
Lazy Programs Leak Secrets

Pablo Buiras and Alejandro Russo

Dept. of Computer Science and Engineering
Chalmers University of Technology

412 96 Göteborg, Sweden
{buiras,russo@chalmers.se}

Abstract. To preserve confidentiality, information-flow control (IFC)
restricts how untrusted code handles secret data. While promising, IFC
systems are not perfect; they can still leak sensitive information via
covert channels. In this work, we describe a novel exploit of lazy evalua-
tion to reveal secrets in IFC systems. Specifically, we show that lazy eval-
uation might transport information through the internal timing covert
channel, a channel present in systems with concurrency and shared re-
sources. We illustrate our claim with an attack for LIO , a concurrent IFC
system for Haskell. We propose a countermeasure based on restricting
the implicit sharing caused by lazy evaluation.

1 Introduction

Information-flow control (IFC) permits untrusted code to safely operate on secret
data. By tracking how data is disseminated inside programs, IFC can avoid
leaking secrets into public channels—a policy known as non-interference [4].
Despite being promising, IFC systems are not flawless; the presence of covert
channels allows attackers to still leak sensitive information.

Covert channels arise when programming language features are misused to
leak information [6]. The tolerance to such channels is determined by their band-
width and how easy it is to exploit them. For instance, the termination covert
channel, which exploits divergence of programs, has a different bandwidth in
systems with intermediate outputs than in batch processes [1].

Lazy evaluation is the default evaluation strategy of the purely functional
programming language Haskell. This evaluation strategy has two distinctive fea-
tures which can be used together to reveal secrets. Firstly, since it is a form of
non-strict evaluation, it delays the evaluation of function/constructor arguments
and let-bound identifiers until their denoted values are needed. Secondly, when
the evaluation of such expressions is required, their resulting value is stored
(cached) for subsequent uses of the same expression, a feature known as sharing
or memoisation. This is known as call-by-need semantics or simply lazy evalua-
tion. In Haskell, a thunk, also known as a delayed computation, is a parameterless
closure created to prevent the evaluation of an expression until it is required at
a later time. The process of evaluating a thunk is known as forcing. While lazy
evaluation does not affect the denotation of expressions with respect to non-
strict semantics, it affects the timing behaviour of programs. For instance, if a

function argument is used more than once in the body of a function, it is almost
always faster to use lazy evaluation as opposed to call-by-name, since it avoids
re-evaluating every occurrence of the argument.

From a security point of view, it is unclear what type of semantics (non-strict
versus strict) is desirable in order to deal with covert channels. In sequential
settings, Sabelfeld and Sands [10] suggest that a non-strict semantics might be
intrinsically safer than a strict one. This observation is based on the ability to ex-
ploit the termination covert channel. Although it could avoid termination leaks,
lazy evaluation can compromise security in other ways. For instance, Rafsson et
al. [9] describe how to exploit the Java (lazy) class initialisation process to reveal
secrets. Not surprinsingly, lazy evaluation might also reveal secrets through the
external timing covert channel. This channel involves externally measuring the
time used to complete operations that may depend on secret data.

More interestingly, and totally unexplored until this work, lazy evaluation
might transport information through the internal timing covert channel. This
covert channel arises by the mere presence of concurrency and shared resources.
Malicious code can exploit it by setting up threads to race for a public shared
resource and, depending on the secret, affecting their timing behaviour to de-
termine the winner. With lazy evaluation in place, thunks become shared re-
sources and forcing their evaluation corresponds to affecting the threads’ timing
behaviour—subsequent evaluations of previously forced thunks take practically
no time.

We present an attack for LIO [12], a concurrent IFC system for Haskell, that
leverages lazy evaluation to leak secrets. LIO presents countermeasures for inter-
nal timing leaks based on programming language level abstractions. Since LIO is
embedded in Haskell as a library, lazy evaluation, as a feature that primarily af-
fects pure values, is handled by the host language. Lazy evaluation is essentially
built into Haskell’s internals, hence there are no programming language-level
mechanisms for inspecting or creating thunks that could be used to implement a
countermeasure. Thunks for pure values are transparently injected into LIO com-
putations, so the library could not be capable of explicitly considering whether
they have been memoised at any given time.

