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ABSTRACT
The seminal work on the Dependency Core Calculus (DCC) [1]

shows how monads not only can be used for embedding effects in

purely functional languages but also to statically track data depen-

dencies. Such types of analysis have applications in research areas

like security, partial evaluation, and slicing, where DCC plays the

role of a unifying formalism. For a Haskell programmer, putting

DCC into practice raises many interesting conceptual and imple-

mentation concerns. Specifically, DCC uses a non-standard bind

operator, i.e., with a different type signature than that provided by

monads. In fact, embedding such non-standard bind operator opens

the door for many design decisions. Furthermore, it is unclear if

DCC extends to traditional methods used by Haskell programmers

to handle effects (such as monad transformers). In this work, we

describe a novel encoding of DCC in Haskell, with a focus on its use

for security—although our results also apply to the other domains.

We address the concerns mentioned above and show how our im-

plementation of DCC can be seen as a direct translation from its

typing rules via the use of closed type families and type classes—two
advanced type system features of Haskell. We also analyze what

kind of effects DCC is compatible with and which ones it cannot

secure. We also derive an alternative formulation of DCC based on

fmap and a corresponding non-standard join.

CCS CONCEPTS
• Security and privacy → Information flow control; Formal
security models; • Software and its engineering→ Software
libraries and repositories;

KEYWORDS
Dependency Core Calculus, Information-Flow Control, Haskell

1 INTRODUCTION
Building applications which preserve privacy of data is an open and

difficult problem. It is tempting to think that applying some sort of

mechanism to grant or deny access to information will be sufficient

to preserve secrets; this is not the case. Often, code is required to have
access to sensitive data in order to deliver its functionality, but what

we would like to know is if the code treats private data adequately,

i.e., it does not leak it! The following example illustrates this point. It
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involves developers Alice and Bob, who are collaboratively writting

a web application for something very important (we leave that up
to the imagination of the reader).

Example 1.1. In an effort to make sure users’ private data is kept

safe, the web application is implemented using separated public and
private databases. While implementing the user registration page,

Alice has requested Bob’s help in managing what data to commit

to the database. Alice writes the following code.

Alice
webApp :: IO ()

webApp = do
...

formData← getUserRegisterForm
let (pubDBEnts, privDBEnts) = mkDBEntries formData
commitToPublicDB pubDBEnts
commitToPrivateDB privDBEnts
...

The symbol :: is used to describe the type of terms in Haskell.

The function getUserRegisterForm retrieves the registration page

data from the user and the ... denotes some part of the code that is

not relevant for the point being made. On Alice’s request, Bob has

written the functionmkDBEntries1. We use the standard list syntax

[x1,x2, · · · ,xn ] for describing extensible lists and [a] for denoting
the type of lists of elements of type a.

Bob
mkDBEntries :: FormData→ ([DBEntry ], [DBEntry ])
mkDBEntries form =

([screenName form, userEmail form, userName form],

[hash (password form) ])

What Bob does not know is that the name (userName form) of

the user is not meant to be public information. This fact was hidden

deep in a design document somewhere, but Bob was too lazy to

read that document.

Information-Flow Control (IFC) is a research area dedicated to

providing guarantees that private data is kept confidential by apply-

ing programming languages techniques [12, 20]. Haskell is one of a

few a languages capable of guaranteeing IFC through libraries [15].

As long as applications adhere to the library’s API, they are guaran-

teed to keep private data confined [6, 18, 19, 26]. These IFC libraries

enforce security in the presence of many advanced programming

languages features (e.g., concurrency) and often intertwine effect-

free and effectful computations into a single monad.

1
To simplify the presentation we take the typeDBEntry to be String and consequently

hash :: String → String. While a real database library will have a much richer rep-

resentation of database entries, this simplification has no impact on the point being

made.
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Γ ⊢ x : a

Γ ⊢ returnℓ x : Tℓ (a)

Γ ⊢ e : Tℓ (a) Γ ⊢ f : a → s ℓ ⪯ s

Γ ⊢ e >>>= f : s

Figure 1: Core typing rules for DCC.

(R1)

ℓ ⊑ ℓ′

ℓ ⪯ Tℓ′ (s )

ℓ ⪯ s ℓ ⪯ t

ℓ ⪯ (s × t )

ℓ ⪯ t

ℓ ⪯ (s → t )

(R2)

ℓ ⪯ s

ℓ ⪯ Tℓ′ (s )
(R3)

ℓ ⪯ ()

Figure 2: The ⪯-relation

In this paper, we take a different approach by building an IFC

library based on DCC [1]—a calculus designed to secure pure com-
putations. We show how it is possible to decouple the core (pure)

security concerns of applications from its (monadic) effects. As illus-

trated by the example above, getting IFC right is a tricky business

and we are going to show how DCC can help us get it right!

2 BACKGROUND
Attacker model. We adopt the same attacker model as the one

considered in the original DCC work [1]: potentially malicious or
careless programmers provide code that manipulates secret data; data
which should not be leaked into public channels. This choice is also
aligned with the attacker model considered by other IFC libraries

(e.g., LIO [26] and MAC [18]). The security policy that our imple-

mentation will enforce is non-interference [11]. Similarly to previous

work [4, 30], we focus on the terminating fragment of DCC, thus

ignoring leaks due to abnormal termination of programs—a secu-

rity condition known as termination-insensitive non-interference.
We also consider the treatment of other covert channels [14] like

power consumption or memory footprint out of scope.

Dependency Core Calculus. DCC is a variant of the lambda calcu-

lus which features sums, products, and a family of identity monads,

written T , which are indexed by elements of a lattice. For the pur-

pose of this paper, elements of the lattice represent security levels

denoting the sensitivity of data [8]. Importantly, the order relation

of the lattice indicates how information is allowed to flow: ℓ ⊑ ℓ′

dictates that information with sensitivity ℓ can flow into entities

of sensitivity ℓ′. For simplicity, we restrict ourselves to the classic

two-point lattice with levels H (for high or private) and L (for low

or public), where H ̸⊑ L is the only disallowed flow.

The key property of DCC is that, once a value gets protected
(wrapped) by Tℓ , any computation that depends on it is forced

to reside in the same or a more sensitive family member of T .
That is to say that, once data is considered private, it may only

influence private computations. In contrast, public data is allowed

to influence both private and public computations. To capture this

property, DCC provides a special typing rule for bind—after all, this
is the operator which extracts values from computations of type

Tℓ . Such a typing rule prevents, for instance, public computations,

of type TL (a), from depending on sensitive ones, of type TH (a).
Figure 1 shows the typing rules for return and bind, respectively.

We denote bind as (>>>=) 2—observe the extra > character compared

to the bind operation (>>=) from Haskell. The notation Γ ⊢ e : τ
denotes the judgement “given the assumptions in Γ, the expression
e has type τ ”, where Γ is on the form a0 : τ0, a1 : τ1, ... for some

variables a0,a1, ... and types τ0,τ1, .... The (>>>=) operator takes
a computation m and a function f and computes the result of m
and applies f to that result, yielding a new computation. For a

functional programmer familiar with monads, DCC’s bind has the

non-standard type

ℓ ⪯ s ⇒ Tℓ (a) → (a → s ) → s,

where the type s is subject to the restriction ℓ ⪯ s (explained below),
rather than the conventional type

Tℓ (a) → (a → Tℓ (b)) → Tℓ (b).

