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Abstract

“The solution lies in secrecy,” said Medra. “But so does threlgem.”
Ill.Tern, Tales from Earthsea, Ursula K. Le Guin

The problem of controlling information flow in multithreadiprograms remains an
important open challenge. A major difficulty for trackinganmation flow in concur-
rent programs is due to thieternal timing covert channelnformation is leaked via this
channel when secrets affect the timing behavior of a threésh, via the scheduler,
affects the interleaving of public events. Volpano and &mitopose a special primi-
tive calledprotect. By definition,protect(c) takes one atomic step in the semantics
with the effect of executing to the end. Internal timing leaks are removed if every
computation that branches on secrets is wrappepioyect() commands. However,
implementingprotect imposes a major challenge.

This thesis introduces a novel treatment of ithteraction between threads and the
scheduler As a result, a permissive security specification and a caitipoal secu-
rity type system are obtained. The type system guaranteesitsefor a wide class of
schedulers and provides a flexible treatment of dynamiatheceeation. While this ap-
proach allows the implementation of a generalized versigirotect, it relies on the
modification of the scheduler in the run-time environment.

In some scenarios, the modification of the run-time envirentmight not be an ac-
ceptable requirement. For such scenarios, the thesismsese transformations that
eliminate the need foprotect or interactions with the scheduler while avoiding in-
ternal timing leaks. The first transformation is given foognrams running under coop-
erative schedulers. It states that threads must not yigitt@dnside of computations
that branch on secrets. The second transformation closaah timing channel when
the scheduler is preemptive and behaves as round-robipaWtrss dedicated threads,
whenever computation may affect secrets, and carefullgteymizes them.

To evaluate some of the ideas described above, the thesansaimplementation
in Haskell of a library that provides information-flow seityifor multithreaded code.
The implementation includes an online-shopping case siycase study reveals that
exploiting concurrency to leak secrets is feasible and dengs in practice and shows
how the library can help avoiding internal timing leaks. @ghe publication date, this
is the first tool that guarantees information-flow secuntynultithreaded programs and
the first implementation of a case study that involves cameiay and information-flow
policies.
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CHAPTER

1

Introduction

Computer systems are nowadays connected by networks. $tange, computers and
mobile phones are often connected to Internet and celletsvarks, respectively. These
systems frequently send, receive, and store confident@hiration in order to perform
some tasks requested by users. It is common to provide a@dithumbers when per-
forming online shopping or to store private multimedia @t in mobile phones. Be-
sides the personal use of such systems, there is a tendenay tmore and more on
computers in order to perform legal procedures, e.g. caficud of salaries, taxes, or
pensions rates. Those legal procedures are commonly d¢awieby governments or
subcontractors. Thus, preserving the confidentiality ¢& @bout citizens becomes an
important requirement in order to guarantee privacy rigitany democratic govern-
ment.

Sharing or accessing information over networks providearcbenefits to users, and
Internet is a clear example of that. Unfortunately, coningctomputers to networks
also exposes them to attacks. One clear example of that isdlieious code placed
on the web. Users download software from Internet withoyt guarantee that their
confidential data are not sent over the network while runtirgge programs. Since
mobile phones can be seen as computers with reduced coipatgiower, they are
also victim of attackers. As before, users download or emghavia Bluetooth, ring
tones, games, or software. Likewise, there are still noantees that the confidentiality
of data is preserved by those programs. For these reasdsgmportant that soft-
ware manufactures consider security aspects when degigoftware as well as mech-
anism to enforce them. So far, some solutions to securitylpenas have been provided
by software developers, e.g, anti-virus programs, netdiogialls, program monitors,
cryptographic techniques, intrusion detection systemsd a&cess control mechanisms.
However, they are still unable to enforerd-to-endSRC84] security policies as con-
fidentiality of data.
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Governmental Secrets
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Fig. 1. Security lattice

Confidentiality of Data

Security requirements are often representeskasrity policiesThese policies describe
what are acceptable behaviors of computer systems. Cotifitirof data can be seen
as a particular kind of such policielformation-flow policiesa particular kind of
confidentiality policiesdescribe how data is propagated once access in granted.
Information-flow policies can be formalized by attachingsdty labels to computa-
tional entities and data in the system, and defining how tfarnimation can flow be-
tween different security levels. For instance, it possibléefine the following informa-
tion-flow policy: no object can read data from a higher seguevel and no data can
be written in an object with lower security level. These tvamditions are known as
“no reads up” and“no writes down”, respectively [BL73]. To formalize this policy, a
lattice on security levels used [Den76]. This lattice defines what are the valid flows
of information between different security levels. The oidg relation in the lattice,
written C, represents the allowed flows of information. In genéral= I indicates
that information of security level, can flow into entities of security levé]. Figure

1 shows an example of a security lattice with four elementszénmental Secrets,
Secret Medical Records, Municipal Secrets, and Public,étaere Public Data Se-
cret Medical Records, Public Data Municipal Secrets, Secret Medical Records
Governmental Secrets, and Municipal SeéreGovernmental Secrets. The informa-
tion can only flow into higher possitions in the lattice. Inms® cases, it is necessary
to downgrade some information regarding secr@eclassification policiegxpresses
downgrading of information in a controlled manner and they @urrently subject of
active research [SS05].

Language-based Information-Flow Security

Information-flow analysis studies whether an attacker dataio confidential informa-
tion by observing how the input of a system affect its outfnfbormation can be dis-
closed by different mechanisms or channels. This thedisvislthe line oflanguage-
based information-flow securifM03]. The information-flow analysis is typically per-
formed by static program analysis. As a consequence, itSsiple to guaranteend-to-
endsecurities, as confidentiality, by just analyzing the wteade of a given system.
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Confidentiality policies could be precisely characteribgdusing program semantics.
Moreover, they can be provably enforced by traditional na@éi$ms as type systems.
Noninterferencas a well known end-to-end property of programs that exgeske
freeness of flows from more secret security levels to lesseseaes. In other words,
a variation in the confidential input of a program does notdpiz any variation of
its public outputs. The attacker model defines what the lttacan observe about the
execution of programs. For the noninterference propédreyattacker can only inspect
the public input and output states. Formally, a prograntsstaran input state =
(sn, s1), wheres;, ands; respectively consists on secret and public variableslmgd
with some values. If a program terminates, it does in an dustjpes’ = (s),, s;), where
s;, ands; are final values for secret and public variables, respdgtiVee semantics
of the program, writterfC], is a function[C] : S — S U {L} that maps input to
output states or input states tofor non-terminating programs. Variations in the input
can be captured by the equivalence relatign Two states are low-equivalent, written
s =, &, iff their public values are the same, i.= s;. The notion of noninterference
can then be expressed as:

Vsl, S9 € S.81 =, 89 A [[C]]Sl #J_ N [[C]]SQ #J_ = [[C]]Sl = [[C]]SQ (1)

The definition above ignores non-terminating execution@ofirams. For that reason, it

is classified as germination-insensitiveecurity specification. In some cases, attackers
can still deduce confidential information by just observiing program terminates or
not. To consider this kind of leaks due to termination, thigniteon of noninterference
can be extended as follows:

Vs1,80 € S.81 =1, $2 = [[C]]Sl =7 [[C]]SQ V ([[C]]Sl =1 A [[C]]SQ :l) (2)

Observe that either both executions@fdiverge or terminate with the same public
values. Security conditions that take into account leales tdutermination are called
termination-sensitivesecurity specifications. Definitionsand 2 are respectively re-
ferred agermination-insensitivandtermination-sensitivaoninterference properties.

Types of Flows

Language-based information-flow techniques deal with raeisms used by program-
ming languages to convey information. These mechanismadacssignments and
branching instructions. Confidentiality of data can be @resd if programs are free of
illegal explicit and implictflows [DD77]. On one hand, explicit flows can leak infor-
mation by assigning confidential values to public variables instance, the program
[ := hleaks the secret value hfby assigning it directly to the public variabldmplicit
flows, on the other hand, can use control constructs in thgukage to leak information.
As an example, the program

if h >0thenl:=1elsel:=2

leaks ifh > 0 or not by using the construét — then — else. Even though there is
no direct assignment of secret values to public variabtesfihal value of depends on
the secret valugé.
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Covert Channels

Besides explicit and implicit flows, programming languagasa present other mech-
anisms to leak information that were not originally desijiier that purpose. These
kind of mechanism are referred esvert channeftam73]. For example, the execution
time of a program, memory consumption, and concurrencyfeatcan be used to leak
confidential information. This thesis proposes technidgaegeal withcovert channels
introduced by some concurrent features. More precisgbypiposes remedies for leaks
produced by exploiting scheduler properties through timénty behavior of threads in
order to modify how the public variables are updated. Thigecbchannel is called
internal timing covert channgVS99] and is the main focus of this presentation.

Thesis overview

The thesis takes a language-based approach to informfiiorenforcement for con-
current programs. In this section, we briefly outline theteats of the four chapters.

Securing Interaction between Threads and the Schedulefexisting approaches to
specifying and enforcing information-flow security ofteregent non-standard seman-
tics, lack of compositionality, inability to handle dynasrthreads, scheduler depen-
dence, and efficiency overhead for code that results fromriggenforcing transfor-
mations. Particularly, Volpano and Smith propose a specialitive calledprotect in
order to remove internal timing leaks. By definitigimotect(c) takes one atomic step
in the semantics with the effect of executingntil termination. Internal timing leaks
are removed if every computation that branches on secreisaigped byprotect()
commands. However, implementipgotect imposes a major challenge. This chapter
suggests a remedy for some of the described shortcomingsfaahework that allows
the implementation of a generalized versiorpobtect. More precisely, it introduces
a novel treatment of the interaction between threads anddheduler. A permissive
noninterference-like security specification and a segtyjie system that provably en-
forces this specification are obtained as a result of su@naotion. The type system
guarantees security for a wide class of schedulers anddges\a flexible treatment
of dynamic thread creation. The proposed techniques refieghe modification of the
scheduler in the run-time environment.

This chapter is an extended version of the paper acceptduetadth IEEE Computer
Security Foundations Workshop, Venice, Italy, July 5-D&0

Security for Multithreaded Programs under Cooperative Scteduling In some sce-
narios, the modification of the run-time environment might be an acceptable re-
quirement. In this light, this chapter presents a transédion that eliminates the need
for protect under cooperative scheduling. In fact, no additional exdtons, besides
yielding control to a thread, are needed in order to avoietirdl timing leaks. Variations
in the transformation can enforce both termination-ing®esand termination-sensitive
security specifications in a language with dynamic threadteon.
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This chapter is an extended version of the paper accepté@tdndrei Ershov Interna-
tional Conference on Perspectives of System Informatlag@mgorodok, Novosibirsk,
Russia, June 27-30, 2006.

Closing Internal Timing Channels by Transformation For those scenarios where
the scheduler is preemptive and behaves as round robirchfger presents a trans-
formation that closes the internal timing channel for ntafeaded programs. The trans-
formation is based on spawning dedicated threads, whegewgputations may affect
secrets, and carefully synchronizing them. Moreover, taesformation only rejects
programs that have symptoms of illegal flows inherent froqusatial settings.

This chapter has been published in the Proceedings of tHeArnual Asian Comput-
ing Science Conference, Tokyo, Japan, December 6-8, 2006.

A Library for Secure Multi-threaded Information Flow in Has kell Recently, Liand
Zdancewic have proposed an approach to provide informdlibensecurity via a library
rather than producing a new language from the scratch. Ty sow to implement
such a library in Haskell. This chapter presents an extensfd.i and Zdancewic’s
library that provides information-flow security for muhiteaded programs. The exten-
sion provides reference manipulation, a run-time mecianésclose internal timing
leaks, and a flexible treatment of dynamic thread creatiororter to provide such
features, the library combines some ideas presented inhééss together with some
other ones taken from literature: type system with effesitgyleton types, projection
functions, cooperative round-robin schedulers, and tyasses in Haskell. Moreover,
an online-shopping case study has been implemented in oréealuate the proposed
techniques. The case study reveals that exploiting coeeayrto leak secrets is fea-
sible and dangerous in practice and shows how the libraryhegmto avoid internal
timing leaks. Up to the publication date, this is the first iempented tool to guarantee
information-flow security in concurrent programs and th& fimplementation of a case
study that involves concurrency and information-flow piekc

This chapter has been published in the Proceedings of tHelEBE Computer Secu-
rity Foundations Symposium, Venice, Italy, July 6-8, 2007.
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Abstract. The problem of information flow in multithreaded programsegns
an important open challenge. Existing approaches to gpegifand enforcing
information-flow security often suffer from over-restiig@ness, relying on non-
standard semantics, lack of compositionality, inabilityrandle dynamic threads,
scheduler dependence, and efficiency overhead for the ¢@dedsults from
security-enforcing transformations. This paper suggastsmedy for some of
these shortcomings by developing a novel treatment of ttegdation between
threads and the scheduler. As a result, we present a perenigsninterference-
like security specification and a compositional securipetgystem that provably
enforces this specification. The type system guaranteesisefor a wide class
of schedulers and provides a flexible and efficiency-frigtiiatment of dynamic
threads.

1 Introduction

The problem of information flow in multithreaded programseéns an important open
challenge [SMO03]. While information flow in sequential prams is relatively well
understood, information-flow security specifications anfbecement mechanisms for
sequential programs do not generalize naturally to muéi#tled programs [SV98]. In
this light, it is hardly surprising that Jif [MZZ06] and Flow Caml [Sim03], the main-
stream compilers that enforce secure information flow, agiport for multithreading.
Nevertheless, the need for information flow control in ntbteéaded programs is press-
ing because concurrency and multithreading are ubiquitousodern programming
languages. Furthermore, multithreading is essentialdargg-critical systems because
threads provide an effective mechanism for realizinggbparation-of-dutiegrinci-
ple [VMO1].

There are a series of properties that are desired of an agiptoanformation flow for
multithreaded programs:

— Permissivenesshe presence of multithreading enables new attacks whehatr
possible for sequential programs. The challenge is to réese attacks without
compromising the permissiveness of the model. In other syardormation flow
models should accept as many intuitively secure and usefgrams as possible.

— Scheduler-independentée security of a given program should not critically de-
pend on a particular scheduler [SS00]. Scheduler-depé¢sdeurity models suffer
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from the weakness that security guarantees may be destogyeedlight change in
the scheduler policy. Therefore, we aim at a security caordihat is robust with
respect to a wide class of schedulers.

— Standard semantidsollowing the philosophy oéxtensional securitfMcL90], we
argue for security defined in terms of standard semanticsppssed to security-
instrumented semantics. If there are some non-standarttipes that accommo-
date security, they should be clearly and securely impleafxe.

— Language expressivenesgey to a practical security model is an expressive under-
lying language. In particular, the language should be abtestat dynamic thread
creation, as well as provide possibilities for synchrotira

— Practical enforcemenfnother practical key is a tractable security enforcement
mechanism. Particularly attractive is compile-time auitimcompositionaknal-
ysis. Such an analysis should neverthelespdraissivestriving to trade as little
expressiveness and efficiency for security as possible.

This paper develops an approach that is compatible with eftese properties by
a novel treatment of the interaction between threads anddheduler. We enrich the
language with primitives for raising and lowering the séylevels of threads. Threads
with different security levels are treated differently linetscheduler, ensuring that the
interleaving of publically-observable events may not depen sensitive data. As a re-
sult, we present a permissive noninterference-like sgcspiecification and a compo-
sitional security type system that provably enforces thexffication. The type system
guarantees security for a wide class of schedulers andgeewi flexible and efficiency-
friendly treatment of dynamic threads.

In the rest of the paper we present background and relatekl (@ection 2), the un-
derlying language (Section 3), the security specificati®erfion 4), and the type-based
analysis (Section 5). We discuss an extension to cooperatiiedulers (Section 6),
an example (Section 7), and implementation issues (Se8jibefore we conclude the
paper (Section 9).

2 Motivation and background

This section motivates and exemplifies some key issues witking information flow
in multithreaded programs and presents an overview ofiegistork on addressing
these issues.

2.1 Leaks via scheduler

Assume a partition of variables into high (secret) and lowb{jz). Supposer and!
are a high and a low variable, respectively. Intuitivelyoirmation flow in a program is
secure (or satisfiesoninterferencgCoh78, GM82, VSI96]) if public outcomes of the
program do not depend on high inputs. Typical leaks in setipilgmograms arise from
explicitflows (as in assignmet= h) andimplicit [DD77] flows via control flow (as
in conditionalif h > 0 thenl:= 1 elsel :=0).
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The ability of sequential threads to share memory opens wamfermation channels.
Consider the following thread commands:

c1: h:=0;1:=h co: h := secret

wheresecret is a high variable. Thread is secure because the final valué &f always

0. Threades is secure becaugeandsecret are at the same security level. Nevertheless,
the parallel composition; || 2 of the two threads is not necessarily secure. The sched-
uler might schedule, after assignment := 0 and beford := h is executed irc;. As
aresult,secret is copied intdl.

Consider another pair of thread commands:

dy: (if h > 0 then sleep(100) else skip); [ :=1
dy: sleep(50); [ :=0

These threads are clearly secure in isolation becausealways the outcome fdrin

dyi, and0 is always the outcome fdrin ds. However, wheni; andds are executed in
parallel, the security of the threadpool is no longer gutah. In fact, the program will
leak whether the initial value df was positive intd under many reasonable schedulers.
We observe that program || ¢ can be straightforwardly secured by synchronization.
Assuming the underlying language features locks, we caritesthie program as

c1:lock;h:=0; [ := h;unlock

co: lock; h := secret;unlock

The lock primitives ensure that the undesired interleaeing andc, is prevented.
Unfortunately, synchronization primitives offer no gealesolution. The source of the
leak in programd; || ds is internal timing [VS99]. The essence of the problem is
that the timing behavior of a thread may affect—via the salezd—the interleaving of
assignments. As we will see later in this section, secuniteylieavings from within the
program (such as with synchronization primitives) is a higtelicate matter.

What is the key reason for these flows? Observe that in bo#scass the interleaving
of the threads that introduces leaks. Hence, itistieeduleand its interaction with the
threads that needs to be secured in order to prevent undésfivemation disclosure. In
this paper, we suggest a treatment of schedulers that afteysrogrammer to ensure
from within the program that undesired interleavings asvpnted.

In the rest of this section, we review existing approachésftrmation flow in mul-
tithreaded programs that are directly related to the paferrefer to an overview of
language-based information security [SMO3] for others iedated, work.

2.2 Possibilistic security

Smith and Volpano [SV98] explorpossibilistic noninterferencéor a language with
static threads and a purely nondeterministic schedulessiBitistic noninterference
states that possible low outputs of a program may not varyigisihputs are varied.
Programd; || d» from above is considered secure because possible finalsvafiare
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always0 and1, independently of the initial value @f. Because the choice of a sched-
uler affects the security of the program, this demonstrttas this definition is not
scheduler-independent. Generally, possibilistic nanfetence is subject to the well
known phenomenon that confidentiality is not preserved figegment [McC87]. Work
by Honda et al. [HVY00, HY02] and Pottier [Pot02] is focusen type-based tech-
nigues for tracking possibilistic information flow in vanis of ther calculus. Forms of
noninterference under nondeterministic schedulers haee bxplored in the context of
CCS (see [FGO01] for an overview) and CSP (see [Rya01] for anvisw).

2.3 Scheduler-specific security

Volpano and Smith [VS99] have investigatpobbabilistic noninterferencéor a lan-
guage with static threads. Probabilities in their mulgtmied system come from the
scheduler, which is assumed to select thraadformly, i.e., each live thread can be
scheduled with the same probability. Volpano and Smittoihitice a special primitive in
order to help protecting against internal timing leaks sTgrimitive is calledorotect,
and it can be applied to any command that contains no loopsofe@ed command
protect(c) is executed atomicallypy definitionof its semantics. Such a primitive can
be used to secure prograin || d» as:

dy: protect(if h > 0 then sleep(100) else skip);
l:=1
dy: sleep(50); 1:=0

The timing difference is not visible to the scheduler beeaf¢he atomic semantics of
protect. Theprotect primitive is, however, nonstandard. It is not obvious howtsu
a primitive can be implemented. A synchronization-basegulé@mentation would face
some non-trivial challenges. In the case of progran d», a possible implementation
of protect could attempt locking all other threads while executiomisde of theif
statement:

dy: lock; (if h > 0 then sleep(100) else skip);
unlock; lock;/ := 1;unlock
dy: lock;sleep(50);unlock;lock;! := 0;unlock

Unfortunately, such an implementation is insecure. Theesainat subtle reason is that
when the execution is inside of thie& statement, the other threads do not became
stantly locked Threadds can still be scheduled, which could result in blocking and
updating the wait list for the lock witHs.

For simplicity, assume thatleep(n) is an abbreviation for. consecutiveskip com-
mands. Consider a scheduler that picks thréafitst and then proceeds to run a thread
for 70 steps before giving the control to the other threadh I 0 thend; will run

for 70 steps and, while being in the middle sfeep(100), the control will be given
to threadds. Threadds will try to acquire the lock but will block, which will resulin

ds being placed as the first thread in the wait list for the lodke Echeduler will then
schedulel; again, andi; will release the lock withinlock and try to grab the lock
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with Lock. However, it will fail becausel, is the first in the wait list. As a resuld,
will be put behindd, in the wait list. Furtherds will be scheduled to sétto 0, release
the lock, and finish. Finallyd; is able to grab the lock and execute= 1, release the
lock, and finish. The final value dfis 1. If, on the other hand, < 0 then, clearly,
dy will finish within 70 steps, and the control will be then givendsg, which will grab
the lock, executé := 0, release the lock, and finish. The final valud af this case is
0, which demonstrates that the program is insecure. Gepgualiler many schedulers,
chances fof := 0 in ds to execute beforé:= 1 in d; are higher if the initial value of
h is positive. Thus, the above implementation fails to rentbeeinternal timing leak.
This example illustrates the need for a tighter interactigh the scheduler. The sched-
uler needs to be able to suspended certain threads instéhitymotivates the intro-
duction of thehide andunhide constructs in this paper.

Returning to probabilistic scheduler-specific nonintesfece, Smith has continued this
line of work [SmiO1] to emphasize practical enforcementadntrast to previous work,
the security type system acceptsile loops with high guards when no assignments to
low variables follow such loops. Independently, Boudol &sastellani [BC01, BC0O2]
provide a type system of similar power and show possililistninterference for ty-
pable programs. This system does not relypatect-like primitives but winds up
rejecting assignments to low variables that follow comditils with high guards.

The approaches above do not handle dynamic threads. Smit3Fhas suggested that
the language can be extended with dynamic thread creatimneXtension is discussed
informally, with no definition for the semantics 6brk, the thread creation construct.
A compositional typing rule fofork is given, which allows spawning threads under
conditionals with high guards. However, the uniform scHedassumption is critical for
such a treatment (as it is also for the treatmenitafl e loops). Consider the following
example:

e1:l:=0
622[::1

es: if h > 0 then fork(skip, skip) else skip

This program is considered secure according to [Smi03]p8sp the scheduler hap-
pens to first execute; and then schedule the first threagd)(if the threadpool has more
than three threads and the second threajldtherwise. This results in an information
leak from~h to [ because the size of the threadpool depends.dvote that the above
program is insecure for many other schedulers. A minor dievidrom the strictly uni-
form probabilistic choice of threads may result in leakinfiprmation.

A possible alternative aimed at scheduler-independenteefirce threads (created in
branches ofifs with high guards) along with their children to be protecteel, to
disable all other threads until all these threads have tetad (this can be implemented
by, for example, thread priorities). Clearly, this wouldeaa high efficiency tall on
the encouraged programming practice of placing dedicatéshgially time-consuming
computation in separate threads. For example, creatingvdhmead for establishing a
network connection is a much recommended pattern [Knu0O204a

The above discussion is another motivation for a tightegranttion between threads
and the scheduler. A flexible scheduler would accommodagathcreation in a sen-
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c::= stop | skip |v:=e|¢;c|if bthen celse c|while bdoc

- -

| hide | unhide | fork(c, d) | hfork(c, d)

Fig. 1. Command syntax

sitive context by scheduling such threads independentiy fthreads with attacker-
observable assignments. This motivates the introducfitimechf ork construct in this
paper.

2.4 Scheduler-independent security

Sabelfeld and Sands [SS00] introduce a scheduler-indepeadcurity condition (with
respect to possibly probabilistic schedulers) and sugnggie-based analysis that en-
forces this condition. The condition is, however, concdmwith external timingleaks,
which implies that the attacker is powerful enough to obséine actual execution time.
External timing models rely on the underlying operatingtsgsand hardware to pre-
serve the timing properties of a given program. Furthermbieknown padding tech-
niques [Aga00, SS00] might arbitrarily change the efficieoicthe resulting code (and
possibly result in a diverging program). In the present wevk assume a weaker at-
tacker and aim for a more permissive security condition aradyais.

