
Implicit flows in malicious and
nonmalicious code

Alejandro RUSSO a, Andrei SABELFELD a Keqin LI b

a Chalmers University of Technology, Sweden
b SAP Research, France

Abstract. Information-flow technology is a promising approach for ensuring secu-
rity by design and construction. When tracking information flow, of particular con-
cern are implicit flows, i.e., flows through control flow when computation branches
on secret data and performs publicly observed side effects depending on which
branch is taken.

The large body of literature exercises two extreme views on implicit flows: either
track them (striving to show that there are no leaks, and often running into the
problem of complex enforcement mechanisms and false alarms), or not track them
(which reduces false alarms, but provides weak or no security guarantees).

This paper distinguishes between malicious and nonmalicious code. The attacker
may exploit implicit flows with malicious code, and so they should be tracked. We
show how this can be done by a security type system and by a monitor. For nonmali-
cious code, we explore a middle ground between the two extremes. We observe that
implicit flows are often harmless in nonmalicious code: they cannot be exploited
to efficiently leak secrets. To this end, we are able to guarantee strong information-
flow properties with a combination of an explicit-flow and a graph-pattern analy-
ses. Initial studies of industrial code (secure logging and data sanitization) suggest
that our approach has potential of offering a desired combination of a lightweight
analysis, strong security guarantees, and no excessive false alarms.

Keywords. Security, noninterference, implicit flows, static analysis, monitoring.

1. Introduction

Information-flow technology is a promising approach for ensuring security by design
and construction [27]. This technology helps controlling the flow of information between
data of different levels of sensitivity. It is useful in the context of confidentiality, when
secret inputs should not be leaked to public outputs, and integrity, when untrusted inputs
should not affect trusted outputs.

Malicious vs. nonmalicious code Information-flow techniques are useful for both find-
ing security problems in potentially malicious code, such as JavaScript code on untrusted
(or attacked) web pages (e.g., [31]), or untrusted Java applets (e.g., [12]) and in nonma-
licious code, such as server-side code (e.g., [8]). In the former scenario, the attacker has
full control over the code. The attacker’s goal is to craft the code and input data in order
to circumvent the security mechanisms and leak and/or corrupt sensitive information. In
the latter scenario, the code is typically written without malice. However, the code might

contain a vulnerability (such as a forgotten user input validation). The attacker’s goal is
to craft input data in order to exploit the vulnerability and leak and/or corrupt sensitive
information. We assume attackers that can observe public outputs and provide corrupt
data. For the purpose of this work, we ignore more powerful attackers capable to measure
time, power consumption, or others covert channels [20].

Similar techniques have been used in the literature for both scenarios. In this paper,
we observe that some code patterns are uncommon in the latter scenario, which opens
possibilities for lightweight and effective analyses.

Explicit vs. implicit flows There has been much recent progress on understanding in-
formation flow in languages of increasing complexity [27,24,30,26]. When tracking in-
formation flow, of particular concern are implicit flows, i.e., flows through control flow
when computation branches on secret data and performs publicly observed side effects
depending on which branch is taken. This is as opposed to explicit flows, where secret
data is directly passed to public containers.

One example of an implicit flow can be produced due to an unhandled exception. If
computation involving sensitive data may raise an exception, this might result in an inse-
cure information flow. However, experiments by King et al. [19] suggest that exception-
related annotations are not always critical for security. For example, they find that 706
out of 757 unhandled exception warnings of JLift [18], an interprocedural extension of
Jif [24] (information-flow analyzer for Java), are in fact false alarms (around 93%!).

Two extremes The large body of literature exercises two extreme views on implicit
flows: either track or ignore them. The former view originates from work of Denning and
Denning [13], which has been revived in the context of security for mobile code [33] (see
an overview [27] for this line of work). As of now, the state-of-the-art information-flow
tools such as FlowCaml [25,30], the SPARK Examiner [5,7,26], and Jif [23,24] (along
with its extensions Sif [9], SWIFT [8], JLift [18]) track implicit flows.

On the other hand, several programming languages, such as Perl, PHP, and Ruby,
support a taint mode, which is an information-flow tracking mechanism for integrity.
The taint mode treats input data as untrusted and propagates the taint labels along the
computation so that tainted data cannot directly affect sensitive operations. This mech-
anism tracks explicit but not implicit flows. Similarly, static approaches (e.g., [29,14])
only track explicit flows in the context of input validation.

Why would one want to track implicit flows in the light of the above experiments
suggesting that most of them are false alarms? The reason is that implicit flows may
result in leaking secrets and compromising sensitive data in an efficient way (discussed
below). The price is, however, rather high in terms of usability: tight control on side
effects (including those related to exceptions) needs to be enforced.

The other extreme (ignoring implicit flows) is not always settling either. Giving up
security for usability may be often inappropriate.

Middle ground We argue that the attacker may exploit implicit flows with malicious
code, and so they should be tracked. We show how this can be done by a security type
system [33] and a monitor [28] without excessive false alarms. For nonmalicious code,
we explore a middle ground between the two extremes. We observe that for nonmali-
cious code, implicit flows are often harmless: they cannot be exploited to efficiently leak
secrets. How do we draw a formal line between harmless and dangerous implicit flows?
Consider a typical example of an implicit flow:

if secret then public := 1 else public := 0 (Impl)

Depending on the secret value of variable secret , the public value of variable public is
assigned 1 or 0. Is the flow in this example dangerous? The key is the context, where this
code fragment appears. If the context is empty, i.e., the above fragment is the program,
then a run of the program leaks at most one bit of information about the secret. This
can be an acceptable leak. On the other hand, if the above fragment happens to be in the
following context:

l := 0;
while (n ≥ 0) do

k := 2n−1;
secret := h ≥ k;
if secret then public := 1 else public := 0;
if public then h := h − k ; l := l + k else skip;
n := n− 1

(Mag)

then the program leaks bit-by-bit the secret variable h to public variable l (assuming h is
an n-bit nonnegative integer and all variables except for secret and h are public). This
example shows that implicit flows can be magnified by loops, where a one-bit leak is
turned into an n-bit leak in linear time in the size of the secret (n).

We observe that magnified leaks are rather unusual in nonmalicious code. This en-
ables us to guarantee strong information-flow properties with a simple analysis tech-
nique. This technique involves explicit-flow analysis to prevent explicit flows, as in
public := secret . As mentioned above, such techniques have been successfully de-
veloped for such languages as Perl, PHP, and Ruby. In addition, we have lightweight
implicit-flow analysis: (i) we make sure there are no cyclic patterns in the control-flow
graph (CFG) of the program that involve branching on secrets (or that there are such
patterns but they can be unfolded into conditionals), and (ii) we make a count on how
many conditionals there are that branch on secrets. The number is a bound on how many
bits are leaked by the program.