In Section 3, we will show that (>>>=) subsumes the standard bind

operator, we therefore refer to it as super-bind from now on.

The typing rules for returnℓ and (>>>=) differ from the tradi-

tional typing rules for monadic operations in two ways. Because

DCC is a label-monomorphic calculus, the primitive returnℓ fea-
tures a sub-index ℓ denoting the family member which protects

the given argument
3
. Other than that, this primitive is completely

standard. Intuitively, the rule for super-bind forces the result to

be protected at the same, or higher, level as the input. This last

invariant is enforced by the side condition ℓ ⪯ s (pronounce “s is
protected at ℓ”).

Figure 2 formally introduces the ⪯-relation. The judgement ℓ ⪯

s is defined by structural induction on s:

• Tℓ′ (s ) is protected at ℓ when ℓ ⊑ ℓ′ or s is protected at ℓ.

• (s × t ) is protected at ℓ when s and t are both protected at ℓ.

• s → t is protected at ℓ when t is protected at ℓ.

• () is protected at ℓ.

This definition is very similar to the original definition by Abadi et

al., it only differs in the rule (R3), which was first introduced by

Tse and Zdancewic in [31].

We provide some examples to clarify how super-bind works.

Example 2.1 (Respecting the security lattice). The super-bind al-

lows computations to be built as long as they follow the order-

relation described by the security lattice. For instance, super-bind

type-checks if the computation stays within the same level
4
.

x : TL (Bool) ⊢ x >>>= λy. returnL ¬y : TL (Bool)

Likewise, super-bind type-checks if the result is more sensitive than

the input.

x : TL (Int) ⊢ x >>>= λn. returnH n : TH (Int)
2
In the seminal work on DCC, the authors introduce bind as a let-like binding,

bind x = e in e′. Instead, we denote it as (>>>=) since it looks more familiar for a

Haskell programmer. This choice is, however, only for improving the presentation.

3
Observe, however, that sub-indexes are not strictly necessary since types can provide

those indexes too.

4
Technically, we take the type Bool to denote the DCC sum type () + (), and type Int
to denote finite size integers represented as products of Bools.
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{−# LANGUAGE DataKinds #−}
{−# LANGUAGE TypeFamilies #−}

data Lattice = L | H

type family ℓ ⊑ ℓ′ where
H ⊑ L = False
⊑ = True

Figure 3: A lattice implemented with type families.

Observe that we started with a public value and end up with a

sensitive one. However, downgrading the sensitivity of the data

is disallowed. For example, the following program is ill-typed as

H ̸⊑ L.
returnH 42 >>>= λn. returnL n

Example 2.2 (Statically predicted values). DCC leverages types to

identify certain values which are independent of secrets. This aspect

provides a more flexible super-bind, i.e., a super-bind which does

not demand protection on the resulting value when it is unitary.

For instance, code below type-checks in DCC.

∅ ⊢ returnH 42 >>>= λn.() : ()

The symbol ∅ denotes the empty typing environment. By examining

the type of λn.(), it is known that the produced value is unit and

independent of the sensitive information—thus, it type-checks!

In a similar manner, protecting products is simply protecting the

two components. After all, it is statically known that there are only

two components in a product, so this fact is independent of secrets!

The next piece of code is therefore well-typed.

∅ ⊢ returnH 41 >>>= λn.(returnH (n + 1), ()) : (TH (Int), ())

Example 2.3 (Sums). Unlike products, super-bind cannot be flexi-
ble when it comes to sums. To protect a sum, it is not enough to just

protect the content of their options. This is mainly due to the fact

that the type of sums does not reflect the option being taken—thus,

it can be misused to reveal information. The following ill-typed

program shows that.

returnH s >>>= λn. if n == 0 then inl (returnH 1)
else inr (returnH 0)

If this code were well-typed, it would be enough to observe if the

returned value is a left (inl) or right (inr) injection to know if the

secret is zero—despite the content of the options being protected.

3 EMBEDDING DCC IN HASKELL
In this section, we show how to implement DCC in Haskell

5
by

leveraging on some of the recently added features of its type system.

Importantly, the obtained code can be seen as a syntactic translation

of the rules described in Figures 1 and 2, which gives us not only

an elegant code but also confidence about its correctness.

5
The code from this paper is available online at

https://github.com/MaximilianAlgehed/DCC

-- definition of T as an abstract data type

data T (ℓ :: Lattice) a = T TCB {unT TCB
:: a }

-- type signatures

return :: a→ T ℓ a
(>>>=) :: (ℓ ⪯ s)∼True ⇒ T ℓ a→ (a→ s) → s

-- implementation

return = T TCB

t >>>= f = f (unT TCB t)

Figure 4: Core DCC primitives

type family ℓ ⪯ t where
ℓ ⪯ (T ℓ′ s) = ℓ ⊑ ℓ′ ∨ ℓ ⪯ s

ℓ ⪯ (s, t) = ℓ ⪯ s ∧ ℓ ⪯ t

ℓ ⪯ (s → t) = ℓ ⪯ t

ℓ ⪯ () = True

ℓ ⪯ s = False

Figure 5: The ⪯-relation as a closed type family.

Security lattice. Because we want to use Haskell’s type system to

implement the security features of DCC, we need to represent our

lattice at the type level. Figure 3 shows our implementation for the

two-point lattice. It uses Haskell’s extensions for closed type families
[10] and data kinds [35]. In a nutshell, closed type families are no

more than type-level functions. The code defines such a function

by introducing the type-level ⊑-relation on two arguments ℓ and

ℓ′. The DataKinds extension, on the other hand, is not strictly

necessary but allows booleans and security level constructors (L
and H ) to be promoted to the type level—hence, it yields more

elegant and self-descriptive code. In other words, constructors L
and H belonging to the data type Lattice can be interpreted as

types too! In fact, the equations in Figure 3 involve types (and not

terms) L, H , True, and False. The key part of the implementation

is that the equations capture the expected security policy. Namely,

as pointed out in Section 2, H ̸⊑ L is the only disallowed flow.

It is also possible to encode more complex (potentially infinite)

security lattices using type families [6]—e.g., the lattice induced

by disjunction category labels [25], where security levels express

concerns of mutually distrusting principals.

Dependency tracking. The key component necessary to obtain

DCC-style dependency tracking is the implementation of the T -
monad family and its corresponding operations. Figure 4 shows our

Haskell definitions for T , return (return), and super-bind (>>>=). At

first glance, the code looks almost like a mere syntactic translation

of the typing rules from Figure 1—except for the equality type

constraint (ℓ ⪯ s)∼True (explained below). Just as in DCC, the type
constructor T is a family of identity monads indexed by a security

level ℓ coming from the kind Lattice. The definition of T involves

“constructor” T TCB
::a→ T ℓ a and the “destructor” unT TCB

::T ℓ a→
3
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a. These component are part of the trusted computing base or TCB
(observe the supra-index). Consequently, it is not accessible to

the users of our DCC implementation but is part of its internals.

