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Abstract

“The solution lies in secrecy,” said Medra. “But so does the problem.”

III.Tern, Tales from Earthsea, Ursula K. Le Guin

The problem of controlling information flow in multithreaded programs remains an
important open challenge. A major difficulty for tracking information flow in concur-
rent programs is due to theinternal timing covert channel. Information is leaked via this
channel when secrets affect the timing behavior of a thread,which, via the scheduler,
affects the interleaving of public events. Volpano and Smith propose a special primi-
tive calledprotect. By definition,protect(c) takes one atomic step in the semantics
with the effect of executingc to the end. Internal timing leaks are removed if every
computation that branches on secrets is wrapped byprotect() commands. However,
implementingprotect imposes a major challenge.

This thesis introduces a novel treatment of theinteraction between threads and the
scheduler. As a result, a permissive security specification and a compositional secu-
rity type system are obtained. The type system guarantees security for a wide class of
schedulers and provides a flexible treatment of dynamic thread creation. While this ap-
proach allows the implementation of a generalized version of protect, it relies on the
modification of the scheduler in the run-time environment.

In some scenarios, the modification of the run-time environment might not be an ac-
ceptable requirement. For such scenarios, the thesis presents two transformations that
eliminate the need forprotect or interactions with the scheduler while avoiding in-
ternal timing leaks. The first transformation is given for programs running under coop-
erative schedulers. It states that threads must not yield control inside of computations
that branch on secrets. The second transformation closes internal timing channel when
the scheduler is preemptive and behaves as round-robin. It spawns dedicated threads,
whenever computation may affect secrets, and carefully synchronizes them.

To evaluate some of the ideas described above, the thesis presents animplementation
in Haskell of a library that provides information-flow security for multithreaded code.
The implementation includes an online-shopping case study. The case study reveals that
exploiting concurrency to leak secrets is feasible and dangerous in practice and shows
how the library can help avoiding internal timing leaks. Up to the publication date, this
is the first tool that guarantees information-flow security in multithreaded programs and
the first implementation of a case study that involves concurrency and information-flow
policies.
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CHAPTER

1

Introduction

Computer systems are nowadays connected by networks. For instance, computers and
mobile phones are often connected to Internet and cellular networks, respectively. These
systems frequently send, receive, and store confidential information in order to perform
some tasks requested by users. It is common to provide creditcard numbers when per-
forming online shopping or to store private multimedia contents in mobile phones. Be-
sides the personal use of such systems, there is a tendency torely more and more on
computers in order to perform legal procedures, e.g. calculation of salaries, taxes, or
pensions rates. Those legal procedures are commonly carried out by governments or
subcontractors. Thus, preserving the confidentiality of data about citizens becomes an
important requirement in order to guarantee privacy rightsin any democratic govern-
ment.

Sharing or accessing information over networks provides clear benefits to users, and
Internet is a clear example of that. Unfortunately, connecting computers to networks
also exposes them to attacks. One clear example of that is themalicious code placed
on the web. Users download software from Internet without any guarantee that their
confidential data are not sent over the network while runningthose programs. Since
mobile phones can be seen as computers with reduced computational power, they are
also victim of attackers. As before, users download or exchange, via Bluetooth, ring
tones, games, or software. Likewise, there are still no guarantees that the confidentiality
of data is preserved by those programs. For these reasons, itis important that soft-
ware manufactures consider security aspects when designing software as well as mech-
anism to enforce them. So far, some solutions to security problems have been provided
by software developers, e.g, anti-virus programs, networkfirewalls, program monitors,
cryptographic techniques, intrusion detection systems, and access control mechanisms.
However, they are still unable to enforceend-to-end[SRC84] security policies as con-
fidentiality of data.
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Public Data

Secret Medical Records Municipal Secrets

Governmental Secrets

Fig. 1. Security lattice

Confidentiality of Data

Security requirements are often represented assecurity policies. These policies describe
what are acceptable behaviors of computer systems. Confidentiality of data can be seen
as a particular kind of such policies.Information-flow policies, a particular kind of
confidentiality policies, describe how data is propagated once access in granted.
Information-flow policies can be formalized by attaching security labels to computa-
tional entities and data in the system, and defining how the information can flow be-
tween different security levels. For instance, it possibleto define the following informa-
tion-flow policy: no object can read data from a higher security level and no data can
be written in an object with lower security level. These two conditions are known as
“no reads up” and“no writes down”, respectively [BL73]. To formalize this policy, a
lattice on security levelsis used [Den76]. This lattice defines what are the valid flows
of information between different security levels. The ordering relation in the lattice,
written ⊑, represents the allowed flows of information. In general,l1 ⊑ l2 indicates
that information of security levell2 can flow into entities of security levell1. Figure
1 shows an example of a security lattice with four elements: Governmental Secrets,
Secret Medical Records, Municipal Secrets, and Public Data, where Public Data⊑ Se-
cret Medical Records, Public Data⊑ Municipal Secrets, Secret Medical Records⊑
Governmental Secrets, and Municipal Secret⊑ Governmental Secrets. The informa-
tion can only flow into higher possitions in the lattice. In some cases, it is necessary
to downgrade some information regarding secrets.Declassification policiesexpresses
downgrading of information in a controlled manner and they are currently subject of
active research [SS05].

Language-based Information-Flow Security

Information-flow analysis studies whether an attacker can obtain confidential informa-
tion by observing how the input of a system affect its output.Information can be dis-
closed by different mechanisms or channels. This thesis follows the line oflanguage-
based information-flow security[SM03]. The information-flow analysis is typically per-
formed by static program analysis. As a consequence, it is possible to guaranteeend-to-
endsecurities, as confidentiality, by just analyzing the wholecode of a given system.
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Confidentiality policies could be precisely characterizedby using program semantics.
Moreover, they can be provably enforced by traditional mechanisms as type systems.
Noninterferenceis a well known end-to-end property of programs that expresses the
freeness of flows from more secret security levels to less secret ones. In other words,
a variation in the confidential input of a program does not produce any variation of
its public outputs. The attacker model defines what the attacker can observe about the
execution of programs. For the noninterference property, the attacker can only inspect
the public input and output states. Formally, a program starts in an input states =
(sh, sl), wheresh andsl respectively consists on secret and public variables initialized
with some values. If a program terminates, it does in an output states′ = (s′h, s′l), where
s′h ands′l are final values for secret and public variables, respectively The semantics
of the program, written[[C]], is a function[[C]] : S → S ∪ {⊥} that maps input to
output states or input states to⊥ for non-terminating programs. Variations in the input
can be captured by the equivalence relation=L. Two states are low-equivalent, written
s =L s′, iff their public values are the same, i.e.sl = s′l. The notion of noninterference
can then be expressed as:

∀s1, s2 ∈ S.s1 =L s2 ∧ [[C]]s1 6=⊥ ∧ [[C]]s2 6=⊥⇒ [[C]]s1 =L [[C]]s2 (1)

The definition above ignores non-terminating executions ofprograms. For that reason, it
is classified as atermination-insensitivesecurity specification. In some cases, attackers
can still deduce confidential information by just observingif a program terminates or
not. To consider this kind of leaks due to termination, the definition of noninterference
can be extended as follows:

∀s1, s2 ∈ S.s1 =L s2 ⇒ [[C]]s1 =L [[C]]s2 ∨ ([[C]]s1 =⊥ ∧ [[C]]s2 =⊥) (2)

Observe that either both executions ofC diverge or terminate with the same public
values. Security conditions that take into account leaks due to termination are called
termination-sensitivesecurity specifications. Definitions1 and2 are respectively re-
ferred astermination-insensitiveandtermination-sensitivenoninterference properties.

Types of Flows

Language-based information-flow techniques deal with mechanisms used by program-
ming languages to convey information. These mechanisms include assignments and
branching instructions. Confidentiality of data can be preserved if programs are free of
illegal explicit and implictflows [DD77]. On one hand, explicit flows can leak infor-
mation by assigning confidential values to public variables. For instance, the program
l := h leaks the secret value ofh by assigning it directly to the public variablel. Implicit
flows, on the other hand, can use control constructs in the language to leak information.
As an example, the program

if h > 0 then l := 1 else l := 2

leaks ifh > 0 or not by using the constructif − then − else. Even though there is
no direct assignment of secret values to public variables, the final value ofl depends on
the secret valueh.
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Covert Channels

Besides explicit and implicit flows, programming languagescan present other mech-
anisms to leak information that were not originally designed for that purpose. These
kind of mechanism are referred ascovert channels[Lam73]. For example, the execution
time of a program, memory consumption, and concurrency features can be used to leak
confidential information. This thesis proposes techniquesto deal withcovert channels
introduced by some concurrent features. More precisely, itproposes remedies for leaks
produced by exploiting scheduler properties through the timing behavior of threads in
order to modify how the public variables are updated. This covert channel is called
internal timing covert channel[VS99] and is the main focus of this presentation.

Thesis overview

The thesis takes a language-based approach to information-flow enforcement for con-
current programs. In this section, we briefly outline the contents of the four chapters.

Securing Interaction between Threads and the SchedulerExisting approaches to
specifying and enforcing information-flow security often present non-standard seman-
tics, lack of compositionality, inability to handle dynamic threads, scheduler depen-
dence, and efficiency overhead for code that results from security-enforcing transfor-
mations. Particularly, Volpano and Smith propose a specialprimitive calledprotect in
order to remove internal timing leaks. By definition,protect(c) takes one atomic step
in the semantics with the effect of executingc until termination. Internal timing leaks
are removed if every computation that branches on secrets iswrapped byprotect()
commands. However, implementingprotect imposes a major challenge. This chapter
suggests a remedy for some of the described shortcomings anda framework that allows
the implementation of a generalized version ofprotect. More precisely, it introduces
a novel treatment of the interaction between threads and thescheduler. A permissive
noninterference-like security specification and a security type system that provably en-
forces this specification are obtained as a result of such interaction. The type system
guarantees security for a wide class of schedulers and provides a flexible treatment
of dynamic thread creation. The proposed techniques relieson the modification of the
scheduler in the run-time environment.
This chapter is an extended version of the paper accepted to the 19th IEEE Computer
Security Foundations Workshop, Venice, Italy, July 5-7, 2006.

Security for Multithreaded Programs under Cooperative Scheduling In some sce-
narios, the modification of the run-time environment might not be an acceptable re-
quirement. In this light, this chapter presents a transformation that eliminates the need
for protect under cooperative scheduling. In fact, no additional interactions, besides
yielding control to a thread, are needed in order to avoid internal timing leaks. Variations
in the transformation can enforce both termination-insensitive and termination-sensitive
security specifications in a language with dynamic thread creation.
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This chapter is an extended version of the paper accepted to the Andrei Ershov Interna-
tional Conference on Perspectives of System Informatics, Akademgorodok, Novosibirsk,
Russia, June 27-30, 2006.

Closing Internal Timing Channels by Transformation For those scenarios where
the scheduler is preemptive and behaves as round robin, thischapter presents a trans-
formation that closes the internal timing channel for multithreaded programs. The trans-
formation is based on spawning dedicated threads, whenevercomputations may affect
secrets, and carefully synchronizing them. Moreover, the transformation only rejects
programs that have symptoms of illegal flows inherent from sequential settings.
This chapter has been published in the Proceedings of the 11th Annual Asian Comput-
ing Science Conference, Tokyo, Japan, December 6-8, 2006.

A Library for Secure Multi-threaded Information Flow in Has kell Recently, Li and
Zdancewic have proposed an approach to provide information-flow security via a library
rather than producing a new language from the scratch. They show how to implement
such a library in Haskell. This chapter presents an extension of Li and Zdancewic’s
library that provides information-flow security for multithreaded programs. The exten-
sion provides reference manipulation, a run-time mechanism to close internal timing
leaks, and a flexible treatment of dynamic thread creation. In order to provide such
features, the library combines some ideas presented in thisthesis together with some
other ones taken from literature: type system with effects,singleton types, projection
functions, cooperative round-robin schedulers, and type classes in Haskell. Moreover,
an online-shopping case study has been implemented in orderto evaluate the proposed
techniques. The case study reveals that exploiting concurrency to leak secrets is fea-
sible and dangerous in practice and shows how the library canhelp to avoid internal
timing leaks. Up to the publication date, this is the first implemented tool to guarantee
information-flow security in concurrent programs and the first implementation of a case
study that involves concurrency and information-flow policies.
This chapter has been published in the Proceedings of the 20th IEEE Computer Secu-
rity Foundations Symposium, Venice, Italy, July 6-8, 2007.
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412 96 Göteborg, Sweden

Abstract. The problem of information flow in multithreaded programs remains
an important open challenge. Existing approaches to specifying and enforcing
information-flow security often suffer from over-restrictiveness, relying on non-
standard semantics, lack of compositionality, inability to handle dynamic threads,
scheduler dependence, and efficiency overhead for the code that results from
security-enforcing transformations. This paper suggestsa remedy for some of
these shortcomings by developing a novel treatment of the interaction between
threads and the scheduler. As a result, we present a permissive noninterference-
like security specification and a compositional security type system that provably
enforces this specification. The type system guarantees security for a wide class
of schedulers and provides a flexible and efficiency-friendly treatment of dynamic
threads.

1 Introduction

The problem of information flow in multithreaded programs remains an important open
challenge [SM03]. While information flow in sequential programs is relatively well
understood, information-flow security specifications and enforcement mechanisms for
sequential programs do not generalize naturally to multithreaded programs [SV98]. In
this light, it is hardly surprising that Jif [MZZ+06] and Flow Caml [Sim03], the main-
stream compilers that enforce secure information flow, lacksupport for multithreading.
Nevertheless, the need for information flow control in multithreaded programs is press-
ing because concurrency and multithreading are ubiquitousin modern programming
languages. Furthermore, multithreading is essential in security-critical systems because
threads provide an effective mechanism for realizing theseparation-of-dutiesprinci-
ple [VM01].
There are a series of properties that are desired of an approach to information flow for
multithreaded programs:

– PermissivenessThe presence of multithreading enables new attacks which are not
possible for sequential programs. The challenge is to reject these attacks without
compromising the permissiveness of the model. In other words, information flow
models should accept as many intuitively secure and useful programs as possible.

– Scheduler-independenceThe security of a given program should not critically de-
pend on a particular scheduler [SS00]. Scheduler-dependent security models suffer
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from the weakness that security guarantees may be destroyedby a slight change in
the scheduler policy. Therefore, we aim at a security condition that is robust with
respect to a wide class of schedulers.

– Standard semanticsFollowing the philosophy ofextensional security[McL90], we
argue for security defined in terms of standard semantics, asopposed to security-
instrumented semantics. If there are some non-standard primitives that accommo-
date security, they should be clearly and securely implementable.

– Language expressivenessA key to a practical security model is an expressive under-
lying language. In particular, the language should be able to treat dynamic thread
creation, as well as provide possibilities for synchronization.

– Practical enforcementAnother practical key is a tractable security enforcement
mechanism. Particularly attractive is compile-time automatic compositionalanal-
ysis. Such an analysis should nevertheless bepermissive, striving to trade as little
expressiveness and efficiency for security as possible.

This paper develops an approach that is compatible with eachof these properties by
a novel treatment of the interaction between threads and thescheduler. We enrich the
language with primitives for raising and lowering the security levels of threads. Threads
with different security levels are treated differently by the scheduler, ensuring that the
interleaving of publically-observable events may not depend on sensitive data. As a re-
sult, we present a permissive noninterference-like security specification and a compo-
sitional security type system that provably enforces this specification. The type system
guarantees security for a wide class of schedulers and provides a flexible and efficiency-
friendly treatment of dynamic threads.
In the rest of the paper we present background and related work (Section 2), the un-
derlying language (Section 3), the security specification (Section 4), and the type-based
analysis (Section 5). We discuss an extension to cooperative schedulers (Section 6),
an example (Section 7), and implementation issues (Section8) before we conclude the
paper (Section 9).

2 Motivation and background

This section motivates and exemplifies some key issues with tracking information flow
in multithreaded programs and presents an overview of existing work on addressing
these issues.