We report results from initial studies of industrial code (secure logging and data
sanitization in the context of cross-site scripting vulnerability prevention). Our findings
suggest that our approach has potential of offering a desired combination of a lightweight
analysis, strong security guarantees, and no excessive false alarms.

Language independence The separation of the security analysis into code-based
explicit-flow analysis and graph-based implicit-flow analysis provides the benefit of
language-dependence for the latter. Indeed, to perform implicit-flow analysis, the main
bulk of work is to generate the control-flow graph. This can be done by standard tools
(we demonstrate this in Section 7 when we deal with Java programs). The pattern analy-
sis of the graph is language-independent. A single implementation can be reused for all
languages.

Contributions In brief, the paper offers the following contributions:

• Insights on distinguishing malicious and nonmalicious code opening up opportu-
nities for lightweight and effective security analysis of the latter.

• Insights on explicit and implicit flows opening up for specialized analysis of the
latter featuring soundness, permissiveness, and low rate of false alarms.

• An exploration of a middle ground between the two extreme views on policies:
no information flow and only preventing explicit information flow.

• Formalization of the insights above to show how to guarantee strong information-
flow properties with a combination of an explicit-flow and a language-independent
graph-pattern analyses.

• Initial experiments with industrial code suggesting we have a desired combina-
tion of a lightweight analysis, strong security guarantees, and no excessive false
alarms.

Organization The paper is organized as follows. Section 2 presents semantics of a sim-
ple imperative language. Sections 3–5 focus on the malicious-code scenario, following
our earlier work [28] and borrowing some of its exposition. Sections 3 and 4 present
a static and dynamic enforcement mechanisms for tracking explicit and implicit flows.
These mechanisms correspond to a type system by Volpano et al. [33] and a monitor
by Sabelfeld and Russo [28], respectively. Section 5 recapitulates results [33,28] on the
soundness of the type system and monitor, as well as on the relative permissiveness.
Section 6 focuses on the nonmalicious-code scenario. It describes a combination of an
explicit-flow analysis and graph-pattern analysis that offers information-flow guarantees.
Section 7 presents initial studies of industrial code: secure logging and data sanitization.
Section 8 discusses related work. Section 9 offers some concluding remarks.

2. Semantics

For the purpose of demonstrating the ideas, we fix a simple imperative language. Figure 1
presents the semantics for the language. Configurations have the form 〈c,m〉, where c
is a command and m is a memory mapping variables to values. Semantic rules have the
form 〈c,m〉 α−→〈c′,m′〉, which corresponds to a small step between configurations. If
a transition leads to a configuration with the special command stop and some memory
m, then we say the execution terminates in m. Observe that there are no transitions
triggered by stop. The special command end signifies exiting the scope of an if or a
while. Observe that end is executed after the branches of those commands. Commands
stop and end can be generated during execution of programs but they are not used in
initial configurations, i.e., they are not accessible to programmers. For simplicity, we
consider simple integer expressions in our language (i.e., constants, binary operations,
and variables). The semantics for expressions is then standard and thus we omit it here.
We denote the result of evaluating expression e under memory m as m(e). The semantics
are decorated with events α for communicating program events to an execution monitor.

Event nop signals that the program performs a skip. Event a(x, e) records that the
program assigns the value of e in the current memory to variable x. Event b(e) indi-
cates that the program branches on expression e. Finally, event f is generated when the
structure block of a conditional or loop has finished evaluation.

Assume cfg , cfg ′, . . . range over command configurations and cfgm, cfgm ′, . . .
range over monitor configurations. For this work, it is enough to think of monitor con-
figurations as simple stacks of security levels (see below). The semantics are paramet-

〈skip,m〉nop−→〈stop,m〉
m(e) = v

〈x := e,m〉a(x,e)−→ 〈stop,m[x 7→ v]〉

〈c1,m〉 α−→〈stop,m′〉
〈c1; c2,m〉 α−→〈c2,m

′〉
〈c1,m〉 α−→〈c′1,m′〉 c′1 6= stop

〈c1; c2,m〉 α−→〈c′1; c2,m
′〉

m(e) 6= 0

〈if e then c1 else c2,m〉 b(e)−→〈c1; end ,m〉

m(e) = 0

〈if e then c1 else c2,m〉 b(e)−→〈c2; end ,m〉

m(e) 6= 0

〈while e do c,m〉 b(e)−→〈c; end ; while e do c,m〉

m(e) = 0

〈while e do c,m〉 b(e)−→〈end ,m〉

〈end ,m〉 f−→〈stop,m〉

Figure 1. Command semantics

pc ` skip
lev(e) v Γ(x) pc v Γ(x)

pc ` x := e

pc ` c1 pc ` c2

pc ` c1; c2

lev(e) t pc ` c1 lev(e) t pc ` c2

pc ` if e then c1 else c2

lev(e) t pc ` c

pc ` while e do c

Figure 2. Typing rules

ric in the monitor µ, which is assumed to be described by transitions between monitor
configurations in the form cfgm α−→µcfgm ′. The rule for monitored execution is:

cfg α−→cfg ′ cfgm α−→µcfgm ′

〈cfg |µ cfgm〉−→〈cfg ′ |µ cfgm ′〉

The simplest example of a monitor is an all-accepting monitor µ0, which is defined by
ε

α−→µ0ε, where ε is its only state (the empty stack). This monitor indeed accepts all
events α in the underlying program.

st
nop−→ st

lev(e) v Γ(x) lev(st) v Γ(x)

st
a(x,e)−→ st

st
b(e)−→ lev(e) : st

hd :st
f−→ st st

b(e)−→ lev(e) : st

Figure 3. Monitoring rules

3. Type System

Figure 2 displays a Denning-style static analysis in the form of a security type system by
Volpano et al. [33].

Typing environment Γ maps variables to security levels in a security lattice. For
simplicity, we assume a security lattice with two levels L and H for low (public) and
high (secret) security, where L < H . Function lev(e) returns H if there is a high variable
in e and otherwise returns L.

Typing judgment for commands has the form pc ` c, where pc is a security level
known as the program counter that keeps track of the context.

Explicit flows (as in l := h) are prevented by the typing rule for assignment that
disallows assignments of high expressions to low variables.

Implicit flows (as in if h then l := 1 else l := 0) are prevented by the pc mecha-
nism. It demands that when branching on a high expression, the branches must be typed
under high pc, which prevents assignments to low variables in the branches.