This paper is organised as follows. Section 2 briefly recaps the basics of LIO .
Section 3 presents the attack. Section 4 describes a possible countermeasure.
Conclusions are drawn in Section 5.

2 LIO: a concurrent IFC system for Haskell

In purely functional languages, computations with side-effects are encoded as
values of abstract data types called monads [8]. In Haskell, there are monads
for performing inputs and outputs (monad IO), handling errors (monad Error),
etc. The IFC system LIO is simply another monad in which security checks are
performed before side-effects are performed.

The LIO monad keeps track of a current label. This label is an upper bound
on the labels of all data in lexical scope. When a computation C, with current

label LC , observes an object labelled LO, C’s label is raised to the least upper
bound or join of the two labels, written LC tLO. Importantly, the current label
governs where the current computation can write, what labels may be used when
creating new channels or threads, etc. For example, after reading an object O,
the computation should not be able to write to a channel K if LO is more
confidential than LK—this would potentially leak sensitive information (about
O) into a less sensitive channel.

Since the current label protects all the variables in scope, in practical pro-
grams we need a way of manipulating differently-labelled data without monoton-
ically increasing the current label. For this purpose, LIO provides explicit refer-
ences to labelled, immutable data through a parametric data type called Labeled .
A locally accessible symbol can bind, for example, a value of type Labeled l Int
(for some label type l), which contains an Int protected by a label different from
the current one. Function unlabel :: Labeled l a → a1 brings the labelled value
into the current lexical scope and updates the current label accordingly.

LIO also includes IFC-aware versions of well-established synchronisation
primitives known as MVars [5]. A value of type LMVar is a mutable location
that is either empty or contains a value. Function putLMVar fills the LMVar
with a value if it is empty and blocks otherwise. Dually, readLMVar empties an
LMVar if it is full and blocks otherwise.

3 A lazy attack for LIO

Figure 1 shows the attack for LIO . The code essentially implements an internal
timing attack [11] which leverages lazy evaluation to affect the timing behaviour
of threads. We assume the classic two-point lattice (of type LH) where secu-
rity levels L and H denote public and secret data, respectively, and the only
disallowed flow is the one from H to L. Function attack takes a public, shared
LMVar lmv , and a labelled boolean secret (encoded as an integer for simplicity).
The goal of attack is to return a public integer equal to secret , thus exposing an
LIO vulnerability. In isolation, all the threads are secure. When executed concur-
rently, however, secret gets leaked into lmv . For simplicity, we use threadDelay n,
which causes a thread to sleep for n micro seconds, to exploit the race to lmv—if
such an operation was not allowed, using a loop would work equally well.

The attack proceeds as follows. Threads A and B do not start running until
thread C finishes. This effect can be easily achieved by adjusting the parameter
delay C . The role of thread C is to force the evaluation of the list thunk when the
value of secret is not zero (s 6≡ 0). To that end, function traverse goes over thunk ,
returning one of its elements. Condition n>0 always holds and it is only used to
force Haskell to fully evaluate the closure returned by traverse. Threads A and
B will eventually start racing. Thread A executes the command traverse thunk
before writing the constant 1 into lmv (putLMVar lmv 1). Thread B delays
writing 0 into lmv (putLMVar lmv 0) by some (carefully chosen) time delay B .

1 Symbol :: introduces type declarations and → denotes function types.

attack :: LMVar LH Int → Labeled LH Int → LIO LH Int
attack lmv secret

= do let thunk = [1 . . constant] :: [Int]

-- Thread C
forkLIO (do s ← unlabel secret

when (s 6≡ 0) (do n ← traverse thunk
when (n > 0) (return ())))

threadDelay delay C

-- Thread A
forkLIO (do n ← traverse thunk

when (n > 0) (putLMVar lmv 1))

-- Thread B
forkLIO (do threadDelay delay B

putLMVar lmv 0)

w ← takeLMVar lmv
← takeLMVar lmv

return w

Fig. 1: Attack exploiting lazy evaluation

If s 6≡ 0, thunk will have already been evaluated when thread A traverses its
elements, thus taking less time than thread B’s delay. As a result, value 1 is first
written into lmv . Otherwise, thread B’s delay is shorter than the time taken by
thread A to force the evaluation of thunk . In this case, value 0 is first written
into lmv . Variable w observes the first written value in lmv , which will coincide
with the value of the secret. The precise values of parameters constant , delay C ,
and delay B are machine-specific and experimentally determined.

