()

(Label)

ℓ ≈L ℓ

(Closure)

e1 ≡𝛼 e2 𝜃1 ≈L 𝜃2

(e1, 𝜃1) ≈L (e2, 𝜃2)

(Inl)

𝑣1 ≈L 𝑣2

inl(𝑣1) ≈L inl(𝑣2)

Inr
𝑣1 ≈L 𝑣2

inr(𝑣1) ≈L inr(𝑣2)

(Pair)

𝑣1 ≈L 𝑣′1 𝑣2 ≈L 𝑣′2
(𝑣1, 𝑣2) ≈L (𝑣′1, 𝑣

′
2)

(RefL)

ℓ ⊑ L

nℓ ≈L nℓ

(RefH)

ℓ1 ̸⊑ L ℓ2 ̸⊑ L

n1ℓ1 ≈L n2ℓ2

Fig. 5. L-equivalence for 𝜆𝑑𝐹𝐺 values and raw values.

level of the reference, i.e., ℓℓ ⊔ ℓ′ to avoid leaks. Intuitively, the label of the reference, i.e., ℓ,
depends also on data at security level ℓ′ as seen in the premise.

Other Extensions. We consider 𝜆𝑑𝐹𝐺 equipped with references as sufficient foundation
to study the relationship between fine-grained and coarse-grained IFC. We remark that
extending it with other side-effects such as file operations, or other IO-operations would not
change our claims in Section 4 and 5. The main reason for this is that, typically, handling
such effects would be done at the same granularity in both IFC enforcements. For instance,
when adding file operations, both fine- (e.g., [Broberg et al. 2013]) and coarse-grained (e.g.,
[Efstathopoulos et al. 2005; Krohn et al. 2007b; Russo et al. 2008; Stefan et al. 2011])
enforcements are likely to assign a single flow-insensitive label to each file in order to denote
the sensitivity of its content. Then, those features could be handled flow-insensitively in
both systems (e.g., [Myers et al. 2006; Pottier and Simonet 2002; Stefan et al. 2011; Vassena
and Russo 2016]), in a manner similar to what we have just shown for references in 𝜆𝑑𝐹𝐺.

2.2 Security

We now prove that 𝜆𝑑𝐹𝐺 is secure, i.e., it satisfies termination insensitive non-interference
(TINI) [Goguen and Meseguer 1982; Volpano and Smith 1997]. Intuitively, the security
condition says that no terminating 𝜆𝑑𝐹𝐺 program leaks information, i.e., changing secret
inputs does not produce any publicly visible effect. The proof technique is standard and based
on the notion of L-equivalence, written 𝑣1 ≈L 𝑣2, which relates values (and similarly raw
values, environments, stores and configurations) that are indistinguishable for an attacker at
security level L. For clarity we use the 2-points lattice, assume that secret data is labeled
with H and that the attacker can only observe data at security level L. Our mechanized
proofs are parametric in the lattice and in the security level of the attacker. L-equivalence for
values and raw-values is defined formally by mutual induction in Figure 5. Rule [ValueL]
relates observable values, i.e., raw values labeled below the security level of the attacker.
These values have the same observable label (ℓ ⊑ L) and related raw values, i.e., 𝑟1 ≈L 𝑟2.
Rule [ValueH] relates non-observable values, which may have different labels not below the
attacker level, i.e., ℓ1 ̸⊑ L and ℓ2 ̸⊑ L. In this case, the raw values can be arbitrary. Raw
values are L-equivalent when they consist of the same ground value ([Unit,Label]), or are

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2019.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

From Fine- to Coarse-Grained Dynamic Information Flow Control and Back 1:9

homomorphically related for compound values. For example, for the sum type the relation
requires that both values are either a left or a right injection ([Inl,Inr]). In particular,
closures are related if they contain the same function (up to 𝛼-renaming)7 and L-equivalent
environments, i.e., the environments are L-equivalent pointwise. Formally, 𝜃1 ≈L 𝜃2 iff
Dom(𝜃1) ≡ Dom(𝜃2) and ∀x .𝜃1(x) ≈L 𝜃2(x).

We define L-equivalence for stores pointwise, i.e., Σ1 ≈L Σ2 iff for all labels ℓ ∈ L ,
Σ1(ℓ) ≈L Σ2(ℓ). Memory L-equivalence relates arbitrary ℓ-labeled memories if ℓ ̸⊑ L, and
pointwise otherwise, i.e., M1 ≈L M2 iff M1 and M2 are memories labeled with ℓ ⊑ L,
|M1| = |M2| and for all n ∈ {0 . . |M1| − 1}, M1[n] ≈L M2[n]. Similarly, L-equivalence
relates any two secret references (rule [RefH]) but requires the same label and address for
public references (rule [RefL]).
We naturally lift L-equivalence to initial configurations, i.e., c1 ≈L c2 iff c1 = ⟨Σ1, e1⟩,

c2 = ⟨Σ2, e2⟩, Σ1 ≈L Σ2 and e1 ≡𝛼 e2, and final configurations, i.e., c′1 ≈L c′2 iff c′1 = ⟨Σ′
1, 𝑣1⟩,

c′2 = ⟨Σ′
2, 𝑣2⟩ and Σ′

1 ≈L Σ′
2 and 𝑣1 ≈L 𝑣2.

We now formally state and prove that 𝜆𝑑𝐹𝐺 semantics preserve L-equivalence under
L-equivalent environments, i.e., termination-insensitive non-interference (TINI).

Theorem 1 (𝜆𝑑𝐹𝐺-TINI). If c1 ⇓𝜃1pc c′1, c2 ⇓𝜃2pc c′2, 𝜃1 ≈L 𝜃2 and c1 ≈L c2 then
c′1 ≈L c′2.

Proof. By induction on the derivations.
Dynamic language-based fine-grained IFC, of which 𝜆𝑑𝐹𝐺 is just a particular instance,

represents an intuitive approach to tracking information flows in programs. Programmers
annotate input values with labels that represent their sensitivity and a label-aware instru-
mented security monitor propagates those labels during execution and computes the result of
the program together with a conservative approximation of its sensitivity. The next section
describes an IFC monitor that tracks information flows at coarse granularity.

3 COARSE-GRAINED CALCULUS

One of the drawbacks of dynamic fine-grained IFC is that the programming model requires
all input values to be explicitly and fully annotated with their security labels. Imagine a
program with many inputs and highly structured data: it quickly becomes cumbersome, if
not impossible, for the programmer to specify all the labels. The label of some inputs may
be sensitive (e.g., passwords, pin codes, etc.), but the sensitivity of the rest may probably
be irrelevant for the computation, yet a programmer must come up with appropriate
labels for them as well. The programmer is then torn between two opposing risks: over-
approximating the actual sensitivity can negatively affect execution (the monitor might stop
secure programs), under-approximating the sensitivity can endanger security. Even worse,
specifying many labels manually is error-prone and assigning the wrong security label to a
piece of sensitive data can be catastrophic for security and completely defeat the purpose of
IFC. Dynamic coarse-grained IFC represents an attractive alternative that requires fewer
annotations, in particular it allows the programmer to label only the inputs that need to be
protected.

Figure 6 shows the syntax of 𝜆𝑑𝐶𝐺, a standard simply-typed 𝜆-calculus extended with secu-
rity primitives for dynamic coarse-grained IFC, inspired by Stefan et al. [2011] and adapted
to use call-by-value instead of call-by-name to match 𝜆𝑑𝐹𝐺. The calculus 𝜆𝑑𝐶𝐺 features both

7Symbol ≡𝛼 denotes 𝛼-equivalence. In our mechanized proofs we use De Bruijn indexes and syntactic
equivalence.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2019.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

1:10 Marco Vassena, Alejandro Russo, Deepak Garg, Vineet Rajani, and Deian Stefan

Type: 𝜏 ::= unit | 𝜏1 → 𝜏2 | 𝜏1 + 𝜏2 | 𝜏1 × 𝜏2 | L | LIO 𝜏 | Labeled 𝜏 | Ref 𝜏
Labels: ℓ, pc ∈ L
Addresses: n ∈ N
Environment: 𝜃 ∈ Var ⇀ Value
Value: 𝑣 ::= () | (x .e, 𝜃) | inl(𝑣) | inr(𝑣) | (𝑣1, 𝑣2) | ℓ | Labeled ℓ 𝑣 | (t , 𝜃) | nℓ
Expression: e ::= x |𝜆x .e | e1 e2 | () | ℓ | inl(e1) | inr(e2) | case(e, x .e1, x .e2)

| (e1, e2) | fst(e) | snd(e) | e1 ⊑? e2 | t
Thunk t ::= return(e) | bind(e, x .e) | unlabel(e) | toLabeled(e) | labelOf(e)

| getLabel | taint(e) | new(e) | ! e | e1 := e2 | labelOfRef(e)
Type System: Γ ⊢ e : 𝜏
Configuration: c ::= ⟨Σ, pc, e⟩
Store: Σ ∈ (ℓ : Label)→ Memory ℓ
Memory ℓ: M ::= [] | 𝑣 :M

Fig. 6. Syntax of 𝜆𝑑𝐶𝐺.

standard (unlabeled) values and explicitly labeled values. For example, Labeled H true
represents a secret boolean value of type Labeled bool.8 The type constructor LIO en-
capsulates a security state monad, whose state consists of a labeled store and the program
counter label. In addition to standard return(·) and bind(·) constructs, the monad provides
primitives that regulate the creation and the inspection of labeled values, i.e., toLabeled(·),
unlabel(·) and labelOf(·), and the interaction with the labeled store, allowing the creation,
reading and writing of labeled references nℓ through the constructs new(e), !e, e1 := e2,
respectively. It also features an operator to query if a label flows to another, written ℓ1 ⊑? ℓ2.
The primitives of the LIO monad are listed in a separate sub-category of expressions called
thunk. Intuitively, a thunk is just a description of a stateful computation, which only the
top-level security monitor can execute—a thunk closure, i.e., (t , 𝜃), provides a way to suspend
computations.

3.1 Dynamics

In order to track information flows dynamically at coarse granularity, 𝜆𝑑𝐶𝐺 employs a
technique called floating-label, which was originally developed for IFC operating systems
(e.g., [Zeldovich et al. 2006, 2008]) and that was later applied in a language-based setting. In
this technique, throughout a program’s execution, the program counter floats above the label
of any value observed during program execution and thus represents (an upper-bound on)
the sensitivity of all the values that are not explicitly labeled. For this reason, 𝜆𝑑𝐶𝐺 stores
the program counter label in the program configuration, so that the primitives of the LIO
monad can control it explicitly (in technical terms the program counter is flow-sensitive, i.e.,
it may assume different values in the final configuration depending on the control flow of
the program).9

8As in 𝜆𝑑𝐹𝐺, we define bool = unit + unit and if e then e1 else e2 = case e .e1 .e2. Unlike 𝜆𝑑𝐹𝐺

values, 𝜆𝑑𝐶𝐺 values are not intrinsically labeled, thus we encode boolean constants simply as true = inl()
and false = inr().
9In contrast, we consider 𝜆𝑑𝐹𝐺’s program counter flow-insensitive because it is part of the evaluation

judgment and its value changes only inside nested judgments.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2019.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

From Fine- to Coarse-Grained Dynamic Information Flow Control and Back 1:11

Like 𝜆𝑑𝐹𝐺, the operational semantics of 𝜆𝑑𝐶𝐺 consists of a security monitor that fully
evaluates secure programs but prevents the execution of insecure programs and similarly
enforces termination-insensitive non-interference (Theorem 2). Figure 7 shows the big-step
operational semantics of 𝜆𝑑𝐶𝐺 in two parts: (i) a top-level security monitor for monadic
programs and (ii) a straightforward call-by-value side-effect-free semantics for pure expres-
sions. The semantics of the security monitor is further split into two mutually recursive
reduction relations, one for arbitrary expressions (Fig. 7a) and one specific to thunks (Fig. 7c).
These constitute the forcing semantics of the monad, which reduce a thunk to a pure value
and perform side-effects. In particular, given the initial store Σ, program counter label
pc, expression e of type LIO 𝜏 for some type 𝜏 and input values 𝜃 (which may or may
not be labeled), the monitor executes the program, i.e., ⟨Σ, pc, e⟩ ⇓𝜃 ⟨Σ′, pc′, 𝑣⟩ and gives
an updated store Σ′, updated program counter pc′ and a final value 𝑣 of type 𝜏 , which
also might not be labeled. The execution starts with rule [Force], which reduces the pure
expression to a thunk closure, i.e., (t , 𝜃′) and then forces the thunk t in its environment 𝜃′

with the thunk semantics. The pure semantics is fairly standard—we report some selected
rules in Fig. 7b for comparison with 𝜆𝑑𝐹𝐺. A pure reduction, written e ⇓𝜃 𝑣, evaluates
an expression e with an appropriate environment 𝜃 to a pure value 𝑣. Notice that, unlike
𝜆𝑑𝐹𝐺, all reduction rules of the pure semantics ignore security, even those that affect the
control flow of the program, e.g., rule [App]: they do not feature the program counter label
or label annotations. They are also pure—they do not have access to the store, thus only
the security monitor needs to protect against implicit flows.
If the pure evaluation reaches a side-effectful computation, i.e., thunk t , it suspends the

computation by creating a thunk closure that captures the current environment 𝜃 (see
rule [Thunk]). Notice that thunk closures and function closures are distinct values created
by different rules, [Thunk] and [Fun] respectively.10 Function application succeeds only
when the function evaluates to a function closure (rule [App]). In the thunk semantics, rule
[Return] evaluates a pure value embedded in the monad via return(·) and leaves the state
unchanged, while rule [Bind] executes the first computation with the forcing semantics,
binds the result in the environment i.e., 𝜃[x ↦→ 𝑣1], passes it on to the second computation
together with the updated state and returns the final result and state. Rule [Unlabel] is
interesting. Following the floating-label principle, it returns the value wrapped inside the
labeled value, i.e., 𝑣, and raises the program counter with its label, i.e., pc ⊔ ℓ, to reflect
the fact that new data at security level ℓ is now in scope.
Floating-label based coarse-grained IFC systems like LIO suffer from the label creep

problem, which occurs when the program counter gets over-tainted, e.g., because too many
secrets have unlabeled, to the point that no useful further computation can be performed.
Primitive toLabeled(·) provides a mechanism to address this problem by (i) creating a
separate context where some sensitive computation can take place and (ii) restoring the
original program counter label afterwards. Rule [ToLabeled] formalizes this idea. Notice
that the result of the nested sensitive computation, i.e., 𝑣, cannot be simply returned to
the lower context—that would be a leak, so toLabeled(·) wraps that piece of information
in a labeled value protected by the final program counter of the sensitive computation,
i.e., Labeled pc′ 𝑣.11 Furthermore, notice that pc′, the label that tags the result 𝑣, is as
sensitive as the result itself because the final program counter depends on all the unlabel(·)
10It would have also been possible to define thunk values in terms of function closures using explicit suspension
and an opaque wrapper, e.g., LIO (.t , 𝜃).
11Stefan et al. [2017] have proposed an alternative flow-insensitive primitive, i.e., toLabeled(ℓ, e), which

labels the result with the user-assigned label ℓ. The semantics of 𝜆𝑑𝐹𝐺 forced us to use toLabeled(e).