4. Monitor

Figure 3 presents monitor µ1 (we omit the subscript µ1 in the transition rules for clarity).
The monitor either accepts an event generated by the program or blocks it by getting
stuck. The monitor configuration st is a stack of security levels, intended to keep track
of the current security context: the security levels of the guards of conditionals and loops
whose body the computation currently visits. This is a dynamic version of the pc from
the previous section. Event nop (that originates from a skip) is always accepted without
changes in the monitor state. Event a(x, e) (that originates from an assignment) is ac-
cepted without changes in the monitor state but with two conditions: (i) that the security
level of expression e is no greater than the security level of variable x and (ii) that the
highest security level in the context stack (denoted lev(st) for a stack st) is no greater
than the security level of variable x. The former prevents explicit flows of the form l := h,
whereas the latter prevents implicit flows of the form if h then l := 1 else l := 0,
where depending on the high guard, the execution of the program leads to different low
events.

Events b(e) result in pushing the security level of e onto the stack of the monitor.
This is a part of implicit-flow prevention: runs of program if h then l := 1 else l := 0
are blocked before performing an assignment l because the level of the stack is high
when reaching the execution of the assignment. The stack structure avoids overrestrictive
enforcement. For example, runs of program (if h then h := 1 else h := 0); l := 1 are

allowed. This is because by the time the assignment to l is reached, the execution has left
the high context: the high security level has been popped from the stack in response to
event f , which the program generates on exiting the if.

We have seen that runs of programs like if h then l := 1 else l := 0 are rejected
by the monitor. But what about a program like if h then l := 1 else skip, a com-
mon example for illustrating that dynamic information-flow enforcement is delicate? If
h is nonzero, the monitor blocks the execution. However, if h is 0, the program proceeds
normally. Are we accepting an insecure program? It turns out that the slight difference
between unmonitored and monitored runs (blocking in case h is nonzero) is sufficient for
termination-insensitive security. In effect, the monitor prevents implicit flows by collaps-
ing the implicit-flow channel into the termination channel; it does not introduce any more
bandwidth than what the termination channel already permits. Indeed, implicit flows in
unmonitored runs can be magnified by a loop so that secrets can be leaked bit-by-bit in
linear time in the size of the secret. On the other hand, implicit flows in monitored runs
cannot be magnified because execution is blocked whenever it attempts entering a branch
with a public side effect. For example, one implication for uniformly-distributed secrets
is that they cannot be leaked on the termination channel in polynomial time [3].

5. Security and permissiveness of implicit flow tracking

This section presents the formal results on tracking implicit flows by the type system
and monitor. We assume µ0 is the monitor that accepts all program events, and µ1 is the
monitor from Section 4. First, we show that the monitor µ1 is strictly more permissive
than the type system. If a program is typable, then all of its runs are not modified by the
monitor. The appendix contains the details of all proofs.

Theorem 1 If pc ` c and 〈〈c,m〉 |µ0 ε〉 −→∗ 〈〈c′,m′〉 |µ0 ε〉, then 〈〈c,m〉 |µ1 ε〉 −→∗

〈〈c′,m′〉 |µ1 st ′〉.

Proof. We prove a generalization of the theorem. Intuitively, the theorem holds because
(i) the requirements for assignments in the type system and the monitor µ1 are essentially
the same; and (ii) there is a tight relation between the join operations for pc and pushing
security levels on the stack st . 2

Further, there are programs (e.g., if l > l then l := h else skip) whose runs are
always accepted by the monitor, but which are rejected by the type system. Hence, the
monitor is strictly more permissive than the type system.

We now show that both the type system and monitor enforce the same security con-
dition: termination-insensitive noninterference [33]. Two memories m1 and m2 are low-
equal (written m1 =L m2) if they agree on the low variables. Termination-insensitive
noninterference demands that starting with two low-equal initial memories, two termi-
nating runs of a typable program result in low-equal final memories.

Theorem 2 If pc ` c, then for all m1 and m2, where m1 =L m2, whenever we have
〈〈c,m1〉 |µ0 ε〉 −→∗ 〈〈stop,m′

1〉 |µ0 ε〉 and 〈〈c,m2〉 |µ0 ε〉 −→∗ 〈〈stop,m′
2〉 |µ0 ε〉,

then m′
1 =L m′

2.

Proof. By adjusting the soundness proof by Volpano et al. [33]. 2

Figure 4. Control-flow graphs that presents the magnification pattern

Termination-insensitive noninterference also holds for the runs monitored by the
monitor from Section 4:

Theorem 3 For all m1 and m2, where m1 =L m2, whenever c contains no end
commands and 〈〈c,m1〉 |µ1 ε〉 −→∗ 〈〈stop,m′

1〉 |µ1 st ′1〉 and 〈〈c,m2〉 |µ1 ε〉 −→∗

〈〈stop,m′
2〉 |µ1 st ′2〉, then m′

1 =L m′
2.

Proof. By induction on −→∗. 2

6. Middle ground

In this section we explore the middle ground for implicit-flow analysis. We show how to
achieve information-flow properties with a combination of an explicit-flow and a graph-
pattern analyses.

We call high branching (low branching) branching instructions whose guards con-
tain secret information (only public information). For example, high/low branching takes
places in high/low conditionals and loops, respectively. In general, branching instruc-
tions may also come from exceptions and other constructs that introduce alternatives
in programs’ control-flow path. We start by defining a control-flow graph pattern that
captures implicit flows that may be magnified.

Definition 1 (Magnification pattern) Given a control-flow graph, a magnification pat-
tern consists of high branching contained inside of a loop.

Figure 4 shows a visual representation of this definition. The figure contains a
branching instruction with two alternatives, the then and else branches. After one of the
branches is executed, the control flow returns to the join point of the branch. We only
consider languages that are well-structured, i.e., languages with no arbitrary jumps. After
reaching the join point, some other instructions might be executed. What is important is
that the program presents a loop that returns to the branching point. The following ex-
ample illustrates what kind of programs present this pattern for a simple while language.

Example 1 The following programs present the magnification pattern described in Def-
inition 4.

c1 : while l ≥ 0 do (. . . ; if h then ct else cf ; . . .)

c2 : while h ≥ 0 do . . .

The dots correspond to the instructions that are not relevant for the magnification pat-
tern. Due to the structure of c1 and c2, these programs might magnify implicit flows, i.e.,
implicit flows might not be harmless. Observe that program Mag, given in Section 1,
presents a similar structure as c1.

If a program does not contain magnification patterns, it does not mean that the im-
plicit flows found there do not leak information. In fact, it might be possible that pro-
grams include as many implicit flows as the bit size of the secret. In this case, the secret
might be leaked in linear time in the size of the secret.

Our main result in this section establishes that if a program neither contains explicit
flows nor the magnification pattern, then it needs to branch on secrets at least k times in
order to leak k bits of a secret. In this manner, we bound the number of leaked bits.

We now define the notion of execution trees for programs. These trees represent pos-
sible executions of programs when the low part of the initial memory is fixed. Intuitively,
these trees describe how assignments can be performed by programs before branching
on secrets.

Definition 2 (Execution trees) Given a program c that does not present the magnifica-
tion pattern, we define an execution tree for c as a binary tree where each node represents
the sequence of assignments executed before branching on secrets.