External timing-sensitive security has been extended riguages with semaphores
primitives [Sab01] and message passing [SM02].

2.5 Security via low determinism

Inspired by Roscoe’'sow-view determinisnjfRos95] for security in a CSP setting,
Zdancewic and Myers [ZMO03] develop an approach to infororafiow in concurrent
systems. According to this approach, a program is secut® filublicly-observably re-
sults are deterministic and unchanged regardless of septas. This avoids refinement
attacks from the outset. However, low-view determinisnusiég rejects intuitively se-
cure programs (such ds:= 0 || [ := 1), introducing the risk of rejecting useful
programs. Analysis enforcing low-view determinism aregiréntly non-compositional
because the parallel composition with a thread assignitgatoariables is not gener-
ally secure.

Most recently, Huisman et al. [HWSO06] have suggested a teahfmmic-based charac-
terization of low-view determinism security. This chaex@zation enables high-preci-
sion security enforcement by known model-checking tealnesg

3 Language

In order to illustrate our approach, we define a simple niukitded language with dy-
namic thread creation. The syntax of language commandssjgagied in Figure 1.
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{e;m) I n

(skip,m) — (stop,m} (z :=e,m) — {stop, m[x — n])

{c1,m) = (stop,m’) a € {e~s,~e 070}

{c1;co,m) 2 {ca, m!)

(er,m) 2 {cl,m') ac {o~,~ 0,07 0}

{c1;c2,m) = {¢]; c2,m/)

{e,m) | True {e,m) | False
(if e then ¢ else ca,m) — {c1,m)  (if e then ci else co,m) — {c2,m)

{e,m) | True {e,m) | False
(while e do ¢,m) — (c;while edoc¢,m) (while edoc,m) — (stop,m)

o~

(hide,m) =2 (stop,m) (unhide,m) *=X {stop,m)

= o - .-

(fork(c,d),m) % (¢,m) (hfork(c,d),m) —% {c,m)

Fig. 2. Semantics for commands

Besides the standard imperative primitives, the languagéufes hidingiide and
unhide primitives) and dynamic thread creatiafogk andhfork primitives).

3.1 Semantics for commands

A commandc and a memoryn together form ecommand configuratiofic, m). The
semantics of configurations are presented in Figure 2. Alsealantic step has form
(e, m) = (¢, m') that updates the command and memory in the presence of d&jeossi
eventa. Events range over the s{-:»é«», ~> 9,07 OJ}, whered is a set of threads. The
sequential composition rule propagates events to the vep /e describe the meaning
of the events in conjunction with the rules that involve thierds.

Two kinds of threads are supported by the semantics, low myicthreads, partitioning
the threadpool into low and high parts. The intention is tieki-via the scheduler—the
(timing of the) execution of the high threads from the lowets.

The hiding comman@ide moves the current thread from the low to the high part of
the threadpool. This is expressed in the semantics by eventhich communicates to
the scheduler to treat the thread as high. The unhiding cordm#hide has the dual
effect: it communicates to the scheduler by ewent that the thread should be treated
as low. We define independent commandse andunhide instead of forcing them to
wrap code blocks syntactically (@rotect). We expect this choice to be useful when
adding exceptions to the language. For exampleymride in an exception handler
may refer to severalide primitives under a&ry statement.

Commandsfork(c, (f) andhfork(c, cf) dynamically spawn a collection of threads
while the current thread runs command he difference between the two primitives is
in the generated event. Commafekk signals about the creation of low threads with
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evento ; (whereo is read “low”) while hfork indicates that new threads should be
treated as high by evemt (wheree is read “high”).

3.2 Semantics for schedulers

Figure 3 depicts the semantic rules that describe the behafihe scheduler. a sched-
uler is, generally, a programthat forms ascheduler configuratioffr, v) together with

a memoryv. We assume that the scheduler memory is disjoint from thgrarn mem-
ory. The scheduler memory contains variabléhat regulates for how many steps a
thread can be scheduled. Live threads are tracked by vati#titt consists of low and
high parts. the low partis named by, while the high partis composed of two subpools
named, andt.. Threads int, are always high, but threadsipnwere low in the past,
are high at present, and might eventually be low in the fuflieeads are moved back
and forth fromt,, to ¢, by executing the hiding and unhiding commands. Varialkep-
resents the running thread. Variableegulates whether low threads may be scheduled.
Whens is o, both low and high threads may be scheduled. However, wliem, only
high threads may be scheduled, preventing low threads flwsareing internal timing
information about high threads. In addition, the scheduoigght have some internal
variables.

Whenever a scheduler-operation rule handles an eventhiretorresponds to pro-
cessing information from the top level (such as threadgtioand termination) or to
communicating information to the top level (such as thresldcion). The rules have
the form(o,v) = (o', 7'). By convention, we refer to the variablesurasg, ¢, r and

s and variables in/ as¢’,t', 7" ands’. When these variables are not explicitly men-
tioned, we adopt the convention that they remain unchanfied the transition. We
assume that besides event-driven transitions, the satreahight perform internal op-
erations that are not visible at the top level (and may nohghdhe variables above).
We abstract away from these transitions, assuming thatefent labels are empty. For
simplicity, we require that scheduler transitions are deteistic. We expect a natural
generalization of our results to probabilistic schedulers

The rules can be viewed as a set of basic assumptions thatpeeteke scheduler to
satisfy. We abstract away from the actual scheduler impfeatien—it can be arbi-
trary as long it satisfies these basic assumptions and rfingety long. We discuss an
example of a scheduler that conforms to these assumptidecition 4.

Rule for eveni’-ensures that the scheduler updates the appropriate phg tifread-

—

pool (low or high, depending om) with newly created threads. Operatiof) returns
thread identifiers fod and generates fresh ones when new threads are spafwrky
orhfork. Rule for event~ keeps track of a non-terminal step of threads an effect,
counterq is decremented. A terminal step of threadesults in ar ~» x event, which
requires the scheduler to remove threafiom the threadpool. Events, 7 and e r’
are driven by the scheduler’s selection of threadNote the difference in selecting low
and high threads. A low thread can only be selected if theevafy is o, as discussed
above.

Eventsr~e ande~ r are triggered by theide andunhide commands, respectively.
The scheduler handles event.»e by moving the current thread from the low to the
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-

¢q>0 ¢ =q—-1 t,=ta UN(d)

a € {o,0}

g>0 ¢ =q-1 qg>0 ¢ =0 Vaec{oo}t, =1t \{r}

fo.) = (o) fo.) " (o' )
q=0 s=o0 qd >0 T € to Ut q=20 g >0 r’ € te Ut
{o,v) =5 (o', V) {o,v) 27 (o', V)

¢>0 ¢=q¢-1 s'=e ti=t\r} ti={r}

(o, v) = (o', V)

¢>0 ¢=0 s =0 th=toU{r} tL.=0

o~

(o, v) *=" {0, V)

¢>0 ¢ =0 s =e Vac{eolt,=t\{r} t.=0

(o,v) "= (0!, V)

¢>0 ¢ =0 s =0 Vac{eo}t,=t\{r} t.=0

{o,v) st (o', V)

Fig. 3. Semantics for schedulers

high part of the threadpool and settisgto e. Upon evene~ r, the scheduler moves
the thread back to the low part of the threadpool, settirtg o.

Eventsr~ex and e~ rx are triggered byiide andunhide, respectively, when they
are the last commands to be executed by a thread.

3.3 Semantics for threadpools

The interaction between threads and the scheduler takes plathe top level, the
level of threadpool configurationsThese configurations have the fof@m, o, v) =

45’, m’,o’, V') wherea ranges over the same set of events as in the semantics faksche
ulers.

The semantics for threadpool configurations is displaye#igure 4. The dynamic
thread creation rule is triggered when the running thigagkenerates a thread creation
eventa ; wherea is eithere or o. This event is synchronized with scheduler eveht
that requests the scheduler to handle the new threads degemdwhether is higﬁ

or low.

If ¢, does not spawn new threads or terminate, then its commaadsraynchronized
with scheduler event~. If ¢, terminates in a transition without labels, then scheduler
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r
o a’s

{cr,m) =2 {cl.,m') {o,v) 4 (o', V') a € {o,0}

T
o

{e1...cn,myo,v) =5 {c1. ..Crflc;‘dﬂcrﬁ»l . ..cn,m',a/,z/}

ler,m) = fer,m’) — {o,v) = {0, V))

e

{c1...cn,m,o,v) — {c1.  Cr1CnCri1 .. Cnym O I/D

{er,m) = {stop,m)  {o,v) "= {0/, )

{c1...cn,m,o,v) ety {e1...cr—1Crg1 ... en,m’ o, I/D

Cr,m =0 (sto ,m/ o,V T O'/,I//
p

{c1...cnymyo,v) =t (c1. . crot1Crg1..cny,m’ o’ V)

{er,m) iy (stop,m’) {o,v) bt (o', V)

{c1...cnymyo,v) o (c1. . crotCrg1...cn,m’ o’ V)

(o.v) 127 (o', V) aefo,ehr €{l,... n}

’
{c1...cn,m,o,v) [ {c1...ca,m,0’ V)

(cr,m) = e, m') (o, v) = (o', V) a€{r~ee~r}

[e% / I ! /
{c1...cnymyo,v) = {c1...cro1CrCrgr...cn,m' 0’ V')

Fig. 4. Semantics for threadpools

eventr ~x is required for synchronization in order to update the ttipe@l| informa-
tionin the scheduler memory.df. terminates withwe (resp.e~) then synchronization
with r ~ex (resp.,e~ rx) is required to record both termination and hiding (resp.,
unhiding).

Scheduler everit, r’ triggers a selection of a new threadwithout affecting the com-
mands in the threadpool or their memory. Finally, entering exiting the high part of
the threadpool is performed by synchronizing the currergati and the scheduler on
eventsr~e ande~ r.

Let —* stand for the transitive and reflexive closure-e{which is obtained frors™ by
ignoring events). If for some threadpool configuratigip we havecfg —* cfg’ where
the threadpool of:fg’ is empty, thencfg terminatesin cfg’, denoted bycfg | cfq’.
Recall that schedulers always run infinitely; however, adity to the above definition,
the entire program terminates if there are no threads talst&eNe assume that(cfg)
extracts the program memory from threadpool configuratfgn
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3.4 On multi-level extensions

Although the semantics accommodate two security leveldhigrads, extensions to
more levels do not pose significant challenges. Assume aiselattice £ where secu-
rity levels are ordered by a partial order with the intention to only allow leaks from
data at level; to data at levels when?¢; C ¢5>. The low-and-high policy discussed
above forms a two-level lattice with elemeritav and high so thatlow T high but
high Z low.

In the presence of a general security lattice, the threddp@artitioned into as many
parts as the number of security levels. Commahidi:,, unhide;, andfork, are pa-
rameterized over security levél Initially, all threads are in the_-threadpool. When-
ever a thread executeshade, command, it enteré-threadpool. The semantics need
to ensure that no threads froffithreadpools, for alt’ such that? Z ¢ may execute
until the hidden thread reacheshide,. Naturally, command ork, creates threads in
¢-threadpool.

We will illustrate how general multi-level security can befiled and enforced in Sec-
tions 4 and 5, respectively.

4  Security specification

We specify security for programs via noninterference. Tit@c&er’s view of program
memory is defined by bbw-equivalenceelation=; such thatn; =5 ms if the pro-
jections of the memories onto the low variables are the samle = ma|s. A pro-
gram is secure under some scheduler if for any two initial-&muivalent memories,
whenever the two runs of the program terminate, then thdtiegumemories are also
low-equivalent.

We generalize this statement to a class of schedulersriegjgchedulers to comply to
the basic assumptions from Section 3 and also requiringthiegtthemselves are not
leaky, i.e., that schedulers satisfy a form of noninterieee

Scheduler-related events have different distinguishgigvels. Eventsg.,, T, T X,
Tor’, T~ve, e, r~sex, ande~rx (wherer andr’ are low threads) operate on low
threads and are therefore low events. On the other handtsaif,m ~, 7~ X, and
Ter’ (wherer andr’ are high threads) are high.

With security partition defined on scheduler events, we i§péte indistinguishability
of scheduler configurations viaw-bisimulation

Definition 1. A relation R is alow-bisimulationon scheduler configurations if when-
ever{oy, 1) R {o2,12), then

— if (o4, ) = (o}, }) whereais high andi € {1, 2}, then{o!, v}) R (o3_i,v3_4);
— if the case above cannot be applied afid, v;) = (o}, v/) wherea is low and
i€ {1,2}, then{os_i,v3_s) = (0h_;, v4_;) and (o}, v}) R (oh_;, v ).

277

Scheduler configurations are low-indistinguishable ifr¢his a low-bisimulation that
relates them:
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to :=[c];te :=[|;7 :=¢; 5 := 0; turn := 0;
while (True) do {
q = M;run(r);
while (¢ > 0) do {
receive
ot to := append(to, N(@),
°: te := append(te, N(d));
ool skip;
reoX : to 1= remove(T,to);te := remove(r,te);
q:=0;
r~oe: to:=remove(r,to);te := remove(r,te);
te := append(te, [r]); s := 1;

(
(
eur: t,:= append(to, [r]);
te := remove(r,te); s := 0;q := 0;
r~oex : to 1= remove(r,to);te := remove(r,te);

s:=1;q:=0;

o TX 1 to :=remove(r, to);te := remove(r,te);
s:=0;q:=0;

end receive;

g=q-1
b
turn := (turn + 1)%2;

if ((turn =1) or (s = 1))

then {r := head(t.);te := append(tail(ts),]
else {r := head(to);t- := append(tail(t.), |

}

)}
)}

Fig. 5. Round-robin scheduler

Definition 2. Scheduler configurationig, 11 ) and (o2, 12} arelow-indistinguishable
(written (o, v1) ~1 (o2, v2)) if there is a low-bisimulation? such that{oy,v1) R
40’2, l/gb.

Noninterference for schedulers requires low-bisimijasihder any memory:
Definition 3. Schedulew is noninterferentf (o, v) ~, {o,v) forall v.

Figure 5 displays an example of a scheduler in pseudocods.i§ta round-robin
scheduler that keeps track of two lists of threads: low amyh lines. The scheduler
interchangeably chooses between threads from these twpwisen possible. It waits
for events generated by the running thread (expressed hyitipe receive). Func-
tionshead, tail, remove, andappend have the standard semantics for list operations.
OperationN(J), variablest,, t., s, r, andq have the same purpose as described in
Section 3.2. Constant/ is a positive natural number. Variabtern encodes the in-
terchangeable choices between low and high threads. Baneth(r) launches the
execution of thread-. It is not difficult to show that this schedulers complies le t
assumptions from Section 3.2, and that it is noninterferent
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Suppose the initial scheduler memory is formed accordingto = v[t, — {c},te —
B, te — 0,7 — 1,5 — o,q — 0] for some fixedv. Security for programs is defined as
a form of noninterference:

Definition 4. Programc is securef for all o, m;, andmy whereo is noninterferent
andmy =1, ms, we have

4C,m1,0', Vinitb ll Cfgl & 467 ma, 0, Vinitb ll Cf92 =
m(cfgy) =1 m(cfgs)

A form of scheduler independence is built in the definitiontbg universal quantifi-
cation over all noninterferent schedulers. Although thizensally quantified condition
may appear difficult to guarantee, we will show that the sgctype system from
Section 5 ensures that any typable program is secure. Nat¢htls security definition

is termination-insensitiv§SMO03] in that it ignores nonterminating program runs. Our
approach can be applied to termination-sensitive securigystraightforward manner,
although this is beyond the scope of this paper.

As common, noninterference can be expressed for a genetaltydattice £ by quan-
tifying over all security level$ € £ and demanding two-level noninterference between
data at levelg; such that/; C 7 (acting as low) and data at levéls such that’s £ ¢
(acting as high).

5 Security type systems

This section presents a security type system that enfohmesdcurity specification
from the previous section. We proceed by going over the typies and stating the
soundness theorem.

5.1 Typing rules

Figure 6 displays the typing rules for expressions and conadneSuppose£’ is atyping
environmenwhich includes security type information for variables gtiner they are
low or high) and two variableggc and hc, ranging over security typesofw or high).

By convention, we writd", for I" restricted to all variablelsut v.

Expression typing judgments have the foimk e : 7 wherer is low only if all
variables ine (denotedFV/(e)) are low. If there exists a high variable that occurgin
thenT must behigh. Expression types make no use of type variapleandhc.

Command typing judgments have the fofim- ¢ : 7. As a starting point, let us see how
the rules track sequential-style information flow. The gssient rule ensures that in-
formation cannot leakxplicitly by assigning an expression that contains high variables
into a low variable. Furthemplicit flows are prevented by the program counter mech-
anism [DD77, VSI96]. This mechanism ensures that no assgitsrio low variables
are allowed in the branches of a control stateméftof while) when the guard of the
control statement has typegh. (We call suchif’s andwhile’s high.) This is achieved

by the program counter type variatgefrom the typing context’. The intended guar-
antee is that whenevéiy, pc — high + ¢ : 7 thenc may not assign to low variables.
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Vv € FV(e).I'(v) = low Jv € FV(e).I'(v) = high
I'e:low ' e: high

I'ke:r TUI(pouUI'(ho C I'(x)
I' + skip : I'(ho) I'z:=e:I(ho

I'ke:m Ihe,hc— 11 Fca 1o I'pe, pc— high=c: 1
I'Fecije i Tpe,pC— lowtc: T

I'Fe:Te Te C I'(ho) (Ipe, pc— Te UI'(po) LU I'(ho) - ¢; : I'(hC))i=1,2
I'' - if e then ¢; else ¢z : I'(ho)

I'Fe:Te Te C I'(ho) I'pe, pc— 1 U I'(pe) L I'(he) = ¢ : I'(he)
I' - while edo ¢ : I'(hc)

I'(po) = low I'(ho) = low I'(po) = low I'(hc) = high
I" - hide : high I' - unhide : low

I'beilow I'(ho=low I'bd:low

I' - fork(c,d) : low

I'pe,pc— I'(ho) b ¢ : high I'(hc) = high Tpe, pc — I'(ho) b d : high

I' + hfork(e,d) : high

Fig. 6. Security type system

The typing rules ensure that branches of higls andwhile’s may only be typed in a
high pc context.

Security type variableBc (that describekiding contextandr (that describes the com-
mand type) help track information flow specific to the muléhded setting. The main
job of these variables is to record whether the current thigén the high part of the
threadpool fic = high) or is in the low part fic = low). Command type reflects the
level of the hiding context after the command execution.

The type rules fohide andunhide raise and lower the level of the thread, respec-
tively. Conditionr. C I'(hc) for typing highif’s andwhile’s ensures that high control

commands can only be typed under higt which enforces the requirement that high
control statements should be executed by high threads.

The type system ensures that there are sk (but possibly somafork) commands
in high control statements. This is entailed by the ruleffark, which requires lowhc

By removing the typing rules fdtide, unhide, hfork, and the security type variables
hcandr from Figure 6, we obtain a standard type system for secunifogrnation flow
in sequential programs (cf. [VSI96]). This illustratesttiar type provides a general
technique for modular extension of systems that track médion flow in a sequential
setting.
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Extending the type system to an arbitrary security latflde straightforward: the main
modification is that security levelsin hide,, unhide;, andfork, may be allowed
only if the level ofhcis alsot.

5.2 Soundness

We enlist some helpful lemmas for proving the soundnesseofythe system. The first
lemma states that high control commands must be typed wgthfd

Lemmal. If I' + ¢ : 7, wherec = if e then ¢; else ¢y Or ¢ = while e do ¢, and
I' t e : high, thenI"(hc) = high.

The following lemma states that commands withh guards andhforks cannot con-
tainhide orunhide commands as part of them.

Lemma 2. If I'hepc, pC— high, hc— high & ¢ : high, thenc does not contaihide
andunhide.

The following lemma states that threads in the high partetiineadpool do not update
low variables.

Lemma 3. If I, hc — high + ¢ : 7 and{c,m) = (¢/,m'), thenm = m' and
a ¢ {o,~ e}

The next lemma states that threads createhiftoyk always remain in the high part of
the threadpool.

Lemma 4. If Ihepe, he — high, pc — high = ¢ : high and {¢,m) = (¢’,m’) and
¢’ # stop, thenl'hepe, he— high, pc— high = ¢ : high.

As stated by the following lemma, threads that are movedeadaw part of the thread-
pool are kept in the high part of it until amhide instruction is executed.

Lemma 5. If Thepe, pC— 7., hc— high = ¢ : low for some giverr, and (¢, m) N
(¢',m’), wherec’ # stop anda # e ~ r, thenI'hepc, PCH T¢, hC— high - ¢ : low.

The following lemma states that threads in the low part oftitineadpool preserve low-
equivalence of memories.

Lemma 6. For a given command such thatl,., hc — low + ¢ : low, memories
my andmsy such thatm; =5, ms, and (¢, m;) = (¢, m}); it holds that (c, ms) =
(¢, mb) andm] =y, mb.

The next lemma states that threads remain in the low pareahtteadpool as long as a
hide instruction is not executed.

Lemma 7. If Thepe, PC— T, hC— low F ¢ : low for some giverr. and (c, m) A
(¢, m'), whered’ # stop anda # r ~ e, thenl'ncpc, pc— 7, hc— low F ¢ : low.

Another important lemma is that commandsie andunhide are matched in pairs.
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Lemma 8. If Ik, hc— low F hide;c : low, then there exist commandsandp such
thatc € {¢’;unhide, unhide, ¢’;unhide;p, unhide;p}, where¢’ has nounhide
commands.

In order to establish the security of typable commands, vesline firstly identify the
following subpools of threads from a given configuration.

Definition 5. Given a scheduler memoty and a thread pooF, we define the fol-
lowing subpools of threadd.(c,v) = {ci}ict.nn(e), H(C V) = {ci}tictann(e), and
EL(¢v) = {Cz‘}ietem\/(a-

These three subpools of threadg¢) (low), H(¢) (high) and EL(¢) (eventually lovy,
behave differently when the overall threadpool is run witJequivalent initial mem-
ories. Threads from the low subpool match in the two rungatis from the high sub-
pool do not necessarily match (but they cannot update lowaniesin any event), and
threads from the eventually low subpool wéventually matchThe above intuition is
captured by the following theorem. First, we define what feually match” means.

Definition 6. We define the relatioeventually lowwritten~; ,,, on empty or singleton
sets of threads as follows:

-0 ~el,p,0 @’

= {c} ~eip,iny {d} if N(c) = N(d) = n, and there exist commandsandd’ with-
outunhide instructions such that € {¢’; unhide, unhide} andd € {d’;unhide,
unhide} or ¢ € {¢/;unhide;p,unhide; p} andd € {d’;unhide; p, unhide; p}.

Two traces that start with low-indistinguishable memorigght differ on commands
(although keeping the command type). We need to show thatifference will not
affect the sequence of low-observable events and low-wlisker memory changes. In
order to show this, we define amwinding[GM84] property, which is similar to the
low-bisimulation property for schedulers. This unwindipigperty below establishes
an invariant on two configurations that is preserved by logpstin lock-step and is
unchanged by high steps with any of the configurations.

Theorem 1. Given a commang and the multithreaded configuratiof& , m1, o1, v1)
and{(cz, ma, oa, 12) SO thatm, =y, mo, written asRy (mq, ma), N(é1) = H(é1,v1)U
L(éi,v1)UEL(¢1, 1), written asRo(¢é1, 1), Ra(¢3, v2), setsH (é1, 1), L(¢1,v1), and
EL(c1, 1) are disjoint, written asks (¢1, v1), Rs(¢3,v2), L(éi,1v1) = L¢3, va), Writ-
ten asRy(c1,v1,¢3,12), EL(¢1,11) ~elpte, PL(C3, v2), Written asRs(ci, v1, ¢z, va,
p), (I'lhc— low] = ¢; : low);e (¢ 0y, Written asRg(ci, v1), (I'[hc — high, pc —
high] &= ¢i : high)ic (e v UH (63 ,0s), WHIttEN @SRz (c1, 11, C3, va), (I'[hC— high]
ci : low)ie BL(c ) UEL(c3,v0), WHItt€N @SRg (1, V1, C3, v2), @and (o, v1) ~, (02,12,
written asRy (o1, v1, 02, v2), then:

—if (&, mi, 00, v5) = (Ch,ml, o), vl) wherea is high andi € {1,2}, then there

17 17 1
eXiStQJ/ such thatRl (m;, mgfi), RQ (8;, I/Z{), R2 (8371', 1/371'), Rg (8;, I/z{), Rg (83,1',
v3—i), Ru(Ci,vi,C3_i,v3-4), Rs(Ci v, C3_i,v3-4,p"), Re(Ch,vi), R7(Ch,vj,
C3—i,v3—;), Rs(CL, v}, Ca—i,v3—;), and Ry (0}, v}, 03_i,V3—;);

1) 7))
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— if the above case cannot be applied, an¢tit m;, o, v;) = (¢, m/, al,z/lbwhere
aislowandi € {1, 2}, then{c;_;, ms— 1,03 i, V3 ZD—>4 ch_ Z,m3 1,03 i Vh_ib
where there eXIStﬁ' such thatRl(m m3 ), Ra(C7, Z) Ry(C, €5 i Vh i) Rg(*’

V), R3( b Vs_i), Ra(Cl v z,03 i Vs_i)s Rs(Ch v, E5 5 v5 0, 0"), Re(Ch, 1)),

R7( 7 176371’1/371) R8( i 1’6371’1/371) andR9(Uz7 1’0371’1/371')'

Corollary 1 (Soundness).If I'h., hc— low F ¢ : low thencis secure.