The following code shows the magnification of the attack for a list of secret
integers.

magnify :: [Labeled LH Int]→ LIO LH [Int]
magnify ss = do lmv ← newEmptyLMVar L

mapM (attack lmv) ss

Function magnify takes a list of secret values ss (of type [Labeled LH Int]).
The magnification proceeds by creating the public LMVar (newEmptyLMVar L)
needed by the attack. Function mapM sequentially applies function attack lmv
(i.e. the attack) to every element in ss and collects the results in a public list
([Int]).

Below, we present the final component required for the attack:

traverse :: [a]→ LIO LH a
traverse xs = return (last xs)

This function simply returns the last element of the list given as argument.

The code for the attack can be downloaded from http://www.cse.chalmers.

se/~buiras/LazyAttack.tar.gz.

4 Restricting sharing

We propose a countermeasure based on restricting the sharing feature of lazy
evaluation. Specifically, we propose duplicating shared thunks when spawning
new threads. In that manner, sharing gets restricted to the lexical scope of
each thread. Thunks being forced in one thread will then not affect the timing
behaviour of the others. To illustrate this point, consider the shared thunk from
Figure 1. If this countermeasure was implemented, forcing the evaluation of
thunk by thread C would not affect the time taken by thread A to evaluate
traverse thunk , making the attack no longer possible. An important drawback of
this approach is that there would be a performance penalty incurred by disabling
sharing among threads. Benchmarking and evaluation would be necessary to
determine the full extent of the overhead inherent in the technique. Presumably,
programmers could restructure their programs to minimise the effect of this
penalty.

As an optimisation, it is possible to only duplicate thunks denoting pure
expressions. Thunks denoting side-effecting expressions can be shared across
threads without jeopardising security. The reason for that relies on LIO ’s ability
to monitor side-effects. If a thread that depends on the secret forces the eval-
uation of side-effecting computations, the resulting side-effects are required to
agree with the IFC policy. For instance, threads with secrets in lexical scope can
only force thunks that perform no public side-effects; otherwise LIO will abort
the execution in order to preserve confidentiality.

To implement our approach, we propose using deepDup, an operation in-
troduced by Joachim Breitner [2] to prevent sharing in Haskell. Essentially,
deepDup takes a variable as its argument and creates a private copy of the whole
heap reachable from it, effectively duplicating the argument thunk and disabling
sharing between it and the original thunk. In his paper, Breitner shows how to
extend Launchbury’s natural semantics for lazy evaluation [7] with deepDup.
The natural semantics is given by a relation Γ : t ⇓ ∆ : v, which represents the
fact that from the heap Γ we can reduce term t to the value v, producing a new
heap ∆. It is the relation between Γ and ∆ which captures heap modifications
caused by memoisation. In this setting, the rule for deepDup is

Γ, x 7→ e, x′ 7→ ê[y′1/y1. . . . , y
′
n/yn], (y′i 7→ deepDup yi)i∈1...n : x′ ⇓ ∆ : z

ufv(e) = {y1, . . . , yn} x′, y′1, . . . , y
′
n fresh

Γ, x 7→ e : deepDup x ⇓ ∆ : z

where ufv(e) is the set of unguarded2 free variables of e and ê is e with all bound
variables renamed to fresh variables in order to avoid variable capture when ap-

2 Function ufv(e) is defined as the set of free variables that are not already marked for
duplication, i.e. ufv(deepDup x) = ∅, and in the rest of the cases it is inductively
defined as usual.

plying substitutions. Note that deepDup x duplicates all the thunks reachable
from x in a lazy manner: the free variables y1, . . . , yn are replaced with calls to
deepDup for each variable, so these duplications will not be performed until
those variables are actually evaluated. Laziness is necessary to properly handle
cyclic data structures, since the duplication process would loop indefinitely if
it were to eagerly copy all thunks for such structures. As explained below, this
design decision has important consequences for security.