Intuitively, the internal nodes of an execution tree represent the assignments gathered
by the program before branching on secrets. The leaves, on the other hand, represent
all the assignments performed by the program when following a particular control-flow
path. This definition resembles the notion of decision trees in the area of algorithms [4].

The following lemma establishes a relation between the number of leaked bits and
the number of leaves in an execution tree.

Proposition 1 Given a program c that contains no explicit flows or the magnification
pattern, if c leaks at least k bits about the initial values of high variables once the public
part of the initial memory is fixed, then the execution tree for c contains at least 2k leaves.

This leads us to the following theorem.

Theorem 4 If a program c contains no explicit flows or the magnification pattern and
leaks at least k bits about the initial values of high variables once the public part of the
initial memory is fixed, then c contains at least k high branching instructions.

Corollary 1 If a program c contains k high branching instructions and contains no ex-
plicit flows or magnification patterns, then the program leaks at most k bits about the
initial values of high variables once fix the public inputs.

125

126

128

229 130

132

135

136

140

Figure 5. An example of a control-flow graph

Proof. By contradiction. We assume that the program leaks k+1 bits. Then, by Theorem
4, c contains at least k + 1 high branching instruction, which gives us a contradiction. 2

Declassification and endorsement We do not consider declassification (endorse-
ment) policies for releasing (boosting the trust of) information. The security guarantees
described above are valid for programs without such policies. Nevertheless, one possible
direction to combine our results with declassification policies is in the line of work done
by Hicks et al. [17], who consider that a piece of code between declassification points
must satisfy noninterference. A scenario where our results can be applied consists of
programs that always perform declassifications as the final step of their execution. We
assume that the last line in the code is the only one including declassification. In this
manner, our guarantees hold for the whole program but the last line. Similarly, our results
can also be directly applied to scenarios where endorsement is performed as the first or
last step of the computation.

7. Initial studies of industrial code

For an initial indication of the effectiveness of our approach, we have studied the code
of industrial applications at SAP written in Java: secure logging and data sanitization in
the context of cross-site scripting vulnerability prevention.

7.1. Magnification patterns in nonmalicious code

The purpose of the studies is to reveal whether magnification patterns are frequently
present in nonmalicious code.

We do this examination in the following steps:

• Security levels are assigned to variables.

• Control-flow graphs are generated for methods using Control Flow Graph Factory
plug-in from Dr. Garbage [1].

• We check every loop in the control-flow graph. If the loop guard contains secrets,
then a magnification pattern is found. If the guard is low, we check if there exists
branching on secrets in the loop body. If that is the case, a magnification pattern
is found. Otherwise, the loop is not problematic.

As an example of the analyzed code, we present the following piece of anonymized
source code.

...
IRL[] ls = getLs();
IRL targetRL = null;

if (ls != null)
{

for (IRL rl : ls)
{

if (rl.implementAction
(requestParameters))

{
// ...
targetRL = rl;
break;

}
}

}
...

The corresponding control-flow graph is depicted in Figure 5. In this example, there
is a loop containing a branching instruction. Both the loop and the branching are not
on variables with high security level. Therefore, they do not constitute a magnification
pattern.

As an initial case study, we check a version of Java source code of a module in SAP’s
system. There are more than 30 classes analyzed. In total, there are more than 6000
lines of source code and more than 150 methods. With respect to branching instructions,
there are around 420 low and around 60 high branching instructions. There is only one
magnification pattern in this case study. The pattern arises in the piece of code when the
user tries to log in into the system. The system only allows the user to try for at most
three times. If the user is not able to provide valid credentials during the three times, his
or her account will be locked. At first sight, this appears as a loop that involves a branch
on secrets. However, since the maximum number of possible tries is bounded, this loop
can be unfolded into a sequence of at most three conditionals. Therefore, this pattern is
not dangerous (and the information leak is bounded by the number of conditionals in the
unfolding: at most three bits).

7.2. Logging API and encryption API

Logging and tracing are important elements for securing application server systems.
Logs are important for monitoring applications and to track events if problems occur, as
well as for auditing the correct usage of the system.

The SAP Logging API is provided with all functionality for both tracing and event
logging. The following methods are provided to write messages with different sever-
ity. They have intuitive names that indicate the severity levels such as FATAL, ERROR,
WARNING, INFO, PATH, and DEBUG.

fatalT(string the_message) ;
errorT(string the_message) ;
warningT(string the_message) ;
infoT(string the_message) ;
pathT(string the_message) ;
debugT(string the_message) ;

For more information about SAP Logging API, please refer to [2].
One security policy is that before sensitive information is logged, it must be en-

crypted in order to prevent information leakage.
In SAP NetWeaver Platform, there are interfaces and classes derived from them

available for implementing digital signatures and encryption in the applications. We now
proceed to describe them.

The interface ISsfData is the central interface used for the cryptographic func-
tions. Its underlying classes specify the data format used, for example, SsfDataPKCS7,
SsfDataSMIME and SsfDataXML. The available methods are sign, verify,
encrypt, decrypt, and writeTo.

The interface ISsfProfile provides access to the user’s or server’s profile, where
the private key and corresponding public-key certificate are stored. If the public-key cer-
tificate has been signed by a certification authority (CA), then the interface also provides
access to the CA chain associated with the certificate.

The interface ISsfPab contains a list of public-key certificates belonging to others.
This public-key certificates contained in this list are used to verify their owners’ digital
signatures or to encrypt documents.

For more information about SAP interfaces and classes for using digital signatures
and encryption, please refer to [2].

7.3. Security analysis for logging

As said before, one security consideration in SAP’s system is that before sensitive infor-
mation is logged, it must be encrypted in order to prevent information leakage. From the
point of view of information-flow analysis, the variables containing sensitive information
are assigned the high security level, while the log file is assigned the low security level.
The only manner for high security level information to flow into the log file is through
declassification.

To check the security of our logging system, we firstly assign security levels, i.e.,
Γ(v), to each relevant variable v. This needs domain knowledge of the developer, and is
done manually. Variables containing sensitive information, e.g., password and salary, are

assigned high security level. The variable associated with the log file is assigned a low
security level. In the case studies, writing to the log file is implemented as follows.

Location myLoc = Location.
getLocation("com.sap.fooPackage.FooClass");

myLoc.addLog(new ConsoleLog());
myLoc.warningT("Sample message" + password);

The last command is where sensitive information is written to the log file. This statement
is a function call whose effect (in terms of explicit flows) is similar to the one of an
assignment.

Encryption is implemented in the following way.

ISsfData data;
profile = new \\

SsfProfileKeyStore(keyStore, alias, null);
result = data.encrypt(profile);

Observe that the last statement is where the declassification occurs. Variables data and
result are assigned to the high and low security levels, respectively. This information
flow is permitted.