6 Extension to cooperative schedulers

It is possible to extend our model to cooperative scheduléris is done by a minor
modification of the semantics and type system rules. Oneltam that the results from
Section 5 are preserved under these modifications.

The language is extended with primitiyeeld whose semantics are as follows:

(yield, m) %X (stop, m)

The semantics for commands also need to propagatefalelthe sequential compo-
sition rules.

Event signals to the scheduler that the current thread yieldsabrithe scheduler
semantics need to react to such an event by reseting calinod:

g>0 qd =0
¢>0 ¢ =0 Vac{oo}t,=t\{r}
{o,v) g (o', V) Ao,v) s (o', V)

We need to ensure that the only possibility to schedule andltinead is by generating
eventt.. Hence, we add premisg = oo to the semantics rules for schedulers that
handle eventg, r’ and{, r’. Additionally, the last rule in Figure 4 now allows

to range ovefr ~ e, e ~ 1 1 24}, which propagates yielding events from threads

to the scheduler. Similar to scheduler events e x ande~ rx, a new transition is
added to the threadpool semantics to include the case wheld is executed as the
last command by a thread.

At the type-system level, yielding control while inside glmcontrol command, as well
as insideéhide/unhide pairs, is potentially dangerous. These situations aredadoby

a type rule foryield that restrictpcandhcto low:

I'(po) = low I'(hg = low
I'+yield: I'(ho

A theorem that implies soundness for the modified type sysgmbe proved similarly
to Theorem 1.

Recently, we have suggested a mechanism to enforcing secuiler cooperative
scheduling [RS06]. Besides checking for explicit and imiplflows, the mechanism
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ensures that there are gaeld commands in high context. Similarly, the rule above
implies thatyield may not appear in high context. On the other hand, the mesimani
from [RS06] allows no dynamic thread creation in high conté@kis is improved by
the approach sketched in this section, because it retagrftettibility that is offered by
hfork.

7 Ticket purchase example

In Section 2, we have argued that a flexible treatment of dymémead creation is
paramount for a practical security mechanism. We illustray an example, that the
security type system from Section 5 offers such a permigsdgment without com-
promising security.

Consider the code fragment in Figure 7. This fragment is igfaa program that han-
dles a ticket purchase. Variables have subscripts indigatieir security levelsi (for

low andh for high). Suppose; contains public data for the flight being booked (in-
cluding the class and seat detailg) contains data for the passenger being processed.
Variablen; is assigned the (public) number of frequent-flier miles fighfl f;. Variable
my, IS assigned the current number of miles of passepgerhich is secret. Variable
sy, is assigned the (secret) status (eBASIC or GOLD) of passengep;. The value

of sy, is then stored iwy,. Variableok; stores if the procedure to print a ticket has been
successfully carried out.

The next line is a control statement: if the updated numbgr- n; of miles exceeds
50000 then a new thread is spawn to perform a status updadeteStatus for the
passenger. The status update code involves a computatiextfa miles (due to the
passenger status) and might involve a requishgeStatus to the status database. As
potentially time-consuming computation, it is arrange@iseparate thread. The final
computation in the main thread prints the ticket.

This program creates threads in a high context because tuel @i theif in the
main thread depends ony,. Furthermore, the main thread contains an assignment to a
low variable ¢;) after the instructions that branches on secrets. Nevegfiea minor
modification of the program (which can, generally, be easiljfomated) by replacing
if (mp + n; > 50000) then fork(sy := GOLD, updateStatus) with

hide;

if(my + ny > 50000) then
hfork(sy := GOLD, updateStatus)
else skip;

unhide

results in a typable (and therefore secure) program.

8 Implementation issues

As discussed in Section 2, it is important that the proposedirdy mechanism for
regulating the interaction between threads and the scaedifkasible to put into effect
in practice.
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ny := computeMilesFor(f1);
mp = miles(pr);
sp = statusOf (py);
Oh ‘= Sh;
if (mh +n; > 50000)
then fork(s, := GOLD, updateStatus);
oky := printTicket(pi, fi,d1);

updateStatus :

if (on # GOLD) then changeStatus(p;, GOLD);
en = extraMiles(mn,ni, Sp);

mp, := updateMiles(pi, mpn + 1y + ep)

Fig. 7. Ticket purchase code

We have analyzed two well-known thread libraries: the GNI[Ehg05] and the NPTL
[DMO03] libraries for the cooperative and preemptive coment model, respectively.
Generally, the cooperative model has been widely used iinngtance, GUI program-
ming when few computations are performed, and most of the time system waits
for events. The preemptive model is popular in operatingesys where preemption
is essential for resource management. We have not analjeelibtaries in full de-
tail, focusing on a feasibility study of the presented iat¢ion between threads and the
scheduler.

The GNU Pth library is well known by its high level of portabiland by only using
threads in user space. We have modified this library to allwsvitnplementation of
the primitiveshide andunhide as well as a noninterferent scheduler based on the
round-robin policy from Section 4. The scheduler consistere list of threads for
each security level, in this case, low and high. The scheduierchangeably chooses
between elements of those lists depending on the valudidd., low and high threads
whens = o, and only high ones otherwise).

The NPTL library, on the other hand, is more complex than tfe®ipus one. It maps
threads in user space to threads in kernel space by usingel@hprimitives in the
code. Nevertheless, it is possible to apply a similar prapetb that we have applied
to the GNU Pth library. The interaction between threads dedscheduler becomes
more subtle in this model due to the operations performetieatkernel space. The
responsiveness of the kernel for the whole system wouldraepe temporal properties
of code wrapped byide andunhide primitives.

9 Conclusion

We have argued for a tight interaction between threads amddheduler in order to
guarantee secure information flow in multithreaded progrdmconclusion, we revisit
the goals set in the paper’s introduction and report theedegf success meeting these
goals.
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Permissivenes@ key improvement over previous approaches is a permisgatese-
cure, treatment of dynamic thread creation. Even if threadscreated in a sensitive
context, the flexible scheduling mechanism allows thesetiis to perform useful com-
putation. This is particularly satisfying because it is aca@uraged pattern to perform
time-consuming computation (such as establishing networinections) in separate
threads [Knu02, Mah04].

Scheduler-independende contrast to known approaches to internal timing-seresiti
approaches, the underlying security specification is rolitk respect to a wide class
of schedulers. However, the schedulers supported by theititafi need to satisfy a
form of noninterference that disallows information trarsirom threads created in a
sensitive context to threads with publicly observableaffeSections 4 and 8 argue that
such scheduler properties are not difficult to achieve.

Standard semanticsThe underlying semantics does not appeal to the nonstandard
protect construct. The semantics, however, feature additiardk, unhide, and
hfork primitives. In contrast tprotect, these features are directly implementable,
as discussed in Section 8.

Language expressivenegss discussed earlier, a flexible treatment of dynamic thread
creation is a part of our model. Input/output and synchration are also desirable
features. We expect a natural extension of our model withtiioptput primitives on
channels labeled with security levels, as well as synchatian primitives (such as
semaphores) that operate on different security levelstHeotwo-point security lattice,
we imagine the following extension of the type system. Lovarutels would allow
low threads to input to low variables and to output low expi@ss. Low semaphores
s would permit low threads to execute baths) andV(s) operations. High channels
would allow high threads to input/output data and allow Idwetds to output data.
High semaphores would allow high thread® perform bottP(s) andV(s) operations
and allow low threads to perforii{s). Formalizing this intuition is subject to our future
work.

Practical enforcementWe have demonstrated that security can be enforced for both
cooperative and preemptive schedulers using a compasitippe system. The type
system accommodates permissive programming. We havedltad by an example in
Section 7 that the permissiveness of dynamic thread cre&inot majorly restricted

by the type system. The type system does not involve paddialiminate timing leaks

at the cost of efficiency. Our future work plans include atapthe type system to un-
structured languages (such as languages with exceptidnsyaéecode) and facilitating
tool support for it.
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Appendix

Lemma 1.If I' + ¢ : 7, wherec = if then e else cicy OF ¢ = while do ec, and
I' + e high, thenI'(hc) = high.

Proof. By inspection of typing rules farf andwhile. m]

Lemma 2.If I'hepe, pC— high, hc— high = c : high, thenc does not contaihide
andunhide.



Securing the Interaction between Threads and the Scheduler 31

Proof. By simple induction on the typing derivation. |

Lemma 3.If Ihe, hc — high F ¢ : 7 and{c,m) = {¢/,m’), thenm = m’ and
a ¢ {o,~ e}
Proof. By induction on the type derivation of

skip) It holds trivially sinceskip does not modify the low memory and it does not
produce any labeled event.

x :=e) By the typing rule for assignment, we know thBfxz) = high. The result
follows from the fact that the assignment does not changthenemory neither

produce any labeled event.
c1;¢2) By the typing derivation for sequential composition, we dévat

I'he, hcr— high ¢y : 7' (1)
Ihe,he— 7' Fey:r (2)

for some typer’. By the semantic rule for sequential composition, we hawe tw
more cases to consider:

{c1,m) = (stop,m) 3)
{cr,m) = ey, m') (4)

Both cases are probed similarly. Thus, we only show how teeptioe later one. The
result then follows from applying IH ofill) and(4), and thus obtainingr =5, m’
and thatw ¢ {o,~ e}.

if e then ¢; else c2) It holds trivially since the semantic rule for branchingduees
theif toc; or e, without modifying the memory and without producing any |kl
events.

while e do c) Itis probed similarly to the.f — then — else.

hfork(e,d)) It holds trivially since the semantic rule faf ork reduces tqc, m) and
produces the labeled event= .

O

Lemma 4. If I'hepe, he — high, pc — high + ¢ : high and {¢,m) = {¢’,m’) and
¢’ # stop, thenlhepc, he— high, pc— high = ¢ : high.

Proof. By case analysis ofand inspection of the typing rules. m]

Lemma 5.If I'hcpe, pC— T, hC — high = ¢ : low for some giverr, and(c, m) N
(¢',m’), wherec’ # stop anda # e ~ 1, thenI'hepc, PC T¢, he— high = ¢ @ low.

Proof. By case analysis on The only typable command under the hypothesis of the
lemma is the sequential composition. Then, we considerdke where = c;; ¢, for

the given commands andce. We assume, by associativity of sequential composition,
thatc; consists on a single command. The cases whes skip andec; = = := ¢

are proved by just inspecting the typing rules and applyiiregstubsumption rule when
needed. The interesting cases are proved as follows.
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c1 = if e then ¢; else ¢¢) The proof proceeds similarly regardless the boolean value

obtained from evaluating. Therefore, we only show the case when the guard is
evaluated t@rue. By inspecting the semantics rules for commands, we knotv tha

(c1; 2, m) — {ct, m). By the typing derivation of;; co, we know that

Thepe, PC— Te U T L high, hc— high & ¢, : high (5)
Thepe, PCH— T, he— high = co : low (6)

If . = high, the result immediately follows from applying the typindeuor
sequential composition t@) and (6). Otherwise, we can apply the subsumption
rule to(5) to obtain that

Thepe, PC— T, he— high t= ¢, @ high (7

The result follows from applying the typing rule for sequaehtomposition to(7)
and(6).

c¢1 = whileedo ¢y,) It is proved as the conditional case. The result follows by in
specting the typing derivation af;; c2, applying the sequential composition and
subsumption typing rules when needed.

¢1 = hfork(c,d)) By inspecting the semantics rules for commands, we know that

(c1;c2,m) g {c; c2, m). By inspecting the typing derivation @f ; co, we obtain
that

The pe, PC— high, hc— high = ¢ : high (8)
Thepe, PCH— T, he— high = co - low 9)

If . = high, the result immediately follows from applying the typindeor
sequential composition t() and (9). Otherwise, we can apply the subsumption
rule to(8) to obtain that

I'hepe, PC— T, he— high &= ¢ @ high (10)

The result follows from applying the typing rule for sequahtomposition tq(10)
and(9).

O

Lemma 6. For a given command such thatl },,c, hc— low + ¢ : low, memoriesn,
andms such thain, =g, ms, and{c, m1) = {¢/, m}); itholds that{c, ms) = {c/, m})
andm/ =5, m).

Proof. By case analysis onand by exploring its type derivation. ]

Lemma 7.If Ihepe, PC+ Te, hC — low F ¢ : low for some givenr. and{c, m) =
(¢',m’), wherec’ # stop anda # r ~ e, thenI'he pc, pC— 7c, he— low = ¢ = low.

Proof. By case analysis onand inspection of the typing rules. ]
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Lemma 8.If I}, hc— low = hide;c : low, then there exist commandsandp such
thatc € {c¢’;unhide, unhide, ¢’;unhide;p, unhide;p}, wherec’ has nounhide
commands.

Proof. By induction on the size of commad

|c|] = 1) The only typable command of siZeis unhide. Thus, the result follows from
takingc = unhide.
|c] > 1) The only typable command which size bigger than the sequential compo-
sition. In other wordsg = ¢;1; ¢o, for a single command, and a command,.
c1 = skip) We know then thatl}c, hc — high + skip : high and e, hc —
high F co : low. Therefore, we can conclude that

Ihe, hc— low F hide;cs : low (12)

By applying IH on(11), we obtain that there exists commangsndp, such
thatc, € {c};unhide, unhide, ¢);unhide;p, unhide;p} wherec, has no
unhide commands. The result follows by takieg= skip; ¢, andp = ps.

c1 = unhide) The result trivially follows by takingp = c¢» and because
unhide; p.

c¢1 = x :=e) This case is proof in a similar way as when= skip.

¢ = if e then ¢] else ¢),) By the typing derivation of, we know that

The, hc— high - if e then ¢} else ch;co : low (12)

By the type derivation of12), we also have that

(I'he; hc— high, pc— high t= ¢, : high);—1 2 (13)
The, hc— high I if e then ¢ else ¢} : high (14)
Ihe, hc— high = cs : low (15)

Therefore, we can conclude that
IThe, hc— low F hide;cs @ low (16)

By applying Lemma2 to (13), command&ide andunhide do not appear in
(¢})i=1,2. By applying IH on(16), we obtain that there exists commands
andp, such thates € {¢”;unhide, unhide, c¢”;unhide;ps, unhide;ps},
wherec” has nounhide commands. The result follows by taking command
¢ =if ethenc] elsech;¢” or ¢ =if ethenc] elsec, (depending on
the form ofcs) andp = po.

¢ = (while e do ¢1);¢2) In this case, the proof is similar to that when command
¢ =if e then ¢ else d).

—

¢ = hfork(c,d); c2) By the type derivation of, we know that

I'he pe, he— high, pc— high = ¢ : high a7
The.pe, he— high, pc— high & d - high (18)
The, he— high F co : low (29)
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Therefore, we can conclude that
Ihe, hc— low F hide;cs : low (20)

By applying Lemma to (17) and(18), we obtain that andd contains ndide

or unhide. By applying IH on(20), we obtain that there exists commangs
andp, such thatcs € {¢’;unhide, unhide, ¢”;unhide;py, unhide;ps},

wherec” has nounhide. The result follows by taking’ = hfork(c, d); ¢’ or

¢’ =hfork(c, (f) (depending on the form @f,) andp = p-.

O

Theorem 1.Given a commang and the multithreaded configuratiof§, mq, o1, v1)
andqc'é,mg,ag, ng so thatm; =7, ms, written asRl(ml,mg), N(C_i) = H(_él,l/l) U
L(¢1,v1)UEL(¢e1,v1), written asRa(¢1, 11 ), Ra(é3, v2), setsH (é1,11), L(¢1,v1), and
EL(éi, 1) are disjoint, written afs(¢é1, v1), Rs(¢3, v2), L(¢1,v1) = L(éa, va2), writ-
ten asRy(¢i,v1,¢5,v0), EL(¢1,11) Nel_,p_,tEIEL(c_é, v9), written asRs(c1, 11, €3, Vo,
p), (I'[hcr low] = ¢; : low)ie (i ), Written asRe(ci,v1), (I'[hc —  high, pc —
high] = ¢; © high)ic H(ci w1 )UH (3 ,00), WITttEN @SRz (c1, v1, G, va), (I'[he— high]
Ci + low)ie BL(G ) UEL(c3,vs), WIitteN asRg(ci, v1, G, v2), and(oy, v1) ~r (02,12,
written asRg (o1, v1, 02, 112), then:

—if (¢, mq, 00, v5) = (€}, m},al, V) wherea is high andi € {1 2}, then there
existSp’suchthaﬂ%l(m ms—;), Ra(C1, Z) Ry (C5_i,v3_3), Rg( L, Rg(Cg i
v3—i), Ra(C3, 1703 inV3—i), Rs(Ch, v, G5 i V3 '), Re(C,v), Ra(Cl, v,
C3—i,v3—;), Rs(Ch, v}, Cs_i,v3—;), andRy (o}, v}, 034, V3_;);

— if the above case cannot be applied, an(@if m;, o;, v;) BN (¢, m}, ok, v) where
aislowandi € {1,2},then{c_;, ms_;, 03_;,v3_ lbiq*g Z,mg 1,03 Vi)
where there exisi;s’ suchthatRl(m’ mg i) RQ( L z) Ry (2}, 3 i V5_i)s Rg(”’

)R3( 3— 171/3 z) R4( [ 1’63 z’VB z) R5( @) 1703 17V3 z7p) RS( [ z)

R7( 2l 1763—1’1/3—1) R8( ;7 :,8% Z’V?) z) andR9(017 1703—17V3—z)'

Proof. By case analysis on command/scheduler steps. We are oinly poshow the
proofs for the mentioned commands when the configuratignm, o1, 1) makes
some progress. We assume that the thrgatlelongs toc; . Analogous proofs are
obtained when|é;, ma, 02, 12) makes progress instead. We make a distinction if the
system performs an step that produces a low or a high event.

Low events: 0} y T, T X, Tor, rrse, e, T ~ex, ande~ r.x (Where
{r,r"} Cto, andr, € t.,).

ap = o, 7 ) By inspecting the semantics for threadpools, the schecanercommands,

we have that, € L(ci, 1), and thate, = fork(c,d) or ¢, = fork(c, d); ¢* for
some commandsandc*. We are only going to show the proof for the case when
= fork(c, d); ¢* since the proof for,. = fork(c, d) proceeds in a similar way.
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By inspecting the semantics for threadpools and commaned)ave the transi-
tion {c,, m1) X {¢; ¢*,mq), and that{oq, 11 ) oﬁ} (o1, v}). Becaus€oy, 1) ~r
(o2, 2) anda; is low, we also have thdios, v2) li, (o4, v4). In addition to that,
we also know that, € L(c3, v») sinceL(c3, v2) = L(¢1,11), and thafc,., ma) 24

(o3

{¢; ¢*, ma). We can therefore conclude thgk, ma, o, v2) —2 (3’ mb, ob, vh).
Ri(m},m}) holds by applying Lemma&. Ro(ci’,v}), Ra(&',14h), Rs(éi', 1),
and R3(c3’,v4) hold since propositiongy(ci,v1), Ra(c3,vs), Rs(éi,v1), and
Rs(¢3,12) holds, and by inspecting the semantics for the scheduletheg with
the fact thatN (d) are fresh names for threadB4(ci’, ), ¢, /) holds since
Ry(¢i, 11,65, 19) holds and because the transition added the same new low
threads to both configurations. By takipg= p, we have thaRs(¢i', v}, é3', V4, p)
holds since propositioR®;(¢1, v1, ¢3, v, p) holds and because the eventually low
thread, if exists one, has made no progrégsc;’, v} ) holds sinces (¢, v1 ) holds
and by inspecting the Lemnia R (&', v}, é3’, v) holds Ry (¢, vy, é3, v2) holds
and because high threads have been not modified by the low stéj (c_il, vy, é',
v4) holds Rg(ci, v, ¢3,v2) holds and because the eventually low threads in both
configurations, if they exists, have been not modified by tbpe, . Finally, propo-
sition Ry (o}, v, 0%, v4) holds sinceRg (o1, 11, 02, v2) holds and by applying the
definition of~ ..

a1 = r~ ) Byinspecting the semantics rules for threadpools, theckdee and com-
mands, we have that. € L(c¢i,v1), {cr,m1) — (¢, m}), and that{oy, 1) =
(o1, v}). Becausdoy, v1) ~1, (09, 2) anda is low, we also have thdtr, 1)
(o, v4). In addition to that, we also know that € L(¢3,vs) sinceL(és,vs) =
L(¢1,11), and that{c,, ma) — (¢/, m2). Therefore, we can conclude that the tran-
sition ¢z, ma, o, 1) — (&', mb, oby, v4) holds.
R1(m},mb) holds by applying Lemmaé to c,.. Ro(éi', 1), Ra(c3',vh), Ra(ci’,
V1), andR3 (&', v4) hold sinceRy(ci, v1), Ra(c3, va), R3(ci,v1), andR3(c3, va)
holds, and by inspecting the semantics for the schedBIgr;’, v{, ¢3’, v4) holds
sinceR4(¢1, v1, ¢3, 2) holds and by applying Lemntgto ¢,.. By takingp’ = p, we
have thatRs(ci’, v}, é3', vb, p) holds sinceRs(ci, v1, ¢, 1o, p) holds and because
the eventually low threads, if they exist, have made no @sgRs(ci’, ) holds
since R¢(¢i,v1) holds and by applying Lemmiato c,. R7(¢i’, v}, ¢’ v4) holds
since R7(¢1, 14, ¢3,v2) and because high threads have been not modified by the
transitiona;. Rg(ci’, v, ¢, vb) holds sinceRg(ci, v, ¢, v2) holds and because
the eventually low threads in both configurations, if theiggxave been not mod-
ified by the transitiony, . Finally, Ry (o}, v}, o4, v/4) holds sinceRg (o1, v1, 02, v2)
holds and by applying the definition ef;.

a1 = r~x ) By inspecting the semantics for threadpools, the schedaitet com-

mands, we havethat € L(¢i, 1), {¢,, m1)— (stop,m}),andthafoy, ) "=
(o7, v1). Becaus€oy,v1) ~1 {o2,12) anda; is low, we also have thafoa, o)

T~ X

=" {0k, v4). In addition to that, we also know that € L(¢3, v2) sinceL(cz, va)
= L(¢1,11), and that{c,., ma) — (stop, ma). We can therefore conclude that the

transition(cs, ma, o9, va) "= (&', mb, ob, v4) holds.
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aq

R1(m}, m}) holds by applying Lemm& to c,.. Ra(ci’,v}), Ra(c3',vh), Rs(éi,

V1), andR3 (&', v4) hold sinceRy(ci, v1), Ra(c3, va), R3(ci,v1), andR3(c3, va)
hold, and by inspecting the semantics for the schedulerefgbghat the thread
¢, has just terminated)?,(¢i’, v}, é3', v4) holds sinceR,(¢i, vy, ¢, v2) holds and

by applying Lemma to c,.. By takingp’ = p, we have thaRs(¢i’, v}, &', v4, p)
holds sinceR5(ci, v1, é3, v, p) holds and because the eventually low threads, if
they exist, have made no progress(ci’,v;) holds sinceRs(ci, v1) holds and

c. & L4, 1)). Re(é' v}, ' vh) holds sinceRy(ci, vi, ¢, v2) holds and be-
cause high threads have been not modified by the transitioRs(ci’, v}, ¢3', v4)
holds sinceRs(ci, v1, ¢3, v2) holds and because the eventually low threads in both
configurations, if they exists, have been not modified by theditiona; . Finally,

Ro (o}, vy, 04, 4) holds sinceRg (o1, 11, 02, 2) holds and by applying the defini-
tion of ~p.