2.1 Leaks via scheduler

Assume a partition of variables into high (secret) and low (public). Supposeh and l
are a high and a low variable, respectively. Intuitively, information flow in a program is
secure (or satisfiesnoninterference[Coh78, GM82, VSI96]) if public outcomes of the
program do not depend on high inputs. Typical leaks in sequential programs arise from
explicit flows (as in assignmentl := h) andimplicit [DD77] flows via control flow (as
in conditionalif h > 0 then l := 1 else l := 0).
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The ability of sequential threads to share memory opens up new information channels.
Consider the following thread commands:

c1 : h := 0; l := h c2 : h := secret

wheresecret is a high variable. Threadc1 is secure because the final value ofl is always
0. Threadc2 is secure becauseh andsecret are at the same security level. Nevertheless,
the parallel compositionc1 ‖ c2 of the two threads is not necessarily secure. The sched-
uler might schedulec2 after assignmenth := 0 and beforel := h is executed inc1. As
a result,secret is copied intol.
Consider another pair of thread commands:

d1 : (if h > 0 then sleep(100) else skip); l := 1

d2 : sleep(50); l := 0

These threads are clearly secure in isolation because1 is always the outcome forl in
d1, and0 is always the outcome forl in d2. However, whend1 andd2 are executed in
parallel, the security of the threadpool is no longer guaranteed. In fact, the program will
leak whether the initial value ofh was positive intol under many reasonable schedulers.
We observe that programc1 ‖ c2 can be straightforwardly secured by synchronization.
Assuming the underlying language features locks, we can rewrite the program as

c1 : lock; h := 0; l := h; unlock

c2 : lock; h := secret ; unlock

The lock primitives ensure that the undesired interleavingof c1 andc2 is prevented.
Unfortunately, synchronization primitives offer no general solution. The source of the
leak in programd1 ‖ d2 is internal timing [VS99]. The essence of the problem is
that the timing behavior of a thread may affect—via the scheduler—the interleaving of
assignments. As we will see later in this section, securing interleavings from within the
program (such as with synchronization primitives) is a highly delicate matter.
What is the key reason for these flows? Observe that in both cases, it is the interleaving
of the threads that introduces leaks. Hence, it is theschedulerand its interaction with the
threads that needs to be secured in order to prevent undesired information disclosure. In
this paper, we suggest a treatment of schedulers that allowsthe programmer to ensure
from within the program that undesired interleavings are prevented.
In the rest of this section, we review existing approaches toinformation flow in mul-
tithreaded programs that are directly related to the paper.We refer to an overview of
language-based information security [SM03] for other, less related, work.

2.2 Possibilistic security

Smith and Volpano [SV98] explorepossibilistic noninterferencefor a language with
static threads and a purely nondeterministic scheduler. Possibilistic noninterference
states that possible low outputs of a program may not vary as high inputs are varied.
Programd1 ‖ d2 from above is considered secure because possible final values of l are
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always0 and1, independently of the initial value ofh. Because the choice of a sched-
uler affects the security of the program, this demonstratesthat this definition is not
scheduler-independent. Generally, possibilistic noninterference is subject to the well
known phenomenon that confidentiality is not preserved by refinement [McC87]. Work
by Honda et al. [HVY00, HY02] and Pottier [Pot02] is focused on type-based tech-
niques for tracking possibilistic information flow in variants of theπ calculus. Forms of
noninterference under nondeterministic schedulers have been explored in the context of
CCS (see [FG01] for an overview) and CSP (see [Rya01] for an overview).

2.3 Scheduler-specific security

Volpano and Smith [VS99] have investigatedprobabilistic noninterferencefor a lan-
guage with static threads. Probabilities in their multithreaded system come from the
scheduler, which is assumed to select threadsuniformly, i.e., each live thread can be
scheduled with the same probability. Volpano and Smith introduce a special primitive in
order to help protecting against internal timing leaks. This primitive is calledprotect,
and it can be applied to any command that contains no loops. A protected command
protect(c) is executed atomically,by definitionof its semantics. Such a primitive can
be used to secure programd1 ‖ d2 as:

d1 : protect(if h > 0 then sleep(100) else skip);

l := 1

d2 : sleep(50); l := 0

The timing difference is not visible to the scheduler because of the atomic semantics of
protect. Theprotect primitive is, however, nonstandard. It is not obvious how such
a primitive can be implemented. A synchronization-based implementation would face
some non-trivial challenges. In the case of programd1 ‖ d2, a possible implementation
of protect could attempt locking all other threads while execution is inside of theif
statement:

d1 : lock; (if h > 0 then sleep(100) else skip);

unlock; lock; l := 1; unlock

d2 : lock; sleep(50); unlock; lock; l := 0; unlock

Unfortunately, such an implementation is insecure. The somewhat subtle reason is that
when the execution is inside of theif statement, the other threads do not becomein-
stantly locked. Threadd2 can still be scheduled, which could result in blocking and
updating the wait list for the lock withd2.
For simplicity, assume thatsleep(n) is an abbreviation forn consecutiveskip com-
mands. Consider a scheduler that picks threadd1 first and then proceeds to run a thread
for 70 steps before giving the control to the other thread. Ifh > 0 thend1 will run
for 70 steps and, while being in the middle ofsleep(100), the control will be given
to threadd2. Threadd2 will try to acquire the lock but will block, which will resultin
d2 being placed as the first thread in the wait list for the lock. The scheduler will then
scheduled1 again, andd1 will release the lock withunlock and try to grab the lock
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with lock. However, it will fail becaused2 is the first in the wait list. As a result,d1

will be put behindd2 in the wait list. Further,d2 will be scheduled to setl to 0, release
the lock, and finish. Finally,d1 is able to grab the lock and executel := 1, release the
lock, and finish. The final value ofl is 1. If, on the other hand,h ≤ 0 then, clearly,
d1 will finish within 70 steps, and the control will be then given tod2, which will grab
the lock, executel := 0, release the lock, and finish. The final value ofl in this case is
0, which demonstrates that the program is insecure. Generally, under many schedulers,
chances forl := 0 in d2 to execute beforel := 1 in d1 are higher if the initial value of
h is positive. Thus, the above implementation fails to removethe internal timing leak.
This example illustrates the need for a tighter interactionwith the scheduler. The sched-
uler needs to be able to suspended certain threads instantly. This motivates the intro-
duction of thehide andunhide constructs in this paper.
Returning to probabilistic scheduler-specific noninterference, Smith has continued this
line of work [Smi01] to emphasize practical enforcement. Incontrast to previous work,
the security type system acceptswhile loops with high guards when no assignments to
low variables follow such loops. Independently, Boudol andCastellani [BC01, BC02]
provide a type system of similar power and show possibilistic noninterference for ty-
pable programs. This system does not rely onprotect-like primitives but winds up
rejecting assignments to low variables that follow conditionals with high guards.
The approaches above do not handle dynamic threads. Smith [Smi03] has suggested that
the language can be extended with dynamic thread creation. The extension is discussed
informally, with no definition for the semantics offork, the thread creation construct.
A compositional typing rule forfork is given, which allows spawning threads under
conditionals with high guards. However, the uniform scheduler assumption is critical for
such a treatment (as it is also for the treatment ofwhile loops). Consider the following
example:

e1 : l := 0

e2 : l := 1

e3 : if h > 0 then fork(skip, skip) else skip

This program is considered secure according to [Smi03]. Suppose the scheduler hap-
pens to first executee3 and then schedule the first thread (e1) if the threadpool has more
than three threads and the second thread (e2) otherwise. This results in an information
leak fromh to l because the size of the threadpool depends onh. Note that the above
program is insecure for many other schedulers. A minor deviation from the strictly uni-
form probabilistic choice of threads may result in leaking information.
A possible alternative aimed at scheduler-independence isto force threads (created in
branches ofifs with high guards) along with their children to be protected, i.e., to
disable all other threads until all these threads have terminated (this can be implemented
by, for example, thread priorities). Clearly, this would take a high efficiency tall on
the encouraged programming practice of placing dedicated potentially time-consuming
computation in separate threads. For example, creating a new thread for establishing a
network connection is a much recommended pattern [Knu02, Mah04].
The above discussion is another motivation for a tighter interaction between threads
and the scheduler. A flexible scheduler would accommodate thread creation in a sen-
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c ::= stop | skip | v := e | c; c | if b then c else c | while b do c

| hide | unhide | fork(c, ~d) | hfork(c, ~d)

Fig. 1. Command syntax

sitive context by scheduling such threads independently from threads with attacker-
observable assignments. This motivates the introduction of thehfork construct in this
paper.

2.4 Scheduler-independent security

Sabelfeld and Sands [SS00] introduce a scheduler-independent security condition (with
respect to possibly probabilistic schedulers) and suggesta type-based analysis that en-
forces this condition. The condition is, however, concerned with external timingleaks,
which implies that the attacker is powerful enough to observe the actual execution time.
External timing models rely on the underlying operating system and hardware to pre-
serve the timing properties of a given program. Furthermore, the known padding tech-
niques [Aga00, SS00] might arbitrarily change the efficiency of the resulting code (and
possibly result in a diverging program). In the present work, we assume a weaker at-
tacker and aim for a more permissive security condition and analysis.
External timing-sensitive security has been extended to languages with semaphores
primitives [Sab01] and message passing [SM02].

2.5 Security via low determinism

Inspired by Roscoe’slow-view determinism[Ros95] for security in a CSP setting,
Zdancewic and Myers [ZM03] develop an approach to information flow in concurrent
systems. According to this approach, a program is secure if its publicly-observably re-
sults are deterministic and unchanged regardless of secretinputs. This avoids refinement
attacks from the outset. However, low-view determinism security rejects intuitively se-
cure programs (such asl := 0 ‖ l := 1), introducing the risk of rejecting useful
programs. Analysis enforcing low-view determinism are inherently non-compositional
because the parallel composition with a thread assigning tolow variables is not gener-
ally secure.
Most recently, Huisman et al. [HWS06] have suggested a temporal logic-based charac-
terization of low-view determinism security. This characterization enables high-preci-
sion security enforcement by known model-checking techniques.

3 Language

In order to illustrate our approach, we define a simple multithreaded language with dy-
namic thread creation. The syntax of language commands is displayed in Figure 1.
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〈|skip, m|〉 ⇀ 〈|stop, m|〉
〈|e, m|〉 ↓ n

〈|x := e, m|〉 ⇀ 〈|stop, m[x 7→ n]|〉

〈|c1, m|〉
α
⇀ 〈|stop, m′|〉 α ∈

˘

•;, ;•, ◦~d
, •~d

¯

〈|c1; c2, m|〉
α
⇀ 〈|c2, m′|〉

〈|c1, m|〉
α
⇀ 〈|c′1, m

′|〉 α ∈
˘

•;, ;•, ◦~d
, •~d

¯

〈|c1; c2, m|〉
α
⇀ 〈|c′1; c2, m′|〉

〈|e, m|〉 ↓ True

〈|if e then c1 else c2, m|〉 ⇀ 〈|c1, m|〉

〈|e, m|〉 ↓ False

〈|if e then c1 else c2, m|〉 ⇀ 〈|c2, m|〉

〈|e, m|〉 ↓ True

〈|while e do c, m|〉 ⇀ 〈|c; while e do c, m|〉

〈|e, m|〉 ↓ False

〈|while e do c, m|〉 ⇀ 〈|stop, m|〉

〈|hide, m|〉
;•
⇀ 〈|stop, m|〉 〈|unhide, m|〉

•;

⇀ 〈|stop, m|〉

〈|fork(c, ~d), m|〉
◦~d⇀ 〈|c, m|〉 〈|hfork(c, ~d), m|〉

•~d⇀ 〈|c, m|〉

Fig. 2. Semantics for commands

Besides the standard imperative primitives, the language features hiding (hide and
unhide primitives) and dynamic thread creation (fork andhfork primitives).

3.1 Semantics for commands

A commandc and a memorym together form acommand configuration〈|c, m|〉. The
semantics of configurations are presented in Figure 2. A small semantic step has form
〈|c, m|〉

α
⇀ 〈|c′, m′|〉 that updates the command and memory in the presence of a possible

eventα. Events range over the set
{

•;, ;•, ◦~d, •~d

}

, where~d is a set of threads. The
sequential composition rule propagates events to the top level. We describe the meaning
of the events in conjunction with the rules that involve the events.
Two kinds of threads are supported by the semantics, low and high threads, partitioning
the threadpool into low and high parts. The intention is to hide—via the scheduler—the
(timing of the) execution of the high threads from the low threads.
The hiding commandhide moves the current thread from the low to the high part of
the threadpool. This is expressed in the semantics by event;• which communicates to
the scheduler to treat the thread as high. The unhiding commandunhide has the dual
effect: it communicates to the scheduler by event•; that the thread should be treated
as low. We define independent commandshide andunhide instead of forcing them to
wrap code blocks syntactically (cf.protect). We expect this choice to be useful when
adding exceptions to the language. For example, anunhide in an exception handler
may refer to severalhide primitives under atry statement.
Commandsfork(c, ~d) andhfork(c, ~d) dynamically spawn a collection of threads~d
while the current thread runs commandc. The difference between the two primitives is
in the generated event. Commandfork signals about the creation of low threads with
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event◦~d (where◦ is read “low”) while hfork indicates that new threads should be
treated as high by event•~d (where• is read “high”).

3.2 Semantics for schedulers

Figure 3 depicts the semantic rules that describe the behavior of the scheduler. a sched-
uler is, generally, a programσ that forms ascheduler configuration〈|σ, ν|〉 together with
a memoryν. We assume that the scheduler memory is disjoint from the program mem-
ory. The scheduler memory contains variableq that regulates for how many steps a
thread can be scheduled. Live threads are tracked by variable t that consists of low and
high parts. the low part is named byt◦, while the high part is composed of two subpools
namedt• andte. Threads int• are always high, but threads inte were low in the past,
are high at present, and might eventually be low in the future. Threads are moved back
and forth fromt◦ to te by executing the hiding and unhiding commands. Variabler rep-
resents the running thread. Variables regulates whether low threads may be scheduled.
Whens is ◦, both low and high threads may be scheduled. However, whens is •, only
high threads may be scheduled, preventing low threads from observing internal timing
information about high threads. In addition, the schedulermight have some internal
variables.
Whenever a scheduler-operation rule handles an event, it either corresponds to pro-
cessing information from the top level (such as threads creation and termination) or to
communicating information to the top level (such as thread selection). The rules have
the form〈|σ, ν|〉

α
⇁ 〈|σ′, ν′|〉. By convention, we refer to the variables inν asq, t, r and

s and variables inν′ asq′, t′, r′ ands′. When these variables are not explicitly men-
tioned, we adopt the convention that they remain unchanged after the transition. We
assume that besides event-driven transitions, the scheduler might perform internal op-
erations that are not visible at the top level (and may not change the variables above).
We abstract away from these transitions, assuming that their event labels are empty. For
simplicity, we require that scheduler transitions are deterministic. We expect a natural
generalization of our results to probabilistic schedulers.
The rules can be viewed as a set of basic assumptions that we expect the scheduler to
satisfy. We abstract away from the actual scheduler implementation—it can be arbi-
trary as long it satisfies these basic assumptions and runs infinitely long. We discuss an
example of a scheduler that conforms to these assumptions inSection 4.
Rule for eventαr

~d
ensures that the scheduler updates the appropriate part of the thread-

pool (low or high, depending onα) with newly created threads. Operationn(~d) returns
thread identifiers for~d and generates fresh ones when new threads are spawn byfork

orhfork. Rule for eventr; keeps track of a non-terminal step of threadr; as an effect,
counterq is decremented. A terminal step of threadr results in ar ;× event, which
requires the scheduler to remove threadr from the threadpool. Events↑◦ r′ and↑• r′

are driven by the scheduler’s selection of threadr′. Note the difference in selecting low
and high threads. A low thread can only be selected if the value of s is ◦, as discussed
above.
Eventsr;• and•;r are triggered by thehide andunhide commands, respectively.
The scheduler handles eventr ;• by moving the current thread from the low to the
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q > 0 q′ = q − 1 t′α = tα ∪ N(~d)

〈|σ, ν|〉
αr

~d⇁ 〈|σ′, ν′|〉

α ∈ {•, ◦}

q > 0 q′ = q − 1

〈|σ, ν|〉
r ;

⇁ 〈|σ′, ν′|〉

q > 0 q′ = 0 ∀α ∈ {•, ◦}.t′α = tα\{r}

〈|σ, ν|〉
r ;×
⇁ 〈|σ′, ν′|〉

q = 0 s = ◦ q′ > 0 r′ ∈ t◦ ∪ t•

〈|σ, ν|〉
↑◦r′

⇁ 〈|σ′, ν′|〉

q = 0 q′ > 0 r′ ∈ t• ∪ te

〈|σ, ν|〉
↑•r′

⇁ 〈|σ′, ν′|〉

q > 0 q′ = q − 1 s′ = • t′◦ = t◦\{r} t′e = {r}

〈|σ, ν|〉
r;•
⇁ 〈|σ′, ν′|〉

q > 0 q′ = 0 s′ = ◦ t′◦ = t◦ ∪ {r} t′e = ∅

〈|σ, ν|〉
•;r
⇁ 〈|σ′, ν′|〉

q > 0 q′ = 0 s′ = • ∀α ∈ {•, ◦}.t′α = tα\{r} t′e = ∅

〈|σ, ν|〉
r ;•×

⇁ 〈|σ′, ν′|〉

q > 0 q′ = 0 s′ = ◦ ∀α ∈ {•, ◦}.t′α = tα\{r} t′e = ∅

〈|σ, ν|〉
•;r×
⇁ 〈|σ′, ν′|〉

Fig. 3. Semantics for schedulers

high part of the threadpool and settings′ to •. Upon event•; r, the scheduler moves
the thread back to the low part of the threadpool, settings′ to ◦.
Eventsr;•× and •;r× are triggered byhide andunhide, respectively, when they
are the last commands to be executed by a thread.