314

315

317

322

319

320

325

326

Figure 6. A control-flow graph of secure logging

The first step to analyze applications that use the logging API is to use the explicit
flow analysis to check whether any secret data is directly placed into the log file as a
plain text. We performed the analysis on a version of Java source code of the module in
SAP’s system. We found some instances, where sensitive information is logged before
being encrypted. However, these flows were fixed in later versions of the code.

Having done that, we generate the corresponding control-flow graphs. In one source
file of our case study, we found the piece of control-flow graph depicted in Figure 6. In
the figure, line 320 is the declassification statement, and line 326 is where the log file is
written. In addition to that, the branch, i.e., line 317, is on a variable with high security

level. According to the previous discussion, at most one bit of the sensitive information
may be unintentionally leaked by the implicit flow.

7.4. SAP output encoding framework

Cross-site scripting (XSS) attacks may occur when a web application accepts data orig-
inating from a user and sends it to another user’s browser without first validating or en-
coding it. For example, suppose an attacker embeds malicious JavaScript code into his
or her profile on a social web site. If the site fails to validate such input, that code may
execute malicious code in the browser of any other user who visits that profile.

In SAP NetWeaver Platform, the SAP Output Encoding Framework could be used
to prevent XSS attacks. This applies when application developers generate HTML codes.
By encoding user supplied input before rendering it, any inserted scripts are prevented
from being transmitted to users in executable form. The encoding functions implement
the corresponding sanitization routines.

In order to use SAP Output Encoding Framework to prevent XSS attacks, the fol-
lowing four different cases need to be distinguished.

Case 1: XSS attacks can occur as output between tags. In this case, the following
functions should be applied for output encoding:

static String escapeToHTML(String input);
static String escapeToHTML

(StringBuffer sb,
String input, int maxLength);

static String escapeToHTML
(String input, int maxLength);

Case 2: XSS attacks can occur as output inside tags, but output is not a URL or style.
In this case, the functions named escapeToAttributeValue should be applied for
output encoding.

Case 3: XSS attacks can occur as output which is a URL or style. In this case, the
functions named escapeToURL should be applied for output encoding.

Case 4: XSS attacks can occur as output inside a SCRIPT context. In this case, the
functions named escapeToJS should be applied for output encoding.

For more detailed information about the usage of SAP Output Encoding Framework,
please refer to [2].

7.5. Security analysis for XSS prevention

Note that preventing XSS attacks is not about confidentiality but about integrity. The
treatment of integrity is dual to confidentiality, and so our technique can also applies to
this case.

In this case study, the user input is assigned a low-integrity level, and the output is
assigned a high-integrity security level. The output encoding functions are considered as
endorsement, a dual of declassification. The statement writing into output is considered
as an assignment. By doing the adaptation, we can analyze the program in the same way
as we did for the previous case study. We did not find any vulnerability with respect to
XSS in this case study since data sanitization, and thus endorsement, is performed early
in the code.

8. Related work

As mentioned previously, the large body of literature exercises two extreme views on
implicit flows: either track or ignore them. The former view originates from work of
Denning and Denning [13], which has been revived in the context of security for mobile
code [33] (see an overview [27] for this line of work). As of now, the state-of-the-art
information-flow tools such as FlowCaml [25,30], the SPARK Examiner [5,7,26], and
Jif [23,24] (along with its extensions Sif [9], SWIFT [8], JLift [18]) track implicit flows.

On the other hand, several programming languages, such as Perl, PHP, and Ruby,
support a taint mode, which is an information-flow tracking mechanism for integrity.
The taint mode treats input data as untrusted and propagates the taint labels along the
computation so that tainted data cannot directly affect sensitive operations. This mecha-
nism (as well as others, designed for confidentiality [32]) tracks explicit but not implicit
flows. Similarly, static approaches (e.g., [29,14]) only track explicit flows in the context
of input validation.

In terms of policies, the former view corresponds to noninterference [15] that postu-
lates that secret inputs may not affect public outputs of a program. The latter corresponds
to weak secrecy [32] that postulates that no sequence of assignment commands that a
given run executes leaks information. This condition ignores flows due to control flow.
For example, the simple implicit flow program Impl from Section 1 is accepted by this
condition, and so is the magnified attack Mag that leaks the secret in linear time.

As mentioned in Section 1, King et al. [19] suggest that exception-related anno-
tations are not always critical for security. For example, they find that 706 out of 757
unhandled exception warnings of JLift [18], an interprocedural extension of Jif [24]
(information-flow analyzer for Java), are in fact false alarms (around 93%!).

Chang et al. [6] investigate denial-of-service vulnerabilities. Interestingly, they have
findings that are related to ours. They observe that a typical pattern of such a vulnerability
is a loop, where the attacker may affect the guard. They present a static combination of
control-flow and data dependency analyses for C programs.

Haack et al. [16] describe an approach to tracking explicit information flows in JML.
The paper contains a general discussion on explicit vs. implicit flows and confidentiality
vs. integrity. However, their primary focus is safety properties.

The line of work on giving quantitative bounds on how much information can be
leaked by programs is close in spirit to ours. Clark et al [10] bound leakage in terms of an
upper bound on the number of information-theoretic bits. Lowe [21] considers counting
a number of equivalence classes in an equivalence-relation model, which can be used
for an information-theoretic bound. Clarkson et al. [11] include belief into the analysis
of quantitative information flow in a language-based setting. McCamant and Ernst [22]
suggest a dynamic approach to giving a quantitative bound on the amount of information
a program leaks during a run. Due to the dynamic nature of the latter analysis, it is
more permissive than the static ones mentioned before. Hence, the rate of false alarms
is more acceptable. However, a sacrifice is the runtime overhead and late discovery of
insecurities.

9. Conclusion

We have reported insights on implicit flows in malicious vs. nonmalicious code. For non-
malicious code, it turns out that rather than performing fully-fledged information-flow
analysis, we can give strong information-flow properties guarantees with a combination
of an explicit-flow and a graph-pattern analyses.

We have presented evidence that the middle ground that we explore between the two
extreme views (noninterference and weak secrecy) is a meaningful one.

Our studies of industrial code are feasibility studies: they have been mostly per-
formed by hand (with the exception of control-flow graph generation tools). Future work
involves implementing the rest of the components for the analysis: the explicit flow
checker and the pattern finder/counter. Furthermore, more extensive case studies will
help determine how common secret branching is in routine server code. Another concern
about our approach is related to scalability. In particular, in languages with recursion and
method calls, it is necessarty to generate a full-program control-flow graph. Optimiza-
tions that mitigate the cost of such analysis are worth exploring.

Acknowledgments

This work was funded by the Information Society Technologies programme of the Eu-
ropean Commission under the IST-2005-015905 MOBIUS project and by the Swedish
research agencies SSF and VR.