=1,7") By inspecting the semantics for threadpools and the scheduk have

’
oT

that {01, 1) [E (o1,v]). Becausdoy, 1) ~1 {o2,v2) anda; is low, we also

have that{os, v2) let (o5, v5). We can therefore conclude that the transition

— To'r/ —/ 7 ’ /
(e2,ma,02,v2) = (3, m}, 05, 15) holds.

Let us takep’ = p. Then, we have thaR, (m},m}), Ra(ci’,v}), Ra(c',v4),
Rs(ci',1}), Ra(&5,vh),Ra(ci' v, é3' vh), Rs(ci' v, é3' v, '), Re(éi' s vh), Ry

(ci' vy, 63’ V), Rs(ci', v}, ', vh) holds sinceR; (my, ma), Ra(ci, 1), Ra(és,

v2), Rs(éi,11), R3(¢3,1v2), Ra(éi, 11, é3,12), Rs(é1, 11, E3, 12, p), Re(¢1,11), Ry
(¢i,v1,¢3,19), Rs(ci,v1, ¢, 12) holds and because the transition has only modi-
fied the variablée,. in the schedulerRy (o}, v}, o4, v4) holds sinceRg (o1, 11, 02,

v5) holds and by applying the definition ef;,.

a1 =1~ e) By inspecting the semantics for threadpools, the schedaiet com-

mands, we have that = hide; c* for some command®, {c,, mi) = {c.,m1),

and that{o;, 1) =" (o}, v}). We also know thafc,, ms) = (c.,m2) since
L(é1) = L(¢é2). Moreover, we know thafoy, 1) ~p {o2,12) anda; is low,

we also have thatoy, 1) =" (0%, v4). We can thus conclude that the transition
(3, M9, 00, 12) "=* (&, mb, oh, v4) holds.

We know thatE'L(¢1) = 0 because a low thread was scheduled to produce the
eventr ~»e. Then, EL(¢5) = 0 since R5(¢1,v1,¢3,v2,p) holds. By applying
Lemmas to c,, we know that* = ¢’;unhide, ¢* = unhide, ¢* = ¢/;unhide; p*,

or ¢* = unhide; p*, wherec’ has nounhide.

Ri(m},m}) holds sincem| = m; andmb = ma. Ra(céi' 1), Ra(c',vh),
Rs(ci’,v)), Ra(cz',vh), andRy(ci’, vy, &', v4) hold since the following equali-
ties EL(C_i, 1/1) = EL(_éQ,I/Q) =10 hold, (L(C_;/, Vz/) = L(_él, V»L')\{CT})Z':LQ, and
(EL(¢',v}) = {¢,})i=1.2 hold by inspecting the semantics for threadpools and the
scheduler.

In the cases wher€ = ¢/;unhide Or ¢* = unhide, R5(¢i’, v}, ', vh, p') holds

by takingp’ = skip (see Definition 6). On the other cases, by taking- p*, we
know thatRs(¢i’, v}, é3’, Vb, p*) holds because the application of Lem&ngave us

the appropriate* that satisfies Definition 62¢(ci’, v/;) holds sincel(¢i’, v}) =
L(¢1,v1)\{c.} and Re(ci, 1) hold. R7(éi', v}, ', vh) holds since proposition
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R7(é1,11,¢5, 1) holds and because high threads have been not modified by the
transitionay. Rs(ci’, v}, ', v4) holds sinceRs(ci, vy, ¢3,v2) holds and by in-
specting the type derivation af.. Finally, propositionRy(c}, vy, 05, v5) holds
sinceRy (o1, 1,09, 12) holds and by applying the definition efy,.

a1 = e~ 1) We know thatr € t.,. By inspecting the semantics for threadpools, the
scheduler, and commands, we have that= unhide;c* or ¢, = unhide for
some command*, ¢, € EL(éi,v1), (¢, m1) *= {¢*, m1), and that|oy, 1) ="
(o7, 1). We are only going to consider the case when= unhide;c* since
the proof forc, = unhide is analogous. Therefore, we omit the proof when
ap = e rX,
Because{oy,v1) ~1 {o2,1») anda; is low, we also have thafo,, vs) *="
(o, V4). BecauseRs(ci, v1, ¢3, 2, p) holds, we know that* = p and that the
thread with name- belongs to the threadpoe} as well. Let us call it2. Since
R5(é1,11, 3,12, p) holds and it is not possible for a thread to make progress by a
high computation, we have that = unhide; p. As a consequence of that, it holds
that (c2, ma) *= (p,ma). Thus, transition|cs, ma, oo, o) "= (&', mb, ob, V)
holds.
R1(m/, m}) holds trivially sinceunhide has no changed the memorié# (¢,
V), Ra(é3',v4), Rs(éi',v}), and R3(é3', v4) hold sinceRy(éi,v1), Ra(és, 1),
Rs(c¢i, 1), and Rs(é3, v2) holds; and by inspecting the semantics for the sched-
uler. Ry(éi’, v}, é3', vb) holds sinceR,(ci, vy, ¢3, v2) holds and because after the
transitionaq, the threads,. andc? become the threggl By inspecting the seman-
tics for the scheduler, we have thﬁL(cz, vy) = EL(¢,, v5) = 0. Then, by taking
p’ = skip, it trivially holds thatRs(¢i’, v}, ¢3', Vb, skip). Re(ci’,v;) holds since
Rs(¢i,v1, 65,19, p) and Ry (1,11, ¢35, 2, p) holds ; and by inspecting the type
derivation ofc,. Ry(¢i’, v}, ¢’ v4) holds sinceR;(ci, vy, ¢3,v2) holds and be-
cause high threads have been not modified by the transitioRs(ci’, v, ¢3', v4)
holds sinceZ L(ci’, 1)) = EL(&/, v) = 0. Finally, Ry (o, 4, o4, 4) holds since
Ry(01,11, 09, 12) holds and by applying the definition ef;..

a1 = r~ex) We know that- € t,,. The hypothesis in the theorem state thamust
be typable ag’[hc— low] b ¢, : low by Rg(¢i,v1). Observe thatwhef). = hide
this requirement is violated. Therefore, this event careneecur under the given
hypothesis.

High eventse”., r~, r~x, andl.r’ (where{r,r'} C to, Ut,).

o = el ) By inspecting the semantics for threadpools and the schedué know
thatc, € H(ci, ) ore, € EL(¢i, 1) and thatH (¢}, v}) = H(¢1,11) U N (d).
R1(m/, m}) holds trivially sincenf ork has no changed the memoriés.(¢i’, 1)),
Ro(é5,12), Ra(ci’,v}), andR3(c3, v2), hold sinceRs (i, v1), Ra(é3,12), R3(ci,
v1), and R3(¢3, v2) hold, and by inspecting the semantics for the scheduler to-
gether with the fact tha¥ (d) are fresh names for thread, (ci’, v}, &, v2) holds
sinceRy(c1, v1, ¢35, v2) holds and because the transitiondoes not affect the low
threads ( only high threads were created). For a similarorea8s (¢i’, ;) also
holds.Ry(o1, vy, 02, v2) holds sinceRy(o1, v1, 02, 12) holds and by applying the
definition of~,.
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In order to proveRs(ci’, v}, éz, v, 1), Re(ci', v}, 3, 1v0), andRg(éi', v, ¢35, 1),
we need to split the proof in two more casese H(¢i,vq) ande, € EL(¢1,v1).
¢r € H(é1,11)) By takingp’ = p, we have thaRs (¢}, v}, ¢3, 2, p) and proposi-

tion Rg (c_'i, V), ¢, v9) hold becaus@s (i, v, ¢3, 12, p), andRs(¢1, v1, 3, v2)
hold; and because the eventually low thread, if there egisés has made no
progress. FinaIIyR7(c71, V4, ¢3,v9) holds sinceR7(¢1, 11, ¢3, v2) holds and by
applying Lemmat to ¢,..

¢ € EL(¢1,11)) SinceRs(ci,v1, ¢35, 2, p) holds, we know that the thread with

—

namer belongs to the threadpodl. Moreover, we know that. =hfork(c, d);
¢’;unhide, ¢, = hfork(c, (I);unhide, ¢ = hfork(c, (f); c;unhide; p, Or ¢,
= hfork(c, J);unhide;p, wherec’ has nounhide commands. ThenRg,(c71
.V}, 3, v2,p') holds by takingy’ = p. Rs(c}, v, ¢, ) holds by Lemmab.
Finally, R7(c71, Vi, ¢, v9) holds sinceR;(c1, vy, ¢3, v2) holds and because high
threads have made no progress.
ay = r~ ) We splitthe proofin two more cases: € H(¢i,vq) ande, € EL(¢1,1v4).

¢, € H(¢i,v1)) Ry(m),mso) holds by applying Lemma. Ry (ci', 1)), Ra(c3, va),
R3(ci’,v}), andR3 (3, v2), hold sinceRy (¢i, 1), Ra(c3, v2), R3(éi,v1), and
R3(c3, 1) hold, and by inspecting the semantics for the schedilgic;’, 4,
¢3,v9) holds sinceR,(c1, 11, ¢3, 2) holds and because the transition does
not affect the low threads. For a similar reas@g(c;’, v}) also hoIdsR7(c71,
v, ¢, v2) holds sinceRz(c1, vy, ¢35, v2) holds and by applying Lemmé& By
takingp’ = p, we have thaRs(c}, 1/}, ¢, vs, p') andRs(c}, v, ¢3, 1) hold be-
causeRs(ci, 11, C2, va, p), and Rg(é1, 11, ¢3, v2) hold; and because the even-
tually low thread, if there exists one, has made no progiessr;, v;, o2, /2)
holds sinceRq (o1, 11, 02, 2) holds and by applying the definition ef;,.

¢ € EL(éi,v1)) Ri(m), m2) holds by applying Lemma. Ro(ci',v}), Ra(é5,
v2), R3(c¢i’, 1)), andRs(c3, v2), hold sinceRy (¢i, vy ), Ra (G5, 12), R3(ci,v1),
andR3(¢3, v2) hold, and by inspecting the semantics for the schedRIgi;
Vi, ¢, v2) holds sinceRy(c1, v1, ¢35, 12) holds and because the transition
does not affect the low threads. For a similar reaséy(¢;’, v}) also holds.
SinceRs(ci, v, 63, 12, p) holds, we know that, = ¢’; unhide, ¢, = unhide,
¢, = c;unhide;p, Or ¢, = unhide; p for some command withoutunhide
instructions. However;,. # unhide;p andc¢, # unhide Sincea; = r ~.
The proof proceeds similarly when = ¢/;unhide or ¢, = ¢;unhide;p.
Therefore, we only show the latter case. By inspecting theasgics for com-
mands, we know thafc,, m) — (c.,m}), wherec,. = ¢’;unhide; p where
(', m1) — (¢, m}) andc” # stop or ¢. = unhide; p. By takingp’ = p, we
can conclude tha‘rz5(c71, Vi, ¢, v2,p’) holds by Definitiort. R7(c71, Vi, C3, 1)
holds sinceR;(c1, 11, 63, v2) holds and because the transition does not in-
volve high threadng(cz, V), ¢, v2) hold by applying Lemma to ¢,.. Rg (o7,
V), 09, 2) holds sinceRq (o1, 11, 02, 2) holds and by applying the definition
of ~I,.

a1 = r~x ) We need to split the proof in two more cases:c H(¢1,v1) ande,. €
EL(ci,11).
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c. € H(ci,v1)) Ri(m),ms)holds by applying Lemma. Ry (7', 1)), Ra(cz, va),
R3(ci’,v}), andR3(cé3, v2), hold sinceRy (¢i, 1), Ra(c3, v2), R3(éi,v1), and
R3(c3, 1) hold, and by inspecting the semantics for the schedilgic;’, 4,
¢3,v9) holds sinceR,(c1, 11, ¢3, 2) holds and because the transitiondoes
not affect the low threads. For a similar reas@g(c;’, ;) also hoIdsR7(c71,
v, ¢, v2) holds sinceRz(¢i, v, ¢3,v2) holds and because the threadhas
finished. By taking = p, we have thaR5(c71, Vi, €3, V2,D) anng(cz, Vi, 6,
v9) hold becausés (¢, 11, ¢3, 12, p), andRs(c1, v1, ¢3, v2) hold; and because
the eventually low thread, if there exists one, has made ogrpss Ry (o1, 1,
02, 2) holds sinceRg (o1, 11, 02, 2) holds and by applying the definition of
~F.

¢r € EL(¢1,v1)) The eventually low thread cannot make progress and finishes
immediately. Observe that must be typable a&[hc— high| b ¢, : low and
it must terminate in one step. Thereforg,= unhide but this cannot occur
sincea; = r~~x.

ar; =Ter' ) By takingp’ = p, we have thatR,(m}, ms), Ra(éi',v}), Ra(cs,va),

Ré(c'i/,yi), R3(C§,V2),ﬁ4(c_i/,Vi,C_é,l/g), R5(c_’i,l/{,c'§,ug,p'), Re(ci',v)), Ry

(¢}, 1], ¢, 1), andRg(c), V], ¢5, v2) holds sinceRy (m1, ms), Ra(¢i, v1), Ra(é3,

v), R3(ci,v1), Ra(cz,v2), Ra(ci, 11, ¢3,12), Rs(ci,v1, ¢, 12,p), Re(c1,v1), Ry

(¢i, 1,6, v2) andRg(c1, 11, ¢3, v2) hold and because the transition has only mod-

ified the variable,. in the schedulerRq (o1, 11, 02, 2) holds sinceRg (o1, v1, o2,

v5) holds and by applying the definition efy,.

Corollary 1 (Soundness)If I'h, hc— low F ¢ : low thenc is secure.

Proof. For arbitraryo, m1, andms so thatm; = ms ando is noninterferent, assume
(e, m1,0,vinit) 4 ¢fg; & {e,ma,0,vinit) U ¢fgy. By inductive (in the number of
transition steps of the above configurations) applicatibmteorem 1, we propagate
invariantm; =, mo to the terminating configurations. ]






CHAPTER

3 Security for Multithreaded Pro-

grams under Cooperative Schedul-
ing

In Proceedings of the Andrei Ershov International Conferon
Perspectives of System Informatics, Akademgorodok, Norsss
Russia, June 27-30, 2006. LNCS, Springer-Verlag.






Security for Multithreaded Programs under
Cooperative Scheduling

Alejandro Russo and Andrei Sabelfeld

Dept.of Computer Science and Engineering, Chalmers Usityesf Technology
412 96 Goteborg, Sweden, Fax: +46 31 772 3663

Abstract. Information flow exhibited by multithreaded programs is theitbe-
cause the attacker may exploit scheduler properties whewucitey secret infor-
mation from publicly observable outputs. Volpano and Srhike introduced a
protect command that prevents the scheduler from observing semsiting
behavior of protected commands and therefore preventssiradeinformation
flows. While a useful construcprotect is nonstandard and difficult to imple-
ment. This paper presents a transformation that elimiribeeseed foprotect
under cooperative scheduling. We show that both terminatisensitive and
termination-sensitive security can be enforced by vasiaifithe transformation
in a language with dynamic thread creation.

1 Introduction

Information-flow security specifications and enforcemesichanisms for sequential
programs have been developed for several years. Unfoetyntiey do not naturally
generalize to multithreaded programs [SV98]. Informafiow in multithreaded pro-
grams remains an important open challenge [SMO03]. Furtbesnotherwise significant
efforts (such as Jif [MZZ06] and Flow Caml [Sim03]) in extending programming lan-
guages (such as Java and Caml) with information flow contrale sidestepped mul-
tithreading issues. Nevertheless, concurrency and imd#dtling are important in the
context of security because environments of mutual disttes often concurrent. As
result, the need for controlling information flow in multidaded programs has become
a necessity.

This paper is focused on preventing attacks that explogdaler properties to deduce
secret information from publicly observable outputs. Swgg is a secret (ohigh)
variable and is a public (orlow) one. Consider threads andcs:

c1: (if h > 0 then sleep(100) else skip); [ :=1
co:sleep(50); 1:=0

Although these threads do not exhibit insecure informafiiow in isolation (because
1 is always the outcome fdrin ¢;, and0 is always the outcome fdrin ¢3), there is a
race between assignmeiits= 1 and/ := 0, whose outcome depends on sedrelf ~
is originally positive, then—under many schedulers—iikelly that the final value of
lis 1. If his not positive, then it is likely that the final value bfs 0. It is the timing
behavior of thread; that leaks—via the scheduler—secret information iht@his
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(ci,m) 2 (c),m') ac{ed o=i

{o,{c1...cn),m) — {o,{c1...cic1ciacit1 ...cn),m’)

{ci,m) = {stop,m’) oc=1

{o,{c1...cn),m) — (o, {(c1...cic1Cit1...Cn),m')

{ci, m) e {ci,m) c=i o =(imodn)+1 c; # stop

{o,{c1...cn),m) — (o', {c1...ciciciciy1 ... cn),m)

Fig. 1. Semantics for threadpools

phenomenon is due taternal timing i.e., timing that is observable to the scheduler.
As in [SV98, VS99, Smi01, BC02, Smi03, RS06], we do not coasiternal timing
i.e., timing behavior visible to an attacker with a stopwatc

Volpano and Smith have introducecaotect command that prevents the scheduler
from observing the timing behavior of the protected command therefore prevents
undesired information flows. A protected command is exetatemicallyby defini-
tion. Although it has been acknowledged [SS00, RS06] plratect is hard to imple-
ment, no implementation gfrotect has been discussed by approaches that rely on
it [VS99, Smi01, Smi03]. This paper presents a transforometiat eliminates the need
for protect under cooperative scheduling. This transformation camtegrated into
source-to-source translation that introdugeés1ld commands for cooperative sched-
ulers. We show that both termination-insensitive and teatidn-sensitive security can
be enforced by variants of the transformation in a languaitfe dynamic thread cre-
ation.

2 Language

We consider a simple imperative language that incluglep, assignment, sequen-
tial composition, conditionals, anthile-loops. Its sequential semantics is standard
[Win93]. The language also includes dynamic thread creaind ayield command.

A command configuratioffc, m) consists of a commangdand memoryn. Memories

m : IDs — Vals are finite maps from identifier naméss to valuesVals. Transitions
between configurations have form m) = (¢, m’) wherea is eithere (empty label),
cf(indicating a sequence of newly spawned threadsy-oiThe latter label is used in
the transition rule fogield:

(yield, m) % (stop, m)

Labels are then propagated through sequential compogsitihie threadpool-semantics
level. Dynamic thread creation is performed by commageick:

(fork(c, d), m) KA {c,m)
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This has the effect of continuing with threadwhile spawning a sequence of fresh
threadsl. Threadpool configuratiorisave form{c, (c; ... c,,), m) wheres is the sched-
uler’s running thread numbefs; ... c,) is a threadpool, andh is a shared memory.
Threadpool semantics, describing the behavior of threald@md their interaction with
the scheduler, are displayed in Figure 1. The rules correspmnormal execution of
thread: from the threadpool, termination of threadnd yielding by thread Note that
due to cooperative scheduling, only termination gtald by a thread may change the
decision of the scheduler which thread to run next. Althotlgise semantics model a
round-robin scheduler, our approach can be generalize@ideaclass of schedulers.
Let cfg —° cfg, for any configuratiorcfg, andcfg —v cfg’, forv > 0, if there is a
configurationcfg” such thatcfg — cfg” andcfg” —"=1 cfg’. Then,cfg —* cfq’ if
cfg =V cfg’ for somev > 0. Threadpool configurationfg terminatesin memorym
(written cfg | m) if ¢fg —* (o, (), m) for someo. In particular,cfg |}V m is written
when c¢fg —¥ (o, (), m). If ) is not finitely reachable fromfg, then cfg diverges
(written cfg ). Termination]} and divergence are defined similarly for command
configurations.

3 Security specification

We define two security conditions, termination-insensitand termination-sensitive
security, both based ononinterferencd GM82]. Supposesecurity environment™ :
IDs — {high,low} specifies a partitioning of variables into high and low orlégo
memoriesm; andms arelow-equal(m; =1 msy) if they agree on low variables, i.e.,
Vo € IDs. I'(z) = low = mq(z) = ma(z).

Commandc satisfies termination-insensitive noninterferencédfterminating execu-
tions on low-equal inputs produce low-equal results.

Definition 1. Commanda: satisfiegermination-insensitive securitly
Vmy,ma.my =1 ma & (1,{c),m1) . m} & (1,(c),ma) |} my = m} =1 m}

Command: satisfies termination-sensitive noninterferencesiexecutions on any two
low-equal inputs either both diverge or both terminate in-kqual results.

Definition 2. Command: satisfiegermination-sensitive securitly

le, Mo. M1 =1, My —>

(1, (c), mi) I mi & (1, (), ma) |} my & mi=rml Vv (1, (c), mi) & (1, (¢}, ma)

4 Transformation

By performing a simple analysis while injectigge1d commands, we are able to auto-
matically enforce both termination-insensitive and teration-sensitive security. The
transformation rules are presented in Figure 2. They hawa 0 - ¢ — ¢/, where
command: is transformed inta’ under!". In order to rule ouexplicit flows[DD77]
via assignment, we ensure that expressions assigned tcaldables may not depend
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Vv € Vars(e). I'(v) = low Jv € Vars(e). I'(v) = high
I't-e:low '+ e: high
No yield, fork or assignment tbin ¢
HCTX
( ) 't c: high
I' t- skip — skip;yield I' - yield — yield
I're:t 71CI(v) ke —dc T'ke—dh
I'Fv:=e— v:=e;yield I'Fecyjea = chch

I'ke:low TI'Fec—c T'Fe—d

'+ if e then ¢y else cp < if e then (yield;c)) else (yield;ch)

I'te:high I'Fci:high 't ca: high
I' - if e then ¢ else c2 < (if e then ¢; else ¢2);yield

(H-1F)

I'ke:low TI'kc—c
'k while e do ¢ — (while e do (yield;c));yield

I'Fe:high 't c: high

(H-wW)
I' - while e do ¢ — (while e do ¢); yield

I'Fc—cd TI'kFdi—dy ... TI'kd,—d,
I'F fork(c,di ...dy) — fork(c,d}...d),)

Fig. 2. Transformation rules

on high data. This is enforced by demanding the type of thigeag variable to be at
least as restrictive as the type of the expression that i€ taskigned. Restrictiveness
relationC on security levels is defined byw T low, high T high, low = high and
high Z low. In order to rejecimplicit flows[DD77] via control flow, we guarantee that
if's andwhile’s with high guards may not have assignments to low variabléseir
bodies. These two techniques are well known [DD77, VSI96] ém not require code
transformation.

The transformation injectgield commands in such a way that threads may not yield
whenever their timing information depends on secret dalés & achieved by a re-
quirement that f's andwhile’s with high guards may not contajnield commands.
In addition, such control flow statements may not confairk. The rationale is that if
secrets influence the number of threads, then it is posgiblsoime schedulers to leak
this difference via races of publicly-observable assigmt®£5S00, Sab03]. Rules H-1F
and H-W enforce the above requirements. The rest of theftianation injectsyield
commands without significant restrictions (but with someiobs liveness guarantees
for commands that do not branch on secrets).

The first lemma shows that commands typed under rule HCTX daffect the low-
security variables.



Security for Multithreaded Programs under Cooperativee8aling 47

Lemma 1. Given a command and memoriesn andm’ so thatl” + ¢ : high and
(e, m) " m/, thenm = m/.

The following theorem states that pools of transformedatsepreserve low-equality
on memories:

Theorem 1. Given two (possibly empty) threadpoélandc’ of equal size, memories
my andmg, and numbew so thatl™ - ¢; — ¢} wherec; € ¢ and ¢, € ¢, my =1 ma,
(o, ("), m1) ¥ m), and (o, (¢"), ma) J* m), thenm/ =1 m}.

As desired, the transformation enforces terminationfiegre security:
Corollary 1. If I' - ¢ — ¢ then(’ satisfies termination-insensitive security.

The transformation can be adopted to termination-sersteurity in a straightforward
way. We writel” F1s ¢ — ¢ wheneverl | ¢ — ¢’ with the modifications that (i) rule
H-W is not used, and (ii) rule HCTX is replaced by:

Nowhile, yield, fork or assignmenttoin ¢

HCTX’
(HCTX) I'Frsc: high

These modifications ensure that loops have low guards ahdd@Haop may appear in
anif statement with a high guard. These requirements are sititéiose of Volpano
and Smith [VS99] (except for the requirementfark, which Volpano and Smith lack):

Lemma 2. Given acommandso thatl" - ¢ : high ¢md for some security environment
I in Volpano and Smith’s type system [VS99]; and given commaabtained fronc
by erasing occurrences ptotect, we havel" s’ : high.

This allows us to connect the transformation to Volpano amitf8s type system:

Theorem 2. If commandc is typable under security environmehtin Volpano and
Smith’s type system [VS99], then there exists commarsdich thatl” F1s ¢ — ¢”,
wherec’ is obtained front by erasing occurrences pkotect.