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2019.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

1:12 Marco Vassena, Alejandro Russo, Deepak Garg, Vineet Rajani, and Deian Stefan

operations performed to compute the result. This motivates why primitive labelOf(·) does
not simply project the label from a labeled value, but additionally taints the program counter
with the label itself in rule [LabelOf]–a label in a labeled value has sensitivity equal to the
label itself, thus the program counter label rises to accommodate reading new sensitive data.
Lastly, rule [GetLabel] returns the value of the program counter, which does not rise

(because pc ⊔ pc = pc), and rule [Taint] simply taints the program counter with the
given label and returns unit (this primitive matches the functionality of taint(·) in 𝜆𝑑𝐹𝐺).
Note that, in 𝜆𝑑𝐶𝐺, taint(·) takes only the label with which the program counter must be
tainted whereas, in 𝜆𝑑𝐹𝐺, it additionally requires the expression that must be evaluated in
the tainted environment. This difference highlights the flow-sensitive nature of the program
counter label in 𝜆𝑑𝐶𝐺.

References. 𝜆𝑑𝐶𝐺 features flow-insensitive labeled references similar to 𝜆𝑑𝐹𝐺 and allows
programs to create, read, update and inspect the label inside the LIO monad (see Figure
8). The API of these primitives takes explicitly labeled values as arguments, by making
explicit at the type level, the tagging that occurs in memory, which was left implicit in
previous work [Stefan et al. 2017]. Rule [New] creates a reference labeled with the same
label annotation as that of the labeled value it receives as an argument, and checks that
pc ⊑ ℓ in order to avoid implicit flows. Rule [Read] retrieves the content of the reference
from the ℓ-labeled memory and returns it. Since this brings data at security level ℓ in scope,
the program counter is tainted accordingly, i.e., pc ⊔ ℓ. Rule [Write] performs security
checks analogous to those in 𝜆𝑑𝐹𝐺 and updates the content of a given reference and rule
[LabelOfRef] returns the label on a reference and taints the context accordingly.
We conclude this section by noting that the forcing and the thunk semantics of 𝜆𝑑𝐶𝐺

satisfy Property 2 (“the final value of the program counter is at least as sensitive as the
initial value”).

Property 2.

∙ If ⟨Σ, pc, e⟩ ⇓𝜃 ⟨Σ′, pc′, 𝑣⟩ then pc ⊑ pc′.
∙ If ⟨Σ, pc, t⟩ ⇓𝜃 ⟨Σ′, pc′, 𝑣⟩ then pc ⊑ pc′.

Proof. By mutual induction on the given evaluation derivations.

3.2 Security

We now prove that 𝜆𝑑𝐶𝐺 is secure, i.e., it satisfies termination-insensitive non-interference.
The meaning of the security condition is intuitively similar to that presented in Section 2.2 for
𝜆𝑑𝐹𝐺— when secret inputs are changed, terminating programs do not produce any publicly
observable effect—and based on a similar indistinguishability relation. Figure 9 presents
the definition of L-equivalence for the interesting cases only. Firstly, L-equivalence for 𝜆𝑑𝐶𝐺

labeled values relates public and secret values analogously to 𝜆𝑑𝐹𝐺 values. Specifically, rule
[LabeledL] relates public labeled values that share the same observable label (ℓ ⊑ L) and
contain related values, i.e., 𝑣1 ≈L 𝑣2, while rule [LabeledH] relates secret labeled values,
with arbitrary sensitivity labels not below L (ℓ1 ̸⊑ L and ℓ2 ̸⊑ L) and contents. Secondly, L-
equivalence relates standard (unlabeled) values homomorphically. For example, values of the
sum type are related only as follows: inl(𝑣1) ≈L inl(𝑣′1) iff 𝑣1 ≈L 𝑣′1 and inr(𝑣2) ≈L inr(𝑣′2)
iff 𝑣2 ≈L 𝑣′2. Closures and thunks are related if the function and the monadic computations are
𝛼-equivalent and their environments are related, i.e., 𝜃1 ≈L 𝜃2 iff Dom(𝜃1) ≡ Dom(𝜃2) and
∀x .𝜃1(x) ≈L 𝜃2(x). L-equivalence relates labeled references, memories and stores analogously
to 𝜆𝑑𝐹𝐺. Related initial configurations have related stores, equal program counters, and

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2019.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

From Fine- to Coarse-Grained Dynamic Information Flow Control and Back 1:13

𝛼-equivalent programs, i.e., c1 ≈L c2 iff c1 = ⟨Σ1, pc1, e1⟩, c2 = ⟨Σ2, pc2, e2⟩, Σ1 ≈L Σ2,
pc1 ≡ pc2, and e1 ≡𝛼 e2. L-equivalence relates final configurations in which either 1) [PcL]
the attacker can observe the same program counter pc ⊑ L in both configurations, which
then carry related stores and values, or 2) [PcH] the value of the program counter in both
configuration is not below the attacker level, which thus contain arbitrary values and related
stores.
We now formally state and prove that 𝜆𝑑𝐶𝐺 semantics preserve L-equivalence under

L-equivalent environments, i.e., termination-insensitive non-interference (TINI).

Theorem 2 (𝜆𝑑𝐶𝐺-TINI). If c1 ⇓𝜃1 c′1, c2 ⇓𝜃2 c′2, 𝜃1 ≈L 𝜃2 and c1 ≈L c2 then
c′1 ≈L c′2.

Proof. By induction on the derivations.
At this point, we have formalized two calculi—𝜆𝑑𝐹𝐺 and 𝜆𝑑𝐶𝐺—that perform dynamic

IFC at fine and coarse granularity, respectively. While they have some similarities, i.e., they
are both functional languages that feature labeled annotated data, references and label
introspection primitives, and ensure a termination-insensitive security condition, they also
have striking differences. First and foremost, they differ in the number of label annotations—
pervasive in 𝜆𝑑𝐹𝐺 and optional in 𝜆𝑑𝐶𝐺—with significant implications for the programming
model and usability. Second, they differ in the nature of the program counter, flow-insensitive
in 𝜆𝑑𝐹𝐺 and flow-sensitive in 𝜆𝑑𝐶𝐺. Third, they differ in the way they deal with side-effects—
𝜆𝑑𝐶𝐺 allows side-effectful computations exclusively inside the monad, while 𝜆𝑑𝐹𝐺 is impure,
i.e., any 𝜆𝑑𝐹𝐺 expression can modify the state. This difference affects the effort required to
implement a system that performs language-based fine- and coarse-grained dynamic IFC. In
fact, several coarse-grained IFC languages [Buiras et al. 2015; Jaskelioff and Russo 2011;
Russo 2015; Russo et al. 2008; Schmitz et al. 2018; Tsai et al. 2007] have been implemented
as an embedded domain specific language (EDSL) in a Haskell library with little effort,
exploiting the strict control that the host language provides on side-effects. Adapting an
existing language to perform fine-grained IFC requires major engineering effort, because
several components (all the way from the parser to the runtime system) must be adapted to
be label-aware.

In the next two sections we show that—despite their differences—these two calculi are, in
fact, equally expressive.

4 FINE- TO COARSE-GRAINED PROGRAM TRANSLATION

This section presents a provably semantics-preserving program translation from the fine-
grained dynamic IFC calculus 𝜆𝑑𝐹𝐺 to the coarse-grained calculus 𝜆𝑑𝐶𝐺. At a high level,
the translation performs two tasks (i) it embeds the intrinsic label annotation of 𝜆𝑑𝐹𝐺

values into an explicitly labeled 𝜆𝑑𝐶𝐺 value via the Labeled type constructor and (ii) it
restructures 𝜆𝑑𝐹𝐺 side-effectful expressions into monadic operations inside the LIO monad.
Our type-driven approach starts by formalizing this intuition in the function ⟨⟨·⟩⟩, which maps
the 𝜆𝑑𝐹𝐺 type 𝜏 to the corresponding 𝜆𝑑𝐶𝐺 type ⟨⟨𝜏⟩⟩ (see Figure 10). The function is defined
by induction on types and recursively adds the Labeled type constructor to each existing
𝜆𝑑𝐹𝐺 type constructor. For the function type 𝜏1 → 𝜏2, the result is additionally monadic, i.e.,
⟨⟨𝜏1⟩⟩ → LIO⟨⟨𝜏2⟩⟩. This is because the function’s body in 𝜆𝑑𝐹𝐺 may have side-effects. The
translation for values (Figure 11) is straightforward. Each 𝜆𝑑𝐹𝐺 label tag becomes the label
annotation in a 𝜆𝑑𝐶𝐺 labeled value. The translation is homomorphic in constructors on raw
values. The translation converts a 𝜆𝑑𝐹𝐺 function closure into a 𝜆𝑑𝐶𝐺 closure by translating

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2019.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

1:14 Marco Vassena, Alejandro Russo, Deepak Garg, Vineet Rajani, and Deian Stefan

the body of the function to a thunk, i.e., ⟨⟨e⟩⟩, (see below) and translating the environment
pointwise, i.e., ⟨⟨𝜃⟩⟩ = 𝜆x .⟨⟨𝜃(x)⟩⟩.

Expressions. We show the translation of 𝜆𝑑𝐹𝐺 expressions to 𝜆𝑑𝐶𝐺 monadic thunks in
Figure 12. We use the standard do notation for readability.12 First, notice that the translation
of all constructs occurs inside a toLabeled(·) block. This achieves two goals, (i) it ensures
that the value that results from a translated expression is explicitly labeled and (ii) it creates
an isolated nested context where the translated thunk can execute without raising the
program counter label at the top level. Inside the toLabeled(·) block, the program counter
label may rise, e.g., when some intermediate result is unlabeled, and the translation relies
on LIO’s floating-label mechanism to track dependencies between data of different security
levels. In particular, we will show later that the value of the program counter label at the end
of each nested block coincides with the label annotation of the 𝜆𝑑𝐹𝐺 value that the original
expression evaluates to. For example, introduction forms of ground values (unit, labels, and
functions) are simply returned inside the toLabeled(·) block so that they get tagged with
the current value of the program counter label just as in the corresponding 𝜆𝑑𝐹𝐺 introduction
rules ([Label,Unit,Fun]). Introduction forms of compounds values such as inl(e), inr(e)
and (e1, e2) follow the same principle. The translation simply nests the translations of
the nested expressions inside the same constructor, without raising the program counter
label. This matches the behavior of the corresponding 𝜆𝑑𝐹𝐺 rules [Inl,Inr,Pair].13 For

example, the 𝜆𝑑𝐹𝐺 reduction ((), ()) ⇓∅L (()
L
, ()

L
)
L
maps to a 𝜆𝑑𝐶𝐺 reduction that yields

Labeled L (Labeled L (),Labeled L ()) when started with program counter label L.
The translation of variables gives some insight into how the 𝜆𝑑𝐶𝐺 floating-label mechanism

can simulate 𝜆𝑑𝐹𝐺’s tainting approach. First, the type-driven approach set out in Figure 10
demands that functions take only labeled values as arguments, so the variables in the source
program are always associated to a labeled value in the translated program. The values that
correspond to these variables are stored in the environment 𝜃 and translated separately, e.g.,
if 𝜃(x) = 𝑟ℓ in 𝜆𝑑𝐹𝐺, then x gets bound to ⟨⟨𝑟ℓ⟩⟩ = Labeled ℓ⟨⟨𝑟⟩⟩ when translated to 𝜆𝑑𝐶𝐺.
Thus, the translation converts a variable, say x , to toLabeled(unlabel(x)), so that its label
gets tainted with the current program counter label. More precisely, unlabel(x) retrieves the
labeled value associated with the variable, i.e., Labeled ℓ⟨⟨𝑟⟩⟩, taints the program counter
with its label to make it pc ⊔ ℓ, and returns the content, i.e., ⟨⟨𝑟⟩⟩. Since unlabel(x) occurs
inside a toLabeled(·) block, the code above results in Labeled (pc ⊔ ℓ)⟨⟨𝑟⟩⟩ when evaluated,

matching precisely the tainting behavior of 𝜆𝑑𝐹𝐺 rule [Var], i.e., x ⇓𝜃[x ↦→𝑟ℓ]
pc 𝑟pc ⊔ ℓ.