3.3 Semantics for threadpools

The interaction between threads and the scheduler takes place at the top level, the
level of threadpool configurations. These configurations have the form〈|~c, m, σ, ν|〉

α
→

〈|~c′, m′, σ′, ν′|〉 whereα ranges over the same set of events as in the semantics for sched-
ulers.
The semantics for threadpool configurations is displayed inFigure 4. The dynamic
thread creation rule is triggered when the running threadcr generates a thread creation
eventα~d whereα is either• or ◦. This event is synchronized with scheduler eventαr

~d
that requests the scheduler to handle the new threads depending on whetherα is high
or low.
If cr does not spawn new threads or terminate, then its command rule is synchronized
with scheduler eventr;. If cr terminates in a transition without labels, then scheduler
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〈|cr, m|〉
α~d⇀ 〈|c′r, m

′|〉 〈|σ, ν|〉
αr

~d⇁ 〈|σ′, ν′|〉 α ∈ {•, ◦}

〈|c1 . . . cn, m, σ, ν|〉
αr

~d→ 〈|c1 . . . cr−1c
′
r
~dcr+1 . . . cn, m′, σ′, ν′|〉

〈|cr, m|〉 ⇀ 〈|c′r, m
′|〉 〈|σ, ν|〉

r ;

⇁ 〈|σ′, ν′|〉

〈|c1 . . . cn, m, σ, ν|〉
r;

→ 〈|c1 . . . cr−1c
′
rcr+1 . . . cn, m′, σ′, ν′|〉

〈|cr, m|〉 ⇀ 〈|stop, m′|〉 〈|σ, ν|〉
r ;×
⇁ 〈|σ′, ν′|〉

〈|c1 . . . cn, m, σ, ν|〉
r;×
→ 〈|c1 . . . cr−1cr+1 . . . cn, m′, σ′, ν′|〉

〈|cr, m|〉
;•
⇀ 〈|stop, m′|〉 〈|σ, ν|〉

r ;•×
⇁ 〈|σ′, ν′|〉

〈|c1 . . . cn, m, σ, ν|〉
r;•×
→ 〈|c1 . . . cr−1cr+1 . . . cn, m′, σ′, ν′|〉

〈|cr, m|〉
•;

⇀ 〈|stop, m′|〉 〈|σ, ν|〉
•;r×
⇁ 〈|σ′, ν′|〉

〈|c1 . . . cn, m, σ, ν|〉
•;r×
→ 〈|c1 . . . cr−1cr+1 . . . cn, m′, σ′, ν′|〉

〈|σ, ν|〉
↑αr′

⇁ 〈|σ′, ν′|〉 α ∈ {◦, •}, r′ ∈ {1, . . . , n}

〈|c1 . . . cn, m, σ, ν|〉
↑αr′

→ 〈|c1 . . . cn, m, σ′, ν′|〉

〈|cr, m|〉
α
⇀ 〈|c′r, m

′|〉 〈|σ, ν|〉
α
⇁ 〈|σ′, ν′|〉 α ∈ {r ; •, • ; r}

〈|c1 . . . cn, m, σ, ν|〉
α
→ 〈|c1 . . . cr−1c

′
rcr+1 . . . cn, m′, σ′, ν′|〉

Fig. 4. Semantics for threadpools

eventr ;× is required for synchronization in order to update the threadpool informa-
tion in the scheduler memory. Ifcr terminates with;• (resp.,•;) then synchronization
with r ;•× (resp.,•; r×) is required to record both termination and hiding (resp.,
unhiding).

Scheduler event↑α r′ triggers a selection of a new threadr′ without affecting the com-
mands in the threadpool or their memory. Finally, entering and exiting the high part of
the threadpool is performed by synchronizing the current thread and the scheduler on
eventsr;• and•;r.

Let→∗ stand for the transitive and reflexive closure of→ (which is obtained from
α
→ by

ignoring events). If for some threadpool configurationcfg we havecfg →∗ cfg ′ where
the threadpool ofcfg ′ is empty, thencfg terminatesin cfg ′, denoted bycfg ⇓ cfg ′.
Recall that schedulers always run infinitely; however, according to the above definition,
the entire program terminates if there are no threads to schedule. We assume thatm(cfg)
extracts the program memory from threadpool configurationcfg .
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3.4 On multi-level extensions

Although the semantics accommodate two security levels forthreads, extensions to
more levels do not pose significant challenges. Assume a security latticeL where secu-
rity levels are ordered by a partial order⊑, with the intention to only allow leaks from
data at levelℓ1 to data at levelℓ2 whenℓ1 ⊑ ℓ2. The low-and-high policy discussed
above forms a two-level lattice with elementslow andhigh so thatlow ⊑ high but
high 6⊑ low .
In the presence of a general security lattice, the threadpool is partitioned into as many
parts as the number of security levels. Commandshideℓ, unhideℓ, andforkℓ are pa-
rameterized over security levelℓ. Initially, all threads are in the⊥-threadpool. When-
ever a thread executes ahideℓ command, it entersℓ-threadpool. The semantics need
to ensure that no threads fromℓ′-threadpools, for allℓ′ such thatℓ 6⊑ ℓ′ may execute
until the hidden thread reachesunhideℓ. Naturally, commandforkℓ creates threads in
ℓ-threadpool.
We will illustrate how general multi-level security can be defined and enforced in Sec-
tions 4 and 5, respectively.

4 Security specification

We specify security for programs via noninterference. The attacker’s view of program
memory is defined by alow-equivalencerelation=L such thatm1 =L m2 if the pro-
jections of the memories onto the low variables are the samem1|L = m2|L. A pro-
gram is secure under some scheduler if for any two initial low-equivalent memories,
whenever the two runs of the program terminate, then the resulting memories are also
low-equivalent.
We generalize this statement to a class of schedulers, requiring schedulers to comply to
the basic assumptions from Section 3 and also requiring thatthey themselves are not
leaky, i.e., that schedulers satisfy a form of noninterference.
Scheduler-related events have different distinguishability levels. Events◦r

~d
,, r;, r;×,

↑◦ r′, r;•, •;r, r;•×, and•;r× (wherer andr′ are low threads) operate on low
threads and are therefore low events. On the other hand, events •r

~d
, r ;, r ;×, and

↑• r′ (wherer andr′ are high threads) are high.
With security partition defined on scheduler events, we specify the indistinguishability
of scheduler configurations vialow-bisimulation.

Definition 1. A relationR is a low-bisimulationon scheduler configurations if when-
ever〈|σ1, ν1|〉 R 〈|σ2, ν2|〉, then

– if 〈|σi, νi|〉
α
⇁ 〈|σ′

i, ν
′
i|〉 whereα is high andi ∈ {1, 2}, then〈|σ′

i, ν
′
i|〉 R 〈|σ3−i, ν3−i|〉;

– if the case above cannot be applied and〈|σi, νi|〉
α
⇁ 〈|σ′

i, ν
′
i|〉 whereα is low and

i ∈ {1, 2}, then〈|σ3−i, ν3−i|〉
α
⇁ 〈|σ′

3−i, ν
′
3−i|〉 and〈|σ′

i, ν
′
i|〉 R 〈|σ′

3−i, ν
′
3−i|〉.

Scheduler configurations are low-indistinguishable if there is a low-bisimulation that
relates them:
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t◦ := [c]; t• := []; r := c; s := 0; turn := 0;
while (True) do {
q := M ; run(r);
while (q > 0) do {
receive

◦r
~d

: t◦ := append(t◦, N(~d));

•r
~d

: t• := append(t•, N(~d));

r;: skip;
r;× : t◦ := remove(r, t◦); t• := remove(r, t•);

q := 0;
r;• : t◦ := remove(r, t◦); t• := remove(r, t•);

t• := append(t•, [r]); s := 1;
•;r : t◦ := append(t◦, [r]);

t• := remove(r, t•); s := 0; q := 0;
r;•× : t◦ := remove(r, t◦); t• := remove(r, t•);

s := 1; q := 0;
•;r× : t◦ := remove(r, t◦); t• := remove(r, t•);

s := 0; q := 0;
end receive;
q := q − 1

};
turn := (turn + 1)%2;
if ((turn = 1) or (s = 1))
then {r := head(t•); t• := append(tail(t•), [r])}
else {r := head(t◦); t◦ := append(tail(t◦), [r])}
}

Fig. 5. Round-robin scheduler

Definition 2. Scheduler configurations〈|σ1, ν1|〉 and〈|σ2, ν2|〉 are low-indistinguishable
(written 〈|σ1, ν1|〉 ∼L 〈|σ2, ν2|〉) if there is a low-bisimulationR such that〈|σ1, ν1|〉 R
〈|σ2, ν2|〉.

Noninterference for schedulers requires low-bisimilarity under any memory:

Definition 3. Schedulerσ is noninterferentif 〈|σ, ν|〉 ∼L 〈|σ, ν|〉 for all ν.

Figure 5 displays an example of a scheduler in pseudocode. This is a round-robin
scheduler that keeps track of two lists of threads: low and high ones. The scheduler
interchangeably chooses between threads from these two lists, when possible. It waits
for events generated by the running thread (expressed by primitive receive). Func-
tionshead, tail, remove, andappend have the standard semantics for list operations.
OperationN(~d), variablest◦, t•, s, r, andq have the same purpose as described in
Section 3.2. ConstantM is a positive natural number. Variableturn encodes the in-
terchangeable choices between low and high threads. Function run(r) launches the
execution of threadr. It is not difficult to show that this schedulers complies to the
assumptions from Section 3.2, and that it is noninterferent.
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Suppose the initial scheduler memory is formed according toνinit = ν[t◦ 7→ {c} , t• 7→
∅, te 7→ ∅, r 7→ 1, s 7→ ◦, q 7→ 0] for some fixedν. Security for programs is defined as
a form of noninterference:

Definition 4. Programc is secureif for all σ, m1, andm2 whereσ is noninterferent
andm1 =L m2, we have

〈|c, m1, σ, νinit |〉 ⇓ cfg1 & 〈|c, m2, σ, νinit |〉 ⇓ cfg2 =⇒

m(cfg1) =L m(cfg2)

A form of scheduler independence is built in the definition bythe universal quantifi-
cation over all noninterferent schedulers. Although the universally quantified condition
may appear difficult to guarantee, we will show that the security type system from
Section 5 ensures that any typable program is secure. Note that this security definition
is termination-insensitive[SM03] in that it ignores nonterminating program runs. Our
approach can be applied to termination-sensitive securityin a straightforward manner,
although this is beyond the scope of this paper.
As common, noninterference can be expressed for a general security latticeL by quan-
tifying over all security levelsℓ ∈ L and demanding two-level noninterference between
data at levelsℓ1 such thatℓ1 ⊑ ℓ (acting as low) and data at levelsℓ2 such thatℓ2 6⊑ ℓ
(acting as high).

5 Security type systems

This section presents a security type system that enforces the security specification
from the previous section. We proceed by going over the typing rules and stating the
soundness theorem.

5.1 Typing rules

Figure 6 displays the typing rules for expressions and commands. SupposeΓ is atyping
environmentwhich includes security type information for variables (whether they are
low or high) and two variables,pc andhc, ranging over security types (low or high).
By convention, we writeΓv for Γ restricted to all variablesbut v.
Expression typing judgments have the formΓ ⊢ e : τ whereτ is low only if all
variables ine (denotedFV(e)) are low. If there exists a high variable that occurs ine
thenτ must behigh. Expression types make no use of type variablespcandhc.
Command typing judgments have the formΓ ⊢ c : τ . As a starting point, let us see how
the rules track sequential-style information flow. The assignment rule ensures that in-
formation cannot leakexplicitlyby assigning an expression that contains high variables
into a low variable. Further,implicit flows are prevented by the program counter mech-
anism [DD77, VSI96]. This mechanism ensures that no assignments to low variables
are allowed in the branches of a control statement (if or while) when the guard of the
control statement has typehigh . (We call suchif’s andwhile’s high.) This is achieved
by the program counter type variablepc from the typing contextΓ . The intended guar-
antee is that wheneverΓpc, pc 7→ high ⊢ c : τ thenc may not assign to low variables.
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∀v ∈ FV(e).Γ (v) = low

Γ ⊢ e : low

∃v ∈ FV(e).Γ (v) = high

Γ ⊢ e : high

Γ ⊢ skip : Γ (hc)

Γ ⊢ e : τ τ ⊔ Γ (pc) ⊔ Γ (hc) ⊑ Γ (x)

Γ ⊢ x := e : Γ (hc)

Γ ⊢ c1 : τ1 Γhc, hc 7→ τ1 ⊢ c2 : τ2

Γ ⊢ c1; c2 : τ2

Γpc, pc 7→ high ⊢ c : τ

Γpc, pc 7→ low ⊢ c : τ

Γ ⊢ e : τe τe ⊑ Γ (hc) (Γpc, pc 7→ τe ⊔ Γ (pc) ⊔ Γ (hc) ⊢ ci : Γ (hc))i=1,2

Γ ⊢ if e then c1 else c2 : Γ (hc)

Γ ⊢ e : τe τe ⊑ Γ (hc) Γpc, pc 7→ τe ⊔ Γ (pc) ⊔ Γ (hc) ⊢ c : Γ (hc)

Γ ⊢ while e do c : Γ (hc)

Γ (pc) = low Γ (hc) = low

Γ ⊢ hide : high

Γ (pc) = low Γ (hc) = high

Γ ⊢ unhide : low

Γ ⊢ c : low Γ (hc) = low Γ ⊢ ~d : low

Γ ⊢ fork(c, ~d) : low

Γpc, pc 7→ Γ (hc) ⊢ c : high Γ (hc) = high Γpc, pc 7→ Γ (hc) ⊢ ~d : high

Γ ⊢ hfork(c, ~d) : high

Fig. 6. Security type system

The typing rules ensure that branches of highif’s andwhile’s may only be typed in a
highpc context.

Security type variableshc (that describeshiding context) andτ (that describes the com-
mand type) help track information flow specific to the multithreaded setting. The main
job of these variables is to record whether the current thread is in the high part of the
threadpool (hc = high) or is in the low part (hc = low ). Command typeτ reflects the
level of the hiding context after the command execution.

The type rules forhide andunhide raise and lower the level of the thread, respec-
tively. Conditionτe ⊑ Γ (hc) for typing highif’s andwhile’s ensures that high control
commands can only be typed under highhc, which enforces the requirement that high
control statements should be executed by high threads.

The type system ensures that there are nofork (but possibly somehfork) commands
in high control statements. This is entailed by the rule forfork, which requires lowhc.

By removing the typing rules forhide, unhide, hfork, and the security type variables
hcandτ from Figure 6, we obtain a standard type system for securing information flow
in sequential programs (cf. [VSI96]). This illustrates that our type provides a general
technique for modular extension of systems that track information flow in a sequential
setting.
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Extending the type system to an arbitrary security latticeL is straightforward: the main
modification is that security levelsℓ in hideℓ, unhideℓ, andforkℓ may be allowed
only if the level ofhc is alsoℓ.