We also achieve termination-sensitive security with thevabmodifications of the
transformation. We firstly present some auxiliaries lemriiag following lemma states
that commands typed &sgh terminate and do not affect the low part of the memory:

Lemma 3. Given a commandand memoryn so thatl” -rs ¢ : high, then{c, m) | m’
andm = m'.

In order to show termination-sensitive security, we traoi behavior of threadpools
after executing some number gpield andfork commands. We capture this by re-
lation — , so thatcfg —7, cfg’ if there iscfy” such thatcfy —* cfg” where no
yield's have been executedfy” — cfg’ results from executing aield command;
andcfy =0t cfq’ if there iscfg” such thatfg U1t cfg”" (resp.cfg -1 cfg’")
andcfg” — cfg’ results from executing ield (resp.fork) command.

The next two lemmas state that low-equivalence between mesnig preserved after
executing some number ¢fie1d andfork commands:
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Lemma 4. Given two non-empty threadpoalsindc’ of equal size, memories; and
me, and number so thatl” Frs¢; — ¢, wheree; € & and ¢, € ¢/, my =1, mo, and
(o,(€"),m1) —1 o (o', ("), m]), then there existsr, such that(o, (¢'), ma) —1
(o/, ("), m}), andm) =1 m).

Lemma 5. Given two non-empty threadpoalsindc’ of equal size, memories; and
mz, Numbersr, y, and f so thaty + f > 0, I' Frs¢; — ¢; wherec; € ¢ and ¢} € ¢”,

my1 =1, mg, and (o, (¢’),m1) —» . (o', ("), m}), then there exists1; such that

(o ("), ma) —7 ¢ (07, (C"), msy), andm) =1, ms.

The final theorem shows that the transformation elimindtesieed foprotect:

Theorem 3. If I' Frs ¢ — ¢’ thenc’ satisfies termination-sensitive security.

5 Related work

An general overview of information flow controls for concemt programs can be found
in [SMO03]. We briefly mention most closely related work. Bxial timing-sensitive

information-flow policies have been addressed for a muédked language [SS00],
and extended with synchronization [Sab01], message mpfSMO02], and declassi-

fication [MS04]. Type systems have been investigated fonitgation-sensitive flows

in possibilistic [BC02] and probabilistic [VS99, Smi01, §18] settings. Recently, we
have presented a type system that guarantees terminatensitive security with re-
spect to a class of deterministic schedulers [RS06]. In&tion flow via low determin-

ism, prohibiting races on low variables from the outset, lbesn addressed in [ZMO03,
HWSO06].

6 Conclusion

We have presented a transformation that prevents timirigs leia cooperative sched-
ulers. We argue that this technique is general: it applieswide class of schedulers
(although only a round-robin scheduler has been consideegifor simplicity).

We have experimented with the GNU Pth [Eng05], a portablkedtitibrary for threads
in user space. We have modified this library to allow the retoizin scheduling policy
from Section 2. We have successfully applied the transféomdor source-to-source
translation of multithreaded programs withatte1d’'s into GNU Pth programs. The
security of this translation is ensured by Theorems 1 and 3.

Acknowledgmenfi his work was funded in part by the Information Society Teabn
gies program of the European Commission, Future and Engefigiohnologies under
the 1IST-2005-015905 Mobius project.
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Appendix

Lemma 1. Given a command and memoriesn andm’ so thatl” - ¢ : high and
(e, m) " m/, thenm =, m/.

Proof. By induction onv and case analysis en m

Theorem 1.Given two (possibly empty) threadpoeisindc’ of equal size, memories
my andms, and numbes so thatl” F ¢; — ¢} wherec; € ¢ and ¢, € ¢/, mq1 =1, ma,
(o, ("), m1) §¥ mf, and{ao, (c'), ma) §* mh, thenm) = m).

Proof. The proof is done by induction on+ w and case analysis af3. Frequently,
we need to identify a thread in a given positierinside of a threadpoaf. In order
to do that, we can represent the threadpdel (c1, ca, ..., Co—1,Coy Cotls- -+, Cm) @S
Co D Gy, Wherec, = (c1,C2,. .., Co—1,Cot1s--sCm)-

¢e = if e then c; else cy) WhenI' e : low, the proof proceeds by applying the
semantic for threadpools to reduce ttfeconstruct, and by applying IH afterward.
The interesting case is whént e : high and{e,m) | by and{e, m) | bs, where
b1 # bo. Without loosing generality, let us suppdse= True andb, = False.
We know that!, = (if e then ¢; else ¢3); yield by applying the transformation
to ¢,. By inspecting the semantics for threadpools, we know that

(o,¢, ©CL,ma) — (o, (c1;yield), © Cr,my)
(o,c @ el ma) — (o, (co;yield), ® L, ma)

By inspecting the transformation, we know tiat - ¢; : high);=1,2. By applying
Lemma 1to(I" F ¢; : high),=1 2 and by inspecting the semantics for threadpools,
we have

(o, (c13yield) ® G, mi) =7 (o, (yield), © &7, mi) 1)
(0, (co;yield) ® L, ma) —* (o, (yield), ® L, my) (2)

wherem, =p m} andms =, m/. Additionally, we know by 1 and 2 that
(0, (yield)o @ ¢o,my) — (o', &5, mi) 3)

(o, (yield), ® . ,m5) — (o', ,mb) 4)

The result follows by applying IH on 3 and 4.
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¢, =while e do ¢) The interesting case is whefi - e : high, and{e,m) | by
and(e,m) | ba, whereb; # by. Without loosing generality, let us suppdse=
True andb, = False. We know that], = (wvhile e do c); yield by applying the
transformation t@:, . By inspecting the semantics for threadpools and by apglyin
Lemma 1, we have that

*

407 Cir @5;,1711[) - 40-5 cir @Eiﬂmlllb (5)

wherem/ =5 m;. The result follows from applying IH to configuratio(s) and
(o, @, ma).

co = c1;c2) We assume, by associativity of sequential compositiort,«the a single
command. Thus, the proof consists on case analysiscgeard following the same
structure of the proofs for single commands.

Corollary 1. If I' - ¢ — ¢’ then(’ satisfies termination-insensitive security.

=/

Proof. By applying Theorem 1 witi = (c), ¢’ = (¢’), ando = 1. a

Lemma 2.Given a commandso thatl" - ¢ : high ¢md for some security environment
I in Volpano and Smith’s type system [VS99]; and given commérabtained from:
by erasing occurrences pfotect, we havel” F1s ¢’ : high.

Proof. By structural induction on the type derivation©of ]

Theorem 2.If commandc is typable under security environmefitin Volpano and
Smith’s type system [VS99], then there exists commehduch thatl” s ¢/ — ¢”,
wherec’ is obtained front by erasing occurrences pfotect.

Proof. By simple structural induction on the type derivatiorcof

c1;c2) We know thatl™ F ¢ : 7 emd andI™ F+ ¢o : 7 e¢md by the type derivation
of ¢. By IH, we have that there exist$, ¢/, ¢, andc} such thatl” bys ¢ — ¢f
andl’ Frs ¢y — ¢4, wherec] andd, are respectively obtained from andc, by
erasing the occurrencespfotect. The result follows by taking” = ¢/’; ¢

protect(c,)) We have that” + ¢, : 7 emd. By IH, we have that there exists there
eXiStSC:; andcg such thatl” F1g c;) — cg, Wherec;) is obtained fromt,, by erasing
the occurrences gfrotect. The result follows by taking’ = ¢, andc” = ¢/;.

(CMD™) rule) We know that

I'Fc:memd T Cm

MD~
@ ) I'c:m emd

By IH, we know that there exists and¢” such thatl” Frs ¢ — ¢”, wherec
is obtained fronr by erasing the occurrences pfotect. The result thus holds
trivially.
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(IF) rule) We know that

I'te: I'bFei:7temd ©I'beg:7emd
I'Fif ethency elsecy : 7 cmd

(IF)

Here, we have to cases.

7= L) By IH, we have that By IH, we have that there existsc/, ¢}, and ¢y
such thatl” F1s ¢} — ¢{ andI" b1s ¢, — ¢4, wherec| andc, are re-
spectively obtained frona; andcs by erasing the occurrences pfotect.

Moreover,I" s e : low by our transformation. The result follows by taking

¢’ = if e then (yield;c]) else (yield; c}).

7 = H) Since the transformation does not have a subtyping rulexXjression,
we need to split the proof here in two more cases.

I' - e : high) By applying Lemma to ¢; andcs, we obtain that” s ¢} :
high andI” t-1s ¢ : high, wherec| and¢), are respectively obtained from
c1 andes by erasing the occurrences pfotect. The result follows by
applying(H — IF) rule in the transformation.

I' F e : low) Thus, the type derivation for the conditional has the foltayv
form.

I'Fe: L
I'Fe:-H I'tei:Hemd I'Fes:Hcemd

I'Fif ethency elsecy : H cmd

(SUBTYPE)

By IH, we have that there exist$, ¢/, ¢;, andc} such that” rs ¢ — ¢f
andI” kys ¢, — , wherec; andd), are respectively obtained from
and ¢, by erasing the occurrences pfotect. The result follows from
I'+e: lowandtakinge” = if e then (yield;c)) else (yield;c}).

Lemma 3.Given a command and memoryn so thatl” -1s ¢ : high, then{c, m) | m’
andm =, m’.

Proof. By induction on the size af. m]

Lemma 4. Given two non-empty threadpoafandc’ of equal size, memories; and
me, and numbet so thatl” -1s ¢; — ¢; wherec; € ¢ and ¢; € &', m1 =1 mo, and
(o,(€"),m1) —1 o (o', ("), m}), then there existg;, such that{o, (¢'), ma) —7
(o7, (c"y, mb), andm/ =1, m},.

Proof. By induction on the number of stepsef] ; and case analysis @3.

H{,O) The only possibilities are that, = yield. The lemma trivially holds in this
case.

-t >1)
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¢y = if e then ¢y else c;) WhenI' + e : low, the proof proceeds by applying
the semantic for threadpools to reduce ilfeconstruct, and by applying IH
afterwards. The interesting case is wheér- e : high and{e, m) | b; and
{e,m) | ba, whereb; # bs. Without loosing generality, let us suppdse=
True andby = False. We know that

(o,c; @5, ma) =00 (o, (c13yield), & ¢r,ma) (6)
(o,c; &5, ma) =0, (0, (c23yield), ® €F,ma) (7)

By H, we know thatl" s ¢; : high. Thus, we can apply Lemmiato obtain
that

(o, (c1;yield)y © C,ma) =0 (0, (yield), © ¢, my) (8)
(0, (co;yield), ® L, ma) —5.0 (o, (yield), ® él,mj) 9)

wherem, =1 m} andmy =1, mj5. By executingyields in (8) and(9) and
by H, we have that

40/78;7m>{b AIIC,O qo—//agﬂam/lb (10)
1

4‘7/75;77”3[? - 0 qo—//agﬂaméb (11)

)

wherek < v. The result follows from applying IH t¢10) and(11) together
with m; =1 m} andme =1, m3.

cs = c1;2) We assume, by associativity of sequential compositiort, ¢has a
single command. Thus, the proof consists on case analysigpand follow-
ing the same structure of the proofs for single commands.

O

Lemma 5. Given two non-empty threadpoafandc’ of equal size, memories; and
mz, Numbersr, y, andf sothaty + f > 0, I" Frs ¢; — ¢; wherec; € ¢ and ¢} € ¢”,
mi1 =p ma, and{o, (¢’),m1) —; , {o’,(¢”), m}), then there exists; such that

(o, (€"),ma) =7 ; (o', (€"), mb), andmy =1 mj.

Proof. By induction ony + f, case analysis o#,, and by applying Lemmas 3 and 4
when necessary.

y =1, f=0) Itholds by Lemmat.

y =0, f =1) It cannot happen since executingerk implies to executegields.
Observe that the transformation rule fiarrk inserts at least ongieldin ¢’

y+f=k+1,k>1)

¢s = if e then c; else cy) When!' F e : low, the proof proceeds by applying
the semantic for threadpools to reduce ilfeconstruct, and by applying IH
afterwards. The interesting case is wheér- e : high and{e, m) | b; and
(e,m) | b2, whereby # bs. Without loosing generality, let us suppdse=
True andb, = False. We know that

({o, cp @ EGomi) — (o, (cisyield)s ® €, mi)iz1,2
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By H, we know that(I" Frs ¢; : high),=1,2. Thus, we can apply Lemntato
obtain that

({0, (ci;yield)s & €5, mi) =" (o, (yield)s & &5, m7))i=1 2
By executingyield, we have that
(40, (yield)a D 827) m:b - 40*5 8:77 mn)izlﬂ

By H, we know that

40—*5 8275 mTD AZ—I,f 40-/7 <8”>7 mllb (12)

The result follows by applying IH ofi12), and becausen; =5, m;);=1.2.

¢, = while e do c) Loops with secrets on guards are not allowed by the transfor-
mation. Thus, the only possible case is whHeéfr e : low. The guard: needs
to be evaluated t@rue since otherwisgield is executed only once, which
contradicts the hypothesis. The proof for wHéa, m;) | True);—1 » consists
on reducing the commandhile once and then apply IH.

¢, = fork(c,d)) We know that, = fork(c/,d’), wherel' - ¢ — ¢/ andI" I-
d < d'. By executing the commantbrk, we have that

({0, (fork(c',d"))o @ &y mi) = (o, ()g © & @ d',mi)) (13)
By H, we also know that
407 (CI)U D 827 D lemlb _\;,f—l 40/7 <5H>7m/1b (14)

The result follows by(13) and by applying IH tq14).

ce = c1;¢c2) We assume, by associativity of sequential compositiort, ¢has a
single command. Thus, the proof consists on case analysigpand follow-
ing the same structure of the proofs for single commands.

Theorem 3.If I" s ¢ — ¢ thenc’ satisfies termination-sensitive security.

Proof. By applying Lemma 5 witlt = (c), ¢’ = (¢’), ando = 1 and observing that a
divergent configuration (originating from) performs an infinite number gfield’s. O
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Abstract. A major difficulty for tracking information flow in multithraded pro-
grams is due to thmternal timingcovert channel. Information is leaked via this
channel when secrets affect the timing behavior of a thnehith, via the sched-
uler, affects the interleaving of assignments to publi¢akdes. This channel is
particularly dangerous because, in contrast to extermahg, the attacker does
not need to observe the actual execution time. This papsepte a composi-
tional transformation that closes the internal timing eterfor multithreaded
programs (or rejects the program if there are symptoms déroflows). The
transformation is based on spawning dedicated threadsievbe computation
may affect secrets, and carefully synchronizing them. Hnget language fea-
tures semaphores, which have not been previously condiderttie context of
termination-insensitive security.

1 Introduction

An active area of research is focused on information flowrmdstn multithreaded pro-
grams [SMO03]. Multithreading opens new covert channels biclvinformation can be
leaked to an attacker. As a consequence, the machinery flarcargy secure informa-
tion flow in sequential programs is not sufficient for multéhded languages [SV98].
One particularly dangerous channel is thiernal timingcovert channel. Information
is leaked via this channel when secrets affect the timingbien of a thread, which,
via the scheduler, affects the interleaving of assignmtenpsiblic variables.

Suppose thdt is a secret variable, aridand! are public ones. Assuming thatlenotes
parallel composition, consider a simple example of an irgktiming leak:

. . . . skip;
> s ; ! . .
llihl_ I then skip; skip else skip; I skip; (Internal timing leak)
o 1:=0

Under a one-step round-robin scheduler (and a wide clasthef ceasonable sched-
ulers), if h > k then by the time assignmeht:= 1 is reached in the first thread,
the second thread has terminated. Therefore, the lasthassig to execute i&:= 1.
On the other hand, i < k then by the time assignmeht:= 0 is reached in the
second thread, the first thread has terminated. Therefoedast assignment to exe-
cute isl := 0. Hence, the truth value df > k is leaked intol. Programs with dy-
namic thread creation are vulnerable to similar leaks. kample, a direct encoding
of the example above is depicted in Fig. 1 (whéeek(c) spawns a new thread.



58 Alejandro Russo, John Hughes, David Naumann, Andreilf&ddbe

This program also leaks whethier> £ is true,

under many schedulers. Internal timing leaks fork(skip; skip; ! := 0);

are particularly dangerous because, in contrastif 4 > k

to externaltiming, the attacker does not need  then skip; skip else skip;
to observe the actual execution time. Moreover,] := 1

leaks similar to those considered so far can be

magnified via loops as shown in Fig. 2 (where o )
k,1,n, andp are public; and: is ann-bit secret Fig- 1.Internal timing leak withf ork
integer). Each iteration of the loop leaks one bit

of h. As a result, the entire value afis copied -0

into p. Although this example assumes around: 514, > 0 do

robin scheduler, similar examples can be easily ;. ._ 2{71;

con_structed where secrets are copied into public fork(skip; skip; ! := 0);
variables under any fair scheduler [SV98]. Eh>k

. . . . then skip; skip else skip;
Existing proposals to tackling internal tim- =1

ing flows heavily rely on the modification of .., _ 4

run-time environment. (A_more detailed dis- thenh = h—kip:=p+k
cussion of related work is deferred to Sec- else skip;

tion 8.) A series of work by \Volpano and noi—n—1 ’

Smith [SV98, VS99, Smi01, Smi03] suggests

a specialprotect(c) statement that, by defi-

nition, takes one atomic computation step witRig. 2. Internal timing leak magnified
the effect of running commandto the end. In-

ternal timing leaks are made invisible because

protect()-based security typed systems en-

sure that computation that branches on secrets is wrappeddyect() commands.
However, implementingrotect() is a major challenge [SS00, Sab01, RS06a] be-
cause while a thread runsrotect(), the other threads must be instantly blocked.
Russo and Sabelfeld argue that standard synchronizatioitiges are not sufficient
and resort to primitives for direct interaction with schkmtun order to enable instant
blocking [RS06a]. However, a drawback of this approach (anguably, any approach
that implementgrotect() by instant blocking) is that it relies on the modification of
run-time environment: the scheduler must be able to imntelgiauspend all threads
that might potentially assign to public variables while atpcted segment of code is
run, which limits concurrency in the program.

This paper eliminates the need for modifying the run-timéremment for a class of
round-robin schedulers. We give a transformation thatedasternal timing leaks by
spawning dedicated threads for segments of code that mest aicrets. There are no
internal timing leaks in transformed programs becauseithi@d for reaching assign-
ments to public variables does not depend on secrets. Tifdranation carefully syn-
chronizes the dedicated threads in order not to introdudesired interleavings in the
semantics of the original program. Despite the introdug@disronization, threads that
operate on public data are not prevented from progress bgdisrthat operate on secret
data, which gives more concurrency than in [SV98, VS99, Sinf#ini03, RS06a].
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For a program with internal timing leaks under a particulatedministic scheduler,
the elimination of leaks necessarily changes the inteibegvand so possibly the final
result. What thread synchronization allows us to achievefisement of results under
nondeterministic scheduling: the result of the transfalim®gram (under round-robin)
is a possible result of the source program under nondetésticiacheduling. Although
an attacker would seek to exploit information about the Bjpgescheduler in use, good
software engineering practice suggests that a programéitinal behavior should not
be dependent on specific properties of a scheduler beyohdosaperties as fairness.
The transformation does not reject programs unless theg Bamptoms that would
already reject sequential programs [DD77, VSI96]. Thedfarmation ensures that the
rest of insecurities (due to internal timing) are repaired.

Itis seemingly possible to remove internal timing leaks pplging the following naive
transformation. Suppose a command (prograonly has two variables andi to store

a secret and a public value, respectively. Assumedhates not have insecurities other
than due to internal timing (this can be achieved by disaligvexplicit and implicit
flows, defined later in the paper). Then the following progdas not leak any infor-
mation about, while it computes output as intended fofor diverges):

hi:=h;l;:=1; h:=0;¢c; bar; l, :==1; h:= hy; L :=1;; ¢; bar; | := 1,

wherebar is a barrier command that ensures that all other threadsteawénated be-
fore proceeding. This transformation suffers from at léast drawbacks. Firstly, the
programe is run twice, which is inefficient. Secondly, it is hard to eresthat any kind
of nondeterminism (e.g., due to the scheduler, random nugdrerator, or input chan-
nels) inc is resolved in the same way in both copies. For example, #msformation
does not scale up naturally whemses input channels. It is not obvious how to com-
municate inputs between the two copies of the program.

Another attempt to remove internal timing leaks could beelby applying slicing
techniques, which can automatically split the originalgyeom into low and high parts.
Unfortunately, these techniques in presence of concuyrarecnot enough to preserve
the semantics of the original program. The reason for thsiniple: public variables,
which are updated by threads, might affect the computaticsecrets. Therefore, an
explicit communication of public values to the high partegjuired.

2 Language

Although our technique is applicable to fully-fledged prmgming languages, we use
a simple imperative language to formalize the transforomati he language includes
a commandork((AZ.c) @ €), which dynamically creates and runs a new thread with
local variablesr with initial values given by the expressioasWhen the list of lo-
cal variables is empty, we sometimes use simpler notafiork(c). The command:
may also use the program’s global variables. The transfaomaequires dynamically
allocated semaphores, so these too are included in thedgeglefined in this section.
Without making it precise, we assume that each variable ityé integer or type
semaphore. There are no expressions of type semaphoretioimesemaphore vari-
ables. A main program is a single commandn the grammar of Fig. 3. Its free vari-
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cu=skip |z :=e|c¢;c|if ethen celse c|while e do ¢ | fork((AZ.c)@Q¢)

| stop | sem := newSem(n) | wait(sem) | signal(sem)

Fig. 3. Command syntax (withr and sem ranging over variables, andover integer literals)

(e&m) | v (sem,m) | r h(r).ecnt =0
(fork((A\Z.d) @ &), m)h “ 247 (stop, m)h (wait(sem), mph =X (stop, m)h

sem,m) | r h(r).cnt > 0 B = hlr.ent ;== r.ent — 1
( )
(wait(sem), m)h — (stop, m)h’

(sem,m) | 7

(signal(sem), m)h ot {stop, m)h

i = maz(dom(h))+1 h' =huU{i~ (cnt=n,que= ()}

(s := newSem(n), mjh — (stop, m[s := i])h’

Fig. 4. Commands semantics

ables comprise thglobalsof the program. Theource languagés the subset in which
there are n@top commands, no semaphore variables and therefore no seneagiloer

cations or operations. Moreover, the list of local variahifeeveryf ork must be empty.

Locals are needed for the transformation, but locals inaoode would complicate
the transformation (because each source thread is splitrinttiple threads, and locals
are not shared between threads).

3 Semantics

The formal semantics is defined in two levels: individual coamd and threadpool
semantics. The small-step semantics for sequential comtsrigistandard [Win93], and
we thus omit these rules. The rules for concurrent commaredgieen in Fig. 4.
Configurations have the forife, m)h, wherec is a command;n is @ memory (map-
ping variables to their values), adis a heap for dynamically allocated semaphores.
The expression language does not include dereferencingnadyshore references, so
evaluation of expressions does not depend on the heap. We(wrin) | n to say that

n is the value ok in memorym. A heapis a finite mapping from semaphore references
(which we take to be naturals) to records of the fgunt = n, que= ws) wheren is a
natural number ands is the list of blocked thread states.

Let o range over the followingvents which label command transitions for use in the
threadpool semanticsr, to indicate the semaphore at referends signaledr, to
indicate it is waited; or a paikZ.c, ¥ wherev is a sequence of values that maith
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Threadpool configurations have the fofittco, mo) . .. (c;, m;) ... (cn—1,mn—-1)), g,

h, j), where eaclic;, m;) is the state of threatlwhich is not blockedg maps global
variables to their valueg, is the heap;j € 0...n — 1 is the index of the thread that
will take the next step. For all dom(m;) is disjoint fromdom(g). Numbering threads
0...n — 1 slightly simplifies some definitions related to round-rofameduling.

The threadpool semantics is defined for any scheduleroal&t. We interpret(i, n,
n',i’) € SC to mean that is the current thread taking a stepis the current pool size,
n’ is the size of the pool after that step, ahis the next thread chosen by the scheduler.
This model is adequate to define a round-robin scheduler fachwthread activation,
suspension, and termination do not affect the interleawvingther threads, and also
to model full nondeterminism. The fully nondeterministahedulerND is defined by
(i,n,n',i") € NDifandonlyif0 <i <nand0 <i <n'.

A little care is needed with round-robin to maintain the andben threads are blocked
or terminated. The definition relies on some details of thheatipool semantics, e.g.,
when a step by threadremoves a thread from the pool (by termination or blocking),
that thread ig itself. Define the round-robin schedulBR by (i,n,n’,i') € RR if and
only if 0 < i < n and equatiorgl) holds.