References

[1] Dr. garbage. http://www.drgarbage.com.
[2] Sap netweaver 7.0 knowledge center. http://help.sap.com/content/documentation/

netweaver/docu nw 70 design.htm.
[3] A. Askarov and S. Hunt and A. Sabelfeld and D. Sands. Termination-insensitive noninterference leaks

more than just a bit. In Proc. European Symp. on Research in Computer Security, volume 5283 of LNCS,
pages 333–348. Springer-Verlag, Oct. 2008.

[4] A. V. Aho and J. E. Hopcroft. The Design and Analysis of Computer Algorithms. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1974.

[5] J. Barnes and J. Barnes. High Integrity Software: The SPARK Approach to Safety and Security. Addison-
Wesley Longman Publishing Co., Inc. Boston, MA, USA, 2003.

[6] R. Chang, G. Jiang, F. Ivancic, S. Sankaranarayanan, and V. Shmatikov. Inputs of coma: Static detection
of denial-of-service vulnerabilities. In Proc. IEEE Computer Security Foundations Symposium, July
2009.

[7] R. Chapman and A. Hilton. Enforcing security and safety models with an information flow analysis
tool. ACM SIGAda Ada Letters, 24(4):39–46, 2004.

[8] S. Chong, J. Liu, A. C. Myers, X. Qi, K. Vikram, L. Zheng, and X. Zheng. Secure web applications via
automatic partitioning. In Proc. ACM Symp. on Operating System Principles, pages 31–44, Oct. 2007.

[9] S. Chong, K. Vikram, and A. C. Myers. Sif: Enforcing confidentiality and integrity in web applications.
In Proc. USENIX Security Symposium, pages 1–16, Aug. 2007.

[10] D. Clark, S. Hunt, and P. Malacaria. Quantitative analysis of the leakage of confidential data. In
QAPL’01, Proc. Quantitative Aspects of Programming Languages, volume 59 of ENTCS. Elsevier, 2002.

[11] M. R. Clarkson, A. C. Myers, and F. B. Schneider. Belief in information flow. In Proc. IEEE Computer
Security Foundations Workshop, pages 31–45, June 2005.

[12] M. Dam and P. Giambiagi. Information flow control for cryptographic ap-
plets. Presentation at the Dagstuhl Seminar on Language-Based Security, Oct. 2003.
www.dagstuhl.de/03411/Materials/.

[13] D. E. Denning and P. J. Denning. Certification of programs for secure information flow. Comm. of the
ACM, 20(7):504–513, July 1977.

[14] D. Evans and D. Larochelle. Improving security using extensible lightweight static analysis. IEEE
Software, 19(1):42?–51, 2002.

[15] J. A. Goguen and J. Meseguer. Security policies and security models. In Proc. IEEE Symp. on Security
and Privacy, pages 11–20, Apr. 1982.

[16] C. Haack, E. Poll, and A. Schubert. Explicit information flow properties in JML. In Proc. WISSEC,
2008.

[17] B. Hicks, D. King, P. McDaniel, and M. Hicks. Trusted declassification: high-level policy for a security-
typed language. In Proc. ACM Workshop on Programming Languages and Analysis for Security (PLAS),
pages 65–74, June 2006.

[18] D. King. JLift. Software release. Located at http://www.cse.psu.edu/∼dhking/jlift,
2008.

[19] D. King, B. Hicks, M. Hicks, and T. Jaeger. Implicit flows: Can’t live with ’em, can’t live without ’em. In
Proc. International Conference on Information Systems Security (ICISS), volume 5352 of LNCS, pages
56–70. Springer-Verlag, Dec. 2008.

[20] B. W. Lampson. A note on the confinement problem. Comm. of the ACM, 16(10):613–615, Oct. 1973.
[21] G. Lowe. Quantifying information flow. In Proc. IEEE Computer Security Foundations Workshop,

pages 18–31, June 2002.
[22] S. McCamant and M. D. Ernst. Quantitative information flow as network flow capacity. In Proc. ACM

SIGPLAN Conference on Programming language Design and Implementation, pages 193–205, 2008.
[23] A. C. Myers. JFlow: Practical mostly-static information flow control. In Proc. ACM Symp. on Principles

of Programming Languages, pages 228–241, Jan. 1999.
[24] A. C. Myers, L. Zheng, S. Zdancewic, S. Chong, and N. Nystrom. Jif: Java information flow. Software

release. Located at http://www.cs.cornell.edu/jif, July 2001–2008.
[25] F. Pottier and V. Simonet. Information flow inference for ML. ACM TOPLAS, 25(1):117–158, Jan.

2003.
[26] Praxis High Integrity Systems. SPARKAda Examinar. Software release. http://www.

praxis-his.com/sparkada/.
[27] A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE J. Selected Areas in

Communications, 21(1):5–19, Jan. 2003.
[28] A. Sabelfeld and A. Russo. From dynamic to static and back: Riding the roller coaster of information-

flow control research. In Proc. Andrei Ershov International Conference on Perspectives of System In-
formatics, LNCS. Springer-Verlag, June 2009.

[29] U. Shankar, K. Talwar, J. S. Foster, and D. Wagner. Detecting format string vulnerabilities with type
qualifiers. In Proc. USENIX Security Symposium, pages 201?–220, 2001.

[30] V. Simonet. The Flow Caml system. Software release. Located at http://cristal.inria.fr/
∼simonet/soft/flowcaml, July 2003.

[31] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vigna. Cross-site scripting preven-
tion with dynamic data tainting and static analysis. In Proc. Network and Distributed System Security
Symposium, Feb. 2007.

[32] D. Volpano. Safety versus secrecy. In Proc. Symp. on Static Analysis, volume 1694 of LNCS, pages
303–311. Springer-Verlag, Sept. 1999.

[33] D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow analysis. J. Computer Security,
4(3):167–187, 1996.

A. Appendix

We introduce some auxiliary lemmas. We describe the most important ones here. We
start by showing lemmas related to sequential composition of monitored executions.

Lemma 1 If 〈〈c,m〉 |µ st〉 −→∗ 〈〈stop,m′〉 |µ st ′〉, then st = st ′, where µ ∈ {µ0, µ1}.

Lemma 2 Given that stop; c′ denotes c′, if 〈〈c1,m〉 |µ st〉 −→∗ 〈〈c′,m′〉 |µ st ′〉, then
〈〈c1; c2,m〉 |µ st〉 −→∗ 〈〈c′; c2,m

′〉 |µ st ′〉, where µ ∈ {µ0, µ1}.

Lemma 3 If 〈〈c1; c2,m〉 |µ st〉 −→∗ 〈〈c′,m′〉 |µ st ′〉 and c1 contains no end instruc-
tions, then there exists c∗, m′′, and st∗ such that c′ = c∗; c2 and 〈〈c1,m〉 |µ st〉 −→∗

〈〈c∗,m′〉 |µ st∗〉; or 〈〈c1,m〉 |µ st〉 −→∗ 〈〈stop,m′′〉 |µ st〉 and 〈〈c2,m
′′〉 |µ st〉 −→∗

〈〈c′,m′〉 |µ st ′〉, where µ ∈ {µ0, µ1}.

