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ABSTRACT

Many state-of-the-art IFC libraries support a variety of ad-
vanced features like mutuable data structures, exceptions,
and concurrency, whose subtle interaction makes verification
of security guarantees challenging. In this paper, we present
a full-fledged, mechanically-verified model of MAC—a stat-
ically enforced IFC library. We describe three main insights
gained during the formalization process. As previous li-
braries (e.g., LIO andHLIO), we utilize term erasure as the
proof technique to show non-interference. This technique es-
sentially states that the same public output should be pro-
duced if secrets are erased before or after program execution.
Our first insight identifies challenges when the sensitivity of
terms may depend on the context where they are used, thus
affecting how they will be erased. This situation is not un-
common in MAC as well as other IFC libraries—in fact,
we spot problems in the proofs of previous work. To deal
with such complicated situations, we propose a novel era-
sure technique that performs erasure by additional evalua-
tion rules, triggered by special-purpose constructs. Further-
more, we simplify reasoning about exception-aware primi-
tives by removing sensitive exceptions from programs where
secrets have been erased. We show progress insensitive non-
interference for our sequential calculus and pinpoint suffi-
cient requirements on the scheduler to prove progress-sensitive
non-interference for our concurrent calculus. We prove that
MAC is secure under a round-robin scheduler by simply
instantiating our main scheduler-parametric theorem.
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1. INTRODUCTION
Haskell is a pure functional language capable of

providing information-flow control (IFC) via a library
[Li and Zdancewic, 2006]. Different from other pro-
gramming languages, Haskell type-system separates side-
effect free from side-effectful computations—an essential fea-
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ture to avoid harmful side-effects which may leak sensitive
data. In recent years, researchers have increased their in-
terest in such libraries, developing solutions that enforce
IFC statically [Li and Zdancewic, 2010, Tsai et al., 2007,
Russo et al., 2008, Russo, 2015], dynamically [Stefan et al.,
2011, 2012a], and as a combination of both [Buiras et al.,
2015]. Many of such libraries, namely MAC [Russo, 2015],
LIO [Stefan et al., 2011], and HLIO [Buiras et al., 2015],
bring ideas from Operating Systems research on Mandatory
Access Control (MAC) [Bell and La Padula, 1976] into pro-
gramming languages. These libraries secure programs even
in presence of advance features like mutuable data structures
(e.g., references), exceptions, concurrency, and synchroniza-
tion primitives. This approach to IFC has proven compe-
tent, for instance, to protect sensitive data when third-party
software is applied to Git repositories [Giffin et al., 2012].
From now on, we simply use the term libraries when refer-
ring to MAC, LIO, and HLIO.

The mentioned libraries structure computations using
security monads [Abadi et al., 1999]—a special data type
able to control the dissemination of sensitive data. As
long as developers program against the libraries’ API, the
code is secure by construction. To provide non-interference
[Goguen and Meseguer, 1982], these libraries enforce the no
read-up and no write-down principles [Bell and La Padula,
1976]. The no read-up (no write-down) principle ensures
that computations read (write) only from resources (to re-
sources) at most as sensitive (at least as sensitive) as data
found in scope.

Generally speaking, IFC libraries [Li and Zdancewic,
2010, Russo et al., 2008, Stefan et al., 2011] prove non-
interference results by using the technique of term erasure:
a program does not leak secrets if it produces the same
observable outcome regardless of the fact that secrets are
erased before or after execution. Such proofs frequently ac-
count for subtle interplay between programming languages
features like, for instance, sub-computations and excep-
tions [Stefan et al., 2012b, Hritcu et al., 2013], security lev-
els of variables and concurrency [Buiras et al., 2014], etc.
It is precisely the complexity of features involved in IFC
libraries, and their elusive interaction, which makes mecha-
nized proofs, not only desirable, but needed to corroborate
their security guarantees. To the best of our knowledge,
there are no mechanized proofs of IFC libraries except for
the core calculus of LIO [Stefan et al., 2012b], where no
side-effectful operations are considered.

This paper presents a full formalization of MAC [Russo,
2015]—a security library which leverages Haskell type-
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system to provide IFC—and some interesting insights gained
from that. Many of them surpass MAC and pertain to LIO
as well as HLIO1. In fact, our insights leads us to uncover
some problems in LIO’s proofs and propose changes to re-
pair its non-interference guarantees. This work aims not
only to help identifying problems in existing IFC libraries,
but also to assist library designers to correctly apply term
erasure as a proof technique.

Our formalization respectively shows progress-insensitive
and progress-sensitive non-interference for sequential and
concurrent programs. For that, and similar to other IFC li-
braries, we define an erasure function on terms which maps
sensitive data and computations to a special syntax node
written as •. Then, a simulation is established between the
evaluation of the program and its erased counterpart—the
simulation only captures programs which produce the same
observable behavior. Our mechanized proofs for MAC pro-
vide us with the following insights:

⊲ Context-aware erasure The decision of erasing terms
might be context-dependent. For instance, erasing an ar-
gument in a multi-argument functions might depend on the
value, or type, of some other arguments. Consider, for ex-
ample, a function that respectively takes a number and a la-
bel, and stores the number in a fresh reference labeled with
the given label. The decision to erase the first argument,
i.e., the number, depends on the value of the second argu-
ment, i.e., the label. This dependency obstructs the defini-
tion of a sound homomorphic erasure function, complicating
the analysis of security guarantees—we identify definitions
which exhibit this problem in LIO [Stefan et al., 2011]. We
propose a novel two-steps erasure technique to repair such
cases.

⊲ Masking sensitive exceptions In previous work, la-
beled exceptions are erased by erasing their content accord-
ing to their label, but always preserving their exceptional
state [Stefan et al., 2012b]. In contrast, we propose to mask
sensitive exceptions in erased programs. More specifically,
erasing sensitive exceptions always results in erased unex-
ceptional values—in other words, there are no sensitive ex-
ceptions in erased programs! The simulation between terms
and their erased counterparts guarantees that this rewrit-
ing is sound. Sensitive handling routines, the only routines
which can distinguish exceptional from unexceptional sen-
sitive values, are also erased and do not occur in erased
programs either.

⊲ Scheduler requirements When considering concurrent
programs, we obtain a security proof which is valid for a
wide-range of deterministic schedulers. We formally pin
down sufficient requirements on the scheduler to guarantee
progress-sensitive non-interference—a novel aspect if com-
pared with previous work [Stefan et al., 2012a, Heule et al.,
2015]. As an example, we instantiate our results with a
round-robin scheduler (the scheduler used by Haskell run-
time system).

We consider the insights above, together with our 4000
lines of mechanized proofs in Agda2, the main contributions
of this work. We furthermore describe some technical and
novel aspects of our proofs, which we believe might come in
handy to IFC researchers. In particular, our model (i) does

1The formal guarantees of HLIO are simply reduced to
those of LIO.
2Available at https://bitbucket.org/MarcoVassena/mac-agda

Label: ℓ
Types: τ ::= Bool | () | τ1 → τ2

Id τ | | MAC ℓ τ | Res ℓ τ
Values: v ::= True | False | () | λx .t

| MAC t | Res t | Id t
Terms: t ::= v | t1 t2 | if t1 then t2 else t3

| return t | t1 ≫= t2
| label | unlabel t | label•
| join | join

•
| •

Figure 1: Formal syntax for types, values, and
terms.

not introduce any extra reduction relation, (ii) annotates
concurrent transitions with threads’ identifiers to obtain a
scheduler-parametric non-interference proof, and (iii) parti-
tion memory and thread pools by security level to completely
erased them when sensitive.

This paper is organized as follows. Section 2 formalizes the
core of MAC, Section 3 presents the proof technique used to
study the security guarantees, Sections 4 and 5 extend the
calculus with exceptions and concurrency. Section 6 gives
related work and Section 7 concludes.

2. THE CORE CALCULUS
This section formalizes the core of MAC as a simply

typed call-by-name λ-calculus extended with booleans, unit
values and monadic operations.