The elimination forms for other types (function application, pair projections and case
analysis) follow the same approach. For example, the code that translates a function
application e1 e2 first executes the code that computes the translated function, i.e., lv1 ←
⟨⟨e1⟩⟩, then the code that computes the argument, i.e., lv2 ← ⟨⟨e2⟩⟩ and then retrieves the
function from the first labeled value, i.e., 𝑣1 ← unlabel(lv1).

14 The function 𝑣1 applied to
the labeled argument lv2 gives a computation that gets executed and returns a labeled value
lv that gets unlabeled to expose the final result (the surrounding toLabeled(·) wraps it again

12Syntax do x ← e1; e2 desugars to bind(e1, x .e2) and syntax e1; e2 to bind(e1, .e2).
13We name a variable lv if it gets bound to a labeled value, i.e., to indicate that the variable has type
Labeled 𝜏 .
14 Notice that it is incorrect to unlabel the function before translating the argument, because that would
taint the program counter label, which would raise at level, say pc ⊔ ℓ, and affect the code that translates the

argument, which was to be evaluated with program counter label equal to pc by the original flow-insensitive
𝜆𝑑𝐹𝐺 rule [App] for function application.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2019.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

From Fine- to Coarse-Grained Dynamic Information Flow Control and Back 1:15

right away). The translation of case analysis is analogous. The translation of pair projections
first converts the 𝜆𝑑𝐹𝐺 pair into a computation that gives a 𝜆𝑑𝐶𝐺 labeled pair of labeled
values, say Labeled ℓ (Labeled ℓ1⟨⟨𝑟1⟩⟩,Labeled ℓ2⟨⟨𝑟2⟩⟩) and removes the label tag on the
pair via unlabel, thus raising the program counter label to pc ⊔ ℓ. Then, it projects the
appropriate component and unlabels it, thus tainting the program counter label even further
with the label of either the first or the second component. This coincides with the tainting
mechanism of 𝜆𝑑𝐹𝐺 for projection rules, e.g., in rule [Fst] where fst(e) ⇓𝜃pc 𝑟1

pc ⊔ ℓ ⊔ ℓ1 if

e ⇓𝜃pc (𝑟1
ℓ1 , 𝑟2

ℓ2)
ℓ
.

Lastly, translating taint(e1, e2) requires (i) translating the expression e1 that gives the
label, (ii) using taint(·) from 𝜆𝑑𝐶𝐺 to explicitly taint the program counter label with the
label that e1 gives, and (iii) translating the second argument e2 to execute in the tainted
context and unlabeling the result. The construct labelOf(e) of 𝜆𝑑𝐹𝐺 uses the corresponding
𝜆𝑑𝐶𝐺 primitive applied on the corresponding labeled value, say Labeled ℓ⟨⟨𝑟⟩⟩, obtained
from the translated expression. Notice that labelOf(·) taints the program counter label
in 𝜆𝑑𝐶𝐺, which rises to pc ⊔ ℓ, so the code just described results in Labeled (pc ⊔ ℓ) ℓ,
which corresponds to the translation of the result in 𝜆𝑑𝐹𝐺, i.e., ⟨⟨ℓℓ⟩⟩ = Labeled ℓ ℓ because
pc ⊔ ℓ ≡ ℓ, since pc ⊑ ℓ from Property 1. The translation of getLabel follows naturally
by simply wrapping 𝜆𝑑𝐶𝐺’s getLabel inside a toLabeled(·), which correctly returns the
program counter label labeled with itself, i.e., Labeled pc pc.

Note on Environments. 𝜆𝑑𝐹𝐺 and 𝜆𝑑𝐶𝐺 semantics feature an environment 𝜃 for input
values that gets extended with intermediate values during program evaluation and that may
be captured inside a closure. Unfortunately, this capturing behavior is undesirable for our
program translation. The program translation defined above introduces temporary auxiliary
variables that carry the value of intermediate results, e.g., the labeled value obtained from
running a computation that translates some 𝜆𝑑𝐹𝐺 expression. When the translated program
is executed, these values end up in the environment, e.g., by means of rules [App] and
[Bind], and mix with the input values of the source program and output values as well, thus
complicating the correctness statement of the translation, which now has to account for
those extra variables as well. In order to avoid this nuisance, we employ a special form of
weakening that allows shrinking the environment at run-time and removing spurious values
that are not needed in the rest of the program. In particular, expression wken 𝑥 e has the
same type as e if variables 𝑥 are not free in e. At run-time, wken 𝑥 e, evaluates e in an
environment from which variables 𝑥 have been dropped, so they do not get captured in
closures created during the execution of e. Formally:

Γ ∖ 𝑥 ⊢ e : 𝜏

Γ ⊢ wken 𝑥 e : 𝜏

(Wken)

e ⇓𝜃 ∖ 𝑥 𝑣

wken 𝑥 e ⇓𝜃 𝑣

Rule [Wken] is part of the pure semantics of 𝜆𝑑𝐶𝐺—the semantics of 𝜆𝑑𝐹𝐺 includes an
analogous rule (the issue of contaminated environments arises in the translations in both
directions so both calculi feature wken). We remark that this expedient is not essential—we
can avoid it by slightly complicating the correctness statement to explicitly account for those
extra variables. Nor is this expedient particularly interesting. In fact, we omit wken from
the code of the program translations to avoid clutter (our mechanization includes wken in
the appropriate places).

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2019.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

1:16 Marco Vassena, Alejandro Russo, Deepak Garg, Vineet Rajani, and Deian Stefan

References. Figure 13 shows the program translation of 𝜆𝑑𝐹𝐺 primitives that access the
store via references. The translation of 𝜆𝑑𝐹𝐺 values wraps references in 𝜆𝑑𝐶𝐺 labeled values
(Figure 11), so the translations of Figure 13 take care of boxing and unboxing references. The
translation of new(e) has a top-level toLabeled(·) block that simply translates the content
(lv ← ⟨⟨e⟩⟩) and puts it in a new reference (new(lv)). 𝜆𝑑𝐶𝐺 assigns the label of the translated
content to the new reference using the 𝜆𝑑𝐶𝐺 rule [New] (Figure 8), which also gets labeled
with the original program counter label15, just as in the 𝜆𝑑𝐹𝐺 rule [New] (Figure 4). In

𝜆𝑑𝐹𝐺, rule [Read] reads from a reference nℓ
ℓ′ at security level ℓ′ that points to the ℓ-labeled

memory, and returns the content Σ(ℓ)[n]
ℓ ⊔ ℓ′

at level ℓ ⊔ ℓ′. Similarly, the translation creates
a toLabeled(·) block that executes to get a labeled reference lr = Labeled ℓ′ nℓ, extracts
the reference nℓ (𝑟 ← unlabel(lr)) tainting the program counter label with ℓ′, and then reads
the reference’s content further tainting the program counter label with ℓ as well. The code
that translates and updates a reference consists of two toLabeled(·) blocks. The first block
is responsible for the update: it extracts the labeled reference and the labeled new content (lr
and lv resp.), extracts the reference from the labeled value (𝑟 ← unlabel(lr)) and updates
it (𝑟 := lv). The second block, toLabeled(return()), returns unit at security level pc, i.e.,
Labeled pc (), similar to the 𝜆𝑑𝐹𝐺 rule [Write]. The translation of labelOfRef(e) extracts
the reference and projects its label via the 𝜆𝑑𝐶𝐺 primitive labelOfRef(·), which additionally
taints the program counter with the label itself, similar to the 𝜆𝑑𝐹𝐺 rule [LabelOfRef].

4.1 Correctness

In this section, we establish some desirable properties of the 𝜆𝑑𝐹𝐺-to-𝜆𝑑𝐶𝐺 translation
defined above. These properties include type and semantics preservation as well as recovery
of non-interference—a meta criterion that rules out a class of semantically correct (semantics
preserving), yet elusive translations that do not preserve the meaning of security labels
[Barthe et al. 2007; Rajani and Garg 2018].

We start by showing that the program translation preserves typing. The type translation
for typing contexts Γ is pointwise, i.e., ⟨⟨Γ⟩⟩ = 𝜆x .⟨⟨Γ(x)⟩⟩.

Lemma 4.1 (Type Preservation). Given a well-typed 𝜆𝑑𝐹𝐺 expression, i.e., Γ ⊢ e : 𝜏 ,
the translated 𝜆𝑑𝐶𝐺 expression is also well-typed, i.e., ⟨⟨Γ⟩⟩ ⊢ ⟨⟨e⟩⟩ : LIO⟨⟨𝜏⟩⟩.

Proof. By induction on the given typing derivation. □

The main correctness criterion for the translation is semantics preservation. Intuitively,
proving this theorem ensures that the program translation preserves the meaning of secure
𝜆𝑑𝐹𝐺 programs when translated and executed with 𝜆𝑑𝐶𝐺 semantics (under a translated
environment). In the theorem below, the translation of stores and memories is pointwise,
i.e., ⟨⟨Σ⟩⟩ = 𝜆ℓ.⟨⟨Σ(ℓ)⟩⟩, and ⟨⟨[]⟩⟩ = [] and ⟨⟨𝑟 :M ⟩⟩ = ⟨⟨𝑟⟩⟩ : ⟨⟨M ⟩⟩ for each ℓ-labeled memory
M . Furthermore, notice that in the translation, the initial and final program counter labels
are the same. This establishes that the program translation preserves the flow-insensitive
program counter label of 𝜆𝑑𝐹𝐺 (by means of primitive toLabeled(·)).

Theorem 3 (Semantics Preservation of ⟨⟨ · ⟩⟩ : 𝜆𝑑𝐹𝐺 → 𝜆𝑑𝐶𝐺). Given a well-typed
𝜆𝑑𝐹𝐺 program ⟨Σ, e⟩ ⇓𝜃pc ⟨Σ′, 𝑣⟩, then ⟨⟨⟨Σ⟩⟩, pc, ⟨⟨e⟩⟩⟩ ⇓⟨⟨𝜃⟩⟩ ⟨⟨⟨Σ′⟩⟩, pc, ⟨⟨𝑣⟩⟩⟩.

Proof. By induction on the given evaluation derivation using basic properties of the security
lattice and of the translation function.

15 The nested block does not execute any unlabel(·) nor taint(·).

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2019.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

From Fine- to Coarse-Grained Dynamic Information Flow Control and Back 1:17

Recovery of non-interference. We conclude this section by constructing a proof of termination-
insensitive non-interference for 𝜆𝑑𝐹𝐺 (Theorem 1) from the corresponding theorem for 𝜆𝑑𝐶𝐺

(Theorem 2), using the semantics preservation of the translation, together with a property
that the translation preserves L-equivalence. Doing so ensures that the meaning of labels is
preserved by the translation [Barthe et al. 2007; Rajani and Garg 2018]. In the absence of
such an artifact, one could devise a semantics-preserving translation that simply does not
use the security features of the target language. While technically correct (i.e., semantics
preserving), the translation would not be meaningful from the perspective of security.16

The theorem requires a helping lemma that L-equivalence is preserved by the translation.
In the following, we define the translation for initial configuration as ⟨⟨c⟩⟩pc = ⟨⟨⟨Σ⟩⟩, pc, ⟨⟨e⟩⟩⟩
if c = ⟨Σ, e⟩, and for final configurations ⟨⟨c⟩⟩pc = ⟨⟨⟨Σ⟩⟩, pc, ⟨⟨𝑣⟩⟩⟩ if c = ⟨Σ, 𝑣⟩.

Lemma 4.2. For all values, raw values, environments and configurations:

∙ 𝑣1 ≈L 𝑣2 if and only if ⟨⟨𝑣1⟩⟩ ≈L ⟨⟨𝑣2⟩⟩.
∙ 𝑟1 ≈L 𝑟2 if and only if ⟨⟨𝑟1⟩⟩ ≈L ⟨⟨𝑟2⟩⟩
∙ 𝜃1 ≈L 𝜃2 if and only if ⟨⟨𝜃1⟩⟩ ≈L ⟨⟨𝜃2⟩⟩
∙ Let c1 and c2 be initial configurations, then for all pc, c1 ≈L c2 if and only if
⟨⟨c1⟩⟩pc ≈L ⟨⟨c2⟩⟩pc.
∙ Let c′1 = ⟨Σ, 𝑟1ℓ1⟩, c′2 = ⟨Σ2, 𝑟2

ℓ2⟩, if pc ⊑ ℓ1, pc ⊑ ℓ2 and ⟨⟨c′1⟩⟩
pc ≈L ⟨⟨c′2⟩⟩

pc
then

c′1 ≈L c′2.

Proof. By mutual induction and using injectivity of the translation function in the if
direction.

Theorem 4 (𝜆𝑑𝐹𝐺-TINI via ⟨⟨ · ⟩⟩). If c1 ⇓𝜃1pc c′1, c2 ⇓𝜃2pc c′2, 𝜃1 ≈L 𝜃2 and c1 ≈L c2
then c′1 ≈L c′2.