Otherwise, for instance, access to the constructor T TCB
would allow

attacker’s code to pattern match on a value v :: T H a to simply

extract the secret value (e.g., case v of T TCB secret → secret).
Because Haskell is polymorphic, the type of return can capture

the typing rules for the entire family of returnℓ , for any given ℓ.

Similarly, the implementation of (>>>=) has almost the same type

(ℓ ⪯ s)∼True ⇒ T ℓ a → (a → s) → s as the super-bind

(>>>=) : T l a → (a → s ) → s in DCC. The difference being that,

as s is restricted by ℓ ⪯ s in DCC, our implementation requires

discharging the type equality constraint (ℓ ⪯ s)∼True to enforce

the same characteristic over s. More specifically, the constraint

(ℓ ⪯ s)∼Truemeans that the application of the type-level function

ℓ ⪯ s evaluates to (the type) True. In the whole implementation,

(>>>=) is the only operation which utilizes unT TCB
, and therefore is

the only primitive that we must trust to work as expected—clearly, we
must trust our type system and type declarations too! As the Haskell

language permits certain unsafe operations
6
which might break

type-safety and data encapsulation, we also rely on SafeHaskell
[28]—an extension of the Haskell compiler GHC which restricts the

use of unsafe features to trusted code. We now turn our attention

to the type family implementing the ⪯-relation.

Protecting data. Figure 5 encodes the ⪯-relation of DCC as a

closed type family with the same name. The code is almost an

entirely syntactic translation of the ⪯-relation from Figure 2 ex-

cept for the first two equations which use type-level versions of

operators ∧ and ∨. However, these cases follow directly from the

structure of the ⪯-relation. For instance, the first equation collapses

rules (R1) and (R2) into one disjunction. The rest of the cases are

self-explanatory and therefore we omit describing them
7
.

Why closed type families? Haskell supports type families, i.e.,

type-level functions, both in an open and closed variant. An open

type family allows equations defining it being scattered throughout

the code base. The type family definitions for the ⊑- and ⪯-relations

are instead closed. This means that (i) equations may not be added

outside the initial ones, and (ii) equations are always tried in or-

der of appearance. Condition (i) is essential to guarantee security.

Otherwise, for instance, if these type families were not closed,

an attacker (or careless programmer) could inadvertently add the

equation H ⊑ L = True, or ℓ ⊑ s = True—thereby nullifying

all security properties given by (>>>=). In contrast, condition (ii) is

essential to avoid being overly restrictive. For instance, if equation

ℓ ⪯ s = False were to trigger first, many programs would be

unnecessarily classified as insecure.

3.1 Revisited example
Let us see how the solution to Alice and Bob’s problem can be

translated from the theoretical calculus to Haskell.

Example 3.1. Alice starts by defining the security levels of her

data as follows.

6
like unsafePerformIO :: IO a→ a and unsafeCoerce :: a→ b

7
We note that, while the implementation requires the extension UndecidableInstances,
the definition of the type family is always terminating.

instance Monad (T ℓ) where
return :: a→ T ℓ a
return = return

(>>=) :: T ℓ a→ (a→ T ℓ b) → T ℓ b
(>>=) = (>>>=)

Figure 6: Monad instance for T ℓ

Alice
data FormData = FD {password :: T H String,

userName :: T H String,
userEmail :: T L String,
screenName :: T L String }

With this implementation of FormData, Bob’s old code will no

longer be type correct. This is because userName now returns a

String protected at H , but the return type of the mkDBEntries ex-
pects a T L String. As noted previously, Bob has no way to go from

a T H String to a T L String. The type system guarantees that

the real name of the user is kept safe. He is forced to rewrite his

implementation of mkDBEntries as follows.

Bob
mkDBEntries :: FormData→

(T L [DBEntry ], T H [DBEntry ])
mkDBEntries form =

(sequence [screenName form, userEmail form]

, sequence [hash (password form), userName form])

The sequence :: [T ℓ a]→ T ℓ [a] function collects the results

produced by a list of protected computations and it is implemented

as a derived operation, i.e., it does not break DCC abstractions.

Observe that the name of the user is now in the correct list of

database entries.

Monads in Haskell and super-bind. To convince Haskell’s com-

piler that T ℓ is a monad, it is necessary to provide a Monad type-

class instance for T ℓ, i.e., we need to implement the return and (>>=)
operators over that type. As claimed above, super-bind is general

enough to implement (>>=). Figure 6 shows that, by specializing the

type of (>>>=), each family member T ℓ, for a certain ℓ, can indeed

be made an instance of the Monad type class.

Type errors. The reader may be concerned that the use of ad-

vanced features of the Haskell type system, like closed type families

and data kinds give rise to complicated and difficult to interpret

type errors. Indeed, this appears to be the case, in the worst cases

type errors are on the form "Could not unify ’False with
’True, arising from the use of >>>=". However, recent work
by Serrano and Hage [22] provides methods for improving type

errors in Haskell programs by defining domain specific type errors.

We note the incorporation of such techniques into our encoding of

DCC as future work.
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m >>= f ≡ join (fmap f m)

m >>= id ≡ join m
m >>= (return ◦ f ) ≡ fmap f m

Figure 7: Laws relating (>>=) and return with join and
fmap.

Discussion. The experienced functional programmer might pro-

pose the following combinator-based interface as an alternative to

our formulation of DCC.

upgrade :: (ℓ ⩽ h)∼True ⇒ T ℓ a→ T h a
split :: T ℓ (a, b) → (T ℓ a, T ℓ b)

The advantage of such an approach would be that it makes the

security-related properties of the T monad family more explicit.

However, it is not obvious what a sound and complete set of such

combinators would look like. Furthermore, basing the translation

on such combinators rather than our direct syntactic translation

nullifies our argument that the translation is correct by construction.

One observation is that any correct combinator-based translation

should be implementable using our translation. For example, the

upgrade and split combinators are trivially implementable using

super-bind, thereby providing an interface which would be familiar

to functional programmers while retaining the confidence provided

by the syntactic translation.

Another alternative is the use of generalized monads [5] to keep

track of the dependencies. Possibly employing a type like:

(>>=) :: T ℓ a→ (a→ T ℓ′ b) → T (ℓ ⊔ ℓ′) b

However, this would represent a significant departure from the

original DCC formalism and we therefore consider an analysis

of this approach outside the scope of this paper. The interested

reader may consult [7] for a detailed discussion of this alternative

approach.

4 AN ALTERNATIVE FORMULATION
It is known that every computations involving a monad m may be

built by (at least) two different interfaces, one using

return :: a→ m a
fmap :: (a→ b) → m a→ m b
join ::m (m a) → m a

and and the other using

return :: a→ m a
(>>=) ::m a→ (a→ m b) → m b

Every interface has its pros and cons and programmers are likely to

use both—we refer the interested reader to [34] for further details.