These lemmas can be proved by a simple induction on −→∗. Before proving Theo-
rem 1, we prove a generalization of it described in the following lemma.

Lemma 4 If pc ` c, 〈〈c,m〉 |µ0 ε〉 −→∗ 〈〈c′,m′〉 |µ0 ε〉, then it holds ∀ lev(st) v
pc · ∃ lev(st ′) · 〈〈c,m〉 |µ1 st〉 −→∗ 〈〈c′,m′〉 |µ1 st ′〉.

Proof. By induction on −→∗ and the number of sequential instructions in c. We only
show the most interesting cases.

x := e) Given a st such that lev(st) v pc, we need to prove that exists st ′ such that
lev(st ′) and 〈〈x := e,m〉 |µ1 st〉 −→ 〈〈stop,m′〉 |µ1 st ′〉. Let’s take st ′ = st .
Then, the transition under µ1 is possible provided that lev(e) v Γ(x) and
lev(st) v Γ(x). By the typing rules, it holds that lev(e) v Γ(x) and pc v Γ(x).
By these two facts, and having that lev(st) v pc, it holds that lev(e) v Γ(x) and
lev(st) v Γ(x).

if e then c1 else c2) Let’s assume that m(e) 6= 0 (the proof follows the same struc-
ture when m(e) = 0). We omit the proof when −→0 since it holds trivially. By
semantics, we know that

〈〈if e then c1 else c2,m〉 |µ0 ε〉 −→ 〈〈c1; end ,m〉 |µ0 ε〉 (1)

〈〈c1; end ,m〉 |µ0 ε〉 −→∗ 〈〈c′,m′〉 |µ0 ε〉 (2)

By definition of the monitor, we know that

〈〈if e then c1 else c2,m〉 |µ1 st〉 −→ 〈〈c1; end ,m〉 |µ1 lev(e) : st〉 (3)

If −→∗ is −→0 in (2), the result follows from (3). Otherwise, by applying Lemma
3 on (2) and semantics, we have that there exists m′′, c∗, and st∗ such that

c′ = c∗; end) In this case, we have that

〈〈c1,m〉 |µ0 ε〉 −→∗ 〈〈c∗,m′〉 |µ0 st∗〉 (4)

We know that st∗ = ε from the definition of µ0. We apply IH on lev(e)tpc `
c1 (obtaining from the typing rules) and (4), then we obtain that ∀ lev(st1) v

lev(e) t pc · ∃ lev(st ′1) · 〈〈c1,m〉 |µ1 st1〉 −→∗ 〈〈c∗,m′〉 |µ1 st ′1〉. Let’s
instantiate this formula by taking st1 = lev(e) : st . We then have that

〈〈c1,m〉 |µ1 lev(e) : st〉 −→∗ 〈〈c∗,m′〉 |µ1 st ′1〉 (5)

By Lemma 2 applied to (5) and end , we obtain 〈〈c1; end, m〉 |µ1 lev(e) : st〉
−→∗ 〈〈c′,m′〉 |µ1 st ′1〉. The result follows from this transition and (3).

c′ 6= c∗; end)

〈〈c1,m〉 |µ0 ε〉 −→∗ 〈〈stop,m′′〉 |µ0 ε〉 (6)

〈〈end ,m′′〉 |µ0 ε〉 −→∗ 〈〈c′,m′〉 |µ0 ε〉 (7)

By IH on lev(e) t pc ` c1 (obtaining from the typing rules) and (6), we
have that ∀ lev(st1) v lev(e) t pc · ∃ lev(st ′1) · 〈〈c1,m〉 |µ1 st1〉 −→∗

〈〈stop,m′′〉 |µ1 st ′1〉. Let’s instantiate this formula with st1 = lev(e) : st .
We then have that

〈〈c1,m〉 |µ1 lev(e) : st〉 −→∗ 〈〈stop,m′′〉 |µ1 st ′1〉 (8)

At this point, we do not know the shape of st ′1, but we can deduced it by
applying the Lemma 1 to it: st ′1 = lev(e) : st . Then, by Lemma 2 on (8) and
semantics for end , we have that

〈〈c1; end ,m〉 |µ1 lev(e) : st〉 −→∗ 〈〈end ,m′′〉 |µ1 lev(e) : st〉 (9)

In the case that −→∗ is −→0 in (7), the result holds from (3) and (9). Oth-
erwise, from semantics rules in (7), we know that c′ = stop and m′ = m′′.
By monitor semantics, we know that

〈〈end ,m′′〉 |µ1 lev(e) : st〉 −→ 〈〈stop,m′′〉 |µ1 st〉 (10)

The result then follows from (3), (9), and (10).

while e do c) Similar to the previous case.

2

We can then prove the first theorem.

Theorem 1 If pc ` c and 〈〈c,m〉 |µ0 ε〉 −→∗ 〈〈stop,m′〉 |µ0 ε〉, then 〈〈c,m〉 |µ1 ε〉 −→∗

〈〈stop,m′〉 |µ1 st ′〉.

Proof. By Lemma 4, we obtain that ∀ lev(st) v pc · ∃ lev(st ′) · 〈〈c,m〉 |µ1 st〉 −→∗

〈〈stop,m′〉 |µ1 st ′〉. The result follows by instantiating the formula with st = ε since
lev(ε) = L. 2

To prove Theorem 2, we firstly prove that, for terminating programs, there is an
isomorphism between the command semantics and executions under µ0.

Lemma 5 Given command c that contains no end instructions, 〈c,m〉 −→∗ 〈stop,m′〉
⇔ 〈〈c,m〉 |µ0 ε〉 −→∗ 〈〈stop,m′〉 |µ0 ε〉.

Proof. Both directions of the implication are proved by a simple induction on −→∗. 2

Now, we are in conditions to prove the mentioned Theorem.

Theorem 2 If pc ` c, then for all m1 and m2, where m1 =L m2, whenever we have
〈〈c,m1〉 |µ0 ε〉 −→∗ 〈〈stop,m′

1〉 |µ0 ε〉 and 〈〈c,m2〉 |µ0 ε〉 −→∗ 〈〈stop,m′
2〉 |µ0 ε〉,

then m′
1 =L m′

2.

Proof. By Lemma 5, we have that 〈c,m1〉 −→∗ 〈stop,m′
1〉 and 〈c,m2〉 −→∗

〈stop,m′
2〉. The result follows by applying the soundness theorem from [33] to pc ` c,

〈c,m1〉 −→∗ 〈stop,m′
1〉, and 〈c,m2〉 −→∗ 〈stop,m′

2〉. 2

We need two auxiliary lemmas in order to prove Theorem 3. They express that public
variables cannot be affected when the security level of the monitor’s stack is H .