Proof. We start by applying the fine to coarse grained program translation to the initial
configurations and input values. By Theorem 3 (semantics preservation), we derive the
corresponding 𝜆𝑑𝐶𝐺 reductions, i.e., ⟨⟨c1⟩⟩pc ⇓⟨⟨𝜃⟩⟩ ⟨⟨c′1⟩⟩

pc
and ⟨⟨c2⟩⟩pc ⇓⟨⟨𝜃⟩⟩ ⟨⟨c′2⟩⟩

pc
. Then, we

lift L-equivalence for initial configurations and input values to their translation (Lemma 4.2),
i.e., ⟨⟨c1⟩⟩pc ≈L ⟨⟨c2⟩⟩pc and ⟨⟨𝜃1⟩⟩ ≈L ⟨⟨𝜃2⟩⟩ and obtain ⟨⟨c′1⟩⟩

pc ≈L ⟨⟨c′2⟩⟩
pc

by Theorem 2 (𝜆𝑑𝐶𝐺-
TINI). Finally, we deduce L-equivalence of the source final configurations again by the last
point of Lemma 4.2, where c′1 = ⟨Σ, 𝑟1ℓ1⟩, c′2 = ⟨Σ2, 𝑟2

ℓ2⟩ and pc ⊑ ℓ1 (resp. pc ⊑ ℓ2) by
Property 1 applied to the source reductions, i.e., c1 ⇓𝜃1pc c′1 (resp. c2 ⇓𝜃2pc c′2).

5 COARSE- TO FINE-GRAINED PROGRAM TRANSLATION

We now show a verified program translation in the opposite direction—from the coarse
grained calculus 𝜆𝑑𝐶𝐺 to the fine grained calculus 𝜆𝑑𝐹𝐺. The translation in this direction is
more involved—a program in 𝜆𝑑𝐹𝐺 contains strictly more information than its counterpart
in 𝜆𝑑𝐶𝐺, namely the extra intrinsic label annotations that tag every value. The challenge
in constructing this translation is two-fold. On one hand, the translation must come up
with labels for all values. However, it is not always possible to do this statically during the
translation: Often, the labels depend on input values and arise at run-time with intermediate
results since the 𝜆𝑑𝐹𝐺 calculus is designed to compute and attach labels at run-time. On
the other hand, the translation cannot conservatively under-approximate the values of

16Note that such bogus translations are also ruled out due to the need to preserve the outcome of any label
introspection. Nonetheless, building this proof artifact increases our confidence in the robustness of our
translation. In contrast, if the enforcement of IFC is static, then there is no label introspection, and this

proof artifact is extremely important, as argued in prior work [Barthe et al. 2007; Rajani and Garg 2018].

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2019.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

1:18 Marco Vassena, Alejandro Russo, Deepak Garg, Vineet Rajani, and Deian Stefan

labels17—𝜆𝑑𝐶𝐺 and 𝜆𝑑𝐹𝐺 have label introspection so, in order to get semantics preservation,
labels must be preserved precisely. Intuitively, we solve this impasse by crafting a program
translation that (i) preserves the labels that can be inspected by 𝜆𝑑𝐶𝐺 and (ii) lets the
𝜆𝑑𝐹𝐺 semantics compute the remaining label annotations automatically—we account for
those labels with a cross-language relation that represents semantic equivalence between
𝜆𝑑𝐹𝐺 and 𝜆𝑑𝐶𝐺 modulo extra annotations (Section 5.1). The fact that the source program
in 𝜆𝑑𝐶𝐺 cannot inspect those labels—they have no value counterpart in the source 𝜆𝑑𝐶𝐺

program—facilitates this aspect of the translation. We elaborate more on the technical
details later.

At a high level, an interesting aspect of the translation (that informally attests that it is
indeed semantics-preserving) is that it encodes the flow-sensitive program counter of the
source 𝜆𝑑𝐶𝐺 program into the label annotation of the 𝜆𝑑𝐹𝐺 value that results from executing
the translated program. For example, if a 𝜆𝑑𝐶𝐺 monadic expression starts with program
counter label pc and results in some value, say true, and final program counter pc′, then the
translated 𝜆𝑑𝐹𝐺 expression, starting with the same program counter label pc, computes the
same value (modulo extra label annotations) at the same security level pc′, i.e., the value

truepc
′
. This encoding requires keeping the value of the program counter label in the source

program synchronized with the program counter label in the target program, by loosening
the fine-grained precision of 𝜆𝑑𝐹𝐺 at run-time in a controlled way.

Types. The 𝜆𝑑𝐶𝐺-to-𝜆𝑑𝐹𝐺 translation follows the same type-driven approach used in the
other direction, starting from the function J ·K in Figure 14, that translates a 𝜆𝑑𝐹𝐺 type 𝜏 into
the corresponding 𝜆𝑑𝐶𝐺 type J𝜏K. The translation is defined by induction on 𝜏 and preserves
all the type constructors standard types. Only the cases corresponding to 𝜆𝑑𝐶𝐺-specific
types are interesting. In particular, it converts explicitly labeled types, i.e., Labeled 𝜏 , to a
standard pair type in 𝜆𝑑𝐹𝐺, i.e., (L × J𝜏K), where the first component is the label and the
second component the content of type 𝜏 . Type LIO 𝜏 becomes a suspension in 𝜆𝑑𝐹𝐺, i.e.,
the function type unit→ J𝜏K that delays a computation and that can be forced by simply
applying it to the unit value ().

Values. The translation of values follows the type translation, as shown in Figure 15.
Notice that the translation is indexed by the program counter label (the translation is
written J𝑣Kpc), which converts the 𝜆𝑑𝐶𝐺 value 𝑣 in scope of a computation protected by
security level pc to the corresponding fully label-annotated 𝜆𝑑𝐹𝐺 value. The translation is
pretty straightforward and uses the program counter label to tag each value, following the
𝜆𝑑𝐶𝐺 principle that the program counter label protects every value in scope that is not
explicitly labeled. The translation converts a 𝜆𝑑𝐶𝐺 function closure into a corresponding
𝜆𝑑𝐹𝐺 function closure by translating the body of the function to a 𝜆𝑑𝐹𝐺 expression (see
below) and translating the environment pointwise, i.e., J𝜃Kpc = 𝜆x .J𝜃(x)Kpc . A thunk value or
a thunk closure, which denotes a suspended side-effecful computation, is also converted into
a 𝜆𝑑𝐹𝐺 function closure. Technically, the translation would need to introduce a fresh variable
that would get bound to unit when the suspension gets forced. However, the argument to
the suspension does not have any purpose, so we do not bother with giving a name to it and
write .JtK instead. (In our mechanized proofs we employ unnamed De Bruijn indexes and
this issue does not arise.) The translation converts an explicitly labeled value Labeled ℓ 𝑣,

17In contrast, previous work on static type-based fine-to-coarse grained translation safely under-approximates

the label annotations in types with ⊥ [Rajani and Garg 2018]. The proof of type preservation of the translation
recovers the actual labels via subtyping.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2019.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

From Fine- to Coarse-Grained Dynamic Information Flow Control and Back 1:19

into a labeled pair at security level pc, i.e., (ℓℓ, J𝑣Kℓ)
pc
. The pair consists of the label ℓ tagged

with itself, and the value translated at a security level equal to the label annotation, i.e., J𝑣Kℓ.
Notice that tagging the label with itself allows us to translate the 𝜆𝑑𝐶𝐺 (label introspection)
primitive labelOf(·) by simply projecting the first component, thus preserving the label
and its security level across the translation.

Expressions and Thunks. The translation of pure expressions (Figure 16) is trivial: It is
homomorphic in all constructs, mirroring the type translation. The translation of a thunk
expression t builds a suspension explicitly with a 𝜆-abstraction (the name of the variable is
again irrelevant, thus we omit it as explained above), and carries on by translating the thunk
itself according to the definition in Figure 17. The thunk return(e) becomes JeK, since
return(·) does not have any side-effect. When two monadic computations are combined
via bind(e1, x .e2), the translation (i) converts the first computation to a suspension and
forces it by applying unit (Je1K()), (ii) binds the result to x and passes it to the second
computation18, which is also converted, forced, and, importantly, iii) executed with a
program counter label tainted with the security level of the result of the first computation
(taint(labelOf(x), Je2K())). Notice that taint(·) is essential to ensure that the second
computation executes with the program counter label set to the correct value—the precision
of the fine-grained system would otherwise retain the initial lower program counter label
according to rule [App] and the value of the program counter labels in the source and target
programs would differ in the remaining execution.
Similarly, the translation of unlabel(e) first translates the labeled expression e (the

translated expression does not need to be forced because it is not of a monadic type),
binds its result to x and then projects the content in a context tainted with its label, as
in taint(fst(x), snd(x)). This closely follows 𝜆𝑑𝐶𝐺’s [Unlabel] rule. The translation of
toLabeled(e) forces the nested computation with JeK(), binds its result to x and creates
the pair (labelOf(x), x), which corresponds to the labeled value obtained in 𝜆𝑑𝐶𝐺 via rule
[ToLabeled]. Intuitively, the translation guarantees that the value of the final program
counter label in the nested computation coincides with the security level of the translated
result (bound to x). Therefore, the first component contains the correct label and it is
furthermore at the right security level, because labelOf(·) protects the projected label with
the label itself in 𝜆𝑑𝐹𝐺. Primitive labelOf(e) simply projects the first component of the pair
that encodes the labeled value in 𝜆𝑑𝐹𝐺 as explained above. Lastly, getLabel in 𝜆𝑑𝐶𝐺 maps
directly to getLabel in 𝜆𝑑𝐹𝐺—rule [GetLabel] in 𝜆𝑑𝐶𝐺 simply returns the program counter
label and does not raise its value, so it corresponds exactly to rule [GetLabel] in 𝜆𝑑𝐹𝐺,
which returns label pc at security level pc. Similarly, taint(e) translates to taint(JeK, ())
since rule [Taint] in 𝜆𝑑𝐶𝐺 simply taints the program counter label with the label that e
evaluates to, say ℓ and results in unit with program counter label raised to pc ⊔ ℓ. This

corresponds to the result of the translated program, i.e., ()
pc ⊔ ℓ

.

References. Figure 18 shows the translation of primitives that access the store via references.
Since 𝜆𝑑𝐶𝐺’s rule [New] in Figure 8 creates a new reference labeled with the label of the
argument (which must be a labeled value), the translation converts new(e) to an expression
that first binds JeK to x and then creates a new reference with the same content as the source,
i.e., snd(x), but tainted with the label in x , i.e., fst(x). Notice that the use of taint(·) is
essential to ensure that 𝜆𝑑𝐹𝐺’s rule [New] in Figure 4 assigns the correct label to the new
reference. Due to its fine-grained precision, 𝜆𝑑𝐹𝐺 might have labeled the content with a

18Syntax let x = e1 in e2 where x is free in e2 is a shorthand for (𝜆x .e2) e1.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2019.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

1:20 Marco Vassena, Alejandro Russo, Deepak Garg, Vineet Rajani, and Deian Stefan

different label that is less sensitive than the explicit label that coarsely approximates the
security level in 𝜆𝑑𝐶𝐺. In contrast, updating a reference does not require any tainting—both
𝜆𝑑𝐹𝐺 and 𝜆𝑑𝐶𝐺 accept values less sensitive than the reference in rule [Write]. Thus, the
translation e1 := e2 simply updates the translated reference with the content of the labeled
value projected from the translated pair. Hence, Je1 :=e2K is Je1K:=snd(Je2K). The translation
of the primitives that read and query the label of a reference is trivial.

5.1 Cross-Language Semantic Equivalence up to Extra Annotations

When a 𝜆𝑑𝐶𝐺 program is translated to 𝜆𝑑𝐹𝐺 via the program translation described above,
the 𝜆𝑑𝐹𝐺 result contains strictly more information than the original 𝜆𝑑𝐶𝐺 result. This
happens because the semantics of 𝜆𝑑𝐹𝐺 tracks flows of information at fine granularity, in
contrast with 𝜆𝑑𝐶𝐺, which instead coarsely approximates the security level of all values in
scope of a computation with the program counter label. When translating a 𝜆𝑑𝐶𝐺 program,
we can capture this condition precisely for input values 𝜃 by homogeneously tagging all
standard (unlabeled) values with the initial program counter label, i.e., J𝜃Kpc. However,
a 𝜆𝑑𝐶𝐺 program handles, creates and mixes unlabeled data that originated at different
security levels at run-time, e.g., when a secret is unlabeled and combined with previously
public (unlabeled) data. Crucially, when the translated program executes, the fine-grained
semantics of 𝜆𝑑𝐹𝐺 tracks those flows of information precisely and thus new labels appear
(these labels do not correspond to the label of any labeled value in the source value nor
to the program counter label). Intuitively, this implies that the 𝜆𝑑𝐹𝐺 result will not be
homogeneously labeled with the final program counter label of the 𝜆𝑑𝐶𝐺 computation, i.e.,
if a 𝜆𝑑𝐶𝐺 program terminates with value 𝑣 and program counter label pc′, the translated

𝜆𝑑𝐹𝐺 program does not necessarily result in J𝑣Kpc
′
.