In this light, given the non-standard notion of (>>>=), a natural

question is what such an isomorphism would look like for DCC?

Before we start answering that question, Figure 7 recaps the laws

establishing the correspondence between these two formulations.

We start by finding the equivalent notion of join and fmap in

DCC. However, beare in mind that we expect to end up with a

joinDCC
:: (ℓ ⪯ s) ∼True ⇒ T ℓ s → s

joinDCC t = t >>>= id

fmapDCC
:: (ℓ ⊑ ℓ′)∼True ⇒ (s → t) → T ℓ s → T ℓ′ t

fmapDCC t f = t >>>= (return ◦ f )

Figure 8: Types for joinDCC and fmapDCC.

“super-join” and “super-fmap” so we will refer to them as joinDCC

and fmapDCC
, respectively. The code for these functions are given

in Figure 8. These functions are simply computed by replacing all

occurrences of (>>=) with (>>>=), join with joinDCC
, and fmap with

fmapDCC
in Figure 7. The derived joinDCC

inherits the constraint

from (>>>=) that checks if a certain type s is protected by ℓ—i.e.,

(ℓ ⪯ s)∼True. This function basically removes the (T ℓ)-monad

when the value that it protects is already protected by ℓ. The derived

fmapDCC
, on the other hand, allows us to map a function over the

content of the (T ℓ)-monad but potentially returning the result in

a more sensitive family member T ℓ′, where ℓ ⊑ ℓ′.
Unfortunately, we need to go through some contortions when

using joinDCC
and fmapDCC

in a way similar to how we would use

join and fmap, respectively. To illustrate this point, we consider the
case where we have a computation t :: T H (T L a) that we want
to “join” (collapse) in order to return something of type T H a. We

then proceed to use super-join as follow.

t ′ :: T H a
t ′ = joinDCC (joinDCC (fmapDCC (fmapDCC returnH ) t))

Observe that the problem with this example is that T L a is

not protected by H , therefore, we cannot simply apply joinDCC
—the

type constraint H ⪯ (T L a) does not hold! Instead, we need to

transform t into something of type T H (T L (T H a)) by calling

fmapDCC (fmapDCC returnH ) t. After that, we take the two inner

T ’s, i.e., T L (T H a), and collapse them to T H a—this is done by
the inner joinDCC

. To conclude, the outer joinDCC
takes something of

type T H (T H a) and collapses it to T H a as wanted.
As types become more complex, for example when we have a

term t of type T H (T L a, T H b), we would expect to be able to

use joinDCC
to get a (collapsed) term t ′ of type (T H a, T H b), but

once again we arrive at a verbose implementation.

t ′ :: (T H a, T H a)
t ′ = joinDCC (fmapDCC

(λ(tl , th) → (joinDCC (fmapDCC returnH tl ), th)) t)

As in the example above, we need to convert the first component

of the pair from something of type T L a to something of type

T L (T H a) to be able to collapse it to something of type T H a.
Once that is done, the outer joinDCC

collapses T H (T H a, T H a)
to (T H a, T H a) as expected.

All these contortions arise from having public values wrapped

in a sensitive T -family member, which makes them effectively non-

public values. To convince the type system that this is the case,

5



class Upgrade a b where
up :: a→ b

instance (ℓ ⊑ ℓ′)∼True ⇒ Upgrade (T ℓ a) (T ℓ′ a) where
up t = t >>>= return

Figure 9: A type class for automatic upgrading.

joinDCC*
:: (Upgrade s s′, (ℓ ⪯ s)∼True) ⇒ T ℓ s → s′

joinDCC* t = t >>>= up

Figure 10: joinDCC* with automatic upgrading.

we need to take those public values and upgrade them to sensitive

ones, i.e., transforming them from something of type T L a into

something of type T L (T H a) with fmapDCC
. After that, the (T L)-

monad can be removed using joinDCC
. To simplify the life of the

programmer, we implement the type class Upgrade a b in Figure

9. The type class provides the (overloaded) operators up :: a → b
which precisely implements the procedure for upgrading values

of type a into values of type b to have potentially more sensitive

labels. The most interesting cases for up is the instance involving

the T -monad family present in Figure 9 —see Appendix A.1 for

more details. In that case, to upgrade T ℓ a into T ℓ′ a, it must be

the case that ℓ′ is at least as sensitive as ℓ (ℓ ⊑ ℓ′). Observe that

the instance demands the type constraint (ℓ ⊑ ℓ′)∼True, which
arises from the use of (>>>=).

With the type class Upgrade in place, we proceed to change the

definition of joinDCC
to automatically adjust labels when needed—

see Figure 10. Different from joinDCC
, joinDCC*

allows for a more

elegant code. We revisit the examples shown before. When we have

a term t :: T L (T H a), we can transform it to a term of type

t :: T H a as follows.

t ′ :: T H a
t ′ = joinDCC* t

Similarly, when we have a term of type T H (T L a, T H b), we
can make an expression of type (T H a, T H b) as follows.

t ′ :: (T H a, T H b)
t ′ = joinDCC* t

The equations in Figure 7 hold for joinDCC*
provided that the

type constraint Upgrade s s′ can be satisfied. For instance, if the up
method does not change the type, that is to say Upgrade s s holds,
then we have exactly the same equations that we had previously.

It is also possible to derive (>>>=) from joinDCC*
and fmapDCC

. This

encoding requires joinDCC*
and fmapDCC

to use unT TCB
in their defini-

tions. A natural questions is then if such occurrences of unT TCB
are

sound—i.e., it does not provide opportunities to leak information.

We argue that, as long as the equations in Figure 7 hold for the

mn...

m2

m1

T ℓ a

Last considered effect

Second considered effect

First considered effect

Protection layer

Figure 11: (T ℓ)-monad at the base of monadic stacks

type Outputs o
type WT o ℓ a = WriterT (Outputs o) (T ℓ) a

Figure 12: Adding outputs.

DCC variants, it is possible to translate every occurrence of joinDCC*

and fmapDCC
back into (>>>=), which in turn uses unT TCB

safely due

to its type constraint. We leave the primitive definitions of joinDCC*

and fmapDCC
as well as the derivation of (>>>=) as an exercise for

the reader.

5 SIDE-EFFECTS
In this section, we show how to extend DCC to handle effects. Being

a family of identity monads, T does not provide any interesting

side-effect on its own. At a first glance, it is not clear that effects

can be naturally handled by DCC without having to trust the im-

plementation of each and every effect. Approaches for information-

flow control in Haskell have typically intertwined security concerns
with monadic effects, i.e., side-effects are performed by primitive

operations of their respective security monads (see for example

[18, 19, 26]). Instead, we show that, as long as side-effects can be

mimicked or denoted by pure computations [33], they can be added

"on top" of our implementation of DCC. In other words, we show

that the implementation of such effects need not be inherently

trusted, but may be added to a monad of type T ℓ without using
unT TCB

—the only primitive that must be handled with care. The

main idea that makes this possible is to place the (T ℓ)-monad at

the bottom of a stack of monads (where each layer implements an

effect). By doing so, data handled by upper layers is wrapped, i.e.,

protected, by T ℓ. Figure 11 depicts this idea.
The rest of the section shows the derivation process of securely

adding the most common effects to DCC, namely outputs, state, and

error handling. For simplicity, we focus initially on effects provided

by the Writer monad, a monad which equips computations with

outputs.