5.2 Soundness

We enlist some helpful lemmas for proving the soundness of the type system. The first
lemma states that high control commands must be typed with highhc.

Lemma 1. If Γ ⊢ c : τ , wherec = if e then c1 else c2 or c = while e do c, and
Γ ⊢ e : high , thenΓ (hc) = high .

The following lemma states that commands withhigh guards andhforks cannot con-
tainhide or unhide commands as part of them.

Lemma 2. If Γhc,pc, pc 7→ high, hc 7→ high ⊢ c : high , thenc does not containhide
andunhide.

The following lemma states that threads in the high part of the threadpool do not update
low variables.

Lemma 3. If Γhc, hc 7→ high ⊢ c : τ and 〈|c, m|〉
α
⇀ 〈|c′, m′|〉, thenm =L m′ and

α /∈ {◦, ; •}

The next lemma states that threads created byhfork always remain in the high part of
the threadpool.

Lemma 4. If Γhc,pc, hc 7→ high , pc 7→ high ⊢ c : high and 〈|c, m|〉
α
⇀ 〈|c′, m′|〉 and

c′ 6= stop, thenΓhc,pc, hc 7→ high, pc 7→ high ⊢ c′ : high .

As stated by the following lemma, threads that are moved to the low part of the thread-
pool are kept in the high part of it until anunhide instruction is executed.

Lemma 5. If Γhc,pc, pc 7→ τc, hc 7→ high ⊢ c : low for some givenτc and〈|c, m|〉
α
⇀

〈|c′, m′|〉, wherec′ 6= stop andα 6= • ; r, thenΓhc,pc, pc 7→ τc, hc 7→ high ⊢ c′ : low .

The following lemma states that threads in the low part of thethreadpool preserve low-
equivalence of memories.

Lemma 6. For a given commandc such thatΓhc, hc 7→ low ⊢ c : low , memories
m1 andm2 such thatm1 =L m2, and〈|c, m1|〉

α
⇀ 〈|c′, m′

1|〉; it holds that〈|c, m2|〉
α
⇀

〈|c′, m′
2|〉 andm′

1 =L m′
2.

The next lemma states that threads remain in the low part of the threadpool as long as a
hide instruction is not executed.

Lemma 7. If Γhc,pc, pc 7→ τc, hc 7→ low ⊢ c : low for some givenτc and 〈|c, m|〉
α
⇀

〈|c′, m′|〉, wherec′ 6= stop andα 6= r ; •, thenΓhc,pc, pc 7→ τc, hc 7→ low ⊢ c′ : low .

Another important lemma is that commandshide andunhide are matched in pairs.
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Lemma 8. If Γhc, hc 7→ low ⊢ hide; c : low , then there exist commandsc′ andp such
that c ∈ {c′; unhide, unhide, c′; unhide; p, unhide; p}, wherec′ has nounhide
commands.

In order to establish the security of typable commands, we need to firstly identify the
following subpools of threads from a given configuration.

Definition 5. Given a scheduler memoryν and a thread pool~c, we define the fol-
lowing subpools of threads:L(~c, ν) = {ci}i∈t◦∩N(~c), H(~c, ν) = {ci}i∈t•∩N(~c), and
EL(~c, ν) = {ci}i∈te∩N(~c).

These three subpools of threads,L(~c) (low), H(~c) (high) andEL(~c) (eventually low),
behave differently when the overall threadpool is run with low-equivalent initial mem-
ories. Threads from the low subpool match in the two runs, threads from the high sub-
pool do not necessarily match (but they cannot update low memories in any event), and
threads from the eventually low subpool willeventually match. The above intuition is
captured by the following theorem. First, we define what “eventually match” means.

Definition 6. We define the relationeventually low, written∼el,p, on empty or singleton
sets of threads as follows:

– ∅ ∼el,p,∅ ∅;
– {c} ∼el,p,{n} {d} if N(c) = N(d) = n, and there exist commandsc′ andd′ with-

outunhide instructions such thatc ∈ {c′; unhide, unhide} andd ∈ {d′; unhide,
unhide} or c ∈ {c′; unhide; p, unhide; p} andd ∈ {d′; unhide; p, unhide; p}.

Two traces that start with low-indistinguishable memoriesmight differ on commands
(although keeping the command type). We need to show that this difference will not
affect the sequence of low-observable events and low-observable memory changes. In
order to show this, we define anunwinding[GM84] property, which is similar to the
low-bisimulation property for schedulers. This unwindingproperty below establishes
an invariant on two configurations that is preserved by low steps in lock-step and is
unchanged by high steps with any of the configurations.

Theorem 1. Given a commandp and the multithreaded configurations〈|~c1, m1, σ1, ν1|〉
and〈|~c2, m2, σ2, ν2|〉 so thatm1 =L m2, written asR1(m1, m2), N(~c1) = H(~c1, ν1)∪
L(~c1, ν1)∪EL(~c1, ν1), written asR2(~c1, ν1), R2(~c2, ν2), setsH(~c1, ν1), L(~c1, ν1), and
EL(~c1, ν1) are disjoint, written asR3(~c1, ν1), R3(~c2, ν2), L(~c1, ν1) = L(~c2, ν2), writ-
ten asR4(~c1, ν1, ~c2, ν2), EL(~c1, ν1) ∼el,p,te1

EL(~c2, ν2), written asR5(~c1, ν1, ~c2, ν2,
p), (Γ [hc 7→ low ] ⊢ ci : low )i∈L(~c1,ν1), written asR6(~c1, ν1), (Γ [hc 7→ high , pc 7→
high ] ⊢ ci : high)i∈H(~c1,ν1)∪H(~c2,ν2), written asR7(~c1, ν1, ~c2, ν2), (Γ [hc 7→ high ] ⊢
ci : low )i∈EL(~c1,ν1)∪EL(~c2,ν2), written asR8(~c1, ν1, ~c2, ν2), and〈|σ1, ν1|〉 ∼L 〈|σ2, ν2|〉,
written asR9(σ1, ν1, σ2, ν2), then:

– if 〈|~ci, mi, σi, νi|〉
α
→ 〈|~c ′

i, m
′
i, σ

′
i, ν

′
i|〉 whereα is high andi ∈ {1, 2}, then there

existsp′ such thatR1(m
′
i, m3−i), R2(~c

′
i, ν

′
i), R2(~c3−i, ν3−i), R3(~c

′
i, ν

′
i), R3(~c3−i,

ν3−i), R4(~c
′
i, ν

′
i,~c3−i, ν3−i), R5(~c

′
i, ν

′
i,~c3−i, ν3−i, p

′), R6(~c
′
i, ν

′
i), R7(~c

′
i, ν

′
i,

~c3−i, ν3−i), R8(~c
′
i, ν

′
i,~c3−i, ν3−i), andR9(σ

′
i, ν

′
i, σ3−i, ν3−i);
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– if the above case cannot be applied, and if〈|~ci, mi, σi, νi|〉
α
→ 〈|~c ′

i, m
′
i, σ

′
i, ν

′
i|〉 where

α is low andi ∈ {1, 2}, then〈|~c3−i, m3−i, σ3−i, ν3−i|〉
α
→ 〈|~c ′

3−i, m
′
3−i, σ

′
3−i, ν

′
3−i|〉

where there existsp′ such thatR1(m
′
i, m

′
3−i), R2(~c

′
i, ν

′
i), R2(~c

′
3−i, ν

′
3−i), R3(~c

′
i,

ν′
i), R3(~c

′
3−i, ν

′
3−i), R4(~c

′
i, ν

′
i,~c

′
3−i, ν

′
3−i), R5(~c

′
i, ν

′
i,~c

′
3−i, ν

′
3−i, p

′), R6(~c
′
i, ν

′
i),

R7(~c
′
i, ν

′
i, ~c

′
3−i, ν

′
3−i), R8(~c

′
i, ν

′
i,~c

′
3−i, ν

′
3−i), andR9(σ

′
i, ν

′
i, σ′

3−i, ν
′
3−i).

Corollary 1 (Soundness). If Γhc, hc 7→ low ⊢ c : low thenc is secure.

6 Extension to cooperative schedulers

It is possible to extend our model to cooperative schedulers. This is done by a minor
modification of the semantics and type system rules. One can show that the results from
Section 5 are preserved under these modifications.
The language is extended with primitiveyield whose semantics are as follows:

〈|yield, m|〉
;/
⇀ 〈|stop, m|〉

The semantics for commands also need to propagate label6; in the sequential compo-
sition rules.
Event 6; signals to the scheduler that the current thread yields control. The scheduler
semantics need to react to such an event by reseting counterq′ to 0:

q > 0 q′ = 0

〈|σ, ν|〉
r;/
⇁ 〈|σ′, ν′|〉

q > 0 q′ = 0
∀α ∈ {•, ◦}.t′α = tα\{r}

〈|σ, ν|〉
r;/×
⇁ 〈|σ′, ν′|〉

We need to ensure that the only possibility to schedule another thread is by generating
event 6;. Hence, we add premiseq′ = ∞ to the semantics rules for schedulers that
handle events↑• r′ and↑◦ r′. Additionally, the last rule in Figure 4 now allowsα
to range over{r ; •, • ; r, r 6;}, which propagates yielding events6; from threads
to the scheduler. Similar to scheduler eventsr ;•× and•; r×, a new transition is
added to the threadpool semantics to include the case whenyield is executed as the
last command by a thread.
At the type-system level, yielding control while inside a high control command, as well
as insidehide/unhide pairs, is potentially dangerous. These situations are avoided by
a type rule foryield that restrictspcandhc to low:

Γ (pc) = low Γ (hc) = low

Γ ⊢ yield : Γ (hc)

A theorem that implies soundness for the modified type systemcan be proved similarly
to Theorem 1.
Recently, we have suggested a mechanism to enforcing security under cooperative
scheduling [RS06]. Besides checking for explicit and implicit flows, the mechanism
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ensures that there are noyield commands in high context. Similarly, the rule above
implies thatyield may not appear in high context. On the other hand, the mechanism
from [RS06] allows no dynamic thread creation in high context. This is improved by
the approach sketched in this section, because it retains the flexibility that is offered by
hfork.

7 Ticket purchase example

In Section 2, we have argued that a flexible treatment of dynamic thread creation is
paramount for a practical security mechanism. We illustrate, by an example, that the
security type system from Section 5 offers such a permissivetreatment without com-
promising security.
Consider the code fragment in Figure 7. This fragment is a part of a program that han-
dles a ticket purchase. Variables have subscripts indicating their security levels (l for
low andh for high). Supposefl contains public data for the flight being booked (in-
cluding the class and seat details),pl contains data for the passenger being processed.
Variablenl is assigned the (public) number of frequent-flier miles for flight fl. Variable
mh is assigned the current number of miles of passengerpl, which is secret. Variable
sh is assigned the (secret) status (e.g.,BASIC or GOLD) of passengerpl. The value
of sh is then stored inoh. Variableokl stores if the procedure to print a ticket has been
successfully carried out.
The next line is a control statement: if the updated numbermh + nl of miles exceeds
50000 then a new thread is spawn to perform a status updateupdateStatus for the
passenger. The status update code involves a computation for extra miles (due to the
passenger status) and might involve a requestchangeStatus to the status database. As
potentially time-consuming computation, it is arranged ina separate thread. The final
computation in the main thread prints the ticket.
This program creates threads in a high context because the guard of theif in the
main thread depends onmh. Furthermore, the main thread contains an assignment to a
low variable (dl) after the instructions that branches on secrets. Nevertheless, a minor
modification of the program (which can, generally, be easilyautomated) by replacing
if (mh + nl > 50000) then fork(sh := GOLD , updateStatus) with

hide;

if(mh + nl > 50000) then

hfork(sh := GOLD , updateStatus)

else skip;

unhide

results in a typable (and therefore secure) program.

8 Implementation issues

As discussed in Section 2, it is important that the proposed security mechanism for
regulating the interaction between threads and the scheduler is feasible to put into effect
in practice.
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. . .
nl := computeMilesFor (fl);
mh := miles(pl);
sh := statusOf (pl);
oh := sh;
if (mh + nl > 50000)

then fork(sh := GOLD , updateStatus);
okl := printTicket(pl, fl, dl);
. . .
updateStatus :
if (oh 6= GOLD) then changeStatus(pl,GOLD);
eh := extraMiles(mh, nl, sh);
mh := updateMiles(pl, mh + nl + eh)

Fig. 7.Ticket purchase code

We have analyzed two well-known thread libraries: the GNU Pth [Eng05] and the NPTL
[DM03] libraries for the cooperative and preemptive concurrent model, respectively.
Generally, the cooperative model has been widely used in, for instance, GUI program-
ming when few computations are performed, and most of the time the system waits
for events. The preemptive model is popular in operating systems where preemption
is essential for resource management. We have not analyzed the libraries in full de-
tail, focusing on a feasibility study of the presented interaction between threads and the
scheduler.
The GNU Pth library is well known by its high level of portability and by only using
threads in user space. We have modified this library to allow the implementation of
the primitiveshide andunhide as well as a noninterferent scheduler based on the
round-robin policy from Section 4. The scheduler consists of one list of threads for
each security level, in this case, low and high. The scheduler interchangeably chooses
between elements of those lists depending on the value ofs (i.e., low and high threads
whens = ◦, and only high ones otherwise).
The NPTL library, on the other hand, is more complex than the previous one. It maps
threads in user space to threads in kernel space by using low-level primitives in the
code. Nevertheless, it is possible to apply a similar procedure to that we have applied
to the GNU Pth library. The interaction between threads and the scheduler becomes
more subtle in this model due to the operations performed at the kernel space. The
responsiveness of the kernel for the whole system would depend on temporal properties
of code wrapped byhide andunhide primitives.

9 Conclusion

We have argued for a tight interaction between threads and the scheduler in order to
guarantee secure information flow in multithreaded programs. In conclusion, we revisit
the goals set in the paper’s introduction and report the degree of success meeting these
goals.
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PermissivenessA key improvement over previous approaches is a permissive,yet se-
cure, treatment of dynamic thread creation. Even if threadsare created in a sensitive
context, the flexible scheduling mechanism allows these threads to perform useful com-
putation. This is particularly satisfying because it is an encouraged pattern to perform
time-consuming computation (such as establishing networkconnections) in separate
threads [Knu02, Mah04].

Scheduler-independenceIn contrast to known approaches to internal timing-sensitive
approaches, the underlying security specification is robust with respect to a wide class
of schedulers. However, the schedulers supported by the definition need to satisfy a
form of noninterference that disallows information transfer from threads created in a
sensitive context to threads with publicly observable effects. Sections 4 and 8 argue that
such scheduler properties are not difficult to achieve.

Standard semanticsThe underlying semantics does not appeal to the nonstandard
protect construct. The semantics, however, feature additionalhide, unhide, and
hfork primitives. In contrast toprotect, these features are directly implementable,
as discussed in Section 8.

Language expressivenessAs discussed earlier, a flexible treatment of dynamic thread
creation is a part of our model. Input/output and synchronization are also desirable
features. We expect a natural extension of our model with input/output primitives on
channels labeled with security levels, as well as synchronization primitives (such as
semaphores) that operate on different security levels. Forthe two-point security lattice,
we imagine the following extension of the type system. Low channels would allow
low threads to input to low variables and to output low expressions. Low semaphores
s would permit low threads to execute bothP(s) andV(s) operations. High channels
would allow high threads to input/output data and allow low threads to output data.
High semaphores would allow high threadss to perform bothP(s) andV(s) operations
and allow low threads to performV(s). Formalizing this intuition is subject to our future
work.

Practical enforcementWe have demonstrated that security can be enforced for both
cooperative and preemptive schedulers using a compositional type system. The type
system accommodates permissive programming. We have illustrated by an example in
Section 7 that the permissiveness of dynamic thread creation is not majorly restricted
by the type system. The type system does not involve padding to eliminate timing leaks
at the cost of efficiency. Our future work plans include adapting the type system to un-
structured languages (such as languages with exceptions and bytecode) and facilitating
tool support for it.
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Appendix

Lemma 1. If Γ ⊢ c : τ , wherec = if then e else c1c2 or c = while do ec, and
Γ ⊢ e : high , thenΓ (hc) = high .