Example. Consider the 𝜆𝑑𝐶𝐺 program ⟨Σ,L, taint(H); return(x)⟩ ⇓x ↦→true ⟨Σ,H , true⟩,
which returns true = inl() and the store Σ unchanged, after tainting the program counter
label with H . Let e be the expression obtained by applying the program translation defined
above to the example program:

e = 𝜆 .

let y = taint(H , ()) in

taint(labelOf(y), x)

Interestingly, when we force the program e and execute it starting from program counter
label equal to L, and an input environment translated according to the initial program

counter label (L in this case), i.e., x ↦→JtrueKL = inl(()
L
)
L
= trueL, we do not obtain the

translated result homogeneously labeled with H :

⟨JΣK, e ()⟩ ⇓x ↦→trueL

L ⟨JΣK, trueH ⟩ = ⟨JΣK, inl(()L)
H
⟩ ≠ ⟨JΣK, inl(()H)

H
⟩ = ⟨JΣK, JtrueKH ⟩

In particular, 𝜆𝑑𝐹𝐺 preserves the public label tag on data nested inside the left injection,

i.e., ()
L
in inl(()

L
)
H

above. This happens because 𝜆𝑑𝐹𝐺’s rule [Var] taints only the outer
label of the value trueL when it looks up variable x in program counter label H .

Solution. In order to recover a notion of semantics preservation, we introduce a key
contribution of this work, a cross-language binary relation that associates values of the two
calculi that, in the scope of a computation at a given security level, are semantically equivalent

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2019.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

From Fine- to Coarse-Grained Dynamic Information Flow Control and Back 1:21

up to the extra annotations present in the 𝜆𝑑𝐹𝐺 value.19 Technically, we use this equivalence
in the semantics preservation theorem in Section 5.2, which existentially quantifies over the
result of the translated 𝜆𝑑𝐹𝐺 program, but guarantees that it is semantically equivalent to
the result obtained in the source program.
Concretely, for a 𝜆𝑑𝐹𝐺 value 𝑣1 and a 𝜆𝑑𝐶𝐺 value 𝑣2, we write 𝑣1 �≈pc 𝑣2 if the label

annotations (including those nested inside compound values) of 𝑣1 are no more sensitive
than label pc and its raw value corresponds to 𝑣2. Figure 19 formalizes this intuition by
means of two mutually inductive relations, one for 𝜆𝑑𝐹𝐺 values and one for 𝜆𝑑𝐹𝐺 raw values.
In particular, rule [Value] relates 𝜆𝑑𝐹𝐺 value 𝑟1

ℓ1 and 𝜆𝑑𝐶𝐺 value 𝑣2 at security level pc if
the label annotation on the raw value 𝑟1 flows to the program counter label, i.e., ℓ1 ⊑ pc,
and if the raw value is in relation with the standard value, i.e., 𝑟1 �≈pc 𝑣2. The relation
between raw values and standard values relates only semantically equivalent values, i.e., it is
syntactic equality for ground types ([Unit,Label,Ref]), requires the same injection for
values of the sum type ([Inl,Inr]) and requires the components to related for pairs ([Pair]).

Rules [Fun] (resp. [Thunk]) relates function (resp. thunk) closures only when environments
are related pointwise, i.e., 𝜃1 �≈pc 𝜃2 iff Dom(𝜃1) ≡ Dom(𝜃2) and ∀x .𝜃1(x) �≈pc 𝜃2(x),
and the 𝜆𝑑𝐹𝐺 function body x .JeK (resp. thunk body .JtK) is obtained from the 𝜆𝑑𝐶𝐺

function body e (resp. thunk t) via the program translation defined above. Lastly, rule
[Labeled] relates a 𝜆𝑑𝐶𝐺 labeled value Labeled ℓ 𝑣1 to a pair (ℓℓ, 𝑣2), consisting of the
label ℓ protected by itself in the first component and value 𝑣2 related with the content 𝑣1 at
security level ℓ (𝑣1 �≈ℓ 𝑣2) in the second component. This rule follows the principle of LIO
that for explicitly labeled values, the label annotation represents an upper bound on the
sensitivity of the content. Stores are related pointwise, i.e., Σ1 �≈ Σ2 iff Σ1(ℓ) �≈ Σ2(ℓ) for
ℓ ∈ L , and ℓ-labeled memories relate their contents respectively at security level ℓ, i.e.,
[] �≈ [] and (𝑟1 :M1) �≈ (𝑟2 :M2) iff 𝑟1 �≈ℓ 𝑟2 and M1 �≈ M2 for 𝜆𝑑𝐹𝐺 and 𝜆𝑑𝐶𝐺 memories
M1,M2 :Memory ℓ. Lastly, we lift the relation to initial and final configurations.

Definition 1 (Equivalence of Configurations). For all initial and final configura-
tions:

∙ ⟨Σ1, JeK()⟩ �≈ ⟨Σ2, pc, e⟩ iff Σ1 �≈ Σ2,
∙ ⟨Σ1, JtK⟩ �≈ ⟨Σ2, pc, t⟩ iff Σ1 �≈ Σ2,
∙ ⟨Σ1, 𝑟

pc⟩ �≈ ⟨Σ2, pc, 𝑣⟩ iff Σ1 �≈ Σ2 and 𝑟 �≈pc 𝑣.

For initial configurations, the relation requires the 𝜆𝑑𝐹𝐺 code to be obtained from the 𝜆𝑑𝐶𝐺

expression (resp. thunk) via the program translation function J · K defined above (similar
to rules [Fun] and [Thunk] in Figure 19). Furthermore, in the first case (expressions),
the relation additionally forces the translated suspension JeK by applying it to (), so that
when the 𝜆𝑑𝐹𝐺 security monitor executes the translated program, it obtains the result that
corresponds to the 𝜆𝑑𝐶𝐺 monadic program e. The third definition relates final configurations
whenever the stores are related and the security level of the final 𝜆𝑑𝐹𝐺 result corresponds
to the program counter label pc of the final 𝜆𝑑𝐶𝐺 configuration, and the final 𝜆𝑑𝐶𝐺 result
corresponds to the 𝜆𝑑𝐹𝐺 result up to extra annotations at security level pc, i.e., 𝑟 �≈pc 𝑣.
Before showing semantics preservation, we prove some basic properties of the equiva-

lence that will be useful later. The following property allows instantiating the semantics
preservation theorem with the 𝜆𝑑𝐶𝐺 initial configuration. The translation for initial con-
figurations is per-component, i.e., J⟨Σ, pc, t⟩K = ⟨JΣK, JtK⟩ and forcing for suspensions, i.e.,

19This relation is conceptually similar to the logical relation developed by Rajani and Garg [2018] for their

translations with static IFC enforcement, but technically different in the treatment of labeled values.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2019.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1:22 Marco Vassena, Alejandro Russo, Deepak Garg, Vineet Rajani, and Deian Stefan

J⟨Σ, pc, e⟩K = ⟨JΣK, JeK()⟩, pointwise for stores, i.e., JΣK = 𝜆ℓ.JΣ(ℓ)K, and memories, i.e.,

J[]K = [] and J𝑣 :M K = J𝑣Kℓ : JM K for ℓ-labeled memory M .

Property 3 (Reflexivity). For all initial configurations c, JcK �≈ c.

Proof. The proof is by induction and relies on analogous properties for all syntactic
categories: for stores, JΣK �≈ Σ, for memories, JM K �≈ M , for values J𝑣Kpc �≈pc 𝑣, for
environments J𝜃Kpc �≈pc 𝜃, for any label pc.

The next property guarantees that values and environments remain in the relation when
the program counter label rises.

Property 4 (Weakening). For all labels pc and pc′ such that pc ⊑ pc′, and for all
𝜆𝑑𝐹𝐺 values 𝑣1 and environments 𝜃1, and 𝜆𝑑𝐶𝐺 values 𝑣2 and environments 𝜃2:

∙ If 𝑣1 �≈pc 𝑣2 then 𝑣1 �≈pc′ 𝑣2
∙ If 𝜃1 �≈pc 𝜃2 then 𝜃1 �≈pc′ 𝜃2

Proof. By mutual induction on the relation and using basic properties of the lattice.

5.2 Correctness

With the help of the cross-language relation defined above, we can now state and prove that
the 𝜆𝑑𝐶𝐺-to-𝜆𝑑𝐹𝐺 translation is correct, i.e., it satisfies a semantics-preservation theorem
analogous to that proved for the translation in the opposite direction. At a high level,
the theorem ensures that the translation preserves the meaning of a secure terminating
𝜆𝑑𝐶𝐺 program when executed under 𝜆𝑑𝐹𝐺 semantics, with the same program counter label
and translated input values. Since the translated 𝜆𝑑𝐹𝐺 program computes strictly more
information than the original 𝜆𝑑𝐶𝐺 program, the theorem existentially quantify over the
𝜆𝑑𝐹𝐺 result, but insists that it is semantically equivalent to the original 𝜆𝑑𝐶𝐺 result at a
security level equal to the final value of the program counter label, using the cross-language
relation just defined.

We start by proving that the program translation preserves typing.

Lemma 5.1 (Type Preservation). If Γ ⊢ e : 𝜏 then JΓK ⊢ JeK : J𝜏K.

Proof. By straightforward induction on the typing judgment.
Next, we prove semantics preservation of 𝜆𝑑𝐶𝐺 pure reductions. Since these reductions do

not perform any security-relevant operation (they do not read or write state), they can be
executed with any program counter label in 𝜆𝑑𝐹𝐺 and do not change the state in 𝜆𝑑𝐹𝐺.

Lemma 5.2 (J · K : 𝜆𝑑𝐶𝐺 → 𝜆𝑑𝐹𝐺 preserves Pure Semantics). If e ⇓𝜃 𝑣 then for any
program counter label pc, 𝜆𝑑𝐹𝐺 store Σ, environment 𝜃′ such that 𝜃′ �≈pc 𝜃, there exists a

raw value 𝑟, such that ⟨Σ, JeK⟩ ⇓𝜃′

pc ⟨Σ, 𝑟pc⟩ and 𝑟 �≈pc 𝑣.

Proof. By induction on the given evaluation derivation and using basic properties of the
lattice.
Notice that the lemma holds for any input target environment 𝜃′ in relation with the

source environment 𝜃 at security level pc rather than just for the translated environment
J𝜃Kpc . Intuitively, we needed to generalize the lemma so that the induction principle is strong
enough to discharge cases where (i) we need to prove reductions that use an existentially
quantified environment, e.g., [App] and (ii) when some intermediate result at a security level
other than pc gets added to the environment, so the environment is no longer homogenously
labeled with pc. While the second condition does not arise in pure reductions, it does occur
in the reduction of monadic expressions considered in the following theorem.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2019.

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

From Fine- to Coarse-Grained Dynamic Information Flow Control and Back 1:23

Theorem 5 (J · K : 𝜆𝑑𝐶𝐺 → 𝜆𝑑𝐹𝐺 preserves Thunk and Forcing Semantics).

∙ Let c2 = ⟨Σ2, pc, t⟩ be an initial 𝜆𝑑𝐶𝐺 configuration. If c2 ⇓𝜃2 c′2, then for all 𝜆𝑑𝐹𝐺

environments 𝜃1 and initial configurations c1 such that 𝜃1 �≈pc 𝜃2 and c1 �≈ c2, there
exists a final configuration c′1, such that c1 ⇓𝜃1pc c′1 and c′1 �≈ c′2.

∙ Let c2 = ⟨Σ2, pc, e⟩ be an initial 𝜆𝑑𝐶𝐺 configuration. If c2 ⇓𝜃2 c′2, then for all 𝜆𝑑𝐹𝐺

environments 𝜃1 and initial configurations c1 such that 𝜃1 �≈pc 𝜃2 and c1 �≈ c2, there
exists a final configuration c′1, such that c1 ⇓𝜃1pc c′1 and c′1 �≈ c′2.

Proof (Sketch). By mutual induction on the given derivations, using Lemma 5.2 for pure
reductions and Properties 2 and 4 in cases [Bind, ToLabeled, Unlabel, Read], basic
properties of the lattice and of the translation function (for operations on the store).

We finally instantiate the semantics-preservation theorem with the translation of the input
values and the initial stores at security level pc.

Corollary 1 (Correctness). Let c1 = ⟨Σ, pc, e⟩, if c1 ⇓𝜃 c′1, then there exists a final

𝜆𝑑𝐹𝐺 configuration c′2 such that Jc1K ⇓J𝜃Kpc
pc c′2 and c′1 �≈ c′2.

Proof. By Property 3 and Theorem 5.
Notice that the flow-sensitive program counter of the source 𝜆𝑑𝐶𝐺 program gets encoded in

the security level of the result of the 𝜆𝑑𝐹𝐺 translated program. For example, if ⟨Σ2, pc, e⟩ ⇓𝜃
⟨Σ′

2, pc
′, 𝑣⟩ then, by Corollary 1 and unrolling Definition 1, there exists a raw value 𝑟 at

security level pc′ and a store Σ′
1, such that ⟨JΣ2K, JeK()⟩ ⇓J𝜃Kpc

pc ⟨Σ′
1, 𝑟

pc′⟩, 𝑟 �≈pc′ 𝑣 and
Σ′

1 �≈ Σ′
2.

Recovery of non-interference. Similarly to our presentation of Theorem 4 for the translation
in the opposite direction, we conclude this section with a sanity check—recovering a proof of
termination-insensitive non-interference (TINI) for 𝜆𝑑𝐶𝐺 through the program translation
defined above, semantics preservation and the non-interference of 𝜆𝑑𝐹𝐺. By reproving non-
interference of the source language from the target language, we show that our program
translation is authentic.
The following lemma ensures that the translation of initial configurations preserves

L-equivalence.

Lemma 5.3. If c1 ≈L c2, then Jc1K ≈L Jc2K.