The threadpool semantics is given
in Fig. 5. Note that memories
in command configurations are
disjoint unionsm;Ug, where m; i

"=, if n <nandi<n-—1
is the thread-local memory, and _ 0, ifn <nandi=n—1
g is the global one. We write  _ (i + 1) mod n’, otherwise
hlr.que := (r.que :: (c,m))] to (1)

abbreviate an update of the record

atr in h to change its que field by

appendind ¢, m) at the tail. Although semaphores are stored in a heap, wansliree
the semantics by not including a null reference. Thus, atlrieap is needed. It is
defined to initialize semaphores to 1, which is an arbitrdwgice. The security condi-
tion defined later refers to initial values for all global iedes, for simplicity, but only
integer inputs matter.

Definition 1. Theinitial heap of size: is the mappindy;, with domaint . . . k& that maps
eachi to the semaphore statent = 1, que= ()). Suppose that of the globals have
type semaphore. Given a global memgrythe initial global memoryg, agrees with

g on integer variables, and th&h semaphore variable (under some enumeration) is
mapped ta (i € dom(hy)).

Define(c, g) | ¢’ if and only if {(¢, m), gi, hi)0 —* {,¢’,h')j, for someh’ and j,
where—* is the reflexive and transitive closure of the transitiorateln —, andm is

the empty function (since the initial threadhas no local variables).

Note that the definitions of-* and.} depend on the choice of scheduler, but this is
elided in the notation.



62 Alejandro Russo, John Hughes, David Naumann, Andreilf&ddbe

(ci, miUghh — {c}, miUg')h’ (i,n,n,j) € SC
(.o (ciyma) .. g h)i — (.. (ci,ml) ..., g' h')j

¢; = stop (i,n,n—1,7) € SC
{. .. (ci,mi) N ,g,h}i — { . (ci_l,mi_l)(ci+1,mi+1) N ,g,h}j

AZ.d, T

fes,miUghh "= (i, mibg ) m={F—d} (nn+1,j)eSC
(.. (ciymi) ... (o1, mn—1),9,h)i — {...(c;,m}) ... (cn-1,mMn—-1)(d,m),g",h')j
{Chm’iUgbh r {C“m Ug Dh/
B = K [r.que:= (r.que:: (c;,m;))] (i,n,n—1,5) € SC

(. ( mi) ..., g, ki — (... (cim1,mi—1)(civ1, miv1) ..., g, h)j

{ci, miUghh X (ch, miug )
h'(r).que= (c,m) :: ws R" = K [r.que:= ws] (i,n,n+1,j) € SC

(... (ci,mi) ... (cn1,mn-1),9,h)i — {...(c},m3) ... (cn—1,Mn—-1)(c,m),g", h")j

fei,miUghh 2% (e, miug )/
h'(r).que= () R = b/[r.cnt:= r.cnt4 1] (i,n,m,j) € SC

{(C“ml)7g7hb7‘*> {"'(Céym;)"wg/?h//}j

Fig. 5. Threadpool semantics (for schedulst)

4  Security specification

Assume that all global non-semaphore variables are latveitedow or high security
levels to represent public and secret data, respectivayatél all semaphore variables
as high in the target code (recall that the source progracfmdiagmaphore variables).
To define the security condition, it suffices to defioe equalityof global memories,
written g1 =y, go, to say thay; (z) = g2 (z) for all low variablesz.

Definition 2. Programe is secure if for allg;, go such thatgy =1, g, if (¢,01) § ¢}
and(c, g2) | g4 theng} =1, g5, wherel refers to the round-robin schedul&R.

The definition says that low equality of initial global menss implies low equality
of final global memories. Note that this definition is termioa-insensitive [SMO03], in
the sense that nonterminating runs are ignored.

Observe that the examples from the introduction are rejeloyethe above definition
because the changes in the final values of low variables hogakquality. Consider
another example (wheveand! are low; andh is high):

if (h > k) then skip;skipelseskip || l:=0]1:=1

This program is secure because the timing of the first threed dot affect how the
race between assignments in the second and third threadsalved. This holds for
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round-robin schedulers that run each thread for a fixed nuofigeps (which covers
the case of a one-step round-robin sched&&), machine instructions, or even calls
to thefork primitive. Note, however, that schedulers that are ablénange the order
of scheduled threads depending on the number of live thread$d not necessarily
guarantee secure execution of the above program. For eganwisider a scheduler
that runs the first thread for two steps and then checks théauof live threads. If
this number is two then the second thread is scheduled;wigesthe third thread is
scheduled. This leaks the truth valuetof> k into [. Round-robin schedulers are not
only practical but also in this sense more secure, whichvats our choice to adopt
them in the semantics.

5 Transformation

In this section, we give a transformation that rulesexglicitandimplicit flows [DD77]
and closes internal timing leaks under round-robin scheaduTlhe transformation rules
have the forml™; w, s, a, b, m - ¢ — ¢/, where commandis transformed inte’ under
the security type environmetit, which maps variables to their security levels, and
special semaphore variables s, a, b, andm needed for synchronization. Moreover,
a fresh high variablé,, is introduced for each low variablein the source code. The
transformation comprises the rules presented in Figs. & aadd the top-level rule:

(2)

Iiw,s,a,bbmbc—c  w,s fresh

't ¢ < m :=newSen(1); a := newSem(1); w := newSem(1); iy := I; ¢

wherel; := ['stands for copying all low variablésnto fresh high variables;.
Definelow assignment® be assignments to low variables. Explicit flows are préesegn
by not allowing high variables to occur in low assignmente(sule L-ASG). Define
high conditionals (loopsjo be conditionals (loops) that branch on expressions that
contain high variables. Implicit flows for high conditiosand loops are prevented by
rules of the forml” - ¢ & ¢/, where command is transformed inte’ underI". These
rules guarantee that higif's andwhile’s do not have assignments to low variables
in their bodies. These rules for tracking explicit and imjplflows are adopted from
security-type systems for sequential programs [VSI196].

As illustrated by previous examples, internal timing chelerare introduced by low as-
signments after high conditionals and loops. To close thkaanels, the transformation
introduces & ork whenever the source code branches on high data (see rul&$ éidel
(H-W)). Since such computations are now spawned in new dsrebe number of ex-
ecuted instructions before low assignments does not depesdcrets. However, new
threads open up possibilities for new races between highblas, which can unex-
pectedly change the semantics of the program. To ensursubhtraces are avoided,
the transformation spawns dedicated threads for all coatiputs that might affect high
data (see rules (H-ASG) and (L-ASG)) and carefully placeskyonization primitives
in the transformed program. We will illustrate this, andestmteresting aspects of the
transformation, through examples.

Consider the following simple program that suffers from mteinal timing leak:

(if hy then skip; skip else skip);l:=1] d (3)
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Vv € Vars(e). I'(v) = low Jv € Vars(e). I'(v) = high
I'e:low I't-e: high

/
(I w,s,a,b,mb ¢ — ci)iz=1,2

. . . ! !
I';w,s,a,b,mt skip < skip I'iw,s,a,b,mbc1;ca — ch;ch

I'tesw e  I'(x)= high
I'iw,s,a,b,mbE x:=e<— s:=neuSen(0);
fork((Aw3.wait(®);x := €';signal(3)) @ ws);
w = s

(H-ASG)

'ke:low TI'(z)=low T'Fes e
I'iw,s,a,bF x:=e— s:=newSen(0);
wait(m); z := e; b := newSem(0);
fork((Aisab.wait(i); wait(a); hy = €
signal(h); signal(3))Quwsab);
a := b;signal(m);
wi=s

(L-ASG)

I'te:low T;w,s,a,b,mbc—c

I';w,s,a,b,mF while e do ¢ — while edo ¢

I'te:low (I;w,s,a,b,mkb ¢ c})i=1,2

I';w,s,a,b,mF if e then c; else ¢z — if e then ¢} else ch

I''-e: high I'ex €

HIP) (I'kci % cf)iz1,2 ¢ = if ' thenc] else c)

I';w,s,a,b,mE1if e then c¢; else c2
— s :=newSem(0);
fork((Aws.wait(w);ce; signal(s)) @ ws);
(RE

I'e:high TI'Fexe TI'lFcrcd ¢ =whilee doc
I';w,s,a,b,m while e do ¢ — s := newSem(0);
fork((Aws.wait(w); ct; signal($§)) @ ws);
W= s

(H-wW)

I;w',s' a,bombE-d—d w', s fresh
ct = fork((Aw3d .wait(®);signal(d); signal(s);signal(d’)) @ @wsw')
I';w,s,a,b,m b fork(d) — s := newSen(0);
fork((Aw3.w’ := newSem(0); ct; d') Qws);
wi=s

Fig. 6. Transformation rules |
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I't et elha /T re)=iow I' - skip & skip
I'(v)=high T'Fes e (IC'tci % cf)iz12
'Fvi=ew vi=¢ I'Fcijer % cl;ch

'tewe (I'kei%ch)izio

I' - if e then c; else co & if €’ then ¢ else c)

'rded I'teve TI'kFcxd
'+ fork(d) & fork(d) I'-while e do ¢ & while ¢’ do ¢’

Fig. 7. Transformation rules Il

whered abbreviates commanskip; skip;! := 0. The assignment := 1 may be
reached in three or two steps dependingignHowever, by spawning the high condi-
tional in a new thread, the number of instructions to exeitui# no longer affect when

[ := 1is reached. More precisely, program (3) can be rewrittefica%(if h; then
skip; skip; else skip);l := 1 || d, where internal timing leaks are not possible. From
now on, we assume that the initial values/@ndh, are always 0. Suppose now that
we modify program (3) by:

(if hq then hg := 2% ho + [;skip else skip);l:= 1] d 4)

where the final value ok, is always0. This code still suffers from an internal tim-
ing leak. Unfortunately, by putting fork around theif as before, we introduce
as a possible final value fdrs, which was not possible in the original code. This
discrepancy originates from an undesired new interleawvintipe rewritten program:

[ := 1 can be computed beforl, := 2 x hy + [. To prevent such an interleav-
ing, we introduce fresh high variables for every low var&abi the code. We call
this kind of new variablesigh imagesof low variables. Since low variables are only
read, and not written, by high conditional and loops, it isgible to replace low vari-
ables inside of high contexts by their corresponding higages. Then, every time that
low variables are updated, their corresponding imagesdailso but in due course.
To illustrate this, let us

rewrite the left side of pro-  := newsem(1)
gram (4) as in(5). Vari- s :=newSem(0);
ableh, is the corresponding fork((Aws.wait(w); (if hy then he := 2 % ha + hy; skip
high image of low variable else skip);signal(3))

I. Two dedicated threads Qus)

are spawned with different ¥ := $

local snapshots ofv and ! = 1;s = newSen(0); _ )
s, written asw and 3, re- fork((A\ws.wait(d); h; := 1; signal(§)) Q ws)
spectively. The second ded-’ = ° 5)

icated thread, which up-
dates the high image ofto

; //initialization from top-level rule (2)
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1, waits fvait(w@)) for the first one to finish, and the first one indicates whersgwond
one should startsignal(s)). By doing so, and by properly updating and s in the
main thread, the commariq := 1 is never executed before thé statement. Note that
the first dedicated thread does not need to synchronize wéthiqus ones. Hence, the
top-level transformation rule, presented at the beginwiintpe section, initializes the
semaphorey to 1.
The threadi also needs to be modified to include an updatg;td_et us rewrited as
follows:

wg := newSem(1); skip; skip;

l := 0; sq := newSem(0);

fork((Awgsq.wait(wq); hi := 0; signal(sy))Qwgsq);

Wq = 84

(6)

Semaphore variables; and s; do not play any important role here, since just one
dedicated thread is spawned. Note that if we run progrgmand (6) in parallel, it
might be possible that the updates of low variables happartifferent order than the
updates of their corresponding high images. In order todatfos, we introduce three
global semaphores, called b, andm. The final transformed code is shown in Fig. 8,
wherec] runs in parallel withd| . Semaphore variablesandb ensure that the queuing
processes update high images in the same order as the lgnm@sgsits occur. Since
a andb are globals, we protect their access with the global sentepho As in the
original programh. can only have the final valu® From now on, we assume that the
semaphore is allocated and initialized with valuke.

Let us modify program (4) by adding assignments to high andvariables:

(if hy then ho := 2% hy + [; skip else skip);l:= 1;he :=hao+1;1:=3 || d (7)

The final value ofh, is 1. As before, this code still suffers from internal timing ksa
By puttingfork’s around high conditionals and introducing updates fohlhigages as
in program (5), we would introducas a new possible final value fag, whenh; is
positive. The new value arises from executing:= ho + 1 before theif statement.

In order to remove this race, we use synchronization to gui@egthat computations on
high data are executed in the same order as they appear ingireabcode. However,
this synchronization should not lead to recreating timingaks: waiting
for the if to finish before ex-

ecuting h2 = ha + 1;l. : ch ¢ ;s := newSem(0);
3 would imply that the timing *  ¢oric((Avswait(@); he = hs + 1; signal(s))
of the low assignment := 3 Qus:

could depend orh;. We resolve wi=s;

this problem by spawning dedi- wait(m);l:= 3;b := newSem(0);

cated threads for assignments t0 fork((\isab.wait(w);wait(a);h := 3;

high variables and synchronizing, signal(b); signal())Qusab);

via semaphores, these threads with @ := b; signal(m);

other threads that either read from || di

or write to high data. The ded- ®)
icated thread to computks, =

he + 1 will wait until the last dedicated thread it} finishes. The transformed code
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¢} : w := newSem(1); d} : wg = newSem(1);
s := newSem(0); skip; skip;
fork((Aws.wait(w); sq := newSem(0);
if hy then ho := 2% ha + hy; wait(m);l := 0; b := newSem(0);
skip; fork((Agsaab.wait(ig); wait(a);
else skip; hi := 0; signal(b); signal(s;))
signal($))Qus); Qugsqab);
wi=s a := b;signal(m);
s := newSen(0); Wy = 84

wait(m);! :=1; b := newSem(0);

fork((Adsab.wait(i); wait(a); hy := 1;
signal(b); signal(3))@Qusab);

a := b;signal(m);

W=

Fig. 8. Transformed code for progra(#)

is shown in(8). Note that spawned dedicated threads are executed in treewaer as
they appear in the main thread.
Let us modify program (7) to introducefark as follows:

if hy then ho := 2 * hy + [; skip else skip;
l:=1;hs :=ha + 151 := 3; 9)
fork(hs :=5) || d

The final value of is 5. However, the rewritten program will spawn several dedidat
threads: for the conditional, for updating high imagks,:= hs + 1, andhs := 5,
which need to be synchronized. In particufar,:= 5 cannot be executed befalig :=
hs + 1 finishes. Thus, we need to synchronize dedicated threallse main thread with
the dedicated threads from their children. This is addessethe transformation as
follows:

co;
s := newSem(0);
fork((A@3.w’" := newSem(0);
fork((A\w3d .wait(d); signal(®);signal(3);signal(d’))Qw3w’);d") Quws);
w = s; | d}

(10)
whered* spawns a new thread that waits en to performhs, := 5. In order to be
able to receive a signal on’, it is necessary to firstly receive a signal én which
can be only done after computithg := ho + 1. Note that the transformation spawns a
new thread to wait om in order to avoid recreating timing leaks. Whefierk occurs
inside a loop in the source program, there is potentially mlmer of dynamic threads
that need to wait for the previous computation on high dafaish. This is resolved by
passing-the-baton technique: whichever thread receisegal first fait(@)) passes
it to another threads@ignal(w)).
The examples above show how to close internal timing leakspayvning dedicated
threads that perform computation on high data. We have $eg¢rséme synchroniza-
tion is needed to avoid producing different outputs thaended in the original pro-
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hotel; := nextHotel();
hotelLoc; := getHotelLocation (hotel;);
dp, := distance(hotelLocy, userLocp,);
closesty, := hotel;
while (moreHotels?()) do
hotel; := nextHotel();
hotelLoc; := getHotelLocation (hotel;);

dj, := distance(hotelLoc;, userLocy,);

if (dj, < dp) then dj, := d},; closest), := hotel,
else skip

ip 1= 0;

while (moreTypeRooms?(closesty)) do
type;, = nextTypeRoom (closesty,);
showTypeRoom (type,,, in);
ih i=1p + 1;

Fig. 9. Geo-localization example

gram. Transformed programs introduce performance ovdriedated to synchroniza-
tion. This overhead comes as a price for not modifying thetime environment when
preventing internal timing leaks.

6 Geo-localization example

Inspired by a scenario from mobile computing [Mob06], wesgin example of closing
timing leaks in a realistic setting. Modern mobile phonesaile to compute their geo-
graphical positions. The widely used MIDP profile [JSROZ2]rfebile devices includes
API support for obtaining the current position of the hartd$8R03]. Furthermore,
geo-localization can be approximated by using the idewfitthe current base station
and the power of its signal. It is desirable that such infdromacan only be used by
trusted parties.

Consider the code fragment in Fig. 9. This fragment is para grogram that runs
on a mobile phone. Such a program typically uses dynamiathoeeation (which
is supported by MIDP) to perform time-consuming computa{iguch as establishing
network connections) in separate threads [Knu02, Mah04].

The program searches for the closest hotel in the area wherbandset is located.
Once found, it displays the types of available rooms at thé&tlhVariables have sub-
scripts indicating their security levels for low andh for high). Suppose thatote];
and hotelLoc; contain the public name and location for a given hotel, retysly.
The location of the mobile device is stored in the high vddaberLoc;,. Variables
dy andd), are used to compute the distance to a given hotel. Varidblest;, stores
the location of the closest hotel in the area. Variahlés used to index the type of
rooms at the closest hotel. Variablge,, stores a room type, i.e., single, double, etc.
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FunctionneztHotel() returns the next available hotel in the area (for simpljaity as-
sume there is always at least one). FuncijetHotelLocation() provides the location
of a given hotel, and functiodistance() computes the distance between two loca-
tions. FunctionmoreHotels?() returns true if there are more hotels forzt Hotel() to
retrieve. Functionnore TypeRooms?() returns true if there are more room types for
next TypeRoom(). Functionshow TypeRoom () displays room types on the screen.
This code may leak information about the location of the neophone through the
internal timing covert channel. The source of the probleedsnditional that branches
on secret data, where thhaen branch performs two assignments while 81ee branch
only skip. However, internal timing leaks can be closed by the tramsétion given

in Section 5 (provided the transformed program runs undeuad-robin scheduler).
This example highlights the permissiveness of the transdtion. For instance, the type
systems by Boudol and Castellani [BCO1, BC02] reject thergta because both high
conditionals and low assignments appear in the body of a. [domsformations in
[SS00, KMO06] also reject the example due to the presence igfreldop in the code.

7 Soundness

This section shows that transformed programs are secwasolstates that transformed
programs refine source programs in a suitable sense. Thisddtdne proofs for lem-
mas and theorems shown in this section are to appear in ampenying technical
report.

Security We identify two kinds of threadddigh threads are dedicated threads intro-
duced by the transformation and threads in the source progpawned inside a high
conditional or a high loop. Other threads dog threads. We designate high threads
by arranging that they have a distinguished local variabled 5. It is not difficult to
modify the transformation in Section 5 to guarantee this.

In order to prove non-interference under round-robin salexd, we firstly need to ex-
ploit some properties of programs produced by the transition.

Definition 3. A command: is syntactically secur@rovided that (i) there are no ex-
plicit flows, i.e., assignments := e with high e and low x; (ii) each low thread,
fork((AZ.c') @é), in ¢ satisfies the following: there are no high conditionals ogthi
loops orsignal() or wait() operations related to synchronize high threads, except
inside high threads forked ief; and (iii) in high threads, there are neither low assign-
ments nor forks of low threads.

Lemma 1. If I' k; ¢ — ¢ then(’ is syntactically secure.

We let~ andé range over threadpool configurations. We assume, for caenea in
the notation, thaty = ((co, mo) ..., g, h)j. We also definey.pool = ((co,mqp)...),
~.globals = g, v.heap = h, and~y.next = j. A program configuratiory is called
syntactically securé every command iny.pool and every command in a waiting queue
of v.heap is syntactically secure.
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A thread configuratior{c, m) is low, notedlow?(m), if and only if & ¢ dom(m).
Definelow?(i, ) if and only if theith thread iny.pool is low. Definey;, as the subse-
quence of thread configuratio(ts, m;) in ~y.pool that are low. For each thread config-
uration(c;, m;) € ~ thatis low, defindowpos(i,~) (and, for simplicity in the notation,
lowpos(i, v.pool)) to be the index of the thread but1n,. The key property of a round-
robin scheduler is that the next low thread to be schedulediependent of the values
of global or local variables, the states of high threadsr{ing or blocked), and even
the number of high threads in the configuration. We can fdgntalpture this property
as follows. Defineneztlow(y) = j mod (#+.pool) wherej is the least number such
thatj > v.next andlow?(j mod (#.pool), ).

Definition 4 (Low equality). DefineP =;, P’ for threadpoolsP = {(¢1,m1) ...) and
P" = {(c},m})...) (not necessarily the same length) if and only;it= ¢; for all i, j
such thatlow?(m;), low?(m;), andlowpos(i, P) = lowpos(j, P'). Definey =, § if
and only ify andd are syntactically securey.globals =y, §.globals,~.pool =y, d.pool,
lowpos(nextlow(y),7y) = lowpos(nextlow(d),d), and all threads blocked in.heap
andd.heap are high.

Theorem 1. Let~ andé be configurations such that=g ¢. If y —* 4" andé —* §’
wherey’, ¢ are terminal configurations, thef =, §’. Here—* refers to the semantics
using the round-robin scheduléiR.

Corollary 1 (Security). If I' - ¢ < ¢’ thenc’ is secure under round-robin scheduling.

Refinement For programs produced by our transformation, the resuthfeoround-
robin computation from any initial state is a result from trainal program using the
fully nondeterministic scheduler. In fact, any interleayiof the transformed program
matches some interleaving of the original code. Then, we tta following claim:

Claim 1. Supposd” - ¢ <—; ¢’ and g} and g} are global memories for’ such that
(', ¢}) | g5 using the nondeterministic schedulg€D. Letg; andg, be the restrictions
of g{ andg) to the globals of. Then(c, g1) |} g2 usingND.

8 Related work

Variants of possibilistic noninterference have been exquidn process-calculus set-
tings [HVY00, FGO01, Rya01, HY02, Pot02], but without coreithg the impact of
scheduling.

As discussed in the introduction, a series of work by Volpand Smith [SV98, VS99,
Smi01, Smi03] suggests a spegiabtect(c) statement to hide the internal timing of
command: in the semantics. In contrast to this work, we are not depatmlethe ran-
domization of the scheduler. To the best of our knowledgg@rposals foprotect()
implementation avoid significantly changing the sched(lefess the scheduler is co-
operative [RS06b]).

Boudol and Castellani [BCO1, BC02] suggest explicit maugbf schedulers as pro-
grams. Their type systems, however, reject source progrdrage assignments to pub-
lic variables follow computation that branches on secrets.
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Smith and Thober [ST06] suggest a transformation to splibgigam into high and low
components. Jif/split [ZCMZ03] partitions sequential grams into distributed code
on different hosts. However, the main focus is on securitgmiome trusted hosts are
compromised. Neither approach provides any formal notiaeourity.

A possibility to resolve the internal timing problem is bynsidering external timing.
Definitions sensitive to external timing consider stronggackers, namely those that
are able to observe the actual execution time. Externahtimsensitive security defini-
tions have been explored for multithreaded languages bglfedd and Sands [SS00]
as well as languages with synchronization [Sab01] by Seloelind message pass-
ing [SM02] by Sabelfeld and Mantel. Typically, padding taifues [Aga00, SS00,
KMOG6] are used to ensure that the timing behavior of a progsaimdependent of se-
crets. Naturally, a stronger attacker model implies mostricions on programs. For
example, loops branching on secrets are disallowed in tbeeafipproaches. Further,
padding might introduce slow-down and, in the worst casatermination.

Another possibility to prevent internal timing leaks in grams is by disallowing any
races on public data, as pursued by Zdancewic and Myers [Z8i03 improved by
Huisman et al. [HWS06]. However, such an approach rejectsdent programs such
asl := 0 L := 1 wherel is a public variable.