Proof. By inspection of typing rules forif andwhile. 2

Lemma 2. If Γhc,pc, pc 7→ high , hc 7→ high ⊢ c : high , thenc does not containhide
andunhide.
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Proof. By simple induction on the typing derivation. 2

Lemma 3. If Γhc, hc 7→ high ⊢ c : τ and 〈|c, m|〉
α
⇀ 〈|c′, m′|〉, thenm =L m′ and

α /∈ {◦, ; •}

Proof. By induction on the type derivation ofc.

skip) It holds trivially sinceskip does not modify the low memory and it does not
produce any labeled event.

x := e) By the typing rule for assignment, we know thatΓ (x) = high . The result
follows from the fact that the assignment does not change thelow memory neither
produce any labeled event.

c1; c2) By the typing derivation for sequential composition, we have that

Γhc, hc 7→ high ⊢ c1 : τ ′ (1)

Γhc, hc 7→ τ ′ ⊢ c2 : τ (2)

for some typeτ ′. By the semantic rule for sequential composition, we have two
more cases to consider:

〈|c1, m|〉
α
⇀ 〈|stop, m′|〉 (3)

〈|c1, m|〉
α
⇀ 〈|c′1, m

′|〉 (4)

Both cases are probed similarly. Thus, we only show how to prove the later one. The
result then follows from applying IH on(1) and(4), and thus obtainingm =L m′

and thatα /∈ {◦, ; •}.
if e then c1 else c2) It holds trivially since the semantic rule for branchings reduces

theif to c1 orc2 without modifying the memory and without producing any labeled
events.

while e do c) It is probed similarly to theif− then− else.
hfork(c, ~d)) It holds trivially since the semantic rule forhfork reduces to〈|c, m|〉 and

produces the labeled eventα = •~d.

2

Lemma 4. If Γhc,pc, hc 7→ high , pc 7→ high ⊢ c : high and〈|c, m|〉
α
⇀ 〈|c′, m′|〉 and

c′ 6= stop, thenΓhc,pc, hc 7→ high, pc 7→ high ⊢ c′ : high .

Proof. By case analysis onc and inspection of the typing rules. 2

Lemma 5. If Γhc,pc, pc 7→ τc, hc 7→ high ⊢ c : low for some givenτc and〈|c, m|〉
α
⇀

〈|c′, m′|〉, wherec′ 6= stop andα 6= • ; r, thenΓhc,pc, pc 7→ τc, hc 7→ high ⊢ c′ : low .

Proof. By case analysis onc. The only typable command under the hypothesis of the
lemma is the sequential composition. Then, we consider the case whenc = c1; c2 for
the given commandsc1 andc2. We assume, by associativity of sequential composition,
that c1 consists on a single command. The cases whenc1 = skip andc1 = x := e
are proved by just inspecting the typing rules and applying the subsumption rule when
needed. The interesting cases are proved as follows.



32 Alejandro Russo, Andrei Sabelfeld

c1 = if e then ct else cf ) The proof proceeds similarly regardless the boolean value
obtained from evaluatinge. Therefore, we only show the case when the guard is
evaluated toTrue. By inspecting the semantics rules for commands, we know that
〈|c1; c2, m|〉 ⇀ 〈|ct, m|〉. By the typing derivation ofc1; c2, we know that

Γhc,pc, pc 7→ τe ⊔ τc ⊔ high , hc 7→ high ⊢ ct : high (5)

Γhc,pc, pc 7→ τc, hc 7→ high ⊢ c2 : low (6)

If τc = high, the result immediately follows from applying the typing rule for
sequential composition to(5) and(6). Otherwise, we can apply the subsumption
rule to(5) to obtain that

Γhc,pc, pc 7→ τc, hc 7→ high ⊢ ct : high (7)

The result follows from applying the typing rule for sequential composition to(7)
and(6).

c1 = while e do cw) It is proved as the conditional case. The result follows by in-
specting the typing derivation ofc1; c2, applying the sequential composition and
subsumption typing rules when needed.

c1 = hfork(c, ~d)) By inspecting the semantics rules for commands, we know that

〈|c1; c2, m|〉
•~d⇀ 〈|c; c2, m|〉. By inspecting the typing derivation ofc1; c2, we obtain

that

Γhc,pc, pc 7→ high , hc 7→ high ⊢ c : high (8)

Γhc,pc, pc 7→ τc, hc 7→ high ⊢ c2 : low (9)

If τc = high, the result immediately follows from applying the typing rule for
sequential composition to(8) and(9). Otherwise, we can apply the subsumption
rule to(8) to obtain that

Γhc,pc, pc 7→ τc, hc 7→ high ⊢ c : high (10)

The result follows from applying the typing rule for sequential composition to(10)
and(9).

2

Lemma 6. For a given commandc such thatΓhc, hc 7→ low ⊢ c : low , memoriesm1

andm2 such thatm1 =L m2, and〈|c, m1|〉
α
⇀ 〈|c′, m′

1|〉; it holds that〈|c, m2|〉
α
⇀ 〈|c′, m′

2|〉
andm′

1 =L m′
2.

Proof. By case analysis onc and by exploring its type derivation. 2

Lemma 7. If Γhc,pc, pc 7→ τc, hc 7→ low ⊢ c : low for some givenτc and〈|c, m|〉
α
⇀

〈|c′, m′|〉, wherec′ 6= stop andα 6= r ; •, thenΓhc,pc, pc 7→ τc, hc 7→ low ⊢ c′ : low .

Proof. By case analysis onc and inspection of the typing rules. 2
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Lemma 8. If Γhc, hc 7→ low ⊢ hide; c : low , then there exist commandsc′ andp such
that c ∈ {c′; unhide, unhide, c′; unhide; p, unhide; p}, wherec′ has nounhide
commands.

Proof. By induction on the size of commandc.

|c| = 1) The only typable command of size1 is unhide. Thus, the result follows from
takingc = unhide.

|c| > 1) The only typable command which size bigger than1 is the sequential compo-
sition. In other words,c = c1; c2, for a single commandc1 and a commandc2.
c1 = skip) We know then thatΓhc, hc 7→ high ⊢ skip : high andΓhc, hc 7→

high ⊢ c2 : low . Therefore, we can conclude that

Γhc, hc 7→ low ⊢ hide; c2 : low (11)

By applying IH on(11), we obtain that there exists commandsc′2 andp2 such
that c′2 ∈ {c′2; unhide, unhide, c′2; unhide; p, unhide; p} wherec′2 has no
unhide commands. The result follows by takingc′ = skip; c′2 andp = p2.

c1 = unhide) The result trivially follows by takingp = c2 and becausec =
unhide; p.

c1 = x := e ) This case is proof in a similar way as whenc1 = skip.
c = if e then c′1 else c′2) By the typing derivation ofc, we know that

Γhc, hc 7→ high ⊢ if e then c′1 else c′2; c2 : low (12)

By the type derivation of(12), we also have that

(Γhc, hc 7→ high , pc 7→ high ⊢ c′i : high)i=1,2 (13)

Γhc, hc 7→ high ⊢ if e then c′1 else c′2 : high (14)

Γhc, hc 7→ high ⊢ c2 : low (15)

Therefore, we can conclude that

Γhc, hc 7→ low ⊢ hide; c2 : low (16)

By applying Lemma2 to (13), commandshide andunhide do not appear in
(c′i)i=1,2. By applying IH on(16), we obtain that there exists commandsc′′

andp2 such thatc2 ∈ {c′′; unhide, unhide, c′′; unhide; p2, unhide; p2},
wherec′′ has nounhide commands. The result follows by taking command
c′ = if e then c′1 else c′2; c

′′ or c′ = if e then c′1 else c′2 (depending on
the form ofc2) andp = p2.

c = (while e do c1); c2) In this case, the proof is similar to that when command
c = if e then c′1 else c′2.

c = hfork(c, ~d); c2 ) By the type derivation ofc, we know that

Γhc,pc, hc 7→ high , pc 7→ high ⊢ c : high (17)

Γhc,pc, hc 7→ high , pc 7→ high ⊢ ~d : high (18)

Γhc, hc 7→ high ⊢ c2 : low (19)
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Therefore, we can conclude that

Γhc, hc 7→ low ⊢ hide; c2 : low (20)

By applying Lemma2 to (17) and(18), we obtain thatc and~d contains nohide
or unhide. By applying IH on(20), we obtain that there exists commandsc′′

andp2 such thatc2 ∈ {c′′; unhide, unhide, c′′; unhide; p2, unhide; p2},
wherec′′ has nounhide. The result follows by takingc′ = hfork(c, ~d); c′′ or
c′ = hfork(c, ~d) (depending on the form ofc2) andp = p2.

2

Theorem 1.Given a commandp and the multithreaded configurations〈|~c1, m1, σ1, ν1|〉
and〈|~c2, m2, σ2, ν2|〉 so thatm1 =L m2, written asR1(m1, m2), N(~c1) = H(~c1, ν1) ∪
L(~c1, ν1)∪EL(~c1, ν1), written asR2(~c1, ν1), R2(~c2, ν2), setsH(~c1, ν1), L(~c1, ν1), and
EL(~c1, ν1) are disjoint, written asR3(~c1, ν1), R3(~c2, ν2), L(~c1, ν1) = L(~c2, ν2), writ-
ten asR4(~c1, ν1, ~c2, ν2), EL(~c1, ν1) ∼el,p,te1

EL(~c2, ν2), written asR5(~c1, ν1, ~c2, ν2,
p), (Γ [hc 7→ low ] ⊢ ci : low )i∈L(~c1,ν1), written asR6(~c1, ν1), (Γ [hc 7→ high , pc 7→
high ] ⊢ ci : high)i∈H(~c1,ν1)∪H(~c2,ν2), written asR7(~c1, ν1, ~c2, ν2), (Γ [hc 7→ high] ⊢
ci : low )i∈EL(~c1,ν1)∪EL(~c2,ν2), written asR8(~c1, ν1, ~c2, ν2), and〈|σ1, ν1|〉 ∼L 〈|σ2, ν2|〉,
written asR9(σ1, ν1, σ2, ν2), then:

– if 〈|~ci, mi, σi, νi|〉
α
→ 〈|~c ′

i, m
′
i, σ

′
i, ν

′
i|〉 whereα is high andi ∈ {1, 2}, then there

existsp′ such thatR1(m
′
i, m3−i), R2(~c

′
i, ν

′
i), R2(~c3−i, ν3−i), R3(~c

′
i, ν

′
i), R3(~c3−i,

ν3−i), R4(~c
′
i, ν

′
i,~c3−i, ν3−i), R5(~c

′
i, ν

′
i,~c3−i, ν3−i, p

′), R6(~c
′
i, ν

′
i), R7(~c

′
i, ν

′
i,

~c3−i, ν3−i), R8(~c
′
i, ν

′
i,~c3−i, ν3−i), andR9(σ

′
i, ν

′
i, σ3−i, ν3−i);

– if the above case cannot be applied, and if〈|~ci, mi, σi, νi|〉
α
→ 〈|~c ′

i, m
′
i, σ

′
i, ν

′
i|〉 where

α is low andi ∈ {1, 2}, then〈|~c3−i, m3−i, σ3−i, ν3−i|〉
α
→ 〈|~c ′

3−i, m
′
3−i, σ

′
3−i, ν

′
3−i|〉

where there existsp′ such thatR1(m
′
i, m

′
3−i), R2(~c

′
i, ν

′
i), R2(~c

′
3−i, ν

′
3−i), R3(~c

′
i,

ν′
i), R3(~c

′
3−i, ν

′
3−i), R4(~c

′
i, ν

′
i,~c

′
3−i, ν

′
3−i), R5(~c

′
i, ν

′
i,~c

′
3−i, ν

′
3−i, p

′), R6(~c
′
i, ν

′
i),

R7(~c
′
i, ν

′
i, ~c

′
3−i, ν

′
3−i), R8(~c

′
i, ν

′
i,~c

′
3−i, ν

′
3−i), andR9(σ

′
i, ν

′
i, σ′

3−i, ν
′
3−i).

Proof. By case analysis on command/scheduler steps. We are only going to show the
proofs for the mentioned commands when the configuration〈|~c1, m1, σ1, ν1|〉 makes
some progress. We assume that the threadcr belongs to~c1 . Analogous proofs are
obtained when〈|~c2, m2, σ2, ν2|〉 makes progress instead. We make a distinction if the
system performs an step that produces a low or a high event.

Low events: ◦r
~d

, r ;, r ;×, ↑◦ r′, r ;•, •; re, r ;•×, and•; re× (where
{r, r′} ⊆ t◦1

andre ∈ te1
).

α1 = ◦r
~d

) By inspecting the semantics for threadpools, the scheduler, and commands,

we have thatcr ∈ L(~c1, ν1), and thatcr = fork(c, ~d) or cr = fork(c, ~d); c∗ for
some commandsc andc∗. We are only going to show the proof for the case when
cr = fork(c, ~d); c∗ since the proof forcr = fork(c, ~d) proceeds in a similar way.
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By inspecting the semantics for threadpools and commands, we have the transi-

tion 〈|cr, m1|〉
◦~d⇀ 〈|c; c∗, m1|〉, and that〈|σ1, ν1|〉

◦r

~d⇁ 〈|σ′
1, ν

′
1|〉. Because〈|σ1, ν1|〉 ∼L

〈|σ2, ν2|〉 andα1 is low, we also have that〈|σ2, ν2|〉
◦r

~d⇁ 〈|σ′
2, ν

′
2|〉. In addition to that,

we also know thatcr ∈ L(~c2, ν2) sinceL(~c2, ν2) = L(~c1, ν1), and that〈|cr, m2|〉
◦~d⇀

〈|c; c∗, m2|〉. We can therefore conclude that〈|~c2, m2, σ2, ν2|〉
◦r

~d⇀ 〈|~c2
′, m′

2, σ
′
2, ν

′
2|〉.

R1(m
′
1, m

′
2) holds by applying Lemma6. R2(~c1

′, ν′
1), R2(~c2

′, ν′
2), R3(~c1

′, ν′
1),

and R3(~c2
′, ν′

2) hold since propositionsR2(~c1, ν1), R2(~c2, ν2), R3(~c1, ν1), and
R3(~c2, ν2) holds, and by inspecting the semantics for the scheduler together with
the fact thatN(~d) are fresh names for threads.R4(~c1

′, ν′
1, ~c2

′, ν′
2) holds since

R4(~c1, ν1, ~c2, ν2) holds and because the transitionα1 added the same new low
threads to both configurations. By takingp′ = p, we have thatR5(~c1

′, ν′
1, ~c2

′, ν′
2, p)

holds since propositionR5(~c1, ν1, ~c2, ν2, p) holds and because the eventually low
thread, if exists one, has made no progress.R6(~c1

′, ν′
1) holds sinceR6(~c1, ν1) holds

and by inspecting the Lemma7. R7(~c1
′, ν′

1, ~c2
′, ν′

2) holdsR7(~c1, ν1, ~c2, ν2) holds
and because high threads have been not modified by the low stepα1. R8(~c1

′, ν′
1, ~c2

′,
ν′
2) holdsR8(~c1, ν1, ~c2, ν2) holds and because the eventually low threads in both

configurations, if they exists, have been not modified by the stepα1. Finally, propo-
sition R9(σ

′
1, ν

′
1, σ

′
2, ν

′
2) holds sinceR9(σ1, ν1, σ2, ν2) holds and by applying the

definition of∼L.

α1 = r; ) By inspecting the semantics rules for threadpools, the scheduler, and com-
mands, we have thatcr ∈ L(~c1, ν1), 〈|cr, m1|〉 ⇀ 〈|c′, m′

1|〉, and that〈|σ1, ν1|〉
r;

⇁

〈|σ′
1, ν

′
1|〉. Because〈|σ1, ν1|〉 ∼L 〈|σ2, ν2|〉 andα1 is low, we also have that〈|σ2, ν2|〉

r;

⇀
〈|σ′

2, ν
′
2|〉. In addition to that, we also know thatcr ∈ L(~c2, ν2) sinceL(~c2, ν2) =

L(~c1, ν1), and that〈|cr, m2|〉 ⇀ 〈|c′, m2|〉. Therefore, we can conclude that the tran-
sition 〈|~c2, m2, σ2, ν2|〉

r;

⇀ 〈|~c2
′, m′

2, σ
′
2, ν

′
2|〉 holds.