5.1 Outputs
To start adding outputs, we resort to one of the most frequent tools

that Haskell programmers rely on: monad transformers [16]. In a

nutshell, a monad transformer provides effects similarly to regular
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class Project (ℓ :: Lattice) where
type SegmentsAbove ℓ o
project :: Segments o → (T ℓ o, SegmentsAbove ℓ o)
merge :: (T ℓ o, SegmentsAbove ℓ o) → Segments o

→ Segments o

Figure 13: The Project type class.

monads, however a monad transformer cannot stand on its own; in-

stead, it modifies the behavior of an underlying monad by means of

pure functions to incorporate the effects associated with the trans-

former. Figure 12 shows the interface forWT (theWriter-T monad).

TheWT o ℓ a monad is built by applying the monad transformer

WriterT to T ℓ, creating the type WriterT (Outputs o) (T ℓ) a,
which extends the (T ℓ)-monad with outputs of type Outputs o.
In IFC systems, end-points get associated with a security level de-

noting the sensitivity of the data entering or leaving the system.

Having classified the sensitivity of outputs, it is possible to detect

when information might get leaked, e.g., when a program tries to

produce a sensitive output in the public partition or part of the

system. Hence, we consider outputs as partitioned per security

level—this is exactly what the type Outputs o denotes. For the two-
point lattice, outputs are partitioned into two segments: one for

sensitive and one for public outputs—observe that every partition

is protected by T .

type Segments o = (T L o, T H o)
type Outputs o = Segments o

We use the name Segments instead of Outputs as the idea of parti-
tioning data by security level is more general than outputs and we

will show how it extends when adding state as side-effect later.

In the writer monad, the operation producing outputs is the

function tell :: MonadWriter o m ⇒ o → m (), where m is the

type of the writer monad and o is the type of the output being

produced. What would be a secure version of tell ? Intuitively, it
should be the case that taking something at confidentiality level ℓL,

it should be only possible to write in the output partition label with

ℓH, where ℓH is the same as or higher than ℓL, that is ℓL ⊑ ℓH.

This is known as the no-write-down policy [3]. A computation

is secure as long as it does not write data to less sensitive sinks.

We will show that DCC guides us to a secure implementation of

tell, called tellWT
, which implements precisely the no-write-down

policy. To help readers, we indicate the relationship between type

variables in their subindexes, we use type variables ℓL and ℓH to

attest that ℓL ⊑ ℓH. Before diving into the details of tellWT
, we

need to implement some auxiliary functions.

For the rest of the section, we need to consider that outputs

have a monoid structure, i.e., they have both a neutral element and

an (associative) operations to concatenate outputs—see details in

Appendix A.2. Figure 13 shows an auxiliary type class needed to

provide secure outputs. The type class provide operations tomanip-
ulate the space of outputs which are, at least, as sensitive as a given
security level ℓ. The associated type SegmentsAbove ℓ defines the

instance Project H where
type SegmentsAbove H o = ()

project ( , h) = (h, ())
merge (h, ()) (ℓ, ) = (ℓ, h )

instance Project L where
type SegmentsAbove L o = T H o
project (ℓ, h) = ( ℓ, h)
merge (ℓ, h) = ( ℓ, h)

Figure 14: Instances for Project H and Project L

tellWT
:: (Monoid o,Monoid (SegmentsAbove ℓ o)
, Project ℓ o) ⇒ T ℓ o → WT o ℓ′ ()

tellWT t = tell (merge t mempty)

Figure 15: Secure version of primitive tell.

structure of all the levels strictly above ℓ. The project function takes

the outputs and returns the partitions at level ℓ and higher. The

merge function, on the other hand, takes all segments (Segments o)
and replaces the values at level ℓ and higher by the first argument

(T ℓ o, SegmentsAbove ℓ o). To illustrate how this type class works,

Figure 14 shows instances useful for the two-point lattice, where

outputs have type o. The instance Project H indicates that there

are no outputs strictly more sensitive than H by defining type

SegmentsAbove H o as unit, i.e., (). Similarly, the instance Project L
indicates that the memory strictly above L is of type T H o by

defining SegmentsAbove L o as T H o. The implementation for

project and merge of both instances are self-explanatory. Note that,

so far, we do not need to trust any other aspects of our code than

what we trusted before—we have not used unT TCB
at all!

Figure 15 shows the secure, derived, implementation of tell. The
type constraints in the type signature of tellWT

reflect that outputs

and partitions have a monoid structure—see constraints Monoid o
and Monoid (SegmentsAbove ℓ o), respectively. The constraint

Project ℓ o arising from the use of merge in the definition of tellWT
.

This function is simply defined as merging the output t into an

empty output (mempty). Ostensibly, the type signature looks inse-
cure, i.e., the argument to tellWT

is protected at ℓ (T ℓ o) but the
resulting computation handles (protects) data at arbitrary label ℓ′

(WT o ℓ′ ())—recall the definition of WT in Figure 12. However,

precisely because the argument is of type T ℓ o, it means that it

will be always protected at ℓ, no matter in what context we attempt

to output it. As a result, calls to tellWT
with public arguments in sen-

sitive contexts are allowed but no effects would be ever performed.

To illustrate this point, we proceed to describe some examples.

Example 5.1. Consider the code below.
7



castWT
:: (Monoid o, Project ℓH o,

(ℓH ⪯ OutputsAbove ℓH o)∼True)
⇒ WT o ℓH a→ WT o ℓL (T ℓH a)

Figure 16: Primitive castWT

secure ::Monoid o ⇒ T L o → T H Bool → WT o H ()

secure output secret = do bool ← lift secret
when bool (tellWT output)

Where the lift :: T ℓ a → WT o ℓ a function unlabels a T ℓ value
at the correct security level in the WT monad. The example seems

to be insecure: depending on the value of the secret (bool), the
program produces a public output (tellWT output). However, since
the resulting type is WT o H (), it means that all the outputs are

indeed protected by H—thus, the code does not leak information!

In other words, once in the monad WT o H a, any public output

has no effect since the whole output domain is protected by H .

The reason why the example above is secure relies one the fact

that monad transformers are implemented using pure functions

and that the T ℓ-monad is placed at the bottom of the monadic

stack. By definition, the monad transformerWriterT (as most mo-

nad transformers do) manipulates the underlying monad to in-

troduce the output effect. More concretelly, the type WT o H a,
i.e., WriterT (Outputs o) (T H ) a, is isomorphic to the type T H
(a,Outputs o). Observe how the monad transformer leverages on

the T H -monad to carry around outputs. This fact implies that

all the outputs are considered sensitive by WT o H a. Then, it is
not surprising that tellWT

can be called with a public argument in

sensitive contexts; after all, outputs are effectively secret!