Calculus.
Figure 1 shows the formal syntax of the calculus, where

meta variables ℓ, τ , v and t denote respectively labels, types,
values, and terms. Most of these syntactic categories are
self-explanatory with the exception of a few cases that we
proceed to clarify. Labels are types in MAC despite we
place them in a different syntactic category named ℓ—this
decision is made merely for clarity of exposition. We as-
sume that labels form a lattice (L ,⊑). In examples we use
the concrete classic two-point lattice with labels H and L
denoting secret (high) and public (low) data respectively—
where H 6⊑ L is the only disallowed flow. Term MAC is
the constructor of type MAC ℓ τ , which denotes a (possi-
bly) side-effectful secure computation that handles informa-
tion at sensitivity level ℓ and yields a result of type τ at the
same security level. Constructor Res represents a labeled re-
source. Generally speaking, resources are sources and sinks
of information: pure terms (e.g., number 42), a file, a refer-
ence, etc. The nature of the labeled resource is captured in
its type. Data type Id τ is used to denote resources which
do not trigger side-effects when manipulated, e.g., numbers
or strings. For instance, Res (Id 42) :: Res ℓ (Id Int) repre-
sents a resource labeled with ℓ, whose content is the number
42. We use Haskell notation t :: τ to denote that term t
has type τ . By instantiating τ in Res ℓ τ with different
types (like we just did with Id), MAC is able to iden-
tify and securely provide operations on many kind of re-
sources, e.g., Res ℓ (IORef Int) for references to integers,
Res ℓ (Socket ByteStream) for network communication, and
so on. Observe how MAC reuses the same data type for
different kind of resources. Without loss of generality, next
sections only consider (pure) labeled expression, i.e., labeled
resources of type Res ℓ (Id τ ), which we abbreviate with the
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return :: τ → MAC ℓ τ
(>>=) ::MAC ℓ τ1 → (τ1 → MAC ℓ τ2)→ MAC ℓ τ2
type Labeled ℓ τ = Res ℓ (Id τ )
label :: ℓL ⊑ ℓH ⇒ τ → MAC ℓL (Labeled ℓH τ )
unlabel :: ℓL ⊑ ℓH ⇒ Labeled ℓL τ → MAC ℓH τ
join :: ℓL ⊑ ℓH ⇒ MAC ℓH τ → MAC ℓL (Labeled ℓH τ )

Figure 2: API of core primitives.

(Return)

Γ ⊢ t : τ

Γ ⊢ return t :MAC ℓ τ

Figure 3: Type scheme rule for return.

type synonym Labeled ℓ τ . Constructors MAC and Res are
part of MAC’s internals, therefore they are not available to
users of the library and are not part of the surface syntax.

Terms.
Secure computations enjoy a monadic structure, i.e. they

are built using the fundamental operations return and >>=
(read as “bind”). The operation return t produces a compu-
tation that returns term t and produces no side-effects. The
function (>>=) is used to sequence computations and their
corresponding side-effects. Specifically, m>>= f takes a com-
putation m and function f which will be applied to the result
produced by running m and yields the resulting computa-
tion. Operations label and unlabel create and read labeled
expression within MAC computations, thus allowing terms
of type MAC ℓ a to securely interact with such labeled
resources. The primitive operator join securely embeds a
sensitive computation into a less sensitive one. The special
syntax nodes join

•
, label• and • represent erased terms (ex-

plained in Section 3) and are used by our proof technique to
examine the security guarantees of the calculus.

Types.
The typing judgment Γ ⊢ t : τ denotes that term t has

type τ assuming the typing environment Γ. All The typing
rules are standard and thus omitted, except for • which can
assume any type, i.e., Γ ⊢ • : τ . For easy exposition, we de-
scribe the types of interesting constructs return , (>>=), label ,
unlabel , and join as Haskell APIs—see Figure 2. We explain
their relation with traditional typing judgments by means of
an example. The typing judgment of return is given in Fig-
ure 3. Note that rule [Return] is a rule scheme, i.e., there
is such a judgment for every label ℓ ∈ L , where labels come
from either type signatures or explicit type annotations in
programs. In the API, what appears on the left-hand side
of the symbol ⇒ are type constraints, which are properties
that must be statically fulfilled about the types that follow.
To help readers, we indicate the relationship between labels
in their subindexes, i.e., we use ℓL and ℓH to attest that
ℓL ⊑ ℓH. Term label creates a new labeled expression,
which is considered as a write operation from the security
point of view. Consequently, the type constraint ℓL ⊑ ℓH
enforces the no write-down rule. It requires the label ℓL of
the MAC computation to be no more confidential than ℓH,
i.e., the label of the created labeled expression. Term unlabel
performs a read operation, therefore, to comply with the no

(Label)

label t ❀ return (Res (Id t))

(Unlabel)

unlabel (Res (Id t)) ❀ return t

(Join)

t1 ⇓ MAC t2

join t1 ❀ return (Res (Id t2))

Figure 4: Semantics for labeling operations.

read-up rule, its type protects the confidentialy ℓH of the
result produced by the MAC computation. To achieve that,
type constraint ℓL ⊑ ℓH ensures that the result of the com-
putation may only involve unlabeled expressions ℓL which
are, at most, as sensitive as ℓH. Lastly, join protects the
result of a sensitive MAC computation inside a less sensi-
tive one by the constraint ℓL ⊑ ℓH, avoiding the label
creep problems in sequential programs [Russo, 2015]. We re-
mark that these type constrains are built using type classes,
a well-established feature of Haskell type system—thus, we
omit the corresponding typing rules for MAC’s primitives.
In what follows, we describe an example which illustrates
MAC’s programming model, particularly the use of label ,
unlabel , and join.

Example.
The most common use of label is to classify data to be

protected. As an example, consider a piece of Haskell code
which simply asks for a password from the terminal.

putStrLn "Input your password?"

pwd ← getLine
...

At this point, the content of variable pwd should be han-
dled with care in the rest of the program, which we symbol-
ize with ellipsis (...). One way to protect pwd is by writing
all password-related operations within MAC, where pwd is
marked as sensitive data. For instance, the following code
passes the password to a routine to check if the password is
listed on dictionaries of commonly used passwords.

putStrLn "Input your password?"

pwd ← getLine
let lpwd = label pwd ::MAC L (Labeled H String)
runMAC (lpwd >>= common)

Observe how label is used to mark pwd as sensi-
tive by wrapping it inside a labeled expression of type
Labeled H String . After that, the labeled password is passed
to the function common by bind ((>>=)). (Function runMAC

simply runs the given MAC-computation.) Assuming that
common firstly fetches online dictionaries, pre-processes
them, and then inspects if the password appears in them, the
type for such code could be common :: Labeled H String →
MAC L (MAC H Bool). The reason for having nested
MAC -computations comes from the fact that common is
handling information with both sensitivities, i.e., L and
H . The outermost computation (MAC L) is responsible to
fetch the online dictionaries from the web, an action consid-



t t ′

εℓA (t) εℓA (t ′)

εℓA
εℓA

Figure 5: Single-step simulation.

ered observable. The inner computation (of type MAC H ),
on the other hand, arises from unlabeling lpwd (by using
unlabel) in order to search the password in the fetched dic-
tionaries. Clearly, while manageable for two security la-
bels, if common were to handle information with many se-
curity labels, it could return a long sequence of nestedMAC -
computations. To mitigate this problem, common can apply
join to “compress” its type to common ::Labeled H String →
MAC L (Labeled H Bool), i.e., returning only one MAC -
computation.

Semantics.
The small-step semantics of the the calculus is represented

by the relation t1 ❀ t2, which denotes that t1 reduces to
t2. Most of the reduction rules are standard and thus omit-
ted. Figure 4 shows the interesting rules for constructs label ,
unlabel , and join. Rule [Label] creates a labeled expression
by wrapping it with constructs Res and Id . Dually, rule
[Unlabel] returns the expression wrapped by constructs
Res and Id . Rule [Join] formalizes the semantics of join us-
ing big-step semantics—similar to other work [Stefan et al.,
2011, Russo, 2015], we restrict ourselves to terminating com-
putations. The rule runs the sensitive computation and
wraps the result into a labeled expression at the appropri-
ate security level. Note that none of these rules involve any
security check (labels are not even present in terms). Each
flow of information have already been statically verified via
type-checking. The rules of special nodes label• and join

•

will be given in Section 3.2. We only remark that node •
reduces to itself according to rule [Hole], that is •❀ •.