R1(m
′
1, m

′
2) holds by applying Lemma6 to cr. R2(~c1

′, ν′
1), R2(~c2

′, ν′
2), R3(~c1

′,
ν′
1), andR3(~c2

′, ν′
2) hold sinceR2(~c1, ν1), R2(~c2, ν2), R3(~c1, ν1), andR3(~c2, ν2)

holds, and by inspecting the semantics for the scheduler.R4(~c1
′, ν′

1, ~c2
′, ν′

2) holds
sinceR4(~c1, ν1, ~c2, ν2) holds and by applying Lemma6 to cr. By takingp′ = p, we
have thatR5(~c1

′, ν′
1, ~c2

′, ν′
2, p) holds sinceR5(~c1, ν1, ~c2, ν2, p) holds and because

the eventually low threads, if they exist, have made no progress.R6(~c1
′, ν′

1) holds
sinceR6(~c1, ν1) holds and by applying Lemma7 to cr. R7(~c1

′, ν′
1, ~c2

′, ν′
2) holds

sinceR7(~c1, ν1, ~c2, ν2) and because high threads have been not modified by the
transitionα1. R8(~c1

′, ν′
1, ~c2

′, ν′
2) holds sinceR8(~c1, ν1, ~c2, ν2) holds and because

the eventually low threads in both configurations, if they exist, have been not mod-
ified by the transitionα1. Finally,R9(σ

′
1, ν

′
1, σ

′
2, ν

′
2) holds sinceR9(σ1, ν1, σ2, ν2)

holds and by applying the definition of∼L.

α1 = r;× ) By inspecting the semantics for threadpools, the scheduler, and com-

mands, we have thatcr ∈ L(~c1, ν1), 〈|cr, m1|〉⇀ 〈|stop, m′
1|〉, and that〈|σ1, ν1|〉

r;×
⇁

〈|σ′
1, ν

′
1|〉. Because〈|σ1, ν1|〉 ∼L 〈|σ2, ν2|〉 andα1 is low, we also have that〈|σ2, ν2|〉

r;×
⇀ 〈|σ′

2, ν
′
2|〉. In addition to that, we also know thatcr ∈ L(~c2, ν2) sinceL(~c2, ν2)

= L(~c1, ν1), and that〈|cr, m2|〉 ⇀ 〈|stop, m2|〉. We can therefore conclude that the

transition〈|~c2, m2, σ2, ν2|〉
r;×
⇀ 〈|~c2

′, m′
2, σ

′
2, ν

′
2|〉 holds.
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R1(m
′
1, m

′
2) holds by applying Lemma6 to cr. R2(~c1

′, ν′
1), R2(~c2

′, ν′
2), R3(~c1

′,
ν′
1), andR3(~c2

′, ν′
2) hold sinceR2(~c1, ν1), R2(~c2, ν2), R3(~c1, ν1), andR3(~c2, ν2)

hold, and by inspecting the semantics for the scheduler (observe that the thread
cr has just terminated).R4(~c1

′, ν′
1, ~c2

′, ν′
2) holds sinceR4(~c1, ν1, ~c2, ν2) holds and

by applying Lemma6 to cr. By takingp′ = p, we have thatR5(~c1
′, ν′

1, ~c2
′, ν′

2, p)
holds sinceR5(~c1, ν1, ~c2, ν2, p) holds and because the eventually low threads, if
they exist, have made no progress.R6(~c1

′, ν′
1) holds sinceR6(~c1, ν1) holds and

cr /∈ L(~c ′
1, ν

′
1). R7(~c1

′, ν′
1, ~c2

′, ν′
2) holds sinceR7(~c1, ν1, ~c2, ν2) holds and be-

cause high threads have been not modified by the transitionα1. R8(~c1
′, ν′

1, ~c2
′, ν′

2)
holds sinceR8(~c1, ν1, ~c2, ν2) holds and because the eventually low threads in both
configurations, if they exists, have been not modified by the transitionα1. Finally,
R9(σ

′
1, ν

′
1, σ

′
2, ν

′
2) holds sinceR9(σ1, ν1, σ2, ν2) holds and by applying the defini-

tion of∼L.

α1 =↑◦ r′) By inspecting the semantics for threadpools and the scheduler, we have

that 〈|σ1, ν1|〉
↑◦r′

⇁ 〈|σ′
1, ν

′
1|〉. Because〈|σ1, ν1|〉 ∼L 〈|σ2, ν2|〉 andα1 is low, we also

have that〈|σ2, ν2|〉
↑◦r′

⇀ 〈|σ′
2, ν

′
2|〉. We can therefore conclude that the transition

〈|~c2, m2, σ2, ν2|〉
↑◦r′

⇀ 〈|~c2
′, m′

2, σ
′
2, ν

′
2|〉 holds.

Let us takep′ = p. Then, we have thatR1(m
′
1, m

′
2), R2(~c1

′, ν′
1), R2(~c2

′, ν′
2),

R3(~c1
′, ν′

1), R3(~c2
′, ν′

2),R4(~c1
′, ν′

1, ~c2
′, ν′

2), R5(~c1
′, ν′

1, ~c2
′, ν′

2, p
′), R6(~c1

′, ν′
1), R7

(~c1
′, ν′

1, ~c2
′, ν′

2), R8(~c1
′, ν′

1, ~c2
′, ν′

2) holds sinceR1(m1, m2), R2(~c1, ν1), R2(~c2,
ν2), R3(~c1, ν1), R3(~c2, ν2), R4(~c1, ν1, ~c2, ν2), R5(~c1, ν1, ~c2, ν2, p), R6(~c1, ν1), R7

(~c1, ν1, ~c2, ν2), R8(~c1, ν1, ~c2, ν2) holds and because the transition has only modi-
fied the variabletr in the scheduler.R9(σ

′
1, ν

′
1, σ

′
2, ν

′
2) holds sinceR9(σ1, ν1, σ2,

ν2) holds and by applying the definition of∼L.

α1 = r ; •) By inspecting the semantics for threadpools, the scheduler, and com-
mands, we have thatcr = hide; c∗ for some commandc∗, 〈|cr, m1|〉

;•
⇀ 〈|c′r, m1|〉,

and that〈|σ1, ν1|〉
r;•
⇁ 〈|σ′

1, ν
′
1|〉. We also know that〈|cr, m2|〉

;•
⇀ 〈|c′r, m2|〉 since

L(~c1) = L(~c2). Moreover, we know that〈|σ1, ν1|〉 ∼L 〈|σ2, ν2|〉 and α1 is low,
we also have that〈|σ2, ν2|〉

r;•
⇁ 〈|σ′

2, ν
′
2|〉. We can thus conclude that the transition

〈|~c2, m2, σ2, ν2|〉
r;•
⇀ 〈|~c2

′, m′
2, σ

′
2, ν

′
2|〉 holds.

We know thatEL(~c1) = ∅ because a low thread was scheduled to produce the
eventr ; •. Then,EL(~c2) = ∅ sinceR5(~c1, ν1, ~c2, ν2, p) holds. By applying
Lemma8 to cr, we know thatc∗ = c′; unhide, c∗ = unhide, c∗ = c′; unhide; p∗,
or c∗ = unhide; p∗, wherec′ has nounhide.
R1(m

′
1, m

′
2) holds sincem′

1 = m1 and m′
2 = m2. R2(~c1

′, ν′
1), R2(~c2

′, ν′
2),

R3(~c1
′, ν′

1), R3(~c2
′, ν′

2), andR4(~c1
′, ν′

1, ~c2
′, ν′

2) hold since the following equali-
ties EL(~c1, ν1) = EL(~c2, ν2) = ∅ hold, (L(~ci

′, ν′
i) = L(~ci, νi)\{cr})i=1,2, and

(EL(~ci
′, ν′

i) = {cr})i=1,2 hold by inspecting the semantics for threadpools and the
scheduler.
In the cases wherec∗ = c′; unhide or c∗ = unhide, R5(~c1

′, ν′
1, ~c2

′, ν′
2, p

′) holds
by takingp′ = skip (see Definition 6). On the other cases, by takingp′ = p∗, we
know thatR5(~c1

′, ν′
1, ~c2

′, ν′
2, p

∗) holds because the application of Lemma8 gave us
the appropriatep∗ that satisfies Definition 6.R6(~c1

′, ν′
1) holds sinceL(~c1

′, ν′
1) =

L(~c1, ν1)\{cr} and R6(~c1, ν1) hold. R7(~c1
′, ν′

1, ~c2
′, ν′

2) holds since proposition
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R7(~c1, ν1, ~c2, ν2) holds and because high threads have been not modified by the
transitionα1. R8(~c1

′, ν′
1, ~c2

′, ν′
2) holds sinceR8(~c1, ν1, ~c2, ν2) holds and by in-

specting the type derivation ofcr. Finally, propositionR9(σ
′
1, ν

′
1, σ

′
2, ν

′
2) holds

sinceR9(σ1, ν1, σ2, ν2) holds and by applying the definition of∼L.
α1 = • ; r) We know thatr ∈ te1

. By inspecting the semantics for threadpools, the
scheduler, and commands, we have thatcr = unhide; c∗ or cr = unhide for
some commandc∗, cr ∈ EL(~c1, ν1), 〈|cr, m1|〉

•;

⇀ 〈|c∗, m1|〉, and that〈|σ1, ν1|〉
•;r
⇁

〈|σ′
1, ν

′
1|〉. We are only going to consider the case whencr = unhide; c∗ since

the proof for cr = unhide is analogous. Therefore, we omit the proof when
α1 = •;r×.
Because〈|σ1, ν1|〉 ∼L 〈|σ2, ν2|〉 and α1 is low, we also have that〈|σ2, ν2|〉

•;r
⇁

〈|σ′
2, ν

′
2|〉. BecauseR5(~c1, ν1, ~c2, ν2, p) holds, we know thatc∗ = p and that the

thread with namer belongs to the threadpool~c2 as well. Let us call itc2
r. Since

R5(~c1, ν1, ~c2, ν2, p) holds and it is not possible for a thread to make progress by a
high computation, we have thatc2

r = unhide; p. As a consequence of that, it holds
that 〈|c2

r, m2|〉
•;

⇀ 〈|p, m2|〉. Thus, transition〈|~c2, m2, σ2, ν2|〉
•;r
⇀ 〈|~c2

′, m′
2, σ

′
2, ν

′
2|〉

holds.
R1(m

′
1, m

′
2) holds trivially sinceunhide has no changed the memories.R2(~c1

′,
ν′
1), R2(~c2

′, ν′
2), R3(~c1

′, ν′
1), andR3(~c2

′, ν′
2) hold sinceR2(~c1, ν1), R2(~c2, ν2),

R3(~c1, ν1), andR3(~c2, ν2) holds; and by inspecting the semantics for the sched-
uler. R4(~c1

′, ν′
1, ~c2

′, ν′
2) holds sinceR4(~c1, ν1, ~c2, ν2) holds and because after the

transitionα1, the threadscr andc2
r become the threadp. By inspecting the seman-

tics for the scheduler, we have thatEL(~c′1, ν
′
1) = EL(~c′2, ν

′
2) = ∅. Then, by taking

p′ = skip, it trivially holds thatR5(~c1
′, ν′

1, ~c2
′, ν′

2, skip). R6(~c1
′, ν′

1) holds since
R5(~c1, ν1, ~c2, ν2, p) and R7(~c1, ν1, ~c2, ν2, p) holds ; and by inspecting the type
derivation ofcr. R7(~c1

′, ν′
1, ~c2

′, ν′
2) holds sinceR7(~c1, ν1, ~c2, ν2) holds and be-

cause high threads have been not modified by the transitionα1. R8(~c1
′, ν′

1, ~c2
′, ν′

2)
holds sinceEL(~c1

′, ν′
1) = EL(~c2

′, ν′
2) = ∅. Finally,R9(σ

′
1, ν

′
1, σ

′
2, ν

′
2) holds since

R9(σ1, ν1, σ2, ν2) holds and by applying the definition of∼L.
α1 = r;•×) We know thatr ∈ t◦1

. The hypothesis in the theorem state thatcr must
be typable asΓ [hc 7→ low ] ⊢ cr : low byR6(~c1, ν1). Observe that whencr = hide

this requirement is violated. Therefore, this event can never occur under the given
hypothesis.

High events•r
~d
, r;, r;×, and↑• r′ (where{r, r′} ⊆ t•1

∪ te1
).

α1 = •r
~d

) By inspecting the semantics for threadpools and the scheduler, we know

thatcr ∈ H(~c1, ν1) or cr ∈ EL(~c1, ν1) and thatH(~c′1, ν
′
1) = H(~c1, ν1) ∪ N(~d).

R1(m
′
1, m

′
2) holds trivially sincehfork has no changed the memories.R2(~c1

′, ν′
1),

R2(~c2, ν2), R3(~c1
′, ν′

1), andR3(~c2, ν2), hold sinceR2(~c1, ν1), R2(~c2, ν2), R3(~c1,
ν1), andR3(~c2, ν2) hold, and by inspecting the semantics for the scheduler to-
gether with the fact thatN(~d) are fresh names for threads.R4(~c1

′, ν′
1, ~c2, ν2) holds

sinceR4(~c1, ν1, ~c2, ν2) holds and because the transitionα1 does not affect the low
threads ( only high threads were created). For a similar reason, R6(~c1

′, ν′
1) also

holds.R9(σ
′
1, ν

′
1, σ2, ν2) holds sinceR9(σ1, ν1, σ2, ν2) holds and by applying the

definition of∼L.
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In order to proveR5(~c1
′, ν′

1, ~c2, ν2, p
′), R7(~c1

′, ν′
1, ~c2, ν2), andR8(~c1

′, ν′
1, ~c2, ν2),

we need to split the proof in two more cases:cr ∈ H(~c1, ν1) andcr ∈ EL(~c1, ν1).

cr ∈ H(~c1, ν1)) By takingp′ = p, we have thatR5(~c′1, ν
′
1, ~c2, ν2, p) and proposi-

tion R8(~c′1, ν
′
1, ~c2, ν2) hold becauseR5(~c1, ν1, ~c2, ν2, p), andR8(~c1, ν1, ~c2, ν2)

hold; and because the eventually low thread, if there existsone, has made no
progress. Finally,R7(~c′1, ν

′
1, ~c2, ν2) holds sinceR7(~c1, ν1, ~c2, ν2) holds and by

applying Lemma4 to cr.
cr ∈ EL(~c1, ν1)) SinceR5(~c1, ν1, ~c2, ν2, p) holds, we know that the thread with

namer belongs to the threadpool~c2. Moreover, we know thatcr =hfork(c, ~d);

c′; unhide, cr = hfork(c, ~d); unhide, cr = hfork(c, ~d); c′; unhide; p, or cr

= hfork(c, ~d); unhide; p, wherec′ has nounhide commands. Then,R5(~c′1
, ν′

1, ~c2, ν2, p
′) holds by takingp′ = p. R8(~c′1, ν

′
1, ~c2, ν2) holds by Lemma5.