Example 5.2. Consider instead the following code.

secure ::Monoid o ⇒ T H o → T L Bool → WT o L ()

secure output public = do bool ← lift public
when bool (tellWT output)

This function is very similar to that in the example above, except

that the value to output is now sensitive (T H o), while the boolean
(T L Bool) and the writer monad are not (WT o L ()). As before,
the code is safe to execute, i.e., a sensitive output gets performed

based on the value of a public boolean.

One could still argue that the type of tellWT
should restrict the

programmer and give a type error in the case where ℓ ̸⊑ ℓ′ in order

to hint about possible mistakes in the code. However, this would

have no impact on security. The generality of tellWT
is comfortable; it

allows for securely and indiscriminately writing to different outputs

at different levels.

5.2 Label creep
Although the interface provided by tellWT

is secure, it leaves some

things to be desired. As illustrated by Example 5.1, computations

depending on sensitive data force the entire computation to be pro-

tected at H . In other words, after inspecting a secret, public outputs

are tainted with the label of the secret. This phenomenon is known

as label creep: the label associated with the computation reaches a

point where it is not possible to perform any useful side-effects—

even if the effects are benign and do not attempt to leak information.

We illustrate the label creep problem in the following example.

Example 5.3. Even though the following example is well typed,

and therefore secure, the intended public output on the final line

(tellWT somethingPublic) occurs inside the (WT o H )-monad. Con-

sequently, it is considered secret.

creep ::Monoid o ⇒ T H Bool → WT o H ()

creep th = do
secret ← lift th

-- From now on, no more public outputs

when secret (tellWT somethingSecret) -- secret output

tellWT somethingPublic -- intended public output

Tomitigate the label creep problem, we introduce another derived
function called castWT

. Figure 16 shows the type signature for castWT
.

Starting with the types, theMonoid o constraint arises from the use

of the Writer effect, while the other two deserve some explanation.

The constraint Project ℓH o tells us that some manipulation on

the sensitive part of the outputs takes place in castWT
(explained

below). Finally, the constraint (ℓH ⪯ OutputsAbove ℓH o)∼True is
redundant but appears in the type signature due to the inability of

Haskell to figure out that ℓH protects all the outputs about itself.

The function castWT
runs a computation in the (WT o ℓH)-monad

(given as argument) and injects the produced sensitive outputs as

part of the outputs handled by the resulting (WT o ℓL)-monad. It

also protects the result of type a with label ℓH, that is T ℓH a. By
applying castWT

, we do not need to remain in the (WT o H )-monad

every time we need to inspect a secret. The role of castWT
is to

convert (cast) sensitive computations (at level ℓH) to public ones

(at level ℓL) without leaking any information, while still retaining

both the sensitive result and side-effects. Note that any public side-

effects that may have been performed in the sensitive context are

discarded by castWT
, this is possible because we are in a pure setting.

In the jargon of more traditional IFC systems, castWT
is an operation

which allows to temporarily raised the program counter [32].
Figure 17 shows a graphic rendering of the core operational

semantics of castWT
—we refer readers to Appendix A.3 for the con-

crete implementation. As a first step, castWT
runs its argument of

typeWT ℓH a, which results in a result x :: a and outputs of type

Outputs o—see left part of the graphic. From the produced out-

puts, we identify three segments of outputs: the outputs at level

oa :: OutputsAbove ℓH o
oh :: T ℓH o

rest

x :: a

(project outputs, return x )

>>>= λ(x , outputs) →

Figure 17: Semantics for castWT
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ℓH and higher, respectively denoted by variable oh :: T ℓH o and
oa::OutputsAbove ℓH o, and outputs which are strictly less sensitive
or incomparable to ℓH, denoted by rest in the graphic. Function

castWT
then proceeds to deconstruct, by using super-bind, the re-

turned value and the outputs (λ(x , outputs) → ...). The outputs at
level ℓH and above are extracted (project outputs), an action that

produces the tuple (oh, oa) :: (T ℓH o,OutputsAbove ℓH o). Hence,
it disregards any other outputs (i.e., rest) and considers only those

that can be safely affected by the computation of type WT ℓH a,
i.e., those outputs which do not write down from the security level

ℓH. The key realisation behind the implementation of castWT
is that,

while sensitive computations may depend on low data, they may

not influence low outputs; a property ensure by the type system!

The idea of castWT
is common in other Haskell IFC libraries [18,

19, 26]. However, different from them, castWT
is a derived operation

rather than a trusted primitive. We should remark that the core

idea of castWT
is present in the appendix of the DCC paper [1] when

showing an embedding of the imperative (stateful) SV-calculus

in DCC. In the next section, we show that the core idea behind

castWT
can be extended to cover other effects mimicked by pure

expressions, namely, state and error handling.

5.2.1 Revisited running example. With castWT
in place, Alice and

Bob can rewrite their application to make use of the power of

monadic effects.

Example 5.4. As Alice decides to add more and more functional-

ity to her website, she realises that aWriter effect is necessary to

handle the many functions for generating database entries. Further-

more, Alice has decided to add a function isSecure :: String → Bool
which checks if a password is deemed secure.

Bob
mkDBEntries :: FormData→ WT [DBEntry ] L (T H Bool)
mkDBEntries form = do

-- public output

tellWT (sequence [screenName form, userEmail form])

-- including a sensitive output

castWT (mkSecretEntries form)

Bob
mkSecretEntries :: FormData→ WT [DBEntry ] H Bool
mkSecretEntries form = do

pwd ← lift (password form)

when (isSecure pwd)
(tellWT (sequence
[fmap hash (password form), userName form]))

return (isSecure pwd)

With this implementation, Alice can decide when she, in the

trusted code, obtains the result of mkDBEntries and if she is to

commit the result to the database based on the result in the T H Bool
coming from the action return sec. Note that castWT

allows Bob to

write the sensitive part of the code as a stand-alone module

-- Definition

type WET o ℓ a =
WriterT (Outputs o) (EitherT String (T ℓ)) a

-- Outputs

tellWET
:: (Monoid o, Project ℓ o) ⇒ T ℓ o → WET o ℓ′ ()

-- API for error handling

throwError ::Monoid o ⇒ String → WET o ℓ ()

catchError ::Monoid o ⇒
WET o ℓ a→ (String → WET o ℓ a) → WET o ℓ a

-- Label creep

castWET
:: (Monoid o, Project ℓH o,

(ℓH ⪯ OutputsAbove ℓH o)∼True)
⇒ WET o ℓH a→ WET o ℓL (T ℓH (Either Error a))

Figure 18: Combination of exception andwriter effects.

6 COMBINING EFFECTS
In this section, we show that it is possible to derive secure operations

capable of handling multiple effects via monad transformers.

6.1 Error handling

WriterT o
ErrorT String

T ℓ a

Figure 19: The monadic
stack

We begin by extending

theWT -monadwith excep-

tions to create the WET -
monad (where the E stands

for errors)—see Figure 18.