3. TERM ERASURE
Term erasure is a proof technique to prove non-

interference in functional programs. It was firstly introduced
by Li and Zdancewic [Li and Zdancewic, 2010] and then used
in a subsequent series of work on information-flow libraries
[Russo et al., 2008, Stefan et al., 2011, 2012b,a, Heule et al.,
2015]. The technique relies on an erasure function on terms,
which we denote by εℓA . This function essentially rewrites
data above the attacker’s security level, denoted by label
ℓA, to the special syntax node •. Once εℓA is defined, the
core of the proof technique consists of proving an essential
relationship about the erasure function and reduction steps.
The diagram in Figure 5 highlights this intuition. It shows
that erasing sensitive data from a term t and then taking a
step (orange path) is the same as firstly taking a step and
then erasing sensitive data (cyan path), i.e., the diagram
commutes. If term t leaks data whose sensitivity label is
above ℓA, then erasing all sensitive data first and then tak-
ing a step might not be the same as taking a step and then
erasing secret values—the leaked sensitive data in t ′ might
remain in εℓA(t

′) after all. From now on, we refer to this
relationship as the single-step simulation between regular

εℓA(Res t :: Res ℓ τ ) =

{

Res εℓA(t :: τ ) if ℓ ⊑ ℓA

Res • otherwise

εℓA(t :: MAC ℓ τ ) = • if ℓ 6⊑ ℓA

εℓA(•) = •

Figure 6: Erasure function (interesting cases).

terms and erased ones.

Discussion.
We prove the single-step simulation directly over the

small-step reduction relation. Instead, other works
[Li and Zdancewic, 2010, Russo et al., 2008, Stefan et al.,
2011, 2012b,a, Heule et al., 2015] prove the simulation by
relating small-step reductions (upper part in Figure 5) with
reductions on a ℓA-indexed small-step relation of the form
t ❀ℓA εℓA(t

′), i.e., a relation which applies erasure at every
reduction step. The reason for that is wired deeply in the
dynamic nature of the enforcement. For instance, LIO con-
siders labels as terms, which makes difficult to know what
data is sensitive until runtime. In contrast, MAC does not
need such an auxiliary construction because, due to its static
nature, labels are not terms but rather type-level entities and
therefore known before execution. In this light, our erasure
function can safely erase any sensitive information found in
labeled terms according to their type. Our small-step se-
mantics satisfies type-preservation, i.e., reduction does not
change types of terms, therefore labels are unaffected by
execution—freeing us from the need to use a special small-
step relation like ❀ℓA .

3.1 Erasure function
We proceed to define the erasure function for our core

calculus. Since security levels are at the type-level, the
erasure function is type-driven. We write εℓA(t :: τ ) for
the erasure of term t with type τ of data not observ-
able by the attacker. We omit the type annotation when
it is either irrelevant or clear from the context. Ground
values (e.g., True) are unaffected by the erasure function
and, for most terms, the function is homomorphically ap-
plied, e.g., εℓA(if t1 then t2 else t3 :: ()) = if εℓA(t1 ::
Bool) then εℓA(t2 :: ()) else εℓA(t3 :: ()). Figure 6 shows
the definition of the erasure functions for the interesting
cases. The content of a resource of type Res ℓ τ is erased
homomorphically if ℓ is below the attacker’s label ℓA, oth-
erwise it is rewritten to •. Secure computations of type
MAC ℓ τ are instead completely collapsed to • when ℓ is
above the attacker’s label and homomorphically erased oth-
erwise. The erasure of label and join within observable com-
putations, that is MAC computations with label ℓM such
that ℓM ⊑ ℓA, is non-standard. These cases deviate from
the definitions seeing so far, i.e., either simply collapsing sen-
sitive data to • or applying the erasure function homomor-
phically. Unfortunately, neither of these kinds of definitions
guarantees single-step simulation in those cases.

To illustrate the challenge of erasing label , we consider
an attacker at level L and the term label t :: MAC L
(Labeled H τ ). Observe that label t is executed by
an observable MAC computation. In this case, the type



εℓA(label t :: MAC ℓM (Labeled ℓ τ )) =
{

label εℓA(t) if ℓ ⊑ ℓA

label• εℓA(t) otherwise

εℓA(join t :: MAC ℓM (Labeled ℓ τ )) =
{

join εℓA(t) if ℓ ⊑ ℓA

join
•
εℓA(t) otherwise

(Label•)

label• t ❀ return (Res •)

(Join•)

join
•
t ❀ return (Res •)

Figure 7: Two-steps erasure function.

MAC L (Labeled H τ ) indicates that t is sensitive, there-
fore we should rewrite it to •, i.e., εL(label t) = label •.
By doing so, however, the commutativity of the diagram
in Figure 5 brakes. On the cyan path, we obtain that
label t  return (Res (Id t)) (by rule [Label]) and
that εL(return (Res (Id t))) ≡ return εL(Res (Id t))
(by applying erasure homomorphically to return), where
return εL(Res (Id t)) ≡ return (Res •) (by erasure on
sensitive labeled expressions—see Figure 6). In contrast,
on the orange path, we have that εL(label t) = label •  
return (Res (Id •)) (by [Label]). To adhere to commu-
tativity, the terms at the end of both paths should be the
same, which is not the case here, i.e., return (Res •) 6≡
return (Res (Id •)). The problem arises from the fact that
even after erasing every piece of sensitive information from
label t , namely by rewriting t to •, rule [Label] still pro-
duces the constructor Id , which instead gets erased on the
cyan path. Observe that rule [Label] seems to intrinsically
break simulation, regardless of the choice of the erasure func-
tion.

Term join t also raises a similar problem. Consider eras-
ing a sensitive computation t :: MAC H τ embedded in
a public one using join. On the orange path, we have
that εL(join t :: MAC L (Labeled H τ )) ≡ join εL(t ::
MAC H τ ) (by applying εℓA homomorphically), which re-
sults in join • by erasure of sensitive computations (see
Figure 6). Symbol • does not have a normal form by rule
[Hole], i.e., • 6⇓ MAC t ′, which prohibits the orange path
from making a step since rule [Join] cannot be applied, thus
breaking commutativity. The problem here is that the era-
sure function is erasing “too much”.

The obstacles encountered when erasing label and join
while guaranteeing single-step simulation rise from the fact
that terms need to be erased differently depending on the
context in which they are found. In the next section, we
discuss and identify the limitations of a plain term erasure
technique and propose a novel extension to overcome them.

3.2 Context-aware Erasure
Unfortunately, trying to stretch the definition of the era-

sure function to accommodate for the problematic cases
shown above is futile. Firstly, note that simulation of
[Label] is broken despite how we erase its arguments:
construct label always yields construct Id on the orange
path independently of its argument, which is instead al-
ways erased on the cyan path since it occurs inside con-
structor Res . Secondly, although the erasure definition

could be adapted to restore commutativity of Figure 5 for
join, it will necessary break commutativity for other cases.
We support this statement by showing that this is the
case for any arbitrary erasure function that is suitable for
join t :: MAC L (Labeled H τ ). Recall that rule [Join]
evaluates a computation t embedded in join t to weak-head
normal form, i.e., t ⇓ MAC t ′. As described in Sec-
tion 3.1, the erasure function should necessarily preserve
the constructor MAC when erasing εL(t :: MAC H τ ) in
order for the orange path to make an step. Consequently,
we need a different behavior of our erasure function for sen-
sitive computations when embedded in join, which we will
capture in a different auxiliary erasure function ε′L. Sup-
pose we defined εL(join t :: MAC L (Labeled H τ )) =
join ε′L(t :: MAC H τ ), for some suitable ε′L that exhibits
the desired behavior. However, introducing a different era-
sure function in a context-sensitive way is fatal for commuta-
tivity of beta reductions. More precisely, the original erasure
function is no longer homomorphic over substitution3 , i.e.,
εℓA([x / t1 ] t2) 6≡ [x / εℓA(t1)] εℓA(t2)—an essential property
for the erasure function to have [Li and Zdancewic, 2010,
Russo et al., 2008, Stefan et al., 2011, 2012b, Heule et al.,
2015]. As a result, function εℓA is oblivious to the context in
which the argument will be substituted. For example, term
(λx .join x) t beta-reduces to join t and gets erased ho-
momorphically, that is (λx .join x) εL(t), which then beta-
reduces to join εL(t) 6≡ join ε′L(t)—recall that ε′L captures
a different behavior than that exposed by εL for sensitive
computations embedded in join.

To the best of our knowledge, this work is the first to
point out this issue. Furthermore, we identify problem-
atic cases in the formalization of previous work on LIO
[Stefan et al., 2011, 2012a] which lead to breaking the one-
step simulation—see details in Appendix. We propose a
novel, and simple, two-step erasure technique in order to
soundly obtain definitions of erasure functions capable to
behave differently depending on the context where they are
applied.

Two-steps erasure.
Our key observation is that we can soundly implement a

context-aware erasure function by removing sensitive data in
two stages. Rather than being a pure syntactic procedure,
erasure can also be triggered by additional evaluation rules
of special constructs. In that manner, the erasure function
rewrites sensitive data as usual, i.e., in a syntactic manner,
but synthesizes special constructs for those cases where it
behaves differently according to the context where it gets ap-
plied. We remark, nevertheless, that such special constructs
are introduced due to mere technical reasons and they are
neither part of the surface syntax nor the of implementation
of MAC—i.e., there is no performance degradation.