Lemma 6 If c contains no end instructions, lev(st) = H , and 〈〈c,m〉 |µ1 st〉 −→∗

〈〈stop,m′〉 |µ1 st ′〉, then m =L m′.

Proof. By induction on −→∗. 2

Lemma 7 If c contains no end instructions, and 〈〈while e do c,m〉 |µ1 st〉 −→∗

〈〈stop,m′〉 |µ1 st ′〉, then m =L m′.

Proof. By performing one small-step in the semantics and then applying Lemma 6. 2

The next lemma is a generalization of Theorem 3.

Lemma 8 For all m1 and m2, where m1 =L m2, whenever c contains no end
commands and 〈〈c,m1〉 |µ1 st〉 −→∗ 〈〈stop,m′

1〉 |µ1 st ′1〉 and 〈〈c,m2〉 |µ1 st〉 −→∗

〈〈stop,m′
2〉 |µ1 st ′2〉, then m′

1 =L m′
2.

Proof. By induction on −→∗. We list the most interesting cases.

if e then c1 else c2) We consider the case when lev(e) = H and that m1(e) 6=
m2(e). Otherwise, the proof follows by simply applying IH and Lemmas 2 and 3.
We assume, without loosing generality, that m1(e) 6= 0. Consequently, by seman-
tics, we have that

〈〈if e then c1 else c2,m1〉 |µ1 st〉 −→

〈〈c1; end ,m1〉 |µ1 lev(e) : st〉 (11)

〈〈c1; end ,m1〉 |µ1 lev(e) : st〉 −→∗ 〈〈stop,m′
1〉 |µ1 st ′1〉 (12)

〈〈if e then c1 else c2,m2〉 |µ1 st〉 −→

〈〈c2; end ,m2〉 |µ1 lev(e) : st〉 (13)

〈〈c2; end ,m2〉 |µ1 lev(e) : st〉 −→∗ 〈〈stop,m′
2〉 |µ1 st ′2〉 (14)

By applying Lemma 3 on (12) and (14), we have that there exists m′′
1 and m′′

2 such
that

〈〈c1,m1〉 |µ1 lev(e) : st〉 −→∗ 〈〈stop,m′′
1〉 |µ1 lev(e) : st〉 (15)

〈〈end ,m′′
1〉 |µ1 lev(e) : st〉 −→∗ 〈〈stop,m′

1〉 |µ1 st ′1〉 (16)

〈〈c2,m2〉 |µ1 lev(e) : st〉 −→∗ 〈〈stop,m′′
2〉 |µ1 lev(e) : st〉 (17)

〈〈end ,m′′
2〉 |µ1 lev(e) : st〉 −→∗ 〈〈stop,m′

2〉 |µ1 st ′2〉 (18)

By applying Lemma 6 on (15) and (17), we have that m′′
1 =L m1 =L m2 =L m′′

2 .
By semantics, (16), and (18), we have that m′

1 = m′′
1 and m′

2 = m′′
2 . Conse-

quently, we have that m′
1 =L m′

2 as expected.
while e do c) The proof proceeds similarly as the previous case but also applying

Lemma 7 when needed.

2

Theorem 3 For all m1 and m2, where m1 =L m2, whenever c contains no end
commands and 〈〈c,m1〉 |µ1 ε〉 −→∗ 〈〈stop,m′

1〉 |µ1 st ′1〉 and 〈〈c,m2〉 |µ1 ε〉 −→∗

〈〈stop,m′
2〉 |µ1 st ′2〉, then m′

1 =L m′
2.

Proof. By applying Lemma 8 with st = ε. 2

Proposition 1 Given a program c that contains no explicit flows or the magnification
pattern, if c leaks at least k bits about the initial values of high variables once the public
part of the initial memory is fixed, then the execution tree for c contains at least 2k leaves.

Proof. By contradiction. We assume that T has less than 2k leaves. On one hand, we have
2k possible initial memories that are different in the high part to account for the leaked
secret. We denote the fixed low part of the memory, as described in the statement of the
theorem, by mL. Since the program c leaks k bits, there are at least 2k final memories
different in the low part. Observe that if an assignment x := e is executed twice in a
program, we consider them as different.

The execution tree T for c and mL represents all the possible assignments that c
can perform when running c with different secret values. Since we have 2k possible final
values for the leaked secret and T has less than 2k leaves, the pigeonhole principle indi-
cates that there exist two memories with initial high parts mH1 and mH2 such that mH1

and mH2 are different in the leaked secret and the execution of program c under these
memories produces the assignments described by a given path in T . Let us sequentially
compose all these assignments into the program c′′. Observe that c′′ might contain an
infinite sequence of assignments due to the possible presence of infinite loops with low
guards in c. Observe that c has no explicit flows by hypothesis and thus neither does c′′.
Denote (mL,mH) for the memory produced from the low and high projections mL and
mH , respectively. Assuming that the sequence of assignments in c′′ is finite, we have that
〈c, (mL,mH1)〉 ⇓ m∗ and 〈c′′, (mL,mH1)〉 ⇓ m∗, while 〈c, (mL,mH2)〉 ⇓ m∗∗ and
〈c′′, (mL,mH2)〉 ⇓ m∗∗, where m∗

L 6= m∗∗
L . However, m∗

L = m∗∗
L because c′′ contains

no explicit flows. We then reach a contradiction.
In the case that c′′ contains an infinite sequence of assignments, e.g., in the presence

of nonterminating loops with low guards, we have that for any prefix of the infinite
sequence of assignments in c′′, written c′′s , it holds that c′′s contains no explicit flows. As
a consequence, we have that 〈c′′s , (mL,mH1)〉 ⇓ m∗ and 〈c′′s , (mL,mH2)〉 ⇓ m∗∗, where

m∗
L = m∗∗

L . This fact contradicts that c′′ leaks k bits. Observe that every prefix of c′′

leads to low-equal memories. 2

Theorem 4 If a program c contains no explicit flows or the magnification pattern and
leaks at least k bits about the initial values of high variables once the public part of the
initial memory is fixed, then c contains at least k high branching instructions.

Proof. Take an initial memory m such that when running program c under m, it leaks at
least k bits about the initial values of high variables . Let us take the low projection of
memory m, written mL, consisting of the values of the low variables. Then, we construct
the execution tree T for c. Let us assume now that c has strictly less than k high branching
instructions and aim at reaching a contradiction. By Proposition 1, T has at least 2k

leaves. The question is now what is the least possible number of executed branches in
T . This is achieved when T is most balanced. Since a binary tree with 2k leaves must be
at least of height k, k is the least number of possible high branching instructions in T .
Thus, c contains at least k high branching instructions. 2