The type WET o ℓ a is

a monad stack which con-

sists on the (T ℓ)-monad

at the bottom, the monad

transformer ErrorT String
in the middle (which ex-

tend the (T ℓ)-monad with error messages of type String), and
WriterT (Outputs o) at the top—Figure 19 depicts the monadic

stack.

The interface forWET is similar to that ofWT , i.e., it provides
the primitive tellWT

. It also provides the functionality for throwing

(throwError) and catching (catchError) errors. The key difference be-
tween the interface ofWT andWET lies in the implementations of

castWT
and castWET

. The derived operation castWET
requires checking

if the sensitive computation threw an error—an error that must be

kept secret (T ℓH (Either Error a)). This occurs because the monad

family T keeps us from communicating errors from a sensitive (ℓH)

to a less sensitive (ℓL) context. Since the error might occur within

the (WET o ℓH)-monad, the error must then remain protected by

ℓH. This restriction is in agreement with how other IFC libraries

deal with exceptions [18, 26]. Differently from such libraries, we

derive how to securely deal with errors by simply using T ℓ and
the DCC typing rules.
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-- Definition

type ST s ℓ a = StateT (State s) (T ℓ) a

-- State

get :: ST s ℓ (State s)
put :: State s → ST s ℓ a

-- Avoding label creep

castST :: (Project ℓH s,
(ℓH ⪯ StateAbove ℓH s)∼True)

⇒ ST s ℓH a→ ST s ℓL (T ℓH a)

Figure 20: Secure stateful computations.

-- Definition

type SET s ℓ a = StateT s (EitherT String (T ℓ)) a

-- State

get :: SET s ℓ (State s)
put :: State s → SET s ℓ a

-- Label creep

castSET :: (Project ℓH,
(ℓH ⪯ (StateAbove ℓH s))∼True))

⇒ SET s ℓH a→ SET s ℓL (T ℓH (Either String a))

Figure 21: Combining state and error handling.

6.2 State
Another effect which can be implemented on top of DCC is state.

In order to indicate that the focus is now on state, we change

the type variable o denoting “outputs” for type variable s denot-
ing “state”. We also introduce type synonyms for Segments s and
SegmentsAbove ℓ s as State s and StateAbove ℓ s, respectively.

Figure 20 shows the definition and interface of stateful compu-

tations as the (ST s ℓ)-monad. It is simply the application of the

stateful (StateT ) monad transformer over State s and T ℓ. The inter-
face presents specific primitives to fetch (get) and store state (put).
The type signature for castST is exactly the same as castWT

except for

mentioning ST and StateAbove instead of WT and OutputsAbove,
respectively—Appendix A.4 shows the complete, derived, implemen-

tation of castST.
As the WT monad can be extended to handle errors, so it can

be the ST monad. Figure 21 shows the interface for the (SET s ℓ)-
monad, a monad with state and error handling. The idea behind

castSET is the same as castWET
, catch the error and put it in the result,

adjusting the effect accordingly (depending on EitherT being on

the outside or inside of StateT ).

6.3 I/O
We explore if DCC is capable of securing effects provided by one of

the most popular monads in Haskell, i.e., the IO monad. This monad

provides the API to perform effects via the underlying I/O system,

e.g., the file system, network communication, running executables,

etc. The IO monad, different from the ones we have seen so far,

is opaque and lacks a manner to “get out of it” without possibly

breaking type-safety [29]—i.e., there is no safe function of type

IO a→ a. Once a computation has type IO, it will remain there.

We argue that DCC can only secure effects which can be rep-

resented in a pure way (like state, exceptions, etc.), but not the

ones provides by the (opaque) IO monad. To illustrate this point,

let us consider IO-effects conceived inside the (T H )-monad, i.e.,

a computation of type T H (IO a). Are such IO-effects safe to

perform? The answer is no, we have no guarantee how such effects

were constructed or what they do! If those effects were internal

to the program, like state or exceptions, they could potentially be

managed as described before, i.e., building a monadic stack where

the T ℓ-monad is at the bottom. However, IO-effects could also

involve external communication or any other type of effects. For

instance, they could observe sensitive information and send it over

the network.

One could be tempted to conceive a primitive of the form

secureIO :: T H (IO a) → IO (T H a)

where the IO-actions are being taking out of the T H -monad—

after all, they cannot be observed (the IOmonad is opaque). Unfortu-

nately, secureIO does not honor to its name. Consider the following

leaking program.

attack :: T H Bool → T H (IO Bool)
attack tb =
tb >>>= λb → do if b then putStrLn "True"

else putStrLn "False"

returnH (return b)

leak :: T H Bool → IO (T H Bool)
leak = secureIO ◦ attack

This code always returns the same boolean wrapped in the IO-
monad (return b), while it performs two different effects depending

on the value of the secret boolean b—i.e., either showing "True"
or "False" on the screen. Consequently, when applying secureIO
and taking the IO-effects “out” of T H , the attacker can execute

them and infer the value of b from reading the console—which is

a public channel. This argument has been previously brandished

to justify the introduction of another security monad capable to

handle IO-effects [18, 19, 26]. In this work, however, we restrict

ourselves to only having the T -monad family.

Alternatively, it could be argue that there could be a pure rep-

resentation of the IO-effects rather than the IO-monad itself [27].

Having that, it is just a matter of placing (T ℓ)-monads in the pure

representation of actions according to the sensitivity of inputs and

outputs. We declare this intriguing idea as future work.

7 RELATEDWORK
DCC. The seminal work on DCC [1] has inspired a large amount

of work. Tse and Zdancewic translated DCC into System F [30].
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They conceived the rules for () and use parametricity to prove non-

interference. Authors also provided an implementation of DCC

in Haskell [30]. However, this implementation differs from ours

in two main aspects. First, the T ℓ a monad is isomorphic to the

type ℓ → a rather than an identity monad as originally conceived

in DCC [1]—this representation is inspired by the translation of

DCC into System F. Secondly, the super-bind operator is imple-

mented as an overloaded primitive (type-class). As a result, it is

necessary to give an implementation of super-bind for each possi-
ble type constructor present in DCC. Instead, we provide a single

implementation of super-bind and provide a type-level function

to enforce the corresponding security checks—which aligns with

having a single typing rule for super-bind in DCC. Shikuma and

Igarashi gave a counterexample to show that Tse and Zdancewic

translation was not sound [23, 24]. Instead, Shikuma and Igarashi

propose a calculus very much inspired by DCC, called sealing calcu-
lus. To make their translation proof work, they weaken the source

language, i.e., admit some additional well-typed terms compared

with DCC, at the same time strengthening the target language to

be a restricted version of System F. Recently, Bowman and Ahmed

show a sound translation fromDCC into System F by the use of exis-

tential types [4]—thus being the first ones to prove non-interference

by encoding it in parametricity. As in [4, 23, 24], our work focuses

on the terminating fragment of DCC. We carefully craft an imple-

mentation which looks as a syntactic translation of DCC rules. By

doing so, we can rely on the results of [4] to give us confidence

about the correctness of our code, where parametricity lies behind

polymorphic languages like Haskell.