Figure 7 shows the definition of label and join. Special
constructs label• and join

•
replace terms label and join re-

spectively in the problematic cases, while the erasure func-
tion is applied homomorphically to their argument. Ad-

3In this specific case, it is possible to avoid the problem using
a non-standard erasure function which eliminates variables
as well, that is ε′L(x) = MAC •, since MAC • ⇓ MAC •.
However, constructs that do not use big-step semantics, such
as those discussed in [Vassena et al., 2016], cannot be sim-
ulated in the same way because their context rules would
require to reduce a value, i.e., MAC •❀ MAC •.



ditionally, rules [Label•] and [Join•] are responsible for
synthesizing the right erased terms. The two-steps era-
sure now guarantees commutativity of cyan and orange
paths. The former remains unchanged, reducing label t  
return (Res (Id t)) (by rule [Label]), which is then erased to
return (Res •). Following the latter instead, we go now from
label t to label• εℓA(t) (by erasure), which then reduces ac-
cording to rule [Label•] as label• εℓA(t) return (Res •)—
thus, commuting precisely with the cyan path. Note that
rule [Label•], contrary to [Label], yields an erased term
that does not contain the constructor Id , hence guaran-
teeing simulation. Commutativity of rule [Join] follows
in a similar way. While the cyan path also remains un-
changed leading to return (Res •) after erasure, the orange
path firstly erases join t to join

•
εℓA(t), and then reduces

join
•
εℓA(t)  return (Res •) (by rule [Join•]), which, just

like [Label•], guarantees simulation because it does not in-
troduce constructor Id . Note that simulation holds also for
rules [Label•] and [Join•], i.e., we are not simply mov-
ing the problem from constructs label and join to label•
and join

•
. We remark that context-aware erasure mani-

fests frequently when extending the calculus with more ad-
vanced constructs, such as functor and relabeling operations
[Vassena et al., 2016], and the proposed two-steps erasure
can be systematically applied to restore commutativity of
Figure 5.

3.3 Progress-Insensitive Non-Interference
The calculus that we have presented satisfies progress-

insensitive non-interference. The proof of this result is based
on two fundamental properties: single-step simulation and
determinancy of the small step semantics. In the following,
we assume well-typed terms.

Proposition 1 (Single-step Simulation). If t1 ❀

t2 then εℓA(t1) ❀ εℓA(t2).

We proved Proposition 1 employing the two-steps erasure
technique described in Section 3.2.

Proposition 2 (Determinancy). If t1 ❀ t2 and
t1 ❀ t3 then t2 ≡ t3.

The proof of Proposition 2 is by standard structural in-
duction on the two reductions. Before stating progress-
insensitive non-interference, we define low-equivalence for
terms.

Definition 1 (ℓA-equivalence). Two terms t1 and t2
are indistinguishable from an attacker at security level ℓA,
written t1 ≈ℓA t2, if and only if εℓA(t1) ≡ εℓA(t2).

Using Proposition 1 and 2, we show that our semantics
preserves ℓA-equivalence.

Proposition 3 (ℓA-equivalence preservation). If
t1 ≈ℓA t2, t1 ❀ t ′1, and t2 ❀ t ′2, then t ′1 ≈ℓA t ′2.

Conventionally, Proposition 3 would use relation ❀
∗, i.e.,

the reflexive transitive closure of ❀, because depending on
the secret two low-equivalent terms may reduce in a differ-
ent number of steps to low-equivalent terms. In our calculus,
however, the only construct that can exhibit such behavior is
join, which is defined using big-step semantics. Rule [Join]
conceals the possibly different number of steps taken by sen-
sitive computation on different executions, so that terms

Types: τ ::= · · · | χ
Values: v ::= · · · | ξ
Terms: t ::= · · · | MACX t | throw t | catch t t

Figure 8: Extensions for exception handling.

throw :: χ→ MAC ℓ τ
catch ::MAC ℓ τ → (χ→ MAC ℓ τ )→ MAC ℓ τ

Figure 9: API for exception handling.

seem to maintain low-equivalence in lock-step execution.
We remark that the small step semantics is well-founded
and that our results are mechanically verified. By repeat-
edly applying Proposition 3, we prove progress-insensitive
non-interference, which informally states that if two low-
equivalent terms reduce to values then also the values are
low-equivalent.

Theorem 1 (PINI). If t1 ≈ℓA t2, t1 ⇓ v1 and t2 ⇓ v2
then v1 ≈ℓA v2.

4. EXCEPTION HANDLING
In this section, we extend our core calculus with excep-

tions as described by the original MAC paper [Russo, 2015].
One interesting insights, gained by using a proof assistant
to check our proofs, is a technique that simplifies security
proofs by masking sensitive exceptions in erased terms. Al-
though we do not provide further details, this technique
could be used to simplify the soundness proofs of LIO
[Stefan et al., 2012b].

Calculus, Terms, Types, and Semantics.
We extend the syntactic categories from our core calculus

as described in Figure 8. We introduce a value ξ of excep-
tion type χ and a new constructor MACX t , denoting a
failing computation due to exception t . Terms throw t and
catch t1 t2 aborts the currentMAC computation with excep-
tion t and recover from an exception thrown in computation
t1 running exception handler t2, respectively. Figure 9 gives
the types for throw and catch in a form similar to Haskell
APIs. The semantics of these two constructs is standard and
thus omitted.

Join and exceptions.
The interplay between exceptions and join is delicate and

security might be at stake if these two features were naively
combined [Stefan et al., 2012b, Hritcu et al., 2013]. Observe
that type signatures in Figure 9 hint that exceptions can
be thrown and caught among computations with the same
label—a design decision which does not break security guar-
antees. Nevertheless, information can be leaked if excep-
tions thrown in sensitive computations are propagated (and
affect) less sensitive ones. From now on, we refer to excep-
tions raised in a sensitive MAC computation as sensitive
exceptions. Observe that sensitive exceptions might be re-
sponsible for suppressing observable events in less sensitive
computations, which gives place to an implict flow! (We
refer interested readers to [Russo, 2015] for further details
about this attack.) In our calculus, the only primitive which
combines computations with different labels is join. There-
fore, to close leaks via exceptions, MACmodifies the seman-
tics of join to catch exceptions, preventing them to propa-



(JoinX)

t1 ⇓ MACX t2

join t1 ❀ return (ResX t2)

(UnlabelX)

unlabel (ResX t) ❀ throw t

Figure 10: Secure exception handling.

εℓA(ResX t :: Res ℓ τ ) =

{

ResX εℓA(t) if ℓ ⊑ ℓA

Res • otherwise

Figure 11: Erasure of ResX .

gate to less sensitive computations—this solution is similar
to previous work [Stefan et al., 2012b, Hritcu et al., 2013].

To implement such countermeasure, we firstly proceed to
add a constructor denoting exceptions inside the Labeled ℓ τ
data type, i.e., the type of data produced by join. Specifi-
cally, we add internal constructor ResX t , where t :: χ. Fig-
ure 10 shows the semantics for join t when exceptions are
triggered: exceptions are not propagated further but rather
returned inside a labeled expression. Under this program-
ming model, it is necessary to inspect the return value of
join to determine if the computation terminated abnormally.
Note that the attacker cannot observe the exception any-
more without first unlabeling the result. Such operation
is then subject to the no read-up rule, which prevents ob-
serving a sensitive exception in a less sensitive computation.
In Figure 10, we extend the semantics of unlabel with rule
[UnlabelX ], which handles constructor ResX by rethrow-
ing the exception.

4.1 Masking sensitive exceptions
Formally, we need to show that the new calculus preserves

the single-step simulation. We ordinarily extend the era-
sure function to rewrite MACX , throw and catch to • if
their computation label is sensitive; otherwise, erasure is ap-
plied homomorphically. The erasure of ResX deserves more
attention—see Figure 11. Note that the content of a sen-
sitive exception is rewritten to • as expected, but also the
constructor ResX is replaced by Res. As a result of that,
and different from [Stefan et al., 2012b], there exists no sen-
sitive labeled exceptions in erased terms—thus simplifying
semantics. Crucially, we have the freedom of choosing this
definition without breaking the one-step simulation, because
no other construct can detect, either explicitly or implicitly,
the difference. For instance, rule [UnlabelX ] operates on
labeled expressions containing exceptions. In this case, if the
labeled exception is not visible to the attacker, then unlabel
must be performed in a non-visible computation as well (due
to the typing rules). Operation unlabel then gets rewritten
to • and the step is then simulated by rule [Hole] instead.