9 Conclusion

We have presented a transformation that closes internadgifeaks in programs with
dynamic thread creation. In contrast to existing approscive have not appealed to
nonstandard semantics (cf. the discussiopositect()) or to modifying the run-time
environment (cf. the discussion on interaction with sched). Importantly, the trans-
formation is not overrestrictive: programs are not rejécteless they have symptoms of
flows inherent to sequential programs. The transformatisuees that the rest of inse-
curities (due to internal timing) are repaired. Our targaegluage includes semaphores,
which have not been considered in the context of terminéatieansitive security.
Future work includes introducing synchronization and dssification primitives into
the source language and improving the efficiency of the toammation: instead of dy-
namically spawning dedicated threads, one could refab®ptogram into high and
low parts and explicitly communicate low data to the hightpahen needed (and high
data to the low part, when prescribed by declassification).
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Abstract. Li and Zdancewic have recently proposed an approach to geovi
information-flow security via a library rather than produgia new language from
the scratch. They show how to implement such a library in ihbly using arrow
combinators. However, their approach only works with cotapans that have
no side-effects. In fact, they leave as an open question heirltbrary, and the
mechanisms in it, need to be modified to consider these kireffetts. Another
absent feature in the library is support for multithreadespams. Information-
flow in multithreaded programs still remains as a challergel no support for
that has been implemented yet. In this light, it is not ssipg that the two main
stream compilers that provide information-flow securitfyafid FlowCaml, lack
support for multithreading.

Following ideas taken from literature, this paper presantgxtension to Li and
Zdancewic's library that provides information-flow see¢yrin presence of ref-
erence manipulation and multithreaded programs. Moreaveonline-shopping
case study has been implemented to evaluate the proposedaiees. The case
study reveals that exploiting concurrency to leak seceefsasible and danger-
ous in practice. To the best of our knowledge, this is theifinplemented tool to
guarantee information-flow security in concurrent progsaand the first imple-
mentation of a case study that involves concurrency andrirdtion-flow poli-
cies.

1 Introduction

Language-based information flow security aims to guarathisteprograms do not leak
confidential data. It is commonly achieved by some form dfictnalysis which re-
jects programs that would leak, before they are run. Oveyélags, a great many such
systems have been presented, supporting a wide varietyogfgmming constructs
[SMO03]. However, the impact on programming practice hasbiather limited.

One possible reason is that most systems are presenteddoritext of a simple, el-
egant, and minimal language, with a well-defined semamicsake proofs of sound-
ness possible. Yet such systems cannot immediately beetibpiprogrammers—they
must first be embedded in a real programming language wittalaccempiler, which
is a major task in its own right. Only two such languages haenbdeveloped—Jif
[Mye99, MZZ+06] (based on Java) and FlowCaml [PS02, Sim03] (based on)Caml
Yet when a system implementor chooses a programming laeguirgfgrmation flow
security is only one factor among many. While Jif or FlowCanight offer the desired
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security guarantees, they may be unsuitable for othernsaaad thus not adopted. This
motivated Li and Zdancewic to propose an alternative apgroahereby information
flow security is provided via ébrary in an existing programming language [LZ06].
Constructing such a library is a much simpler task than aé@sggand implementing a
new programming language, and moreover leaves systemrimeplers free to choose
any language for which such a library exists.

Li and Zdancewic showed how to construct such a library ferftinctional program-
ming language Haskell. The library provides an abstraa tffsecure programs, which
are composed from underlying Haskell functions using dpesahat impose informa-
tion-flow constraints. Secure programs eegtified by checking that all constraints are
satisfied, before the underlying functions are invoked-sthuaranteeing that no secret
information leaks. While secure programs are a little mavkveard to write than or-
dinary Haskell functions, Li and Zdancewic argue that tafliconly a small part of a
system need manipulate secret data—for example, an aiggort module—and only
this part need be programmed using their library.

However, Li and Zdancewic’s library does impose quite sevestrictions on what a
secure program fragment may do. In particular, these fraggmaay have no effects of
any sort, since the library only tracks information flow thgh the inputs and outputs
of each fragment. While absence of side-effects can be gtesgd in Haskell (via the
type system), this is still a strong restriction. Our puosthis paper is to show that
the same idea can be applied to support secure programs witiich richer set of
effects—namely updateable references in the presenceoopécative) concurrency.
The underlying methods we use—an information-flow typeeysfor references, a
restriction on the scheduler—are taken from the literatwteat we show here is how
to implementthem for a real programming language following Li and Zdavicis
approach.

The rest of this paper is structured as follows. In the netige we explain Li and
Zdancewic's approach in more detail. One restriction ofrtapproach is that data-
structures are assignedsimglesecurity level—so if any part of the output of a secure
program is secret, then the entire output must be classifiesteret. We need to lift
this restriction in our work, allowing data-structureshwihixed security levels, and in
Section 3 we show how. This enables us to add references tiosdc We then intro-
duce concurrency, reviewing approaches to secure infawm#é8ow in this context in
Section 5, in particular ways to close timernal timingcovert channel, and in Section
6 we describe the implementation of our chosen approachedtidh 7 we present a
concurrent case study involving online shopping. With nartermeasures, an attack
based on internal timing leaks can obtain a credit-card raswith high probability in
about two minutes. We show that our library successfullyedd§ against this attack.
Finally, in Section 8, we draw our conclusions.

2 Encoding Information Flow in Haskell

Li and Zdancewic's approach represents secure programéatg asrrowsin Haskell
[HugOQ]. Arrows can be visualised as dataflow networks, nrapinputs on the left to
outputs on the right. Arrows are constructed from Haskeltfions using combinators,
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f***g

Fig. 1. Basic arrow combinators.

of which the most important are illustrated in Figure fit+ e converts a Haskell func-
tion to an arrow( >>>) sequences two arrows, agtl* *) pairs arrows together. Any
required left-to-right static dataflow can be implementsithg these combinators—for
example, an arrow that computes the average of a list coutdhgtructed as

squareA = pure tee >>>
(pure sum *** pure |ength) >>>
pure divide
where tee x = (X, X)
divide (x,y) = xly

Its effect is illustrated in Figure 2. To express a dynamicich between two arrows,
there is an additional combinatbf | | g, whose input is of Haskell's sum type:

data Either a b = Left a | Right b

Its effect is illustrated in Figure 3.

Haskell allows any suitable type to be declared to be an abpwroviding implemen-
tations for the basic arrow combinators. This is usuallyduseencapsulate some kind
of effects. For example, we might define an arrow for programgmvith references,
by declaringAr r owRef a b to be the type of arrows from to b, implementing the
basic combinators, and then providing arrows

createRef A :: ArrowRef a (Ref a)
readRef A :: ArrowRef (Ref a) a
witeRefA :: ArrowRef (Ref a,a) ()

(sum
(tee) Caivide
(Tength

Fig. 2. Average of a list.
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a
Eitherab o
b

C gD

Fig. 3. Choice betweeh andg.

to perform the basic operations on references. With thefsaititens, we can write side-
effecting programs in a dataflow style. For example, an atoowcrement the contents
of a reference could be programmed as

incrRefA :: ArrowRef (Ref Int) ()
incrRefA =
(pure id & & (readRef A >>> pure (+1)))
>>> writeRefA
where f &8& g = pure tee >>> (f***q)

Li and Zdancewic found another use for arrows: they realisat since all the data- and
control-flow in an arrow program is expressed using the acombinators, then they
could define a type dlow arrows whose primitive arrow combinators implement the
type checking of an information flow type system. Their typstem assigns security
label drawn from a suitable lattice, such as

data Label = LOW| MEDIUM | H CH
deriving (Eq, Od)

to the input and output of each arrow (where ther i vi ng clause declares that
LONKMEDI UMKHI GH). Their arrows themselves are represented by the Haslkal ty
Fl owArrow | arr a b, which is actually ararrow transformerthe typel is the
security latticea andb are the input and output types, aadr is anunderlying arrow
type such agvr r owRef . Flow arrowscontainarrows of typearr a b, together with
flow information about their inputs and outputs.

In the information flow type system, an arrow is assigned a figve ¢; — ¢ under a
set of constraints, wherg and/, are security labels. The rules fpur e and( >>>)

are given in Figure 4. ThEl owAr r owtype represents not only the underlying com-
putation, but also the information flow typing—it is repreted as a record

data FlowArrow | arr a b = FA

{ conputation :: arr a b,
flow 0 Flow I,
Cl}—flflﬂfg Cgl—g:£3*>£4
Ppuref:é—% 01702,622(3Ff>>>gie1—>£4

Fig. 4. Typing rules forpur e and>>>.
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s° u= 0] (s%, %) | (either s& s~ )°

Fig. 5. Extended security types

constraints :: [Constraint |]
}
data Flow | = Trans | | | Flat
data Constraint | = LEQ I |

Here thef | ow component represents eithigr— ¢ (Trans | 1 | 2), or the “poly-
morphic”¢ — ¢ forany/ (FlI at ), which is needed to give an accurate typingdar e.
Theconst r ai nt s field just collects the constraints on the left of the tulestVith
this representation, it is easy to implement the typingginéhe arrow combinators. Se-
curity labels are introduced and checked by the atrag | , with flow Trans | |,
which forces both its input and output to have the given sgclabel.

Note that the information flow types are quite independetiheHaskell types! More-
over, they are not checked during Haskell type-checkingh&awhen a flow arrow
is constructed during program execution, all the necessangtraints are collected
dynamically—but they are checked before the underlyingmatation is run. Li and
Zdancewic’s library exportl owAr r ow as an abstract type, and the only way to ex-
tract the underlying computation is via a certification ftioiec which solves the con-
straints first. If any constraint is not satisfied, then thdartying code is rejected.

Li and Zdancewic also considered declassification, whicjuires adding the user’s
security level as a context to the typing rules, and a new fofrronstraint—but we
ignore the details here.

3 Refining Security Types

Li and Zdancewic’s library uses single security labels asisty types. As a conse-
guence, values are classified secrets when they contatigliyeor totally, some con-
fidential information. For instance, if one component of & [gsecret, the whole pair
becomes confidential. This design decision might be a piateastriction to build some
applications in practice. With this in mind, we extend Li afdhncewic’s work to in-
clude security types with more than one security label. Tlesgnce of several security
labels in security types allows to develop a more precisg cansequently permissive,
analysis of the information flow inside of a program.

3.1 Security Types

We assume a given security latticevhere security levels, denoted byare ordered by
a partial orde. Top and bottom elements are writtérand_L, respectively. Security
types are given in Figure 5 and their subtyping relationghipigure 6. Security type
(s, s™) provides security annotations for pair types. Securitetigither s- s& )¢
provides annotations for typi t her . Security type/ decorates any other Haskell
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01 <l st C sy s5C sy

LEG (¥, 3) C (s5, 1)

(Tl stCsy s5Cosyp

(either st s5)°1 C (either s5 s57)%

Fig. 6. Subtyping relationship

type (e.g.I nt, Fl oat, [ a], etc.). Security types are represented in our library as
follows:

data SecType |
= SeclLabel |
| SecPair (SecType |) (SecType |)
| SecEither (SecType |I) (SecType I) |

wherel implements a lattice of security levels.

3.2 Defining FlowArrowRef

The abstract data typd owArrowRef defines our embedded language by implementing
anarrow interface:

data FlowArrowRef | a b ¢ = FARef

{ conputation :: a b c
, flow :: Flow (SecType I)
, constraints :: [Constraint (SecType |)] }

This definition is similar to the definition dfl owAr r ow except for using the type
(SecType 1) as type argument foFl ow and Const r ai nt . ConstructorF| at
needs to be removed from data tyfpleow as a consequence of dealing with security
types with more than one security label HhowAr r ow, FI at is used to establish that
pure computations have the same input and output secupiéy tynfortunatelyf-|l at
cannot be used ikl owAr r owRef , otherwise secrets might be leaked. For instance,
consider the programpure ( (x,y) -> (y,x) ) thatjustflips componentsin

a pair. Assume that, annotated with security labéll GH, is a secret input ang,
annotated with security labeIOW contains public information. If Hl GH, LOW is the
input and output security types for that program, the valug will be immediately
revealed!

Similarly to Li and Zdancewic’s workizl owAr r owRef encodes a typing judgement
to verify information-flow policies. Naturally, our encadj is more complex than that

in FI owAr r ow. This complexity essentially arises from considering eickecurity
types. The typing judgment has the for@i:- f : 7 | s¥ — m | sk, wheref is a
purely-functional computatiort; is a set of constrains that, when satisfied, guarantees
information-flow policies, and; | s} — 7 | s5 is aflow type which denotes that

f receives input values of typg with security types:, and produces output values of
type 7> with security typess. Except for combinatopur e, most of the typing rules
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faom — 1

0 Fpure f : 71 | sT — 7| only join(s})

Fig. 7. Typing rule for combinatopur e

in Li and Zdancewic’s work can be easily rewritten using tiyigsing judgment, and
therefore, we omit them here.

3.3 Security Types and Combinatompur e

Different from Li and Zdancewick’s work, it is not straigbtivard to determine se-
curity types for computations built with arrow combinatoBasically, the difficulty
comes from deciding the output security type for combinator e. This combinator
can take any arbitrary Haskell function as its argumentnTktee structure of its out-
put, and consequently its output security type, can bereiffien every application. For
instance, output security types four e computations that return numbers and pair of
numbers consist of security labels and pair of securityl&alvespectively. Moreover,
although the structure of the output security type could &eminined, it is also dif-
ficult to establish the security labels appearing in it. Tasirate this point, consider
the computatiorpure ( \(x,y) -> (x+y, y) ), where inputs: andy have
security labeld ONVandHI GH, respectively. It is clear that the output security type for
this example igH GH, HI GH). However, in order to determine that, it is necessary to
know how the input is used to build the output. This inputpaidependency might be
difficult to track when more complex functions are consideiith this in mind, we
introduce a new security type t&:

st o= 0] (s, s%) | (either s“ s™ )’ | only ¢

Security typeonly ¢ represents any security type that contains all their sgclatbels
as/. Typing rule forpur e is given in Figure 7. Observe the use of the Haskell typing
judgment (written::) in the hypothesis of the rule. Functignin(s}) computes the
join of all the security labels is}-. Essentially, the typing rule over-approximates the
output security type by using the security labels found mitiput security type. By
only having one piece of secret information as input, resoftpur e computations
are thus confidential regardless what they do or what kineéstlt they return. As a
consequence, computations that follow combinptaore cannot operate on public data
any more. As an example, consider the progfam>> pure ( \(Xx,y) ->y +

1) >>> g, where computation operates on public data and computafigoroduces

a pair where the first and second components are secret alid yalbes, respectively.
This simple program just adds one to the public output @nd provides that as the
input ofg. However, the program is rejected by the encoded type syistenr library,
even though no leaks are produced by this code. The reastinigas that prograng
receives confidential information fropur e while it expects only public inputs. Since
pur e is responsible for allowing the use of any Haskell functionghe library, this
restriction seems to be quite severe to implement concpgtiécations.
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3.4 Combinator lowerA

Combinatorl ower A is introduced to mitigate the restriction of not allowingngou-
tations on public data to take some input producechtoye combinators. Basically,

| ower A takes a security label and an arrow computatiop, and returns a compu-
tationp’. Computatiorp’ behaves likep and has the same input type, output type, and
input security type ag. However, its output security type might be different. Tlgput
security type is constructed based on the output typeasfd it contains only security
labels of valu¢/. In other words| ower A downgrades the output gfto the security
level /. In principle, this combinator might be also used to leakestsc An attacker can
just apply( | ower A LOW to every computation that involves secrets! To avoid this
kind of attacks| ower Afilters out data with security level higher than

Input Filtering Mechanism Filtration of data is done by replacing some pieces of
information withundef i ned *. This idea is implemented by the member function
r enoveDat a of the type-clas§i | t er Dat a. The signature of the type-class is the
following:

class (Lattice |) => FilterData | t where
renoveData :: | ->t -> (SecType |) ->1t

Methodr enoveDat a receives a security levél, a value of type , and a security
type( SecType 1), and produces another value of tytpperhere the information with
security label higher thahn is replaced byindef i ned. As an example, instantiations
for integers and pairs are given in Figure 8. Observe how seedfitype-classes allows
to define different filtering policies for different kind oath. This is particularly useful
when references are introduced in the language (see Sdchn

The introduction of undefined values might also introdueé$edue to termination. For
instance, if filtered values are used inside of computatioatsbranches on secrets, then
the program might terminate (or not) depending on which tias executed. However,
these kind of leaks only reveal one bit of information abartfdential data. In some
scenarios, leaking one bit due to termination is acceptabiitermination-insensitive
security conditions are adopted for those cases. In factjlary is particularly suit-
able to guarantetrmination-insensitiveecurity specifications.

Building Output Security Types Besides introducing a filtering mechanidnower A
constructs output security types where security labelakthe same. We define the
following type-class:

class (Lattice |I) => BuildSecType | t where
bui | dSecType :: | ->1t -> (SecType |)

MethodbuildSecType receives a security labkland a value of type, and produces
a security type fot where security labels ate For instance, it produces security type
(1, 1) for pair of integers. Instantiations for pairs and integges given in Figure 9.

! This is an undefined value in Haskell and it is member of evgg.t
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instance (Lattice |)
=> FilterData | Int where

renoveData | x (SecLabel 1') =
if label _leq |’ | then x
el se undefi ned

instance (Lattice |, FilterData | a,

FilterData | b)

=> FilterData | (a,b) where

removeData | (x, y) (SecPair Ix ly) =
(renpveData | x Ix, renoveData | y ly)

Fig. 8. Instantiations fofFi | t er Dat a

nstance (Lattice |) =>
Bui | dSecType | Int where
bui | dSecType | _ = (SecLabel 1)

nst ance
(Lattice |, Buil dSecType | a, BuildSecType | b)
=> Bui | dSecType | (a, b) where
buil dSecType | _ =
(SecPair (buildSecType | (undefined::a))
(buil dSecType | (undefined::b)))

Fig. 9. Instantiations foBui | dSecType

Observe that the value of the second argumemiofl dSecType is not needed, but
its type. Type-classes provide a mechanism to access iaf@mabout types in Haskell
and take different actions, like building different setytypes, depending on them.
Whenl ower Areceives a computation as an argument, it needs to knowtpsitlype

in order to properly applhpui | dSecType. For that purpose, we introduce another
type-class:

class (Lattice |, Arrow a)
=> TakeQutput Type | a b ¢ where
deriveSecType :: | ->(a b c) -> (SecType |)

Methodder i veSecType receives a security labél, an arrow computatiofia b

c), and returns the corresponding security tyjsecType | ) for the output types.

The instantiation of this type-class is shown in Figure 10.

To put it briefly, combinatot ower A creates a new computation that behaves as the
computation received as argument, but calling the destribethodsremoveData
andbuildSecType in due course. The type signature foywerA is given in Figure

11. Typing rule forl ower A is shown in Figure 12. Observe how the output security
type is changed. Functiomis defined in Figure 13 and implemented by the method
bui | dSecType. As a simple example of the uselobwer A, we rewrite the example

in Section 3.3 as followd: >>> | ower A LON (pure (\(Xx,y) ->y + 1))
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nstance
(Lattice |, BuildSecType | c, Arrow a)
=> TakeQutput Type | a b c where
deriveSecType | ar =

bui | dSecType | (undefined::c)

Fig. 10.Instantiation forTakeQut put Type

owerA :: ( Latticel, Arrow a,
FilterData | b, BuildSecType | c,
TakeQut put Type | (FlowArrowRef | a) b ¢ )
= | -> FlowArrowRef | a b c ->FlowArrowRef | a b c

Fig. 11. Type signature fof ower A

>>> ¢. Observe that the value received by progigis not confidential anymore, and
consequently, the program passes the type-checking testg ilibrary. In this exam-
ple, the filtering mechanism bfower A does not introduce leaks due to termination. In
general, the possibilities to exploit undefined valuesoiiiced by some computation
like | ower A LOW p are related to the security pf If p only producest O\Wvalues,
no leaks due to termination are introduced. Otherwise gfesents, for instance, some
flows from secret data to its output, a one-bit leak due toitemtion might happen as a
price to pay for not being able to predict the input-outpytetedency op and avoiding
leaking the whole secret.

One alternative implementation to the input filter mechawiisl ower A/ p could have
been to reject computatignif it takes some input with security label higher thatn-
fortunately, this idea might not work properly when progssieke input from external
modules or components, which frequently provide data witferdnt security levels
to arrow computations. Consequently, the pattesmer A ¢ (pur e f) is particularly
useful to get any values at security levels beloregardless the security input type of

pure f.

4 Adding References

Dealing with information-flow security in languages withfaeence manipulation is
not a novelty. Unsurprisingly, Jif and FlowCaml includerthas a language feature.
Nevertheless, it is stated as an open question how Li andcédaa’s library needs
to be modified to consider side-effects. In particular, wdwabws could be used to
handle them and how their encoded type system needs to béiedotiVe have already
started answering these question with the modificatiquuofe and the introduction of

| ower Ain Section 3. We will complete answering Li and Zdancewia®stions by
showing how to extend their library to introduce referendéee developed techniques
in this section can be considered for other kind of sideetdfas well.
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C’Pf:7'1|5]]f—>7'2|5]]2“

CllowerAlf : 71| sY — 72| pll,2)

Fig. 12. Typing rule forl ower A

p(int, ) — £

plr,0) — sk

p(r ref, £) — s§ref?
p(r1,0) — b plr2,0) — s5
p((7—177-2)7£) - (SHLS%)

L

p(ri,8) — st p(12,0) — s3

p(either 7 12,0) — (either st s5)*

Fig. 13. Definition for Functionp

4.1 Security Types for References

The treatment of references is based on Pottier and Sinsometk [PS02]. They intro-
duce security types for references containing two partgcarity type and a security
label. The security type provides information about theadhat is referred to, while
the security label gives a security level to the refererszlfias a value. Following the
same approach, we extend our security types as follows:

sh o= 0| (%, %) | (either s* s% )¢ | only ¢ | s" ref*

Observe that security types for referencésief’) are composed of two parts as men-
tioned before. The subtyping relationship is also exterateidllows:

S]%:S% 61 Egg

st ref C 55 ref"?

(1)

In order to avoid aliasing problems[NNH99], this rule impesn invariant in the sub-
typing relationship by requiring? to be the same as;. Clearly, this invariant needs to
be preserved by the arrow combinators in the library. Howdvawer A could break
that invariant! Remember that it changes every securitgllalthe output security type
of a given computation. As a consequence, we need to modifgnjplementation (see
Section 4.2).

Data typeSecType is extended as follows:

data SecType |
= SeclLabel |
| SecPair (SecType |) (SecType |)
| SecEither (SecType |) (SecType ) |
| SecRef (SecType |) |

whereSecRef (SecType |) | represents security types for references.
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4.2 References and CombinatotowerA

Combinatorl ower A could break the subtyping invariant for references desdrib
(1). As a result, aliasing problems, and therefore leakage akte might be intro-
duced. The root of this problem comes from the fact thater A only uses output
types to determine output security types. To illustrate fiibblem, consider a program
that has two public referencesl andr 2, with security typg SecRef ( SecLabel
LOW LOW . Assume that both references refer to the same valud.,Ifor instance,
is fed into the computationower A H GH (pur e i d), the output produced, which
is obviouslyr 1, will have security typg SecRef (SecLabel H GH) H GH).
Observe that the security type for the content of the refardras changed. After do-
ing that, leaks can occur by writing secrets usirigand reading them out by using
r 2. Naturally,| ower A could also examine input security types, but unfortunataky
is not enough. Once again, the difficulty to track input-atitpependencies qfur e
computations (see Section 3.3) makes it difficult to deteemior instance, which ref-
erence from the input correspond to which reference in thputuConsequently, it is
also difficult to determine security types for referencethimoutput based on the input
security types. To overcome this problem, we use a mechahesnean transport secu-
rity information about contents of references from the injouthe output of an arrow
computation. In this way, ower A can read this information and place the correspond-
ing security types references when needed, and thus kespliygping invariant. This
mechanism relies on the use of singleton types, which arefiie of the next section.

4.3 Preserving Subtyping Invariants

On one side, combinatbrower A builds output security types based on the output type
of computations. On the other hand, security types for threest of references must
never be changed. So, why not encoding in the Haskell typersyte security type
for the content of references? Hentewer A can take the encoded information and
precisely determines the corresponding security typehf@icontent of each reference.
Singleton types [Pie04] are adequate to represent spealfiey at the level of types.
Essentially, they allow to have a match between values gmestand vice versa. Our
goal is, therefore, to encode values of tyBe¢ Type | ) in more fine-grained Haskell
types. For instance, the encoding for values of tyBec Type Label ) can be done
as follows:

data SLow = VLow
data SMedi um = VMedi um
data SHi gh = VHi gh

data SSeclLabel Ib

dat a SSecPair stl st2
data SSecEither stl st2 Ib
dat a SSecRef st Ib

VSecLabel |Ib

VSecPai r stl st2
VSecEither stl st2 |b
VSec Ref st |Ib

Observe how one type has been introduced for each constaygpearing in_Label
andSecType. With this encoding, we can now represent security typekeartHaskell
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type system. As an example, security typgecRef (SecLabel H GH) LOW

can be encoded using the valu¢SecRef (VSecLabel VHi gh) VLow) oftype
(SSecRef (SSecLabel SHigh) SLow).