Proof. By induction on the L-equivalence judgment and proving similar lemmas for
values, i.e., if 𝑣1 ≈L 𝑣2 then J𝑣1K

pc ≈L J𝑣2K
pc
, for environments, i.e., if 𝜃1 ≈L 𝜃2 then

J𝜃1K
pc ≈L J𝜃2K

pc
, for any label pc, for memories, i.e., if M1 ≈L M2 then JM1K ≈L JM2K, and

for stores, i.e., if Σ1 ≈L Σ2 then JΣ1K ≈L JΣ2K.
The following lemmas recovers 𝜆𝑑𝐶𝐺 L-equivalence from 𝜆𝑑𝐹𝐺 L-equivalence using the

cross-language equivalence relation for all the syntactic categories.

Lemma 5.4. For all public program counter labels pc ⊑ L, for all 𝜆𝑑𝐹𝐺 values 𝑣1, 𝑣2,
raw values 𝑟1, 𝑟2, environments 𝜃1, 𝜃2, memories M1, M2, stores Σ1, Σ2, and corresponding
𝜆𝑑𝐶𝐺 values 𝑣′1, 𝑣

′
2 and environments 𝜃′1, 𝜃

′
2, memories M ′

1, M
′
2, stores Σ′

1, Σ
′
2:

∙ If 𝑣1 ≈L 𝑣2, 𝑣1 �≈pc 𝑣′1 and 𝑣2 �≈pc 𝑣′2, then 𝑣′1 ≈L 𝑣′2,
∙ If 𝑟1 ≈L 𝑟2, 𝑟1 �≈pc 𝑣′1 and 𝑟2 �≈pc 𝑣′2, then 𝑣′1 ≈L 𝑣′2,
∙ If 𝜃1 ≈L 𝜃2, 𝜃1 �≈pc 𝜃′1 and 𝜃2 �≈pc 𝜃′2, then 𝜃′1 ≈L 𝜃′2,
∙ If M1 ≈L M2, M1 �≈ M ′

1 and M2 �≈ M ′
2, then M ′

1 ≈L M ′
2,

∙ If Σ1 ≈L Σ2, Σ1 �≈ Σ′
1 and Σ2 �≈ Σ′

2, then Σ′
1 ≈L Σ′

2.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2019.

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1:24 Marco Vassena, Alejandro Russo, Deepak Garg, Vineet Rajani, and Deian Stefan

Proof. The lemmas are proved mutually, by induction on the L-equivalence relation and
the cross-language equivalence relations and using injectivity of the translation function J · K
for closure values.20

The next lemma lifts the previous lemma final configurations.

Lemma 5.5. Let c1 and c2 be 𝜆𝑑𝐹𝐺 final configurations, let c′1 and c′2 be 𝜆𝑑𝐶𝐺 final
configurations. If c1 ≈L c2, c1 �≈ c′1 and c2 �≈ c′2, then c′1 ≈L c′2.

Proof. Let c1 = ⟨Σ1, 𝑣1⟩, c2 = ⟨Σ2, 𝑣2⟩, c′1 = ⟨Σ′
1, pc1, 𝑣

′
1⟩, c′2 = ⟨Σ′

2, pc2, 𝑣
′
2⟩. From L-

equivalence of 𝜆𝑑𝐹𝐺 final configurations, it follows L-equivalence for the stores and the values,
i.e., Σ1 ≈L Σ2 and 𝑣1 ≈L 𝑣2 from c1 ≈L c2 (Section 2.2). Similarly, from cross-language
equivalence of final 𝜆𝑑𝐹𝐺 and 𝜆𝑑𝐶𝐺 configurations, it follows cross-language equivalence of
their components, i.e., respectively Σ1 �≈ Σ′

1 and 𝑣1 �≈pc1
𝑣′1 from c1 �≈ c2, and Σ2 �≈ Σ′

2

and 𝑣2 �≈pc2
𝑣′2 from c2 �≈ c′2 (Definition 1). First, we show that the 𝜆𝑑𝐶𝐺 stores are

L-equivalent, i.e., Σ′
1 ≈L Σ′

2 by Lemma 5.4 for stores, then two cases follow by case split on
𝑣1 ≈L 𝑣2. Either (i) both label annotations on the values are not observable ([ValueH]),
then the program counter labels are also not observable (pc1 ̸⊑ L and pc2 ̸⊑ L from
𝑣1 �≈pc1

𝑣′1 and 𝑣2 �≈pc2
𝑣′2) and c′1 ≈L c′2 by rule [PcH] or (ii) the label annotations are

equal and observable by the attacker ([ValueL]), i.e., pc1 = pc2 ⊑ L, then 𝑣′1 ≈L 𝑣′2 by
Lemma 5.4 for values and c′1 ≈L c′2 by rule [PcL].

Theorem 6 (𝜆𝑑𝐶𝐺-TINI via J · K). If c1 ⇓𝜃1 c′1, c2 ⇓𝜃2 c′2, 𝜃1 ≈L 𝜃2 and c1 ≈L c2,
then c′1 ≈L c′2.

Proof. First, we apply the translation J · K : 𝜆𝑑𝐶𝐺 → 𝜆𝑑𝐹𝐺 to the initial configurations c1
and c2 and the respective environments 𝜃1 and 𝜃2. Let pc be the initial program counter
label common to configurations c1 and c2 (it is the same because c1 ≈L c2). Corollary 1
(Correctness) then ensures that there exist two 𝜆𝑑𝐹𝐺 configurations c′′1 and c′′2 , such that

Jc1K ⇓J𝜃1Kpc
pc c′′1 and c′′1 �≈ c′1, and Jc2K ⇓J𝜃2Kpc

pc c′′2 and c′′2 �≈ c′2. We then lift L-equivalence of
source configurations and environments to L-equivalence in the target language via Lemma
5.3, i.e., J𝜃1K

pc ≈L J𝜃2K
pc

and Jc1K ≈L Jc2K, and apply Theorem 1 (𝜆𝑑𝐹𝐺-TINI) to the

reductions i.e., Jc1K ⇓J𝜃1Kpc
pc c′′1 and Jc2K ⇓J𝜃2Kpc

pc c′′2 , which gives L-equivalence of the resulting
configurations, i.e., c′′1 ≈L c′′2 . Then, we apply Lemma 5.5 to c′′1 ≈L c′′2 , c

′′
1 �≈ c′1, and

c′′2 �≈ c′2, and recover L-equivalence for the source configurations, i.e., c′1 ≈L c′2.

6 RELATED WORK

Systematic study of the relative expressiveness of fine- and coarse-grained information flow
control (IFC) systems has started only recently. Rajani et al. [2017] initiated this study
in the context of static coarse- and fine-grained IFC, enforced via type systems. In more
recent work, Rajani and Garg [2018] show that a fine-grained IFC type system, which they
call FG, and two variants of a coarse-grained IFC type system, which they call CG, are
equally expressive. Their approach is based on type-directed translations, which are type-
and semantics-preserving. For proofs, they develop logical relations models of FG and the

20Technically, the function J·K presented in Section 5 is not injective. For example, consider the type translation

function from Figure 14: JLabeled unitK = L × unit = JL × unitK but Labeled unit ̸= L × unit,
and JLIO unitK = unit→ unit = Junit→ unitK but LIO unit ̸= unit→ unit. We make the translation

injective by (i) adding a wrapper type Id 𝜏 to 𝜆𝑑𝐹𝐺, together with constructor Id(e), a deconstructor

unId(e) and raw value Id(𝑣), and (ii) tagging security-relevant types and terms with the wrapper, i.e.,
JLabeled 𝜏K = Id (L × J𝜏K) and LIO 𝜏 = Id (unit→ J𝜏K). Adapting the translations in both directions

is tedious but straightforward; we refer the interested reader to our mechanized proofs for details.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2019.

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

From Fine- to Coarse-Grained Dynamic Information Flow Control and Back 1:25

two variants of CG, as well as cross-language logical relations. Our work and some of our
techniques are directly inspired by their work, but we examine dynamic IFC systems based
on runtime monitors. As a result, our technical development is completely different. In
particular, in our work we handle label introspection, which has no counterpart in the earlier
work on static IFC systems, and which also requires significant care in translations. Our
dynamic setting also necessitated the use of tainting operators in both the fine-grained and
the coarse-grained systems.

Our coarse-grained system 𝜆𝑑𝐶𝐺 is the dynamic analogue of the second variant of Rajani
and Garg [2018]’s CG type system. This variant is described only briefly in their paper (in
Section 4, paragraph “Original HLIO”) but covered extensively in Part-II of the paper’s
appendix. Rajani and Garg [2018] argue that translating their fine-grained system FG to this
variant of CG is very difficult and requires significant use of parametric label polymorphism.
The astute reader may wonder why we do not encounter the same difficulty in translating
our fine-grained system 𝜆𝑑𝐹𝐺 to 𝜆𝑑𝐶𝐺. The reason for this is that our fine-grained system
𝜆𝑑𝐹𝐺 is not a direct dynamic analogue of Rajani and Garg [2018]’s FG. In 𝜆𝑑𝐹𝐺, a value
constructed in a context with program counter label pc automatically receives the security
label pc. In contrast, in Rajani and Garg [2018]’s FG, all introduction rules create values
(statically) labeled ⊥. Hence, leaving aside the static-vs-dynamic difference, FG’s labels are
more precise than 𝜆𝑑𝐹𝐺’s, and this makes Rajani and Garg [2018]’s FG to CG translation
more difficult than our 𝜆𝑑𝐹𝐺 to 𝜆𝑑𝐶𝐺 translation. In fact, in earlier work, Rajani et al. [2017]
introduced a different type system called FG−, a static analogue of 𝜆𝑑𝐹𝐺 that labels all
constructed values with pc (statically), and noted that translating it to the second variant
of CG is much easier (in the static setting).
Coarse-grained dynamic IFC systems are prevalent in security research in operating

systems [Efstathopoulos et al. 2005; Krohn et al. 2007a; Zeldovich et al. 2006]. These ideas
have also been successfully applied to other domains, e.g., the web [Bauer et al. 2015; Giffin
et al. 2012; Stefan et al. 2014; Yip et al. 2009], mobile applications [Jia et al. 2013; Nadkarni
et al. 2016], and IoT [Fernandes et al. 2016]. LIO is a domain-specific language embedded in
Haskell that rephrases OS-like IFC enforcement into a language-based setting [Stefan et al.
2012, 2011]. Heule et al. [2015] introduce a general framework for coarse-grained IFC in any
programming language in which external effects can be controlled. Laminar [Roy et al. 2009]
unifies mechanisms for IFC in programming languages and operating systems, resulting in a
mix of dynamic fine- and coarse-grained enforcement.
In general, dynamic fine-grained IFC systems often do not support label introspection.

LIO [Stefan et al. 2017, 2011] and Breeze [Hritcu et al. 2013b] are notable exceptions.
Breeze is conceptually similar to our 𝜆𝑑𝐹𝐺 except for the taint(·) primitive. Different from
our 𝜆𝑑𝐹𝐺, there are dynamic fine-grained IFC systems in which labels of references are
flow-sensitive [Austin and Flanagan 2009, 2010; Bichhawat et al. 2014; Hedin et al. 2014].
This design choice, however, allows label changes to be exploited as a covert channel for
information leaks [Austin and Flanagan 2009, 2010; Russo and Sabelfeld 2010]. There are
many approaches to preventing such leaks—from using static analysis techniques [Sabelfeld
and Myers 2003], to disallowing label upgrades depending on sensitive data (i.e., no-sensitive-
upgrades [Austin and Flanagan 2009; Zdancewic 2002]), to avoiding branching on data
whose labels have been upgraded (i.e., permissive-upgrades [Austin and Flanagan 2010]).
Extending our results to a fine-grained dynamic IFC system with flow-sensitive references is
an interesting direction for future work.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2019.

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1:26 Marco Vassena, Alejandro Russo, Deepak Garg, Vineet Rajani, and Deian Stefan

7 CONCLUSION

We formally established a connection between dynamic fine- and coarse-grained enforcement
for IFC, showing that both are equally expressive under reasonable assumptions. Indeed,
this work provides a systematic way to bridging the gap between a wide range of dynamic
IFC techniques often proposed by the programming languages (fine-grained) and operating
systems (coarse-grained) communities. As consequence, this allows future designs of dynamic
IFC to choose a coarse-grained approach, which is easier to implement and use, without
giving up on the precision of fine-grained IFC.

ACKNOWLEDGMENTS

We thanks the anonymous POPL and POPL AEC reviewers for the insightful comments.
This work was funded by the Swedish Foundation for Strategic Research (SSF) under the
project Octopi (Ref. RIT17-0023) and WebSec (Ref. RIT17-0011) as well as the Swedish
research agency Vetenskapsr̊adet. Vineet Rajani was partly funded through the Collaborative
Research Center “Methods and Tools for Understanding and Controlling Privacy” (SFB
1223) of the DFG, project “Programming Principles and Abstractions for Privacy.” This
material is based upon work supported by the National Science Foundation under Grant
No. nnnnnnn and Grant No. mmmmmmm. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author and do not necessarily
reflect the views of the National Science Foundation. This work was supported in part
by the CONIX Research Center, one of six centers in JUMP, a Semiconductor Research
Corporation (SRC) program sponsored by DARPA.

REFERENCES

T. H. Austin and C. Flanagan. 2009. Efficient Purely-Dynamic Information Flow Analysis. In Proc. ACM

Workshop on Programming Languages and Analysis for Security (PLAS).