Security libraries. Many monadic IFC security libraries, e.g., LIO

[26], HLIO [6], and MAC [18], provide security monads which in-
tertwine pure and effectful computations—this is one of the main

differences with our work. Instead, we describe a methodology

for using DCC as a foundational approach to secure effects mim-

icked by pure computations via the use of monad transformers.

As a result, and contrary to existing IFC libraries, we are able to

derive (by complying with the type system) a secure API to safely

support exceptions, references, and any other effects mimicked

by pure computations. On the other hand, IFC libraries (e.g., LIO)

often come accompanied with proof showing that programs sat-

isfy the non-interference security policy. We argue that providing

soundness proofs about our encoding would end up in essentially

the same semantics/proofs as in the original DCC paper due to

the nature of our implementation, i.e., a syntactic translation. (We

note that stacks of monad transformers can be modeled in DCC

by leveraging sum- and product-types.) This work also identifies

DCC’s limits: handling arbitrary I/O effects (see Section 6.3). In

that situation, it is required to introduce security-specific monads

much along the lines of what SecLib, LIO, and MAC do. Rajani et

al. [17] study the trade-offs and equivalences between statically

tracking dependencies using monads with more fine-grained tradi-

tional IFC type systems. Devriese and Piessens provide a monad

transformer to extend imperative-like APIs with support for IFC

in Haskell [9]. Similar to our work, they use type families to en-

code the security lattice; however, they provide open definitions for

type-level functions. In principle, it would be possible to rephrase

some of their static analyzes into our encoding of DCC. Jaskelioff

and Russo implements a library which dynamically enforces IFC

using secure multi-execution (SME) [13]—a technique that runs

programs multiple times (once per security level) and varies the

semantics of inputs and outputs to protect confidentiality. Rather

than running multiple copies of a program, Schmitz et al. provide

a library with faceted values [21], where values present different
behavior according to the privilege of the observer. These last two

libraries apply different ideas than those behind DCC: it enforces

IFC dynamically by repeating computations rather than tracking

dependencies.

8 FINAL REMARKS
By leveraging closed type families and type classes, we describe a

novel implemention of DCC in Haskell which looks like a direct

translation of DCC’s typing rules—an elegant outcome of this work.

We clarify some aspects of DCC’s non-standard bind operation

from the perspective of a Haskell programmer. Furthermore, we

also provide a type directed approach (the cast functions) to avoid

the label creep problem present in DCC. Once embedded in Haskell,

DCC can be used as a solid base to secure programs with effects

like outputs, state, exceptions, or combinations thereof. For that,

we utilize monad transformers, well known tools for combining

effects. Most importantly, to secure such effects, we only need to

trust our type system (via the use of SafeHaskell [28]) and the

implementation of super-bind. It becomes now possible to start

envisioning the construction of larger case studies and applications

in Haskell, where DCC is the underlying security mechanism—an

interesting direction for future work.

In a recent paper, Austin et al. [2] study how to secure imperative

languages constructs by translating them into a pure functional

language. While the paper focuses on dynamic techniques, the

articles states “... one can translate various static information-flow
systems for imperative languages to the Dependency Core Calculus
(DCC) [1] ...” However, the only translation in [1] is an IFC system

for a imperative language with state. This work completes that

statement by showing how to handle a richer set of effects—by

simply embedding DCC into Haskell and letting the type system

guiding us.
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A APPENDIX
A.1 Automatic relabeling
In this Appendix, we provide the rest of the instances for the type

class Upgrade: pairs and functions. As the following code shows,

these instances simply work by inductively traversing the type

being upgraded.

instance (Upgrade s s′,Upgrade t t ′)
⇒ Upgrade (s, t) (s′, t ′) where

up (s, t) = (up s, up t)

instance Upgrade s s′

⇒ Upgrade (t → s) (t → s′) where
up f = up ◦ f

Upgrading a pair (up (s, t)) is the same thing as upgrading both

elements (i.e., up s and up t)). Upgrading a function (up f ) is the
same as upgrading the result of the function (up ◦ f ).

A.2 Structure for outputs
As explain in the main text of this work, we consider outputs of

type o as having a monoid structure. Consequently, we consider

every output partition T ℓ o as a monoid too since we need both

neutral elements, denoted by mempty, and a way to combine pro-
tected outputs from different computation—denoted by the primi-

tive mappend.

instance Monoid o
⇒ Monoid (T ℓ o) where

mempty = return mempty
mappend m0 m1 = do
o0 ← m0

o1 ← m1

return (mappend o0 o1)

The neutral element is simply the protected computations which

returns the neutral element of type o. Combining, i.e., “mappend-
ing”, two protected computations which produce os is done by

running the first computation m0 and then the second m1 in order

to return their protected combined results (return (mappend o0 o1)).

A.3 Label creep
In this section, we provide the implementation of castWT

. As de-

scribed before, the key observation for this primitive is that it

requires getting rid of the low output created by running the high

computation being casted while retaining the high part of the out-

put. Specifically, the code for castWT
is as follows.

castWT m = do
let (highOutputs, tlx ) =

runWriterT m >>>= λ(x , outputs) → (project outputs, return x )

tell (merge highOutputs mempty)
return tlx
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First, it runs the sensitive computation m (runWriterT m). By

using super-bind, it extracts the result (x) and produced outputs

(outputs) by m—observe the function λ(x , outputs) → ...). Then,
castWT

only keeps the sensitive part of the outputs (project outputs)
and the result produced by m (return x). Consequently, the pair
(highOutputs, tlx ) respectivelly holds the sensitive outputs and the

sensitive result produced by m. The next step by castWT
fills the tu-

ple of empty segments of outputs (mempty) with the sensitive part

produced by m by running tell (merge highOutputs mempty). At
this point, the produced (WT o ℓL)-monad computation contains

as sensitve output highOutputs while its public segment is empty—

nevertheless, other (WT o ℓL)-monadic computations could popu-

late such segment as shown by Example 5.4.

A.4 State
When considering state, the implementation of castST requires keep-
ing track of what the secret computation has done to the state.

While it is different from castWT
, the typing rules of the T monad

family keep us from leaking secrets! Below is the implementation

of castST:

castST m = do
s ← get
let (sH, tlx ) =

runStT m s >>>= λ(x , st) → (project st, return x )

put (merge sH s)
return tlx
The implementation of works by the following steps:

• Obtain the current state (s ← get).
• Run the sensitive computation with the current state as start-

ing state (runStT m s) and obtain the segments of the result-

ing state which are protected at ℓH.

• Return the result (x ) of the computation wrapped in T ℓH.
• Merge the new, sensitive, state with the old public state—

observe the instruction put (merge sH s).
• Return the result protected by T ℓH (return tlx ).

Similar as castWT
, note the use of super-bind to obtain the value

produced from the sensitive computationm into two parts—observe

function (λ(x , st) → ...). In this case, super-bind respectivelly pro-

duces the result of the sensitive computation (return x) and the

sensitive part of the state (project st) which will be subsequently

merged back into the state (put (merge sH s)).
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