As mentioned beford,ower A should use the encoded information to place the corre-
sponding security types for content of references. In otaechieve that, we need a
mapping from singleton types to values of typ8ecType | ). The following code
implements that:

class STLabel Ib | where
toLabel :: Ib ->

i nstance STLabel SLow Label where

toLabel _ = LOW

i nstance STLabel SMedi um Label where
toLabel _ = MEDI UM

i nstance STLabel SHi gh Label where
toLabel _ = H GH

cl ass STSecType st | where
toSecType :: st -> SecType |

i nstance STLabel Ib |
=> STSecType (SSecLabel |b) | where
toSecType _

= SeclLabel (tolLabel (undefined::Ib))

i nstance (STSecType st |, STLabel Ib I)
=> STSecType (SSecRef st |b) | where
toSecType _

= SecRef (toSecType (undefined::st))
(toLabel (undefined::IDb))

i nstance (STSecType stl |, STSecType st2 1)
=> STSecType (SSecPair stl st2) | where
toSecType _

= SecPair (toSecType (undefined::stl))
(toSecType (undefined::st2))

i nstance (STSecType stl I,

STSecType st2 |, STLabel Ib 1)
=> STSecType (SSecEither stl st2 |b)
toSecType _

= SecEither (toSecType (undefined::stl))
(toSecType (undefined::st2))
(toLabel (undefined::IDb))

wher e

Functionst oLabel andt oSecType return security labels and security types based
on singleton types, respectively.

Having our encoding ready, we introduce references as salfithe data typedat a

Ref st a = Ref st (IORef a),where(l ORef a) isthe type forreferences
in Haskell andst is a singleton type encoding the security type for its cont&nthis
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point, we are in conditions to extend the functlomi | dSecType, used byl ower A,
to build output security types:

instance (Lattice |, STSecType st |)
=> Bui | dSecType SecType | (SRef st a) where
bui | dSecType | _
= (SecRef (toSecType (undefined::st)) I|)

Observe howbui | dSecType callst 0SecType to build the security type for the
content of the reference by passing an undefined value ofesomgtypest . The sub-
typing invariant is now preserved Byower A. In fact, this technique can be used to
preserve any subtyping invariant required in the library.

4.4 Reference Manipulation

Li and Zdancewic’s library uses thanderlying arrow( - >) to perform computations.
However, we need to modify that in order to include side-@#eroduced by refer-
ences. The following data type defines thmelerlying arrowused in our library: dat a
ArrowRef a b = a -> | O b.Underlying computationsan therefore take an ar-
gument of typea and return a value of typgel O b) , which probably produces some
side-effects related to references.

Three primitives are provided to create, read, and writeregfcescr eat eRef A,

r eadRef A, andwr i t eRef A. Basically, these functions lift the traditional Haskedlo
erations to manipulate references iftcowAr r owRef , but performing some checking
related to information-flow security (see Section 4.5). ldwar, from a programmer’s
point of view, they look similar to any primitives that dealtlreferences. For instance,
cr eat eRef A has the following signature:

createRef A :: (Lattice |, STSecType st |, Buil dSecType | a)
=> st ->1| -> FlowArrowRef | ArrowRef a (Ref st a)

where singleton typst encodes the security type for the content of the reference,
and| is the security level of the reference as a value. ObserveAhaowRef is
used for the underlying computation. As an exampte, eat eRef A (VSeclLabel

VHi gh) LOW returns a computation that creates a public reference toratsalue
received as argument. This is the only primitive where progners must use single-
ton types and where the library exploits the correspondbateeen values and types.
Because of that, it could be possible to remove the argusteritom cr eat eRef A

to make its type signature simpler. However, by doing thedgmmmers would need

to explicitly specify the type for every occurrencescafeat eRef A with their corre-
sponding STSecType st |) and(Ref st a).

4.5 Typing Rules for Reference Primitives

Pottier and Simonet present a type-based information floalyais for CoreML pro-
vided with references, exceptions and let-polymorphis80[. Particularly, their type
system is constraint-based and uses effects to deal wigherefes. We restate some
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e(st) — 01 e(sy) — Lo
e(l) — ¢ e((suf,sﬂg)) — 01 Uty

e((either st s5)°) — ¢ e(only ¢) — ¢

e(st reft) — ¢

Fig. 14. Definition for Functione

f:7'1—>7'2

(PURE)

T,0+ pure f : 7-1|3Hf — 72 | only £

pcl,cl,}—fl . T1|S]% s T2|S% ng,Czl—fg . ’7'2|8% — T4|S]4If

(SEQ)
per Mpea,C1 UC2 U{s5 C sy fi > fo: 71|87 — 74| sk

pCl,Cll—fl . T1|811‘ — ’7'2|8% pCQ,CQ,I—fz . T3|S% — ’7'2|8H4‘
pc1 ﬂpCQ,ClUCQUC%Ffl |||f2 : flow

(CHOICE)

flow = either 11 73 | (either st s5)¢ — 7 | 1 (s5 U sk, £)

Cs = {(eithers} s5)° < (pc1 Mpea), (either st s5)% «e(T (s5 U sk, 0)}

Fig. 15. Typing rules for pure, sequential composition, and choamalminators

of their ideas in the framework of our library. More precisele adapt our encoded
type-checker to include effects and consequently inva¥erences.

We enhance the typing judgementintroduced in Section ¥dlass: pc, C' - f : 71 |

st — 7 | s%, where the new parametex;, is a lower bound on the security level
of the memory cell that is written. In Figure 15, we show howitg rules for pure,
sequential, and branching computations are rewrittengutiis new parameter. Typ-
ing rules for other combinators are adapted similarly. RIR&JRE) produces no side-
effects and therefore it imposes no lower boundsdnRule ( SEQ) takes the meet of
the lower bounds for side-effects as the newRule ( CHO CE) essentially requires
that the branching computation does not produce sidetsfteaesults that are below
the guard of the branch, which has typéher 71 73. These requirements are enforced
by (eithers’ s5)* < (pci Mpcy) and(either s7 s5)¢ «e(T (s5 U sk, £)), respectively.
As defined in Simonet and Pottier's work, constraini/ imposed as an upper bound
for every security label in™. Functione determines the security level of a given value
(see Figure 14). Operatddifts security labels that are below certain security lebek
not violating subtyping invariants (see Figure 16).

Typing rules for references are introduced in Figure 17g®ion types™ encodes
the security types and is generated by the valgg™),. Rule ( CREATE) requires
that the singleton type passed as argument matches thesiequutity type. Otherwise,
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{1 C 4y U C 4y
T€1€2—>£2 T£1€2*£1

{1 C 4o o C 4

1 (s¥reff) o — s ref® 1 (s¥reff) s — s ref®

1T sl = s 7 sl — s§ LTl 7 stly — &5 150 — s

T (s]%,sjg‘) ! — (sjg,sgj) 1 (either st s%)‘}'1 ly — (either sy 5114“)‘}'2

o C 14y Tsjffg — s5 Ts”gfg — s§

1 (either s¥ s5)% £ — (either s5 s7)“

ly C Lo Uy C 0y
1 (only ¢1) {2 — only (s 1 (only ¢1) {2 — only ¢,

Fig. 16. Definition for Function?

CREATE
( ) e(st), 0 b createRefA (s), £ : 7| st — 7ref| st ref
(READ) _
T,0 - readRefA : 7 ref | st ref’ — 7|71 (s%,0)
(WRITE)

e(s¥), {£ < "} - writeRefA : (7 ref,7) | (s“ ref’,s") — ()| L

Fig. 17.Typing rules for reference primitives

programmers could introduce inconsistencies in the typeking process. The side-
effect produced by creation of references is allocation efmory. Therefore, thec

is related with the security level of the content of the cedateference(st)). Rule

( READ) lifts security labels in the output security type considgrihe security level
of the reference( (s}, ¢)). Rule (WRI TE) imposes the constrairit< s". Similarly
to Simonet and Pottier’s work, constraiht: s™ requiress™ to have security level or
greater, and is used to record a potential information flow.

We modify the implementation of the type-system in our ligréo include effects.
Consequently, data tygel owAr r owRef is extended with a new field callgac to
represent lower bounds for side-effects as explained alate typeConst r ai nt is
also extended to involve operatatisand«. Moreover, we add unification mechanisms
inside of arrow combinators to pass information about ggctypes when needed. As
a consequence, a few security annotations need to be pdolsg@rogrammers. Li
and Zdancewic’s library does not need this feature sincie feeurity types are very
simple. One of the interesting aspect of implementing uatian inside of arrows is
the generation of fresh names. Our library generates frastes by applying renaming
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functions when arrow combinators are applied, but we onaithttails here due to lack
of space.

4.6 Filtering References

References introduce the possibility of having shareduness in programs. In Section
3.4, the filtering mechanism replaces some pieces of infdomavith undef i ned.
Nevertheless, it is not recommended to replace the confesbroe reference with
undef i ned since it might be used by other parts (or threads) in the progiVe
still need to restrict the access to that content somehoatder to do that, we intro-
duce projection functions for each reference handled byilthary. Projection func-
tions are basically functions that return values less métive than their arguments.
The concept of projection functions has been indirectlydusesemantic models for
information-flow security [Hun91, SS99]. The instance feferences of the method
r enoveDat a creates projection functions that, when applied to theemastof their
associated references, return values where some infanmhigher than some secu-
rity level is replaced byindef i ned. However, the content of the reference itself is
not modified. Observe that the filtering principle applieddrgjection functions and
r enoveDat a is the same. CombinatoreadRef Ais also modified to return the con-
tent of the reference by firstly passing it through its cquoesling projection function.
Due to lack of space, we omit the implementation of thesesithese.

5 Information Flow in a Concurrent Setting

Concurrency introduces new covert channels, or uninten@dsd, to leak secret infor-
mation to an attacker. As a consequence, the traditionfahtqaes to enforce informa-
tion flow policies in sequential programs are not sufficiemtriultithreaded languages
[SV98]. One particularly dangerous covert channel is dali¢ernal timing It allows
to leak information when secrets affect the timing behawioa thread, which via the
scheduler, affects the order in which public computatictio Consider the following
two imperative programs running in two different threads:

t1:(if h > 0 then skip(120) else skip(1)); 1:=1
ty : skip(60); 1:=0 (2

Variablesh and! store secret and public information, respectively. Asssiiep(n)
executes n consecutiggip commands. Notice that both andt, are secure inisolation
under the notion ohoninterferencSMO03]. However, by running them in parallel, it
is possible to leak information abohit To illustrate that, we assume an scheduler with
time slice of 80 steps that always starts by runningOn one hand, it > 0, ¢; will

run for 80 steps, and while being runnirgkip(120), t5 is scheduled and run until
completion. Then, the control is given again:tg which completes its execution. The
final value ofl is 1. On the other hand, § < 0, ¢; finishes first its execution. After
that, t5 is scheduled and run until completion. In this case, the fiasle of1 is 0.

An attacker can, therefore, deducéit> 0 (or not) by observing the final value af
Different from theexternal timingcovert channel, the attacker does not need to observe
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the actual execution time of a program in order to deduce ssgweet information.
Moreover, internal timing leaks can also be magnified vigpgavhere each iteration
of the loop can leak one bit of the secret. Hence, entire sealees can be leaked.
There are several existing approaches to tackling intéimaig flows. Several works
by Volpano and Smith [SV98, VS99, Smi01, Smi03] propose &ispprimitive called
protect. By definition,protect(c) takes one atomic step in the semantics with the
effect of executing: to the end. Internal timing leaks are removed if every comput
tion that branches on secrets is wrappedbygtect() commands. However, imple-
mentingprotect imposes a major challenge [SS00, Sab01, RS06a] (excepbfor ¢
operative schedulers [RS06b]). These proposals rely omibgification of the run-
time environment or the assumption of randomized schesluldrich are rarely found
in practice. Russo et al. [RHNSO06] propose a transformatociose internal timing
channels that does not require the modification of the mne-gnvironment. The trans-
formation works for programs that run under a wide class ahdbrobin schedulers
and only rejects those ones that have symptoms of illegakfiolhverent from sequen-
tial settings. Boudol and Castellani [BCO1, BC02] propggeetsystems for languages
that do not rely on therotect primitive. However, they reject programs with assign-
ments to low variables after some computation that branchesecrets. Internal tim-
ing problem can also be solved by considering external gmidefinitions related to
external timing involve stronger attackers. As expectadsteonger attacker model im-
poses more restriction on programs. For instance, loopghiag on secrets are disal-
lowed. There are several works on that direction [Aga00,0656S@b01, SM02, KMO6].
Zdancewic and Myers [ZMO03] prevent internal timing leaksdigallowing races on
public data. However, their approach rejects innocentreeptograms likd := 0 ||

[ := 1 wherel is a public variable. Recently, Huisman et al. [HWS06] immo
Zdancewic and Myers’ work by using logic-based characéions and well known
model checking techniques. Several proposals have beéorespn process-calculus
settings [HVYO0O0, FGO01, Rya01, HY02, Pot02], but without sialering the impact of
scheduling.

The referred works above have neglected to consider impigntecase studies where
the proposed enforcement mechanisms are applied. Thispvedents, to the best of
our knowledge, the first concrete implementation of a cas#yghat consider informa-
tion -flow policies in presence of concurrency.

6 Closing Internal Timing Channels

We incorporate a run-time mechanism to close internal @overt channels in our
library. We base our approach in a combination of ideas téien the literature. On
one hand, Russo and Sabelfeld [RS06b] show how to implepwrttect() for co-
operative schedulers. Essentially, their work statesttivads must not yield control
inside of computations that branch on secrets. Russo eREINS06], on the other
hand, express that a class of round-robin schedulers daesifier from leaks due to
dynamic thread creation. As a consequence, creation cddkrean be allowed at any
point in programs. By mixing these two ideas, we modify timelerlyingarrow com-
binators in order to implement a cooperative round-robhlresltller and to guarantee
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that computations branching on secrets do not yield comtnen running. In this way,
internal timing leaks are removed from programs and a flexitgdatment for dynamic
thread creation is also obtained. In fact, the introducedifivations are completely
independent to the encoded type system described in S&ctind 4.

Cooperative schedulers are based on yielding control whagrams indicate that. On
the other hand, programs are written using arrow combisatehnich can be seen as
a kind of building blocks In our library,simplearrow combinators yield control after
finishing their execution if they are not part of computatighat branch on secrets.
Example of such combinators apeir e, cr eat eRef , r eadRef , andw i t eRef .
Computations branching on secrets do not yield controlrddgas how many build-
ing blocks compose them. As resudtmplearrow combinators and computations that
branch on secrets are atomic computational units involweadterleavings. The round-
robin scheduler is obtained by yielding control in a patacuvay.

Concurrency is introduced in our implementation by impuaytthe Haskell module
Cont rol . Concur rent [SPJF96, The] . This module provides dynamic thread cre-
ation and pre-emptive concurrency. Since threads can leelstdd anytime, some syn-
chronization is needed to restrict their execution as renatih. Software transactional
memory(STM) [HHMJO05] provides easy-to-reason and simplmigives to do that.
We could have chosen more standard primitives like semaghaniWar [SPJF96].
However, the obtained code would have been more complicated

We start introducing information concerning schedulingmighe underlyingarrow
Ar r owRef :

data RRobin a = RRobin
{ data :: a, iD:: Threadld,
queue :: TVar [Threadld], blocks :: Int }

data ArrowRef a b
= AR ((RRobin a) -> 10 (RRobin b))

Data type( RRobi n a) stores information related to scheduling in the input and ou
put values of arrows. Fieldat a stores the input data for the arrow. FiélD stores the
thread identification number where the arrow computatioexiscuted. Fieldjueue
stores a round-robin list of threads identifiers and its s€de protected by a mutex
(Tvar [ Threadl d]). The list is updated when creation or termination of theead
occur. Fieldbl ocks indicates if the thread executing the arrow computationtiwasg
for its turn to run and then, when finishing, yields the cohtooanother thread. This
field plays an essential rdle to guarantee atomic execoficomputations that branch
on secrets.

We introduce two new combinators in the underlying arrewai t For Yi el d and

yi el dCont r ol . Essentially, these combinators are responsible for impfging a
round-robin scheduler. Combinatesi t For Yi el d blocks until the content of the
head of the round-robin queu&\ar [ Thr eadl d] ) is the same as the thread identi-
fication ( D) running this combinator. Combinatgr el dCont r ol removes the head
of the round-robin queue and put it as the last element. Bartibéinators have no com-
putational effects if the fieldbl ocks is different from zero. The implementation of
these combinators is shown in Figure 18. Functdmomi cal | y guarantees mutual
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wait Turn :: RRobin a -> 10 ()
wait Turn sch = if (blocks sch) > 0 then return ()
el se atomically (
do g <- readTVar (queue sch)
if head q /= (iD sch)
then retry
else return ())

wai t ForYield :: ArrowRef a a
wai t ForYield = AR (\sch -> do waitTurn sch
return sch)

next Turn :: RRobin a -> 10 ()
next Turn sch
= if (blocks sch) > 0 then return ()
el se atomically (
do g <- readTVar (queue sch)
writeTVar (queue sch)
((tail q)++[head q])
return () )

yieldControl :: ArrowRef a a
yi el dControl = AR (\sch -> do nextTurn sch
return sch)

Fig. 18. Primitives for yielding control

exclusion access to the round-robin queue. Funatietr y blocks the thread until
gueue changes its value. When this happens, it resumes its emadutim the first
command wrapped byt oni cal | y. Itis important to remark that combinators in the
underlying arrow are not accessible for users of the library

Simplearrow combinators include nowai t For Yi el d andyi el dCont r ol before
and after finishing their computations, respectively. Nthadess, combinators related
with branches are threaded differently. Computations lthabch on secrets must not
yield control until finishing their execution. Branchingrobinators, like(|||), can be
applied to arrow computations that involyeel dCont r ol in their bodies. As a con-
sequence, when the guard of the branch involves some sebiete combinators must
no yield control to other threads. We introduce two more cioiators to theinderlying
arrow: begi nAt oni ¢ andendAt omi c¢. When placed likdegi nAt omi ¢ >>> f
>>> endAt om c, they leave without any effect the combinateeai t For Yi el d
andyi el dCont r ol appearing irf . Therefore, prograrh executes until completion
without yielding control to other threads. We then modifg fimplementation of com-
binators related with branchings in order to incllmegi nAt o ¢ andendAt oni ¢
when the condition of the branch depends on secrets. We steolmplementation de-
tails of begi nAt oni ¢ andendAt oni ¢ in Figure 19. Observe thétegi nAt omi ¢
andendAt omi ¢ count how many computations branching on secret are né3ten-:
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begi nAtomic :: ArrowRef a a
begi nAt omi ¢
= waitForYield >>>
AR (\sch -> return sch {bl ocks =
((blocks sch)+1)} )

endAtonic :: ArrowRef a a
endAt omi ¢
= AR (\sch -> return sch {bl ocks =
((blocks sch)-1)})
>>> yij el dContr ol

Fig. 19. Primitives for atomicity

pC,C"fﬁT1|S%*>TQ|S%

pc,C + forkRef f : 71 |8Hf - OlL

Fig. 20.Typing rule forforkRef

binatorswai t For Yi el d,yi el dCont r ol ,begi nAt om ¢ andendAt oni ¢ need
to be pairwise to properly work.

Dynamic thread creation is introduced by the new arrow coatoirf or kRef . It takes
a computation as argument and spawns it in a new thread wigii@ption handler. If
the new thread raises an exception, the handler forcesgrtigram to finish, reducing
the bandwidth of leakings due to no termination. The typirig forf or kRef is shown
in Figure 20. Observe that the returned valuefa$ discarded sincg will be run in
another thread.

7 Case Study: Online Shopping

In order to evaluate the flexibility of the arrow combinatarsl techniques proposed
in Sections 3, 4, and 6, we implemented a case study of aneoslinpping server.
Basically, the server processes transactions relatedyioadpproducts. It receives in-
formation from the network and spawn different threads tdgeen purchases for each
client. For simplicity, we assume that there is only one prido buy and that the
only information provided by clients are their names, bdliaddresses, and credit card
numbers composed of 16 digits. We also assume that thereeeueity levelsH GH
andLOWfor secret and public information, respectively. Our lityrguarantees, in this
example, that the confidentiality of credit card numbergésprved.

The server program consists of three compongntsit ect Dat a, pur chase, and
showPur chase. Componenpr ot ect Dat a receives information from clients and
determines that credit card numbers are the only secretseirsyistem. The imple-
mentation ofpr ot ect Dat a is just a few lines that apply combinatbag to its in-
put. We consider this component as part of the trusted cangpbised. Component
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Secret 10001110000110111100100110111111000000111111111111

Run Leaked credit card number Seconds

10101111100111111111101110111111000001111111111111 27
11001110000110111101110110111101000000111111111111 27
10101110000110111110100110111111000000111111111111 28
10001110010110111100100110111111000000111111110111 28
10001110000110111100100110111111010000111111111111 29

O WN P

Inferred Secret: 10001110000110111100100110111111000000111111111111

Fig. 21.Results produced by the malicious code

pur chase simulates buying products. Moreover, it copies the clieatlit card num-
ber and the rest of his/her information into two differentadeases, respectively. We
simulate the access to these databases with referencdfetermdilists of data. Compo-
nentshowPur chase retrieves information from the database with public infation
and shows it on the screen (a public channel).

The online shopping server can be modified to execute makcomde that exploits
the internal timing covert channel. An attack similar(®) can be implemented if no
countermeasures are taken. However, such an attack oelglsaane bit of the secret. In
order for the attacker to obtain complete credit card nusylieis necessary to magnify
the attack by introducing a loop. Each iteration of the loegkls one bit of the secret.
The implementation of this attack reveals a credit card remib about two minutes
2, Notoriously, it was quite straightforward to leak the esm digits of a credit card
number even though we have no information about the run-emeéronment. This
shows how feasible and dangerous are internal timing leaggactice.

Our malicious code concatenates credit card numbers dfégebitling addresses of
clients. Thus, credit card numbers can be displayed on theesdy just invoking
showPur chase. To illustrate that, we consider a client with the creditccaum-
ber9999999999999999. We run the attack several times obtaining different leaked
credit card numbers (see Figure 21). These numbers difegnirost three bits from the
binary representation of the secret. This imprecision cofrean the lack of knowledge
about the run-time environment, in particular, the lack nbkledge about scheduler
policies. Scheduler policies are important for an intetimaing attack to succeed. Nev-
ertheless, by repeatedly running the attack and taking thet frequent boolean values
in each position, it is possible to obtain the value of theetagith very high confidence.
Observe that the secret and the inferred secret are the sdfitire 21.

We repeatedly run the malicious code mentioned above butthé countermeasures
described in Section 6. In this opportunity, the leaked itresttd number was always
0. In other words, the attack did not succeed. There is an obwweerhead introduced
by restricting the scheduler in the run-time environmerthébave like a round-robin

2 Every experiment was run on a laptop Pentium M 1.5 GHz and 5BRAM.
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one. However, this is acceptable since only small parts gstem need to manipulate
secrets and therefore be written using our library.

8 Conclusions

We have presented an extension to Li and Zdancewic’s lidmopnsider secure pro-
grams with reference manipulation and concurrency. On @ma hintroducing refer-
ences requires to handle more richer security types thasethmoLi and Zdancewic’s
work. As consequence, a more precise analysis for infoomdtow security is needed.
In order to obtain that, we combine several ideas from tkeditire in our implementa-
tion: singleton types, type-classes in Haskell, and ptmadunctions. On the other
hand, supporting concurrency requires to deal with intetirang attacks. The ex-
tension includes a mechanism to close internal-timing dosteannels and provides
a flexible treatment for dynamic thread creation. Therefibiie not necessary to mod-
ify the run-time environment to obtain secure programs.sé€h&chievements are re-
sult of taking several ideas from the literature: roundinatmoperative schedulers and
software transactional memories. Similarly to Li and Zdamic’s work, the technical
development in this paper is informal, although we have @manted it in Haskell.
The type system encoded i owAr r owRef can be mainly justified by following
standard techniques to prove non-interference propgs@e96, PS02]. A case study
has been also implemented to evaluate the techniques gapothis work. It reveals
that internal-timing leaks are feasible and dangerous attfre and how our library
properly repairs them. To the best of our knowledge, thisésfirst tool that supports
information-flow security and concurrency, and the firsecgtsidy implemented that in-
volves concurrent programs and information-flow policieise implementation of the
library and the case study is publicly available in [TR].
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