In practice, we would use this primitive every time we fork a new thread:
we take the body of the new thread m1 and the body of the parent thread m2,
and replace them with deepDup m1 and deepDup m2. Due to the lazy nature
of the duplication performed by deepDup, it is necessary to duplicate both
thunks, i.e., m1 and m2. Consider two threads A and B with current labels L
and H, respectively, and suppose that they both have a pointer to a certain thunk
x in the same scope. If we only duplicated the thunk in A (the public thread),
thread B could evaluate parts of x depending on the secret, before they have
been duplicated in thread A—recall that deepDup is lazy. This would cause the
evaluation of the same parts of the duplicated version of x in A to go faster, thus
conveying some information about the secret to thread A. In addition, note that
it is not possible to determine in advance—at the time forkLIO is called—which
thread will raise its current label to H. Therefore, we must take care to duplicate
all further references to shared thunks every time a fork occurs.

As a possible optimisation, we advise designing a data dependency analy-
sis capable of over-approximating which expressions are shared among threads.
Once the list of expressions (and their scope) has been calculated, we would
proceed to instrument the code, introducing instructions that duplicate only the
truly shared thunks at runtime, as opposed to duplicating every pure thunk in
the body of each thread. We believe that HERMIT [3] is an appropriate tool to
deploy such instrumentation as a code-to-code transformation.

5 Conclusions

We describe and implement a new way of leveraging lazy evaluation to leak
secrets in LIO , a concurrent IFC system in Haskell. Beyond LIO , the attack
points out a subtlety of IFC for programming languages with lazy semantics
and concurrency. We propose a countermeasure based on duplicating thunks at
the time of forking in order to restrict sharing among threads. For that, we pro-
pose to use the experimental Haskell package ghc-dup. This package provides
operations that copy thunks in a lazy manner. Although convenient for preserv-
ing program semantics, such design decision has implications for security. To deal
with that, our solution requires duplicating thunks for both the newly spawned
thread and its parent. As future work, we will implement the proposed counter-
measure, prove soundness (non-interference), evaluate its applicability through
different case studies, and introduce some optimisations to reduce the amount
of duplicated thunks.

Acknowledgments We would like to thank Andrei Sabelfeld, David Sands, and the

anonymous reviewers for useful comments. Special thanks to Edward Z. Yang, who

mentioned the work by Joachim Breitner to us. This work was funded by the Swedish

research agency VR, STINT, and the Barbro Osher foundation.

Bibliography

[1] A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands. Termination-insensitive
noninterference leaks more than just a bit. In Proc. of the European Symp.
on Research in Computer Security (ESORICS). Springer-Verlag, 2008.

[2] J. Breitner. dup – Explicit un-sharing in Haskell. CoRR, abs/1207.2017,
2012.

[3] A. Farmer, A. Gill, E. Komp, and N. Sculthorpe. The HERMIT in the
machine: a plugin for the interactive transformation of GHC core language
programs. In Proc. ACM SIGPLAN Symposium on Haskell, 2012.

[4] J. A. Goguen and J. Meseguer. Security policies and security models. In
IEEE Symposium on Security and Privacy, pages 11–20. IEEE Computer
Society, 1982.

[5] S. P. Jones, A. Gordon, and S. Finne. Concurrent Haskell. In Proc. ACM
Symp. on Principles of Prog. Languages. ACM, 1996.

[6] B. W. Lampson. A note on the confinement problem. Communications of
the ACM, 16(10):613–615, 1973.

[7] J. Launchbury. A natural semantics for lazy evaluation. In Proc. ACM
Symp. on Principles of Prog. Languages. ACM, 1993.

[8] E. Moggi. Notions of computation and monads. Information and Compu-
tation, 93(1):55–92, 1991.

[9] W. Rafnsson, K. Nakata, and A. Sabelfeld. Securing class initialization in
Java-like languages. IEEE Transactions on Dependable and Secure Com-
puting, 10(1), Jan. 2013.

[10] A. Sabelfeld and D. Sands. A per model of secure information flow in
sequential programs. Higher Order Symbol. Comput., 14(1), Mar. 2001.

[11] G. Smith and D. Volpano. Secure information flow in a multi-threaded im-
perative language. In Proc. ACM Symp. on Principles of Prog. Languages,
Jan. 1998.

[12] D. Stefan, A. Russo, P. Buiras, A. Levy, J. C. Mitchell, and D. Mazières.
Addressing covert termination and timing channels in concurrent informa-
tion flow systems. In Proc. of the ACM SIGPLAN International Conference
on Functional Programming (ICFP), September 2012.