5. CONCURRENCY
In this section, we extend our calculus with concur-

rency. The possibility to run simultaneous MAC ℓ computa-
tions provides attackers with new means to bypass security
checks. In particular, concurrency magnifies the bandwidth
of the termination covert channel to be linear in the size
(of bits) of secrets [Stefan et al., 2012a]4. The key obser-

4 Furthermore, the presence of threads introduce the in-

fork :: ℓL ⊑ ℓH ⇒ MAC ℓH ()→ MAC ℓL ()

Figure 12: API for concurrency.

Scheduler state: s
Thread pool : Φ ::= (ℓ : Label )→ (Pool ℓ)
Pool ℓ: ts ::= [ ] | t : ts | •
Configuration: c ::= 〈s,Φ〉
Event ℓ: e ::= Step | Skip | Done

| Fork ℓ n | •
Terms: t ::= · · · | fork t

Figure 13: Syntax for concurrent calclulus.

vation is that a computation t :: MAC ℓH τ embedded in
join t :: MAC ℓL (Labeled ℓH τ ) might not terminate de-
pending on the value of the secret. If the computation t di-
verges, it might suppress public side-effects following join t ,
thus revealing a bit about the secret. To illustrate this point,
consider the function send ::Int → MAC L () which sends an
integer to the attacker’s server. By wrapping join t among
two instances of send , i.e., attack n = send n >>= λ() →
join t >>= λ() → send n, and assuming that t diverges if
the secret is true, then the attacker knows that the secret
is false when it receives nn in the server, otherwise the se-
cret is true. An attacker might then leak the whole secret
by spawning as many threads as bits in the secret, where
each thread runs the one-bit attack described above and n
matches the bit being leaked (e.g., n = 0 for the first bit,
n = 1 for the second one, etc.).

To securely support concurrency, MAC forces program-
mers to decouple MAC computations with sensitive labels
from those performing observable side-effects—an approach
also taken in LIO [Stefan et al., 2012a]. As a result, non-
terminating computations based on secrets cannot affect the
outcome of public events. To achieve this behavior, MAC
replaces join by fork—see Figure 12. Informally, it is se-
cure to spawn sensitive computations (of type MAC ℓH ())
from non-sensitive ones (of type MAC ℓL ()) because that
decision depends on data at level ℓL, which is no more sen-
sitive (ℓL ⊑ ℓH). From now on, we call sensitive (non-
sensitive) threads those executing MAC computations with
a label non-observable (observable) to the attacker. In the
two-point lattice, for example, threads running MAC H ()
computations are sensitive, while those running MAC L ()
are observable by the attacker. In Section 5.2, we prove
that the concurrent calculus satisfies progress-sensitive non-
interference (PSNI).

Calculus.
Figure 13 extends the calculus from Section 2 with concur-

rency. It introduces global configurations of the form 〈s,Φ〉
composed by an abstract scheduler state s and a thread
pool Φ. We remark that the whole calculus includes also
shared memory, which we omit for brevity. Threads are se-
cure computations of type MAC ℓ () which get organized
in isolated thread pools according to their security label. A

ternal timing covert channel [Smith and Volpano, 1998], a
channel that gets exploited when, depending on secrets, the
timing behavior of threads affect the order of events per-
formed on public-shared resources. Since the same coun-
termeasure closes both the internal timing and termination
covert channels, we focus on the latter.



Φ[ℓ][n] = t1 t1 ❀e t2 s1
(ℓ,n,e)
−−−−→ s2

〈s1,Φ〉 →֒ 〈s2,Φ[ℓ][n] := t2〉

Figure 14: Scheme rule for concurrent semantics.

pool ts in the category Pool ℓ contains exclusively threads
at security level ℓ. We use the standard list interface [ ],
t : ts, and ts[n] for the empty list, the insertion of a term
into an existing list, and accessing the nth-element, respec-
tively. We write Φ[ℓ][n] = t to retrieve the nth-thread in
the ℓ-thread pool—it is just syntax sugar for Φ(ℓ) = ts and
ts[n] = t . The notation Φ[ℓ][n] := t denotes the thread pool
obtained by performing the update Φ(ℓ)[n 7→ t ]. A thread
pool can be fully erased, and reading from them results in
an erased thread, i.e., •[n] = • and updating has no effect,
i.e., •[n 7→ t ] = •. As mentioned before, term fork t spawns
thread t and replaces join in the calculus.

Semantics.
Figure 14 shows the scheme rule for evaluation steps of

concurrent configurations, denoted by relation →֒. The re-

lation s1
(ℓ,n,e)
−−−−→ s2 represents a transition in the scheduler,

that depending on the initial state s1, decides to run thread
identified by (ℓ,n), which is retrieved from the configuration
(Φ[ℓ][n] = t1) and executed (t1 ❀e t2). We decorate the se-
quential semantics (❀) with event e, which is also present in
the scheduler transition. Events inform the scheduler about
the evolution of the global configuration, so that it can re-
alize concrete scheduling policies and updating its state ac-
cordingly. Event Step denotes a single sequential step, event
Skip denotes that a thread is stuck, e.g., on a synchroniza-
tion variable, event Done is generated when a thread has
terminated and event Fork ℓ n informs the scheduler that
the current thread has forked a new thread identified by
(ℓ,n). Event • is triggered by an erased thread •, that is
• ❀• •. Lastly, the thread pool is updated with the final
state of the thread (Φ[ℓ][n] := t2).

Parametric proof.
We take advantage of the level of abstraction of our con-

current semantics and make our proof parametric in the
scheduler state and its semantics. For this reason, we study
what are the sufficient requirements of a scheduler to guar-
antee PSNI in our calculus. We evaluate our characteriza-
tion of schedulers by formalizing a round-robin scheduler,
similar to that used by Haskell’s run-time system, and show
that it satisfies the requirements listed in this section. Fur-
thermore, we constructively obtain a proof that MAC is
secure with a round-robin scheduler by simply instantiating
our main theorem.

5.1 Schedulers
Our proof is valid for schedulers which are (i) determinis-

tic, (ii) fulfill the single-step simulation from Figure 5, i.e.,
schedulers may not leverage on sensitive information to de-
termine what observable thread should be scheduled next,
and (iii) guarantee progress of observable threads, i.e., exe-
cution of observable threads cannot be indefinitely deferred
by sensitive ones. In the following, we formally characterize
schedulers for which our security guarantees apply.

Requirement 1.

i) Determinancy:

if s1
(ℓ,n,e)
−−−−→ s2 and s1

(ℓ,n,e)
−−−−→ s3, then s2 = s3.

ii) Single-step simulation:

if s1
(ℓ,n,e)
−−−−→ s2, then εℓA(s1)

(ℓ,n,εℓA
(e))

−−−−−−−→ εℓA(s2).

iii) Progress: sensitive threads cannot indefinitely defer ex-
ecution of non-sensitive ones.

Observe that determinancy of the scheduler is essential
for determinancy of the concurrent semantics—after all, the
scheduler state is part of the concurrent configuration. Nev-
ertheless, Requirement (i) is slightly weaker than what one
might expect: it assumes that the scheduled thread (ℓ,n)
is the same in both reductions. We discuss why we need
to relax determinism in this way in Section 5.2. As it is
expected from the concurrent calculus, we assume that the
abstract scheduler satisfies the single-step simulation. Ob-
serve that the erasure function of the scheduler state is
scheduler specific, and thus we leave it unspecified. Nev-
ertheless, events inherit the security level of the threads
that generated them, therefore they are erased accordingly,
e.g., εℓA(e :: Event ℓ) = • if ℓ 6⊑ ℓA. Requirement (iii)
avoids revealing sensitive data by observing progress of non-
sensitive threads via public events. Intuitively, a concurrent
program might reveal sensitive information by forcing a sen-
sitive thread to induce starvation of a non-sensitive thread,
thus potentially suppressing subsequent public events. Un-
fortunately, the scheduler state and semantics are abstract,
therefore we cannot define requirement (iii) more precisely.
We overcome this technical limitation by indexing the low-
equivalence relationship among scheduler states and using it
to craft an additional requirement of the scheduler. We pro-
ceed to define ℓA-equivalence between scheduler states and
its annotated version to guarantee progress as follows.