Finally,R7(~c′1, ν
′
1, ~c2, ν2) holds sinceR7(~c1, ν1, ~c2, ν2) holds and because high

threads have made no progress.
α1 = r; ) We split the proof in two more cases:cr ∈ H(~c1, ν1) andcr ∈ EL(~c1, ν1).

cr ∈ H(~c1, ν1)) R1(m
′
1, m2) holds by applying Lemma3. R2(~c1

′, ν′
1), R2(~c2, ν2),

R3(~c1
′, ν′

1), andR3(~c2, ν2), hold sinceR2(~c1, ν1), R2(~c2, ν2), R3(~c1, ν1), and
R3(~c2, ν2) hold, and by inspecting the semantics for the scheduler.R4(~c1

′, ν′
1,

~c2, ν2) holds sinceR4(~c1, ν1, ~c2, ν2) holds and because the transitionα1 does
not affect the low threads. For a similar reason,R6(~c1

′, ν′
1) also holds.R7(~c′1,

ν′
1, ~c2, ν2) holds sinceR7(~c1, ν1, ~c2, ν2) holds and by applying Lemma4. By

takingp′ = p, we have thatR5(~c′1, ν
′
1, ~c2, ν2, p

′) andR8(~c′1, ν
′
1, ~c2, ν2) hold be-

causeR5(~c1, ν1, ~c2, ν2, p), andR8(~c1, ν1, ~c2, ν2) hold; and because the even-
tually low thread, if there exists one, has made no progress.R9(σ

′
1, ν

′
1, σ2, ν2)

holds sinceR9(σ1, ν1, σ2, ν2) holds and by applying the definition of∼L.
cr ∈ EL(~c1, ν1)) R1(m

′
1, m2) holds by applying Lemma5. R2(~c1

′, ν′
1), R2(~c2,

ν2), R3(~c1
′, ν′

1), andR3(~c2, ν2), hold sinceR2(~c1, ν1), R2(~c2, ν2), R3(~c1, ν1),
andR3(~c2, ν2) hold, and by inspecting the semantics for the scheduler.R4(~c1

′,
ν′
1, ~c2, ν2) holds sinceR4(~c1, ν1, ~c2, ν2) holds and because the transitionα1

does not affect the low threads. For a similar reason,R6(~c1
′, ν′

1) also holds.
SinceR5(~c1, ν1, ~c2, ν2, p) holds, we know thatcr = c′; unhide , cr = unhide,
cr = c′; unhide; p, or cr = unhide; p for some commandc′ withoutunhide
instructions. However,cr 6= unhide; p andcr 6= unhide sinceα1 = r ;.
The proof proceeds similarly whencr = c′; unhide or cr = c′; unhide; p.
Therefore, we only show the latter case. By inspecting the semantics for com-
mands, we know that〈|cr, m1|〉 ⇀ 〈|c′r, m

′
1|〉, wherec′r = c′′; unhide; p where

〈|c′, m1|〉 ⇀ 〈|c′′, m′
1|〉 andc′′ 6= stop or c′r = unhide; p. By takingp′ = p, we

can conclude thatR5(~c′1, ν
′
1, ~c2, ν2, p

′) holds by Definition6. R7(~c′1, ν
′
1, ~c2, ν2)

holds sinceR7(~c1, ν1, ~c2, ν2) holds and because the transitionα1 does not in-
volve high threads.R8(~c′1, ν

′
1, ~c2, ν2) hold by applying Lemma5 to cr. R9(σ

′
1,

ν′
1, σ2, ν2) holds sinceR9(σ1, ν1, σ2, ν2) holds and by applying the definition

of ∼L.
α1 = r;× ) We need to split the proof in two more cases:cr ∈ H(~c1, ν1) andcr ∈

EL(~c1, ν1).



Securing the Interaction between Threads and the Scheduler 39

cr ∈ H(~c1, ν1)) R1(m
′
1, m2) holds by applying Lemma3. R2(~c1

′, ν′
1), R2(~c2, ν2),

R3(~c1
′, ν′

1), andR3(~c2, ν2), hold sinceR2(~c1, ν1), R2(~c2, ν2), R3(~c1, ν1), and
R3(~c2, ν2) hold, and by inspecting the semantics for the scheduler.R4(~c1

′, ν′
1,

~c2, ν2) holds sinceR4(~c1, ν1, ~c2, ν2) holds and because the transitionα1 does
not affect the low threads. For a similar reason,R6(~c1

′, ν′
1) also holds.R7(~c′1,

ν′
1, ~c2, ν2) holds sinceR7(~c1, ν1, ~c2, ν2) holds and because the threadcr has

finished. By takingp′ = p, we have thatR5(~c′1, ν
′
1, ~c2, ν2, p) andR8(~c′1, ν

′
1, ~c2,

ν2) hold becauseR5(~c1, ν1, ~c2, ν2, p), andR8(~c1, ν1, ~c2, ν2) hold; and because
the eventually low thread, if there exists one, has made no progress.R9(σ

′
1, ν

′
1,

σ2, ν2) holds sinceR9(σ1, ν1, σ2, ν2) holds and by applying the definition of
∼L.

cr ∈ EL(~c1, ν1)) The eventually low thread cannot make progress and finishes
immediately. Observe thatcr must be typable asΓ [hc 7→ high ] ⊢ cr : low and
it must terminate in one step. Therefore,cr = unhide but this cannot occur
sinceα1 = r;×.

α1 =↑• r′ ) By taking p′ = p, we have thatR1(m
′
1, m2), R2(~c1

′, ν′
1), R2(~c2, ν2),

R3(~c1
′, ν′

1), R3(~c2, ν2), R4(~c1
′, ν′

1, ~c2, ν2), R5(~c′1, ν
′
1, ~c2, ν2, p

′), R6(~c1
′, ν′

1), R7

(~c′1, ν
′
1, ~c2, ν2), andR8(~c′1, ν

′
1, ~c2, ν2) holds sinceR1(m1, m2), R2(~c1, ν1), R2(~c2,

ν2), R3(~c1, ν1), R3(~c2, ν2), R4(~c1, ν1, ~c2, ν2), R5(~c1, ν1, ~c2, ν2, p), R6(~c1, ν1), R7

(~c1, ν1, ~c2, ν2) andR8(~c1, ν1, ~c2, ν2) hold and because the transition has only mod-
ified the variabletr in the scheduler.R9(σ

′
1, ν

′
1, σ2, ν2) holds sinceR9(σ1, ν1, σ2,

ν2) holds and by applying the definition of∼L.

2

Corollary 1 (Soundness).If Γhc, hc 7→ low ⊢ c : low thenc is secure.

Proof. For arbitraryσ, m1, andm2 so thatm1 =L m2 andσ is noninterferent, assume
〈|c, m1, σ, νinit |〉 ⇓ cfg1 & 〈|c, m2, σ, νinit |〉 ⇓ cfg2. By inductive (in the number of
transition steps of the above configurations) application of Theorem 1, we propagate
invariantm1 =L m2 to the terminating configurations. 2
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Abstract. Information flow exhibited by multithreaded programs is subtle be-
cause the attacker may exploit scheduler properties when deducing secret infor-
mation from publicly observable outputs. Volpano and Smithhave introduced a
protect command that prevents the scheduler from observing sensitive timing
behavior of protected commands and therefore prevents undesired information
flows. While a useful construct,protect is nonstandard and difficult to imple-
ment. This paper presents a transformation that eliminatesthe need forprotect
under cooperative scheduling. We show that both termination-insensitive and
termination-sensitive security can be enforced by variants of the transformation
in a language with dynamic thread creation.

1 Introduction

Information-flow security specifications and enforcement mechanisms for sequential
programs have been developed for several years. Unfortunately, they do not naturally
generalize to multithreaded programs [SV98]. Informationflow in multithreaded pro-
grams remains an important open challenge [SM03]. Furthermore, otherwise significant
efforts (such as Jif [MZZ+06] and Flow Caml [Sim03]) in extending programming lan-
guages (such as Java and Caml) with information flow controlshave sidestepped mul-
tithreading issues. Nevertheless, concurrency and multithreading are important in the
context of security because environments of mutual distrust are often concurrent. As
result, the need for controlling information flow in multithreaded programs has become
a necessity.
This paper is focused on preventing attacks that exploit scheduler properties to deduce
secret information from publicly observable outputs. Supposeh is a secret (orhigh)
variable andl is a public (orlow ) one. Consider threadsc1 andc2:

c1 : (if h > 0 then sleep(100) else skip); l := 1

c2 : sleep(50); l := 0

Although these threads do not exhibit insecure informationflow in isolation (because
1 is always the outcome forl in c1, and0 is always the outcome forl in c2), there is a
race between assignmentsl := 1 andl := 0, whose outcome depends on secreth. If h
is originally positive, then—under many schedulers—it is likely that the final value of
l is 1. If h is not positive, then it is likely that the final value ofl is 0. It is the timing
behavior of threadc1 that leaks—via the scheduler—secret information intol. This
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〈|ci, m|〉
α
⇀ 〈|c′i, m

′|〉 α ∈ {ǫ, ~d} σ = i

〈|σ, 〈c1 . . . cn〉, m|〉 → 〈|σ, 〈c1 . . . ci−1c
′
iαci+1 . . . cn〉, m

′|〉

〈|ci, m|〉
α
⇀ 〈|stop, m′|〉 σ = i

〈|σ, 〈c1 . . . cn〉, m|〉 → 〈|σ, 〈c1 . . . ci−1ci+1 . . . cn〉, m
′|〉

〈|ci, m|〉
6;
⇀ 〈|c′i, m|〉 σ = i σ′ = (i mod n) + 1 c′i 6= stop

〈|σ, 〈c1 . . . cn〉, m|〉 → 〈|σ′, 〈c1 . . . ci−1c
′
ici+1 . . . cn〉, m|〉

Fig. 1. Semantics for threadpools

phenomenon is due tointernal timing, i.e., timing that is observable to the scheduler.
As in [SV98, VS99, Smi01, BC02, Smi03, RS06], we do not considerexternal timing,
i.e., timing behavior visible to an attacker with a stopwatch.
Volpano and Smith have introduced aprotect command that prevents the scheduler
from observing the timing behavior of the protected commandand therefore prevents
undesired information flows. A protected command is executed atomicallyby defini-
tion. Although it has been acknowledged [SS00, RS06] thatprotect is hard to imple-
ment, no implementation ofprotect has been discussed by approaches that rely on
it [VS99, Smi01, Smi03]. This paper presents a transformation that eliminates the need
for protect under cooperative scheduling. This transformation can be integrated into
source-to-source translation that introducesyield commands for cooperative sched-
ulers. We show that both termination-insensitive and termination-sensitive security can
be enforced by variants of the transformation in a language with dynamic thread cre-
ation.

2 Language

We consider a simple imperative language that includesskip, assignment, sequen-
tial composition, conditionals, andwhile-loops. Its sequential semantics is standard
[Win93]. The language also includes dynamic thread creation and ayield command.
A command configuration〈|c, m|〉 consists of a commandc and memorym. Memories
m : IDs → Vals are finite maps from identifier namesIDs to valuesVals. Transitions
between configurations have form〈|c, m|〉

α
⇀ 〈|c′, m′|〉 whereα is eitherǫ (empty label),

~d (indicating a sequence of newly spawned threads), or6;. The latter label is used in
the transition rule foryield:

〈|yield, m|〉
;/
⇀ 〈|stop, m|〉

Labels are then propagated through sequential compositionto the threadpool-semantics
level. Dynamic thread creation is performed by commandfork:

〈|fork(c, ~d), m|〉
~d

⇀ 〈|c, m|〉



Security for Multithreaded Programs under Cooperative Scheduling 45

This has the effect of continuing with threadc while spawning a sequence of fresh
threads~d. Threadpool configurationshave form〈|σ, 〈c1 . . . cn〉, m|〉whereσ is the sched-
uler’s running thread number,〈c1 . . . cn〉 is a threadpool, andm is a shared memory.
Threadpool semantics, describing the behavior of threadpools and their interaction with
the scheduler, are displayed in Figure 1. The rules correspond to normal execution of
threadi from the threadpool, termination of threadi, and yielding by threadi. Note that
due to cooperative scheduling, only termination or ayield by a thread may change the
decision of the scheduler which thread to run next. Althoughthese semantics model a
round-robin scheduler, our approach can be generalized to awide class of schedulers.
Let cfg →0 cfg , for any configurationcfg , andcfg →v cfg ′, for v > 0, if there is a
configurationcfg ′′ such thatcfg → cfg ′′ andcfg ′′ →v−1 cfg ′. Then,cfg →∗ cfg ′ if
cfg →v cfg ′ for somev ≥ 0. Threadpool configurationcfg terminatesin memorym
(written cfg ⇓ m) if cfg →∗ 〈|σ, 〈〉, m|〉 for someσ. In particular,cfg ⇓v m is written
when cfg →v 〈|σ, 〈〉, m|〉. If 〈〉 is not finitely reachable fromcfg , thencfg diverges
(written cfg ⇑). Termination⇓ and divergence⇑ are defined similarly for command
configurations.

3 Security specification

We define two security conditions, termination-insensitive and termination-sensitive
security, both based onnoninterference[GM82]. Supposesecurity environmentΓ :
IDs → {high , low} specifies a partitioning of variables into high and low ones.Two
memoriesm1 andm2 arelow-equal(m1 =L m2) if they agree on low variables, i.e.,
∀x ∈ IDs . Γ (x) = low =⇒ m1(x) = m2(x).
Commandc satisfies termination-insensitive noninterference ifc’s terminating execu-
tions on low-equal inputs produce low-equal results.

Definition 1. Commandc satisfiestermination-insensitive securityif

∀m1, m2.m1 =L m2 & 〈|1, 〈c〉, m1|〉 ⇓ m′
1 & 〈|1, 〈c〉, m2|〉 ⇓ m′

2 =⇒ m′
1 =L m′

2

Commandc satisfies termination-sensitive noninterference ifc’s executions on any two
low-equal inputs either both diverge or both terminate in low-equal results.

Definition 2. Commandc satisfiestermination-sensitive securityif

∀m1, m2.m1 =L m2 =⇒

〈|1, 〈c〉, m1|〉⇓ m′
1 & 〈|1, 〈c〉, m2|〉⇓ m′

2 & m′
1 =L m′

2 ∨ 〈|1, 〈c〉, m1|〉⇑& 〈|1, 〈c〉, m2|〉⇑

4 Transformation

By performing a simple analysis while injectingyield commands, we are able to auto-
matically enforce both termination-insensitive and termination-sensitive security. The
transformation rules are presented in Figure 2. They have form Γ ⊢ c →֒ c′, where
commandc is transformed intoc′ underΓ . In order to rule outexplicit flows[DD77]
via assignment, we ensure that expressions assigned to low variables may not depend
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∀v ∈ Vars(e). Γ (v) = low

Γ ⊢ e : low

∃v ∈ Vars(e). Γ (v) = high

Γ ⊢ e : high

(HCTX)
No yield, fork or assignment tol in c

Γ ⊢ c : high

Γ ⊢ skip →֒ skip; yield Γ ⊢ yield →֒ yield

Γ ⊢ e : τ τ ⊑ Γ (v)

Γ ⊢ v := e →֒ v := e;yield

Γ ⊢ c1 →֒ c′1 Γ ⊢ c2 →֒ c′2

Γ ⊢ c1; c2 →֒ c′1; c
′
2

Γ ⊢ e : low Γ ⊢ c1 →֒ c′1 Γ ⊢ c2 →֒ c′2

Γ ⊢ if e then c1 else c2 →֒ if e then (yield; c′1) else (yield; c′2)

(H-IF)
Γ ⊢ e : high Γ ⊢ c1 : high Γ ⊢ c2 : high

Γ ⊢ if e then c1 else c2 →֒ (if e then c1 else c2); yield

Γ ⊢ e : low Γ ⊢ c →֒ c′

Γ ⊢ while e do c →֒ (while e do (yield; c′)); yield

(H-W)
Γ ⊢ e : high Γ ⊢ c : high

Γ ⊢ while e do c →֒ (while e do c); yield

Γ ⊢ c →֒ c′ Γ ⊢ d1 →֒ d′
1 . . . Γ ⊢ dn →֒ d′

n

Γ ⊢ fork(c, d1 . . . dn) →֒ fork(c′, d′
1 . . . d′

n)

Fig. 2. Transformation rules

on high data. This is enforced by demanding the type of the assigned variable to be at
least as restrictive as the type of the expression that is to be assigned. Restrictiveness
relation⊑ on security levels is defined bylow ⊑ low , high ⊑ high , low ⊑ high and
high 6⊑ low . In order to rejectimplicit flows[DD77] via control flow, we guarantee that
if’s andwhile’s with high guards may not have assignments to low variablesin their
bodies. These two techniques are well known [DD77, VSI96] and do not require code
transformation.
The transformation injectsyield commands in such a way that threads may not yield
whenever their timing information depends on secret data. This is achieved by a re-
quirement thatif’s andwhile’s with high guards may not containyield commands.
In addition, such control flow statements may not containfork. The rationale is that if
secrets influence the number of threads, then it is possible for some schedulers to leak
this difference via races of publicly-observable assignments [SS00, Sab03]. Rules H-IF
and H-W enforce the above requirements. The rest of the transformation injectsyield
commands without significant restrictions (but with some obvious liveness guarantees
for commands that do not branch on secrets).
The first lemma shows that commands typed under rule HCTX do not affect the low-
security variables.
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Lemma 1. Given a commandc and memoriesm and m′ so thatΓ ⊢ c : high and
〈|c, m|〉⇓v m′, thenm =L m′.