Thomas H. Austin and Cormac Flanagan. 2010. Permissive dynamic information flow analysis. In Proceedings
of the 5th ACM SIGPLAN Workshop on Programming Languages and Analysis for Security (PLAS ’10).

ACM.

Gilles Barthe, Tamara Rezk, and Amitabh Basu. 2007. Security types preserving compilation. Computer
Languages, Systems & Structures 33, 2 (2007), 35–59. https://doi.org/10.1016/j.cl.2005.05.002

Lujo Bauer, Shaoying Cai, Limin Jia, Timothy Passaro, Michael Stroucken, and Yuan Tian. 2015. Run-time

monitoring and formal analysis of information flows in Chromium. In Proceedings of the 22nd Annual
Network & Distributed System Security Symposium. Internet Society.

Abhishek Bichhawat, Vineet Rajani, Deepak Garg, and Christian Hammer. 2014. Information Flow Control
in WebKit’s JavaScript Bytecode. In International Conference on Principles of Security and Trust
(POST). 159–178.

Niklas Broberg, Bart van Delft, and David Sands. 2013. Paragon for Practical Programming with Information-
Flow Control. In Programming Languages and Systems - 11th Asian Symposium, APLAS 2013, Melbourne,

VIC, Australia, December 9-11, 2013. Proceedings. 217–232.

Pablo Buiras, Deian Stefan, and Alejandro Russo. 2014. On Dynamic Flow-Sensitive Floating-Label Systems.
In Proceedings of the 2014 IEEE 27th Computer Security Foundations Symposium (CSF ’14). IEEE

Computer Society, Washington, DC, USA, 65–79. https://doi.org/10.1109/CSF.2014.13

Pablo Buiras, Dimitrios Vytiniotis, and Alejandro Russo. 2015. HLIO: Mixing static and dynamic typing for
information-flow control in Haskell. In ACM SIGPLAN Notices, Vol. 50. ACM, 280–288.

Petros Efstathopoulos, Maxwell Krohn, Steve VanDeBogart, Cliff Frey, David Ziegler, Eddie Kohler, David

Mazières, Frans Kaashoek, and Robert Morris. 2005. Labels and event processes in the asbestos operating
system. In Proc. of the twentieth ACM symp. on Operating systems principles (SOSP ’05). ACM.

Matthias Felleisen. 1991. On the Expressive Power of Programming Languages. Sci. Comput. Program. 17,
1-3 (Dec. 1991), 35–75. https://doi.org/10.1016/0167-6423(91)90036-W

Earlence Fernandes, Justin Paupore, Amir Rahmati, Daniel Simionato, Mauro Conti, and Atul Prakash.

2016. FlowFence: Practical Data Protection for Emerging IoT Application Frameworks.. In USENIX

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2019.

https://doi.org/10.1016/j.cl.2005.05.002
https://doi.org/10.1109/CSF.2014.13
https://doi.org/10.1016/0167-6423(91)90036-W

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

From Fine- to Coarse-Grained Dynamic Information Flow Control and Back 1:27

Security Symposium. 531–548.

Daniel B. Giffin, Amit Levy, Deian Stefan, David Terei, David Mazières, John C. Mitchell, and Alejandro
Russo. 2012. Hails: Protecting Data Privacy in Untrusted Web Applications. In 10th USENIX Symposium

on Operating Systems Design and Implementation, OSDI.
J.A. Goguen and J. Meseguer. 1982. Security policies and security models. In Proc of IEEE Symposium on

Security and Privacy. IEEE Computer Society.

D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld. 2014. JSFlow: Tracking information flow in JavaScript
and its APIs. In Proc. of the ACM Symposium on Applied Computing (SAC ’14). ACM.

Stefan Heule, Deian Stefan, Edward Z. Yang, John C. Mitchell, and Alejandro Russo. 2015. IFC Inside:

Retrofitting Languages with Dynamic Information Flow Control. In Proceedings of the Conference on
Principles of Security and Trust. Springer.

C. Hritcu, M. Greenberg, B. Karel, B. C. Peirce, and G. Morrisett. 2013a. All Your IFCException Are
Belong to Us. In Proc. of the IEEE Symposium on Security and Privacy. IEEE Computer Society.

Catalin Hritcu, Michael Greenberg, Ben Karel, Benjamin C Pierce, and Greg Morrisett. 2013b. All your

IFCException are belong to us. In Security and Privacy (SP), 2013 IEEE Symposium on. IEEE, 3–17.
M. Jaskelioff and A. Russo. 2011. Secure multi-execution in Haskell. In Proc. Andrei Ershov International

Conference on Perspectives of System Informatics (LNCS). Springer-Verlag.

Limin Jia, Jassim Aljuraidan, Elli Fragkaki, Lujo Bauer, Michael Stroucken, Kazuhide Fukushima, Shinsaku
Kiyomoto, and Yutaka Miyake. 2013. Run-Time Enforcement of Information-Flow Properties on Android
(Extended Abstract). In Computer Security—ESORICS 2013: 18th European Symposium on Research in

Computer Security. Springer.
Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan Cliffer, M. Frans Kaashoek, Eddie Kohler, and

Robert Morris. 2007a. Information Flow Control for Standard OS Abstractions. In Proc. of the 21st

Symp. on Operating Systems Principles.
Maxwell N. Krohn, Alexander Yip, Micah Z. Brodsky, Natan Cliffer, M. Frans Kaashoek, Eddie Kohler, and

Robert Tappan Morris. 2007b. Information flow control for standard OS abstractions. In Proc. of the

21st ACM Symposium on Operating Systems Principles. 321–334.
Andrew C. Myers, Lantian Zheng, Steve Zdancewic, Stephen Chong, and Nathaniel Nystrom. 2006. Jif 3.0:

Java information flow. (July 2006). http://www.cs.cornell.edu/jif

Adwait Nadkarni, Benjamin Andow, William Enck, and Somesh Jha. 2016. Practical DIFC Enforcement on
Android.. In USENIX Security Symposium. 1119–1136.

F. Pottier and V. Simonet. 2002. Information Flow Inference for ML. In Proc. ACM Symp. on Principles of

Programming Languages. 319–330.
Vineet Rajani, Iulia Bastys, Willard Rafnsson, and Deepak Garg. 2017. Type systems for information flow

control: the question of granularity. SIGLOG News 4, 1 (2017), 6–21.
Vineet Rajani and Deepak Garg. 2018. Types for Information Flow Control: Labeling Granularity and

Semantic Models. In Proc. of the IEEE Computer Security Foundations Symp. (CSF ’18). IEEE Computer

Society.
Indrajit Roy, Donald E Porter, Michael D Bond, Kathryn S McKinley, and Emmett Witchel. 2009. Laminar:

Practical fine-grained decentralized information flow control. Vol. 44. ACM.

Alejandro Russo. 2015. Functional Pearl: Two Can Keep a Secret, if One of Them Uses Haskell. In Proc. of
the 20th ACM SIGPLAN International Conference on Functional Programming (ICFP 2015). ACM.

A. Russo, K. Claessen, and J. Hughes. 2008. A library for light-weight information-flow security in Haskell.

In Proc. ACM SIGPLAN symposium on Haskell (HASKELL ’08). ACM.
Alejandro Russo and Andrei Sabelfeld. 2010. Dynamic vs. Static Flow-Sensitive Security Analysis. In Proc.

of the 2010 23rd IEEE Computer Security Foundations Symp. (CSF ’10). IEEE Computer Society,

186–199.
A. Sabelfeld and A. C. Myers. 2003. Language-Based Information-Flow Security. IEEE J. Selected Areas in

Communications 21, 1 (Jan. 2003), 5–19.
Thomas Schmitz, Maximilian Algehed, Cormac Flanagan, and Alejandro Russo. 2018. Faceted Secure Multi

Execution. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications

Security (CCS ’18). ACM, New York, NY, USA, 1617–1634. https://doi.org/10.1145/3243734.3243806
Deian Stefan, Alejandro Russo, Pablo Buiras, Amit Levy, John C. Mitchell, and David Mazières. 2012.

Addressing Covert Termination and Timing Channels in Concurrent Information Flow Systems. In

International Conference on Functional Programming (ICFP). ACM SIGPLAN.
Deian Stefan, Alejandro Russo, David Mazières, and John C. Mitchell. 2017. Flexible Dynamic Information

Flow Control in the Presence of Exceptions. Journal of Functional Programming 27 (2017).

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2019.

http://www.cs.cornell.edu/jif
https://doi.org/10.1145/3243734.3243806

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1:28 Marco Vassena, Alejandro Russo, Deepak Garg, Vineet Rajani, and Deian Stefan

D. Stefan, A. Russo, J. C. Mitchell, and D. Mazières. 2011. Flexible Dynamic Information Flow Control in
Haskell. In Proc. of the ACM SIGPLAN Haskell symposium (HASKELL ’11).

Deian Stefan, Edward Z. Yang, Petr Marchenko, Alejandro Russo, Dave Herman, Brad Karp, and David

Mazières. 2014. Protecting Users by Confining JavaScript with COWL. In Symposium on Operating
Systems Design and Implementation (OSDI). USENIX.

T. C. Tsai, A. Russo, and J. Hughes. 2007. A Library for Secure Multi-threaded Information Flow in Haskell.

In Proc. IEEE Computer Security Foundations Symposium (CSF ’07).
Marco Vassena and Alejandro Russo. 2016. On Formalizing Information-Flow Control Libraries. In Proceedings

of the 2016 ACM Workshop on Programming Languages and Analysis for Security (PLAS ’16). ACM,

New York, NY, USA, 15–28. https://doi.org/10.1145/2993600.2993608
Marco Vassena, Alejandro Russo, Pablo Buiras, and Lucas Waye. 2017. MAC A Verified Static Information-

Flow Control Library. Journal of Logical and Algebraic Methods in Programming (2017). https:
//doi.org/10.1016/j.jlamp.2017.12.003

Dennis Volpano and Geoffrey Smith. 1997. Eliminating Covert Flows with Minimum Typings. In Proc. of

the 10th IEEE workshop on Computer Security Foundations (CSFW ’97). IEEE Computer Society.
Jean Yang, Kuat Yessenov, and Armando Solar-Lezama. 2012. A language for automatically enforcing

privacy policies. In ACM SIGPLAN Notices, Vol. 47. ACM, 137–148.

Alexander Yip, Neha Narula, Maxwell Krohn, and Robert Morris. 2009. Privacy-preserving Browser-side
Scripting with BFlow. In Proceedings of the 4th ACM European Conference on Computer Systems
(EuroSys ’09). ACM.

Stephan Arthur Zdancewic. 2002. Programming languages for information security. Ph.D. Dissertation.
Cornell University.

Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Mazières. 2006. Making information flow

explicit in HiStar. In Proc. of the 7th USENIX Symp. on Operating Systems Design and Implementation.
USENIX.

Nickolai Zeldovich, Silas Boyd-Wickizer, and David Mazières. 2008. Securing Distributed Systems with

Information Flow Control. (April 2008), 293–308 pages.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2019.

https://doi.org/10.1145/2993600.2993608
https://doi.org/10.1016/j.jlamp.2017.12.003
https://doi.org/10.1016/j.jlamp.2017.12.003

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

From Fine- to Coarse-Grained Dynamic Information Flow Control and Back 1:29

(Force)

e ⇓𝜃 (t , 𝜃′) ⟨Σ, pc, t⟩ ⇓𝜃
′
⟨Σ′, pc′, 𝑣⟩

⟨Σ, pc, e⟩ ⇓𝜃 ⟨Σ′, pc′, 𝑣⟩

(a) Forcing semantics: ⟨Σ, pc, e⟩ ⇓𝜃 ⟨Σ′, pc′, 𝑣⟩.

(Thunk)

t ⇓𝜃 (t , 𝜃)

(Fun)

𝜆x .e ⇓𝜃 (x .e, 𝜃)

(Var)

x ⇓𝜃 𝜃(x)

(App)

e1 ⇓𝜃 (x .e, 𝜃′) e2 ⇓𝜃 𝑣2 e ⇓𝜃
′[x ↦→𝑣2] 𝑣

e1 e2 ⇓𝜃 𝑣

(b) Pure semantics: e ⇓𝜃 v (selected rules).

(Return)

e ⇓𝜃 𝑣

⟨Σ, pc, return(e)⟩ ⇓𝜃 ⟨Σ, pc, 𝑣⟩

(Bind)

⟨Σ, pc, e1⟩ ⇓𝜃 ⟨Σ′, pc′, 𝑣1⟩ ⟨Σ′, pc′, e2⟩ ⇓𝜃[x ↦→𝑣1] ⟨Σ′′, pc′′, 𝑣⟩
⟨Σ, pc,bind(e1, x .e2)⟩ ⇓𝜃 ⟨Σ′′, pc′′, 𝑣⟩

(ToLabeled)

⟨Σ, pc, e⟩ ⇓𝜃 ⟨Σ′, pc′, 𝑣⟩
⟨Σ, pc, toLabeled(e)⟩ ⇓𝜃 ⟨Σ′, pc,Labeled pc′ 𝑣⟩

(Unlabel)

e ⇓𝜃 Labeled ℓ 𝑣

⟨Σ, pc,unlabel(e)⟩ ⇓𝜃 ⟨Σ′, pc ⊔ ℓ, 𝑣⟩

(LabelOf)

e ⇓𝜃 Labeled ℓ 𝑣

⟨Σ, pc, labelOf(e)⟩ ⇓𝜃 ⟨Σ, pc ⊔ ℓ, ℓ⟩

(GetLabel)

⟨Σ, pc,getLabel⟩ ⇓𝜃 ⟨Σ, pc, pc⟩

(Taint)

e ⇓𝜃 ℓ

⟨Σ, pc, taint(e)⟩ ⇓𝜃 ⟨Σ, pc ⊔ ℓ, ()⟩

(c) Thunk semantics: ⟨Σ, pc, t⟩ ⇓𝜃 ⟨Σ′, pc′, 𝑣⟩.