Definition 2 (Scheduler ℓA-equivalence).

i) Two states are ℓA-equivalent, written s1 ≈ℓA s2 if and
only if εℓA(s1) ≡ εℓA(s2)

ii) Two states are (i , j )-ℓA-equivalent, written s1 ≈
(i,j)
ℓA

s2
if and only if s1 ≈ℓA s2 and, according to s1 and s2, i
and j are respectivelly upper bounds over the numbers
of sensitive threads scheduled before the first, and the
same, non-sensitive thread gets run.

The relation s1 ≈
(i,j)
ℓA

s2 captures an alignment mea-
sure of two ℓA-equivalent states and how close they are
to schedule the next common non-sensitive thread. In-
formally, our non-interference proof excludes starvation of
threads, that can reveal progress to the attacker, by ensur-
ing that two ℓA-equivalent schedulers will eventually align
and schedule the same non-sensitive thread, regardless of
how the global configuration evolves. Specifically, our cal-

culus requires that the indexes in s1 ≈
(i,j)
ℓA

s2 strictly de-
creases after every reduction. We capture the interplay
between the (i , j )-ℓA-equivalent relationship and the evo-
lution of schedulers by establishing unwinding-like condi-
tions [Goguen and Meseguer, 1984]. More specifically, we
describe what occurs with the (i , j ) indexes when schedulers
handle sensitive and observable events.



Requirement 2 (Non-Interfering Scheduler).

Given s1
(ℓ,n,e)
−−−−→ s2, e 6≡ •, and s1 ≈

(i,j)
ℓA

s′1, then

• If ℓ ⊑ ℓA, then one of the following holds:

i) If j = 0, then there exists state s′2 such that

s′1
(ℓ,n,e)
−−−−→ s′2 ∧ s2 ≈ℓA s′2 ;

ii) If j > 0, then there exists h, m, j ′ s.t. j′ < j
and:

∀e′.e ′ 6≡ • ⇒ ∃s′2. s′1
(h,m,e′)
−−−−−→ s′2 ∧ h 6⊑ ℓ ∧

s1 ≈
(i,j ′)
ℓA

s′2

• If ℓ 6⊑ ℓA, then s2 ≈ℓA s′1

Given two (i , j )-ℓA-equivalent scheduler states if one runs a
non-sensitive thread (ℓ ⊑ ℓA), then the other schedules
either the same non-sensitive thread (j = 0) or a sensitive
thread (j > 0), leading to an ℓA-equivalent state. As rel-
evant technical detail, we remark that e 6≡ • and e ′ 6≡ •
since we expect the non-erased scheduler to be starvation-
free and non-interfering. Since we aim to a modular proof,
the scheduler is considered in isolation from the pool thread,
therefore case ii) cannot predict what event will be triggered
by thread (h,m). As a conservative approximation then,
the requirement must hold for any possible event e ′, which
in addition determines the final state s′2. Lastly, condition
j′ < j guarantees that the common non-sensitive thread
(ℓ,n) in s′1 will not starve indefinitely, i.e., it will eventu-
ally be scheduled withing the next j ′ reductions. If the first
scheduler runs a sensitive thread (ℓ 6⊑ ℓA), then the re-
sulting state is low-equivalent to the other (s2 ≈ℓA s′1). It
might seem that scheduler requirements 1.ii (single-step sim-
ulation) and 2 (non-interference) are overlapping. However,
they fulfill two different purposes. Specifically, the former
is needed to prove simulation of the concurrent semantics—
note that the scheduler state is part of the global configu-
ration. We instead use the latter to prove progress-sensitive
non-interference of the concurrent semantics. We outline the
non-interference proof in Section 5.2.

Round-robin scheduler.
As an example of a secure scheduler that can be em-

ployed with our concurrent calculus, Figure 15 instantiates
a round-robin scheduler with a time-slot of one step. The
state of the scheduler is a queue that tracks the identifiers

s ::= (ℓ,n) : s | [ ]

(ℓ,n) : s
(ℓ,n,Step)
−−−−−−→RR s++ [(ℓ, n)]

(ℓ,n) : s
(ℓ,n,Skip)
−−−−−−→RR s++ [(ℓ,n)]

(ℓ,n) : s
(ℓ,n,Done)
−−−−−−−→RR s

(ℓL,n1) : s
(ℓL,n1,Fork ℓH n2)
−−−−−−−−−−−−→RR s++ [(ℓH,n2), (ℓL,n1)]

s
(ℓ,n,•)
−−−−→RR s

Figure 15: Round-robin scheduler.

[ ] ≈
(0,0)
L [ ]

s1 ≈
(i,j)
L s2

(L,n) : s1 ≈
(0,0)
L (L, n) : s2

s1 ≈
(i,j)
L s2

(H ,n) : s1 ≈
(i+1,j)
L s2

s1 ≈
(i,j)
L s2

s1 ≈
(i,j+1)
L (H , n) : s2

Figure 16: Annotated L-equivalence (Round-robin).

of alive threads in the global configuration. The queue is
concretely represented by a list of pairs, containing a label
and a thread number, whose first element is the identifier of
the next thread to be scheduled. After executing one step
(event Step), the current thread has used up its time slot
and is enqueued. If the scheduled thread cannot execute
(event Skip), it is skipped and enqueued as well. When the
current thread has terminated (event Done), the thread is
not alive anymore and hence removed from the queue. Mes-
sage (ℓL,n1,Fork ℓH n2) informs the scheduler that thread
(ℓL,n1) has spawned thread (ℓH,n2), which is then enqueued
with the current thread. The last rule is not part of the
actual scheduling algorithm and it is added exclusively to
study the security guarantees of the scheduler.

We show that round-robin fulfills all the requirements and
hence is an eligible candidate scheduler for our calculus.
Firstly, it is immediately evident from the reductions that
round-robin is deterministic, i.e., it fulfills scheduler require-
ment 1.i. We define the erasure function to filter out the
identifiers of threads non observable to the attacker, i.e.,
εℓA(s) = filter (λ(ℓ,n) → ℓ ⊑ ℓA) s. By induction on
the scheduler reduction, it follows that round-robin satisfies
the single-step simulation, i.e., scheduler requirement 1.ii.
Note that round-robin is starvation-free because it has a fi-
nite time-slot and is preemptive. We remark that absence
of starvation is a desirable property of schedulers, which is
sufficient to guarantee progress, i.e., scheduler requirement
1.iii. Before proving that round-robin is non-interfering, i.e.,
scheduler requirement 2, Figure 16 instantiates an annotated
L-equivalence assuming the two points lattice for simplicity.

In particular, if s1 ≈
(0,0)
ℓA

s2 for non-empty states s1 and
s2, then round-robin will schedule the same L-thread in the
next reduction.

Proposition 4 (Round-robin is secure). Round-
robin satisfies schedulers requirements 1 and 2.

5.2 Progress-Sensitive Non-Interference
The non-interference proof for the concurrent semantics

relies on single-step simulation and determinancy. Before
discussing these properties, we formally define the erasure
function for the rest of the concurrent calculus. Global con-
figurations are erased by erasing each component separately,
i.e., εℓA(〈s,Φ〉) = 〈εℓA(s), εℓA(Φ)〉, thread pools are erased
pointwise and pools are erased according to their label, i.e.,
εℓA(ts :: Memory ℓ) = • if ℓA 6⊑ ℓ and homomorphically
erased otherwise.

Proposition 5 (Single-step Simulation). If c1 →֒
c2 then εℓA(c1) →֒ εℓA(c2).

Proposition 5 follows immediately by single-step simulation
of the sequential calculus and scheduler requirement 1.ii.



We now discuss a subtle distinction between predictabil-
ity and determinancy, two slightly different properties that
come into play when erasing schedulers. To prove non-
interference, we need to show determinancy of the concur-
rent semantics, i.e., if c1 →֒ c2 and c1 →֒ c3 then c2 ≡ c3.
Note that the term erasure proof technique requires to con-
struct a simulation between ℓA-equivalent configurations,
therefore the semantics must be deterministic also in pres-
ence of •. Intuition suggests that this should hold because
a “reasonable” scheduler schedules a thread depending ex-
clusively on its initial state, a property that we name pre-
dictability and we formally define as follows.

Definition 3 (Predictability). Given s1
(ℓ,n,e)
−−−−→ s2

and s1
(ℓ′,n′,e′)
−−−−−−→ s3, then ℓ ≡ ℓ′, n ≡ n ′ and if e ≡ e ′ then

s2 ≡ s3.

This property guarantees that given the same initial state,
the schedulers will run the same thread (ℓ ≡ ℓ′ and n ≡ n ′),
and after receiving the same event, they will reduce to the
same final state (s2 ≡ s3). Unfortunately, a rule of form

s1
(ℓ,n,•)
−−−−→ s2 may break this property. For instance, con-

sider rule s
(ℓ,n,•)
−−−−→RR s of the round-robin scheduler

(see Figure 15). Such a rule schedules a thread (ℓ,n) non-
deterministically, therefore the same initial state might not
be sufficient alone to guarantee in general determinancy of
the global configuration. Crucially, predictability is not pre-
served under erasure: we loose the ability to predict which
sensitive thread is about to be scheduled because sensitive
threads are erased by the erasure function—this is sensitive
information because it may depend on secrets! Luckily, de-
terminancy (scheduler requirement 1.i) is sufficient for our
purposes—note that it is weaker than predictability. In fact,
it is possible to control unpredictability by annotating the
concurrent semantics as 〈s1,Φ1〉 →֒(ℓ,n) 〈s2,Φ2〉 if and only

if s1
(ℓ,n,e)
−−−−→ s2 (for some event e). The annotation has the

purpose to witness what thread was originally scheduled,
thus enabling scheduler determinancy.

Proposition 6 (Concurrent determinancy). If
c1 →֒(ℓ,n) c2 and c1 →֒(ℓ,n) c3 then c2 ≡ c3.

We now proceed to prove non-interference. We ordinar-
ily extend ℓA-equivalence to global configurations, written
c1 ≈ℓA c2, if and only if εℓA(c1) = εℓA(c2). Relation →֒⋆

denotes the transitive reflexive closure of →֒.

Theorem 2 (PSNI). Given global configurations c1,
c′1, and c2 which do not contain • and label•, and a sched-
uler fulfilling requirements 1.i, 1.ii, 1.iii and 2, if c1 ≈ℓA c2
and c1 →֒(ℓ,n) c′1, then there exists c′2 such that c2 →֒

⋆ c′2
and c2 ≈ℓA c′2.

The proof of Theorem 2 is based on the non-interference
of the scheduler (scheduler requirement 2) in addition to
Propositions 5 and 6 of the concurrent semantics—see de-
tails in Appendix. Note that we exclude nodes • and label•
only from the non-erased configuration and uniquely to com-
ply with Requirement 2. We conclude with a corollary which
assets that MAC satisfies PSNI (which proofs is obtained
by applying Theorem 2 and Proposition 4).

Corollary 1. MAC satisfies PSNI.

6. RELATED WORK

Mechanized proofs.
The library MAC is presented in [Russo, 2015] as a func-

tional pearl and relies on its simplicity to convince read-
ers about its correctness. This work bridges the gap on
MAC’s lack of formal guarantees and exhibits interesting
insights on the proofs of its soundness. LIO is a library
structural similar to MAC but dynamically enforcing IFC
[Stefan et al., 2011]. The core calculus of LIO, i.e., side-
effect free computations together with exception handling,
has been modeled in the Coq proof assistant [Stefan et al.,
2012b]. Different from our work, these mechanized proofs do
not simplify the treatment of sensitive exceptions by mask-
ing them in erased programs. In parallel to [Stefan et al.,
2012b], Breeze [Hritcu et al., 2013] is a pure programming
language that explores the design space of IFC and excep-
tions, which is accompanied with mechanized proofs in Coq.
Bichhawat et al. develop an intra-procedural analysis for
Javascript bytecode, which prevents implict leaks in pres-
ence of exceptions and unstructured control flow constructs
[Bichhawat et al., 2014].

Concurrency.
Considering IFC for a general scheduler could lead to

refinements attacks. In this light, Russo and Sabelfeld
provide termination-insensitive non-interference for a wide-
class of deterministic schedulers [Russo and Sabelfeld, 2006].
Barthe et al. [Barthe et al., 2009] adopt this idea for Java-
like bytecode. Although we also consider deterministic
schedulers, our security guarantees are stronger by consid-
ering leaks of information via abnormal termination. Heule
et al. [Heule et al., 2015] describe how to retrofit IFC in
a programming language with sandboxes. Similar to our
work, their soundness proofs are parametric on deterministic
schedulers and provide progress-sensitive non-interference
with informal arguments regarding thread progress—in this
work, we spell out formal requirements on schedulers capa-
ble to guarantee thread progress. A series of work for π-
calculus consider non-deterministic schedulers while provid-
ing progress-sensitive non-interference [Honda et al., 2000,
Kobayashi, 2005, Honda and Yoshida, 2007, Pottier, 2002].

Haskell.
Devriese and Piessens provide a monad transformer to

extend imperative-like APIs [Devriese and Piessens, 2011].
Jaskelioff and Russo implements a library which dynam-
ically enforces IFC using secure multi-execution (SME)
[Jaskelioff and Russo, 2011]—a technique that runs pro-
grams multiple times (once per security level) and varies the
semantics of inputs and outputs to protect confidentiality.
Rather than running multiple copies of a program, Schmitz
et al. [Schmitz et al., 2016] provide a library with faceted
values, where values present different behavior according to
the privilege of the observer. We hope that our insights will
make easier to mechanize those proofs found in the work
cited above.

Operating systems research.
MAC borrows ideas from Mandatory Access Control

[Bell and La Padula, 1976, Biba, 1977] and phrases them
into a programming language setting. Although originated



in the 70s, there are modern manifestations of MAC applied
to a wide range of scenarios [Efstathopoulos et al., 2005,
Zeldovich et al., 2006, Krohn et al., 2007, Murray et al.,
2013]. Due to its complexity, it is not surprising that OS-
based MAC systems lack accompanying soundness guar-
antees or mechanized proofs—seL4 being the exception
[Murray et al., 2013]. The level of abstractions handled by
MAC and OSes are quite different, thus making uncertain
how our insights could help to formalize OS-based MAC sys-
tems.

7. CONCLUSION
We present a full-fledged formalization of MAC in Agda,

where non-interference is proven by term erasure. To the
best of our knowledge, this is the first work of its kind for
IFC libraries in Haskell, both for completeness and number
of features included in the model. Thanks to our mechanized
proofs, we identify challenges arising from erasing terms de-
pending on the context where they appear and propose two-
steps erasure—an effective technique to systematically deal
with such cases. Additionally, we show exception masking,
an alternative way to erase exceptions that simplifies proof
of security guarantees in libraries equipped with exceptions
and exceptions handling features. Our mechanized proofs
also make explicit sufficient scheduler requirements to guar-
antee PSNI—something that has been only treated infor-
mally before [Stefan et al., 2012a, Heule et al., 2015]. As a
result, our security proofs for the concurrent calculus are
valid for a wide-range of deterministic schedulers. It is our
hope that the insights gained by this work will help to for-
mally verify other IFC programming languages.
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APPENDIX

A. CONTEXT-SENSITIVITY IN LIO

LIO provides a labeling primitive label t1 t2 which labels
term t2 with label t1. The definition of εℓA(label t1 t2) is
context-sensitive: t2 should be rewritten to • if t1 6⊑ ℓA
or to εℓA(t2) otherwise. Note that due to the dynamic na-
ture of LIO, labels are terms and t1 is a concrete label only
when fully evaluated [Stefan et al., 2012b]. As a result, the
⊑ relation is defined between terms, instead of plain labels,
and it is partial when it involves unevaluated terms5. Un-
fortunately, that fact that ⊑ is partially defined affects the
erasure function since it conservatively considers labels that
are not fully evaluated as non-visible to the attacker. For ex-
ample, εL(label ((λℓ.ℓ) L) t2) is erased to label ((λℓ.ℓ) L) •,
because the erasure considers that ((λℓ.ℓ) L) 6⊑ L—observe
that public information has been erased! While the erasure
function defined in this way does not break homomorphic
substitution, the price to pay is being conservative and hav-
ing a non-standard security lattice. On the other hand, using
two-steps erasure, we can delegate the actual erasure to a
new rule [Label•], triggered by construct label•, inserted
by the erasure function. The semantics rules of label• deter-
mine whether t2 should be erased only after fully evaluating
label t1—due to the dynamic nature of LIO, security labels
are not statically available.

B. MEMORY IN LIO

Our mechanized formalization of MAC also includes ref-
erences, which lead us to undercover some flaws in the model
of LIO [Stefan et al., 2011, 2012b]. Our memory model pro-
vides deterministic allocation in a memory partitioned by se-
curity labels to avoid establishing a bijection between heaps
in our proofs [Banerjee and Naumann, 2002]. Crucially, our
formalization utilizes a memory model that guarantees these
properties, while in previous works these characteristics are
only assumed—memory is just a mapping from addresses to
terms.