Fig. 7. Semantics of 𝜆𝑑𝐶𝐺.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2019.

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1:30 Marco Vassena, Alejandro Russo, Deepak Garg, Vineet Rajani, and Deian Stefan

New
e ⇓𝜃 Labeled ℓ 𝑣 pc ⊑ ℓ n = |Σ(ℓ)|
⟨Σ, pc,new(e)⟩ ⇓𝜃 ⟨Σ[ℓ ↦→ Σ(ℓ)[n ↦→ 𝑣]], pc,nℓ⟩

Read
e ⇓𝜃 nℓ Σ(ℓ)[n] = 𝑣

⟨Σ, pc, !e⟩ ⇓𝜃 ⟨Σ, pc ⊔ ℓ, 𝑣⟩

Write
e1 ⇓𝜃 nℓ1 e2 ⇓𝜃 Labeled ℓ2 𝑣 ℓ2 ⊑ ℓ1 pc ⊑ ℓ1

⟨Σ, pc, e1 := e2⟩ ⇓𝜃 ⟨Σ[ℓ1 ↦→ Σ(ℓ1)[n ↦→ 𝑣]], pc, ()⟩

LabelOfRef
e ⇓𝜃 nℓ

⟨Σ, pc, labelOfRef(e)⟩ ⇓𝜃 ⟨Σ, pc ⊔ ℓ, ℓ⟩

Fig. 8. 𝜆𝑑𝐶𝐺 semantics for operations on references.

(LabeledL)

ℓ ⊑ L 𝑣1 ≈L 𝑣2

Labeled ℓ 𝑣1 ≈L Labeled ℓ 𝑣2

(LabeledH)

ℓ1 ̸⊑ L ℓ2 ̸⊑ L

Labeled ℓ1 𝑣1 ≈L Labeled ℓ2 𝑣2

(Closure)

e1 ≡𝛼 e2 𝜃1 ≈L 𝜃2

(e1, 𝜃1) ≈L (e2, 𝜃2)

(Thunk)

t1 ≡𝛼 t2 𝜃1 ≈L 𝜃2

(t1, 𝜃1) ≈L (t2, 𝜃2)

(RefL)

ℓ ⊑ L

nℓ ≈L nℓ

(RefH)

ℓ1 ̸⊑ L ℓ2 ̸⊑ L

n1
ℓ1 ≈L n2

ℓ2

(PcH)

Σ1 ≈L Σ2 pc1 ̸⊑ L pc2 ̸⊑ L

⟨Σ1, pc1, 𝑣1⟩ ≈L ⟨Σ2, pc2, 𝑣2⟩

(PcL)

Σ1 ≈L Σ2 pc ⊑ L 𝑣1 ≈L 𝑣2

⟨Σ1, pc, 𝑣1⟩ ≈L ⟨Σ2, pc, 𝑣2⟩

Fig. 9. L-equivalence for 𝜆𝑑𝐶𝐺 values (selected rules) and configurations.

⟨⟨unit⟩⟩ = Labeled unit

⟨⟨L ⟩⟩ = Labeled L

⟨⟨𝜏1 × 𝜏2⟩⟩ = Labeled (⟨⟨𝜏1⟩⟩ × ⟨⟨𝜏2⟩⟩)
⟨⟨𝜏1 + 𝜏2⟩⟩ = Labeled (⟨⟨𝜏1⟩⟩+ ⟨⟨𝜏2⟩⟩)
⟨⟨𝜏1 → 𝜏2⟩⟩ = Labeled (⟨⟨𝜏1⟩⟩ → LIO⟨⟨𝜏2⟩⟩)
⟨⟨Ref 𝜏⟩⟩ = Labeled (Ref⟨⟨𝜏⟩⟩)

Fig. 10. Type translation from 𝜆𝑑𝐹𝐺 to 𝜆𝑑𝐶𝐺.

⟨⟨𝑟ℓ⟩⟩ = Labeled ℓ⟨⟨𝑟⟩⟩
⟨⟨()⟩⟩ = ()

⟨⟨ℓ⟩⟩ = ℓ

⟨⟨(𝑣1, 𝑣2)⟩⟩ = (⟨⟨𝑣1⟩⟩, ⟨⟨𝑣2⟩⟩)
⟨⟨inl(𝑣)⟩⟩ = inl(⟨⟨𝑣⟩⟩)
⟨⟨inr(𝑣)⟩⟩ = inr(⟨⟨𝑣⟩⟩)
⟨⟨(x .e, 𝜃)⟩⟩ = (x .⟨⟨e⟩⟩, ⟨⟨𝜃⟩⟩)
⟨⟨nℓ⟩⟩ = nℓ

Fig. 11. Value translation from 𝜆𝑑𝐹𝐺 to
𝜆𝑑𝐶𝐺.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2019.

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

From Fine- to Coarse-Grained Dynamic Information Flow Control and Back 1:31

⟨⟨()⟩⟩ = toLabeled(return(()))

⟨⟨ℓ⟩⟩ = toLabeled(return(ℓ))

⟨⟨(𝜆x .e)⟩⟩ = toLabeled(return(𝜆x .⟨⟨e⟩⟩))
⟨⟨inl(e)⟩⟩ = toLabeled(do

le ← ⟨⟨e⟩⟩
return(inl(lv)))

⟨⟨inr(e)⟩⟩ = toLabeled(do

le ← ⟨⟨e⟩⟩
return(inr(lv)))

⟨⟨(e1, e2)⟩⟩ = toLabeled(do

lv1 ← ⟨⟨e1⟩⟩
lv2 ← ⟨⟨e2⟩⟩
return(lv1, lv2))

⟨⟨x ⟩⟩ = toLabeled(unlabel(x))

⟨⟨e1 e2⟩⟩ = toLabeled(do

lv1 ← ⟨⟨e1⟩⟩
lv2 ← ⟨⟨e2⟩⟩
𝑣1 ← unlabel(lv1)

lv ← 𝑣1 lv2

unlabel(lv))

⟨⟨case(e, x .e1, x .e2)⟩⟩ = toLabeled(do

lv ← ⟨⟨e⟩⟩
𝑣 ← unlabel(lv)

lv ′ ← case(𝑣, x .⟨⟨e1⟩⟩, x .⟨⟨e2⟩⟩)
unlabel(lv ′))

⟨⟨fst(e)⟩⟩ = toLabeled(do

lv ← ⟨⟨e⟩⟩
𝑣 ← unlabel(lv)

unlabel(fst(𝑣)))

⟨⟨snd(e)⟩⟩ = toLabeled(do

lv ← ⟨⟨e⟩⟩
𝑣 ← unlabel(lv)

unlabel(snd(𝑣)))

⟨⟨taint(e1, e2)⟩⟩ = toLabeled(do

lv1 ← ⟨⟨e1⟩⟩
𝑣1 ← unlabel(lv1)

taint(𝑣1)

lv2 ← ⟨⟨e2⟩⟩
unlabel(lv2))

⟨⟨labelOf(e)⟩⟩ = toLabeled(do

lv ← ⟨⟨e⟩⟩
labelOf(lv))

⟨⟨getLabel⟩⟩ = toLabeled(getLabel)

Fig. 12. Expression translation from 𝜆𝑑𝐹𝐺 to 𝜆𝑑𝐶𝐺.

⟨⟨new(e)⟩⟩ = toLabeled(do

lv ← ⟨⟨e⟩⟩
new(lv))

⟨⟨ ! e⟩⟩ = toLabeled(do

lr ← ⟨⟨e⟩⟩
𝑟 ← unlabel(lv)

! 𝑟)

⟨⟨e1 := e2⟩⟩ =
toLabeled(do

lr ← ⟨⟨e1⟩⟩
lv ← ⟨⟨e2⟩⟩
𝑟 ← unlabel(lr)

𝑟 := lv)

toLabeled(return())

⟨⟨labelOfRef(e)⟩⟩ =
toLabeled(do

lr ← ⟨⟨e⟩⟩
𝑟 ← unlabel(lv)

labelOfRef(𝑟))

Fig. 13. 𝜆𝑑𝐹𝐺 to 𝜆𝑑𝐶𝐺 translation of memory operations.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2019.

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1:32 Marco Vassena, Alejandro Russo, Deepak Garg, Vineet Rajani, and Deian Stefan

JL K = L

JunitK = unit

J𝜏1 → 𝜏2K = J𝜏1K→ J𝜏2K
J𝜏1 + 𝜏2K = J𝜏1K + J𝜏2K
J𝜏1 × 𝜏2K = J𝜏1K× J𝜏2K
JRef 𝜏K = RefJ𝜏K
JLabeled 𝜏K = L × J𝜏K
JLIO 𝜏K = unit→ J𝜏K

Fig. 14. Type translation from 𝜆𝑑𝐶𝐺 to
𝜆𝑑𝐹𝐺.

J()Kpc = ()
pc

JℓKpc = ℓpc

Jinl(𝑣)Kpc = inl(J𝑣Kpc)pc

Jinr(𝑣)Kpc = inr(J𝑣Kpc)pc

J(𝑣1, 𝑣2)K
pc

= (J𝑣1K
pc
, J𝑣2K

pc
)
pc

J(x .e, 𝜃)Kpc = (x .JeK, J𝜃Kpc)pc

J(t , 𝜃)Kpc = (.JtK, J𝜃Kpc)pc

JLabeled ℓ 𝑣Kpc = (ℓℓ, J𝑣Kℓ)
pc

JnℓK
pc

= (nℓ)
pc

Fig. 15. Value translation from 𝜆𝑑𝐶𝐺 to
𝜆𝑑𝐹𝐺.

J()K = ()

JℓK = ℓ

JxK = x

J𝜆x .eK = 𝜆x .JeK
Je1 e2K = Je1KJe2K
J(e1, e2)K = (Je1K, Je2K)
Jfst(e)K = fst(JeK)
Jsnd(e)K = snd(JeK)
Jinl(e)K = inl(JeK)
Jinr(e)K = inr(JeK)
Jcase (e, x .e1, x .e2)K

= case (JeK, x .Je1K, x .Je2K)
JtK = 𝜆 .JtK

Fig. 16. Expr. translation from 𝜆𝑑𝐶𝐺 to
𝜆𝑑𝐹𝐺.

Jreturn(e)K = JeK
Jbind(e1, x .e2)K =

let x = Je1K() in
taint(labelOf(x), Je2K())

Junlabel(e)K =
let x = JeKin
taint(fst(x), snd(x))

JtoLabeled(e)K =
let x = JeK() in
(labelOf(x), x)

JlabelOf(e)K = fst(JeK)
JgetLabelK = getLabel

Jtaint(e)K = taint(JeK, ())

Fig. 17. Thunk translation 𝜆𝑑𝐶𝐺 to 𝜆𝑑𝐹𝐺.

Jnew(e)K =
let x = JeKin
new(taint(fst(x), snd(x)))

Je1 := e2K = Je1K := snd(Je2K)

J ! eK = !JeK

JlabelOfRef(e)K = labelOfRef(JeK)

Fig. 18. 𝜆𝑑𝐶𝐺 to 𝜆𝑑𝐹𝐺 translation of memory operations.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2019.

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

From Fine- to Coarse-Grained Dynamic Information Flow Control and Back 1:33

(Value)

ℓ1 ⊑ pc 𝑟1 �≈pc 𝑣2

𝑟1
ℓ1 �≈pc 𝑣2

(Unit)

() �≈pc ()

(Label)

ℓ �≈pc ℓ

(Ref)

nℓ �≈pc nℓ

(Inl)

𝑣1 �≈pc 𝑣′1
inl(𝑣1) �≈pc inl(𝑣′1)

(Inr)

𝑣2 �≈pc 𝑣′2
inr(𝑣2) �≈pc inr(𝑣′2)

(Pair)

𝑣1 �≈pc 𝑣′1 𝑣2 �≈pc 𝑣′2
(𝑣1, 𝑣2) �≈pc (𝑣′1, 𝑣

′
2)

(Fun)

𝜃1 �≈pc 𝜃2

(x .JeK, 𝜃1) �≈pc (x .e, 𝜃2)

(Thunk)

𝜃1 �≈pc 𝜃2

(.JtK, 𝜃1) �≈pc (t , 𝜃2)

(Labeled)

𝑣1 �≈ℓ 𝑣2

(ℓℓ, 𝑣1) �≈pc (Labeled ℓ 𝑣2)

Fig. 19. Cross-language value equivalence modulo label annotations.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2019.

	Abstract
	1 Introduction
	2 Fine-Grained Calculus
	2.1 Dynamics
	2.2 Security

	3 Coarse-Grained Calculus
	3.1 Dynamics
	3.2 Security

	4 Fine- to Coarse-Grained Program Translation
	4.1 Correctness

	5 Coarse- to Fine-Grained Program Translation
	5.1 Cross-Language Semantic Equivalence up to Extra Annotations
	5.2 Correctness

	6 Related work
	7 Conclusion
	Acknowledgments
	References