Problems.
In [Stefan et al., 2011], the erasure of construct

newRef ℓ t and writeRef a t is incorrect, because it homo-
morphically erases t , irrespectively of the sensitivity of the
expression written to memory—it should instead rewrite t

5Coq model at https://github.com/deian/lio-semantics/

https://github.com/deian/lio-semantics/


Configuration c ::= 〈Σ, t〉
Store: Σ ::= (ℓ : Label)→ Memory ℓ
Memory ℓ ts ::= [ ] | t : ts | •
Types τ ::= · · · | Nat
Terms t ::= · · · | newRef t

| readRef t | writeRef t1 t2
Values v ::= · · · | n

Figure 17: Formal syntax for extended calculus.

to • when ℓ is not visible to the attacker or when writ-
ing to a sensitive region in memory, just like for label ℓ t .
Note that this definition breaks single-step simulation, a fun-
damental property to guarantee non-interference. Consider
LIO semantics rule [NRef], slightly simplified and instan-
tiated with the problematic case: 〈Σ,newRef H t〉 −→
〈Σ′, return a〉, where Σ′ = Σ [a 7→ Labeled H t ] for
some fresh address a (cyan path). Proving simulation re-
quires to show that configuration 〈εL(Σ), newRef H εL(t)〉
reduces to 〈εL(Σ

′), return a〉 (orange path). Unfortunately,
in this case the diagram does not commute. By rule [NRef],
configuration 〈εL(Σ),newRef H εL(t)〉 reduces to a con-
figuration with memory εL(Σ) [a 7→ Labeled H εL(t)],
which is different from εL(Σ

′). Observe that εL(Σ
′) erases

the memory pointwise and thus resulting in mapping a to
Labeled H • rather than Labeled H εL(t) as done by memory
εL(Σ) [a 7→ Labeled H εL(t)].

In a draft version of [Stefan et al., 2012b], which surpasses
[Stefan et al., 2011], we have identified a second problem
that concerns low-equivalence of memories, which is de-
fined as εℓA(Σ1) ≡ εℓA(Σ2)—memories are erased point-
wise. This definition is too restrictive because rules out
memories with different number of sensitive locations as
low-equivalent, even though the attacker cannot distinguish
them. For instance, according to [Stefan et al., 2012b],
memories Σ1 = [0 7→ Labeled H t0, 1 7→ Labeled H t1 ]
and Σ2 = [0 7→ Labeled H t ′0 ] are not low-equivalent be-
cause εL(Σ1) 6≡ εL(Σ2), since [0 7→ Labeled H •, 1 7→
Labeled H •] 6≡ [0 7→ Labeled H •]. In particular, this
definition of low-equivalence is not compatible with intrin-
sically secure programs in both the sequential or concurrent
setting. For instance, executing a sensitive thread could re-
sult in breaking low-equivalent configurations as soon as it
allocates sensitive references according to secret values.

C. MEMORY IN MAC

Split Memory.
We securely add memory to our calculus—see Figure

17. Memory is compartmentalized into isolated labeled seg-
ments, one for each label of the lattice, and accessed ex-
clusively through the store Σ, similar to thread pool store
Φ. A memory in the category Memory ℓ contains terms at
security level ℓ. We write Σ[ℓ][n] = t to retrieve the nth-
cell in the ℓ-memory—it is a syntax sugar for Σ(l) = ts and
ts[n] = t . The notation Σ[ℓ][n] := t denotes the store ob-
tained by performing the update Σ(l)[n 7→ t ]. Lastly, we
write | ts | = n to denote that memory ts has length n.

We write 〈Σ, t〉 for a sequential configuration containing
store Σ and term t . Figure 17 the sequential calculus with
labeled references andMAC operations to allocate, read and
write memory, all of which work with explicitly labeled refer-

type Ref ℓ τ = Res ℓ (IORef τ )
newRef :: ℓL ⊑ ℓH ⇒ τ → MAC ℓL (Ref ℓH τ )
readRef :: ℓL ⊑ ℓH ⇒ Ref ℓL τ → MAC ℓH τ
writeRef :: ℓL ⊑ ℓH ⇒ τ → Ref ℓH τ → MAC ℓL ()

Figure 18: API of memory operations

(New)

|Σ(l)| = n

〈Σ, newRef t〉 −→ 〈Σ[ℓ][n] := t , return (Res n)〉

(Write)

〈Σ,writeRef (Res n) t〉 −→ 〈Σ[ℓ][n] := t , return ()〉

(Read)

Σ[ℓ][n] = t

〈Σ, readRef (Res n)〉 −→ 〈Σ, return t〉

Figure 19: Semantics for memory operations.

ences. Figure 18 shows the type of the new operations, which
are restricted according to the no read-up and no write-down
rules, like those of label and unlabel . While MAC leverages
Haskell references—a labeled reference is a simple wrapper
around IORef , in our calculus we implement references ex-
plicitly using Nat as the type of a memory address. More
precisely, term Res n ::Ref ℓ τ represents a labeled reference
to the n-th cell of memory labeled with ℓ, which contains a
term of type τ .

Sequential configurations are reduced according to rela-
tion c1 −→ c2, where configuration c1 steps to c2. Every
pure reduction t1 ❀ t2 can be lifted to 〈Σ, t1〉 −→ 〈Σ, t2〉,
for some store Σ that remains unchanged. Figure 19 shows
the interesting rules for newRef , readRef and writeRef , in
which references are labeled with ℓ. Rule [New] extends the
ℓ-labeled memory with the new term and returns a reference
to it —memories are zero-indexed. Rule [Write] overwrites
the content of the memory cell pointed by the reference and
returns unit and [Read] retrieves the corresponding term
from memory.

Simulation.
In order to prove that these operations do not break the

security guarantees of MAC, we need to show that the
single-step simulation property is preserved. We start by
extending the erasure function for the new constructs. A
configuration is erased by erasing respectively its store and
term, i.e., εℓA(〈Σ, t〉) = 〈εℓA(Σ), εℓA(t)〉. Stores are erased
pointwise, i.e., by erasing the memory at each security level
and memories are either fully erased when sensitive, i.e.,
εℓA(ts :: Memory ℓ) = • if ℓ 6⊑ ℓA, or erased pointwise
otherwise. We remark that reading from an erased mem-
ory results in an erased term, i.e., •[n] = • and updating
it has no effect, i.e., •[n 7→ t ] = •, and furthermore its size
is secret too, i.e., | • | = •. We can show by straightfor-
ward induction that the new rules can be simulated under
erasure. The key property that guarantees simulation is to
completely rewrite high memories to •, which precisely cap-
ture the attacker’s knowledge, and is particularly important
when allocating and writing to high memories. Allocation
does not leak information through the address of the new
reference because | • | = • and writing to a •-memory does



not make any change (•[• 7→ t ] = •). Contrary to LIO
memory model [Stefan et al., 2012b], allocation in a sensi-
tive memory results in a low-equivalent memory, because the
erased memory, before and after allocation, is •. Although
Haskell’s memory is non-split, security guarantees are not
compromised, because references are part of MAC’s inter-
nals and they cannot be inspected or deallocated explicitly.

D. PSNI
The statement of theorem 2 is standard, and therefore we

only sketch its proof. We start by dividing it into two cases
depending on whether the attacker can observe the sched-
uled thread. If the attacker cannot observe the scheduled
thread, the changes made in the reduction can only affect
high parts of the configuration, leading to a low-equivalence
configuration. As a result, the second configuration is al-
ready transitively low-equivalent without taking any step.
Instead, if the step involves an observable thread, we can
show that a low-equivalent step can be made in the second
configuration, possibly preceded by a finite number of steps
involving exclusively high threads.

Proof. By case analysis on ℓ ⊑ ℓA.

– (ℓ 6⊑ ℓA). The execution of a thread in c1 at se-
curity level ℓ cannot affect anything below ℓ in c′1,
therefore c1 ≈ℓA c′1. Configuration c2 steps to c2 in
0 steps (c2 →֒

⋆ c2), by transitivity of ≈ℓA it follows
that c′1 ≈ℓA c2.

– (ℓ ⊑ ℓA). By scheduler requirement 2, c2 sched-
ules either a high thread or thread (ℓ,n). In the first
case, the proof follows by well-founded induction, oth-
erwise the two ℓA-equivalent threads reduces triggering
ℓA-equivalent events the thesis follow from Theorem 1
(PINI), appropriately generalized with events.
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