The following theorem states that pools of transformed threads preserve low-equality
on memories:

Theorem 1. Given two (possibly empty) threadpools~c and~c ′ of equal size, memories
m1 andm2, and numberσ so thatΓ ⊢ ci →֒ c′i whereci ∈ ~c and c′i ∈ ~c ′, m1 =L m2,
〈|σ, 〈~c ′〉, m1|〉⇓v m′

1, and〈|σ, 〈~c ′〉, m2|〉⇓w m′
2, thenm′

1 =L m′
2.

As desired, the transformation enforces termination-insensitive security:

Corollary 1. If Γ ⊢ c →֒ c′ thenc′ satisfies termination-insensitive security.

The transformation can be adopted to termination-sensitive security in a straightforward
way. We writeΓ ⊢TS c →֒ c′ wheneverΓ ⊢ c →֒ c′ with the modifications that (i) rule
H-W is not used, and (ii) rule HCTX is replaced by:

(HCTX’)
No while, yield, fork or assignment tol in c

Γ ⊢TS c : high

These modifications ensure that loops have low guards and that no loop may appear in
anif statement with a high guard. These requirements are similarto those of Volpano
and Smith [VS99] (except for the requirement onfork, which Volpano and Smith lack):

Lemma 2. Given a commandc so thatΓ ⊢ c : high cmd for some security environment
Γ in Volpano and Smith’s type system [VS99]; and given commandc′ obtained fromc
by erasing occurrences ofprotect, we haveΓ ⊢TS c′ : high .

This allows us to connect the transformation to Volpano and Smith’s type system:

Theorem 2. If commandc is typable under security environmentΓ in Volpano and
Smith’s type system [VS99], then there exists commandc′′ such thatΓ ⊢TS c′ →֒ c′′,
wherec′ is obtained fromc by erasing occurrences ofprotect.

We also achieve termination-sensitive security with the above modifications of the
transformation. We firstly present some auxiliaries lemmas. The following lemma states
that commands typed ashigh terminate and do not affect the low part of the memory:

Lemma 3. Given a commandc and memorym so thatΓ ⊢TS c : high , then〈|c, m|〉⇓m′

andm =L m′.

In order to show termination-sensitive security, we track the behavior of threadpools
after executing some number ofyield andfork commands. We capture this by re-
lation →∗

y,f so thatcfg →∗
1,0 cfg ′ if there iscfg ′′ such thatcfg →∗ cfg ′′ where no

yield’s have been executed,cfg ′′ → cfg ′ results from executing ayield command;
andcfg →∗

y,f cfg ′ if there iscfg ′′ such thatcfg →∗
y−1,f cfg ′′ (resp.cfg →∗

y,f−1 cfg ′′)
andcfg ′′ → cfg ′ results from executing ayield (resp.fork) command.
The next two lemmas state that low-equivalence between memories is preserved after
executing some number ofyield andfork commands:
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Lemma 4. Given two non-empty threadpools~c and~c ′ of equal size, memoriesm1 and
m2, and numberσ so thatΓ ⊢TS ci →֒ c′i whereci ∈ ~c and c′i ∈ ~c ′, m1 =L m2, and
〈|σ, 〈~c ′〉, m1|〉 →

∗
1,0 〈|σ′, 〈~c ′′〉, m′

1|〉, then there existsm′
2 such that〈|σ, 〈~c ′〉, m2|〉 →∗

1,0

〈|σ′, 〈~c ′′〉, m′
2|〉, andm′

1 =L m′
2.

Lemma 5. Given two non-empty threadpools~c and~c ′ of equal size, memoriesm1 and
m2, numbersσ, y, andf so thaty + f > 0, Γ ⊢TS ci →֒ c′i whereci ∈ ~c and c′i ∈ ~c ′,
m1 =L m2, and 〈|σ, 〈~c ′〉, m1|〉 →∗

y,f 〈|σ′, 〈~c ′′〉, m′
1|〉, then there existsm′

2 such that
〈|σ, 〈~c ′〉, m2|〉 →∗

y,f 〈|σ′, 〈~c ′′〉, m′
2|〉, andm′

1 =L m′
2.

The final theorem shows that the transformation eliminates the need forprotect:

Theorem 3. If Γ ⊢TS c →֒ c′ thenc′ satisfies termination-sensitive security.

5 Related work

An general overview of information flow controls for concurrent programs can be found
in [SM03]. We briefly mention most closely related work. External timing-sensitive
information-flow policies have been addressed for a multithreaded language [SS00],
and extended with synchronization [Sab01], message passing [SM02], and declassi-
fication [MS04]. Type systems have been investigated for termination-sensitive flows
in possibilistic [BC02] and probabilistic [VS99, Smi01, Smi03] settings. Recently, we
have presented a type system that guarantees termination-insensitive security with re-
spect to a class of deterministic schedulers [RS06]. Information flow via low determin-
ism, prohibiting races on low variables from the outset, hasbeen addressed in [ZM03,
HWS06].

6 Conclusion

We have presented a transformation that prevents timing leaks via cooperative sched-
ulers. We argue that this technique is general: it applies toa wide class of schedulers
(although only a round-robin scheduler has been consideredhere for simplicity).
We have experimented with the GNU Pth [Eng05], a portable thread library for threads
in user space. We have modified this library to allow the round-robin scheduling policy
from Section 2. We have successfully applied the transformation for source-to-source
translation of multithreaded programs withoutyield’s into GNU Pth programs. The
security of this translation is ensured by Theorems 1 and 3.

AcknowledgmentThis work was funded in part by the Information Society Technolo-
gies program of the European Commission, Future and Emerging Technologies under
the IST-2005-015905 Mobius project.
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Appendix

Lemma 1. Given a commandc and memoriesm andm′ so thatΓ ⊢ c : high and
〈|c, m|〉⇓v m′, thenm =L m′.

Proof. By induction onv and case analysis onc. 2

Theorem 1.Given two (possibly empty) threadpools~c and~c ′ of equal size, memories
m1 andm2, and numberσ so thatΓ ⊢ ci →֒ c′i whereci ∈ ~c and c′i ∈ ~c ′, m1 =L m2,
〈|σ, 〈~c ′〉, m1|〉⇓v m′

1, and〈|σ, 〈~c ′〉, m2|〉⇓w m′
2, thenm′

1 =L m′
2.

Proof. The proof is done by induction onv + w and case analysis oncσ. Frequently,
we need to identify a thread in a given positionσ inside of a threadpool~c. In order
to do that, we can represent the threadpool~c = 〈c1, c2, . . . , cσ−1, cσ, cσ+1, . . . , cm〉 as
cσ ⊕ ~cσ, where~cσ = 〈c1, c2, . . . , cσ−1, cσ+1, . . . , cm〉.

cσ = if e then c1 else c2) WhenΓ ⊢ e : low , the proof proceeds by applying the
semantic for threadpools to reduce theif construct, and by applying IH afterward.
The interesting case is whenΓ ⊢ e : high and〈|e, m|〉 ↓ b1 and〈|e, m|〉 ↓ b2, where
b1 6= b2. Without loosing generality, let us supposeb1 = True andb2 = False.
We know thatc′σ = (if e then c1 else c2); yield by applying the transformation
to cσ. By inspecting the semantics for threadpools, we know that

〈|σ, c′σ ⊕ ~c ′
σ, m1|〉 ⇀ 〈|σ, (c1; yield)σ ⊕ ~c ′

σ, m1|〉

〈|σ, c′σ ⊕ ~c ′
σ, m2|〉 ⇀ 〈|σ, (c2; yield)σ ⊕ ~c ′

σ, m2|〉

By inspecting the transformation, we know that(Γ ⊢ ci : high)i=1,2. By applying
Lemma 1 to(Γ ⊢ ci : high)i=1,2 and by inspecting the semantics for threadpools,
we have

〈|σ, (c1; yield) ⊕ ~c ′
σ, m1|〉 ⇀∗ 〈|σ, (yield)σ ⊕ ~c ′

σ, m′′
1 |〉 (1)

〈|σ, (c2; yield) ⊕ ~c ′
σ, m2|〉 ⇀∗ 〈|σ, (yield)σ ⊕ ~c ′

σ, m′′
2 |〉 (2)

wherem1 =L m′′
1 andm2 =L m′′

2 . Additionally, we know by 1 and 2 that

〈|σ, (yield)σ ⊕ ~c ′
σ, m′′

1 |〉 ⇀ 〈|σ′,~c ′
σ, m′′

1 |〉 (3)

〈|σ, (yield)σ ⊕ ~c ′
σ, m′′

2 |〉 ⇀ 〈|σ′,~c ′
σ, m′′

2 |〉 (4)

The result follows by applying IH on 3 and 4.
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cσ = while e do c) The interesting case is whenΓ ⊢ e : high , and 〈|e, m|〉 ↓ b1

and〈|e, m|〉 ↓ b2, whereb1 6= b2. Without loosing generality, let us supposeb1 =
True andb2 = False. We know thatc′σ = (while e do c); yield by applying the
transformation tocσ. By inspecting the semantics for threadpools and by applying
Lemma 1, we have that

〈|σ, c′σ ⊕ ~c ′
σ, m1|〉 ⇀∗ 〈|σ, c′σ ⊕ ~c ′

σ, m′′
1 |〉 (5)

wherem′′
1 =L m1. The result follows from applying IH to configurations(5) and

〈|σ, c′σ ⊕ ~c ′
σ, m2|〉.

cσ = c1; c2) We assume, by associativity of sequential composition, that c1 is a single
command. Thus, the proof consists on case analysis overc1 and following the same
structure of the proofs for single commands.

2

Corollary 1. If Γ ⊢ c →֒ c′ thenc′ satisfies termination-insensitive security.

Proof. By applying Theorem 1 with~c = 〈c〉, ~c ′ = 〈c′〉, andσ = 1. 2

Lemma 2.Given a commandc so thatΓ ⊢ c : high cmd for some security environment
Γ in Volpano and Smith’s type system [VS99]; and given commandc′ obtained fromc
by erasing occurrences ofprotect, we haveΓ ⊢TS c′ : high .

Proof. By structural induction on the type derivation ofc. 2

Theorem 2. If commandc is typable under security environmentΓ in Volpano and
Smith’s type system [VS99], then there exists commandc′′ such thatΓ ⊢TS c′ →֒ c′′,
wherec′ is obtained fromc by erasing occurrences ofprotect.

Proof. By simple structural induction on the type derivation ofc.

c1; c2) We know thatΓ ⊢ c1 : τ cmd andΓ ⊢ c2 : τ cmd by the type derivation
of c. By IH, we have that there existsc′1, c

′′
1 , c′2, andc′′2 such thatΓ ⊢TS c′1 →֒ c′′1

andΓ ⊢TS c′2 →֒ c′′2 , wherec′1 andc′2 are respectively obtained fromc1 andc2 by
erasing the occurrences ofprotect. The result follows by takingc′′ = c′′1 ; c′′2 .

protect(cp)) We have thatΓ ⊢ cp : τ cmd . By IH, we have that there exists there
existsc′p andc′′p such thatΓ ⊢TS c′p →֒ c′′p , wherec′p is obtained fromcp by erasing
the occurrences ofprotect. The result follows by takingc′ = c′p andc′′ = c′′p .

(CMD−) rule) We know that

(CMD−)
Γ ⊢ c : τ2 cmd τ1 ⊑ τ2

Γ ⊢ c : τ1 cmd

By IH, we know that there existsc′ andc′′ such thatΓ ⊢TS c′ →֒ c′′, wherec′

is obtained fromc by erasing the occurrences ofprotect. The result thus holds
trivially.
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(IF ) rule) We know that

(IF)
Γ ⊢ e : τ Γ ⊢ c1 : τ cmd Γ ⊢ c2 : τ cmd

Γ ⊢ if e then c1 else c2 : τ cmd

Here, we have to cases.
τ = L) By IH, we have that By IH, we have that there existsc′1, c

′′
1 , c′2, andc′′2

such thatΓ ⊢TS c′1 →֒ c′′1 andΓ ⊢TS c′2 →֒ c′′2 , wherec′1 and c′2 are re-
spectively obtained fromc1 and c2 by erasing the occurrences ofprotect.
Moreover,Γ ⊢TS e : low by our transformation. The result follows by taking
c′′ = if e then (yield; c′′1) else (yield; c′′2).

τ = H) Since the transformation does not have a subtyping rule for expression,
we need to split the proof here in two more cases.
Γ ⊢ e : high) By applying Lemma2 to c1 andc2, we obtain thatΓ ⊢TS c′1 :

high andΓ ⊢TS c′2 : high, wherec′1 andc′2 are respectively obtained from
c1 andc2 by erasing the occurrences ofprotect. The result follows by
applying(H − IF ) rule in the transformation.

Γ ⊢ e : low ) Thus, the type derivation for the conditional has the following
form.

(SUBTYPE) Γ ⊢ e : L
Γ ⊢ e : H Γ ⊢ c1 : H cmd Γ ⊢ c2 : H cmd

Γ ⊢ if e then c1 else c2 : H cmd

By IH, we have that there existsc′1, c
′′
1 , c′2, andc′′2 such thatΓ ⊢TS c′1 →֒ c′′1

andΓ ⊢TS c′2 →֒ c′′2 , wherec′1 andc′2 are respectively obtained fromc1

and c2 by erasing the occurrences ofprotect. The result follows from
Γ ⊢ e : low and takingc′′ = if e then (yield; c′′1) else (yield; c′′2).

2

Lemma 3.Given a commandc and memorym so thatΓ ⊢TS c : high , then〈|c, m|〉⇓m′

andm =L m′.

Proof. By induction on the size ofc. 2

Lemma 4.Given two non-empty threadpools~c and~c ′ of equal size, memoriesm1 and
m2, and numberσ so thatΓ ⊢TS ci →֒ c′i whereci ∈ ~c and c′i ∈ ~c ′, m1 =L m2, and
〈|σ, 〈~c ′〉, m1|〉 →∗

1,0 〈|σ′, 〈~c ′′〉, m′
1|〉, then there existsm′

2 such that〈|σ, 〈~c ′〉, m2|〉 →∗
1,0

〈|σ′, 〈~c ′′〉, m′
2|〉, andm′

1 =L m′
2.

Proof. By induction on the number of steps of→∗
1,0 and case analysis oncσ.

→1
1,0) The only possibilities are thatcσ = yield. The lemma trivially holds in this

case.
→v+1

1,0 , v ≥ 1)
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cσ = if e then c1 else c2) WhenΓ ⊢ e : low , the proof proceeds by applying
the semantic for threadpools to reduce theif construct, and by applying IH
afterwards. The interesting case is whenΓ ⊢ e : high and〈|e, m|〉 ↓ b1 and
〈|e, m|〉 ↓ b2, whereb1 6= b2. Without loosing generality, let us supposeb1 =
True andb2 = False. We know that

〈|σ, c′σ ⊕ ~c ′
σ, m1|〉 ⇀0,0 〈|σ, (c1; yield)σ ⊕ ~c ′

σ, m1|〉 (6)

〈|σ, c′σ ⊕ ~c ′
σ, m2|〉 ⇀0,0 〈|σ, (c2; yield)σ ⊕ ~c ′

σ, m2|〉 (7)

By H, we know thatΓ ⊢TS ci : high . Thus, we can apply Lemma1 to obtain
that

〈|σ, (c1; yield)σ ⊕ ~c ′
σ, m1|〉 ⇀∗

0,0 〈|σ, (yield)σ ⊕ ~c ′
σ, m∗

1|〉 (8)

〈|σ, (c2; yield)σ ⊕ ~c ′
σ, m2|〉 ⇀∗

0,0 〈|σ, (yield)σ ⊕ ~c ′
σ, m∗

2|〉 (9)

wherem1 =L m∗
1 andm2 =L m∗

2. By executingyields in (8) and(9) and
by H, we have that

〈|σ′,~c ′
σ, m∗

1|〉 ⇀k
1,0 〈|σ′′,~c ′′, m′

1|〉 (10)

〈|σ′,~c ′
σ, m∗

2|〉 ⇀k
1,0 〈|σ′′,~c ′′, m′

2|〉 (11)

wherek < v. The result follows from applying IH to(10) and(11) together
with m1 =L m∗

1 andm2 =L m∗
2.

cσ = c1; c2) We assume, by associativity of sequential composition, that c1 is a
single command. Thus, the proof consists on case analysis overc1 and follow-
ing the same structure of the proofs for single commands.

2

Lemma 5.Given two non-empty threadpools~c and~c ′ of equal size, memoriesm1 and
m2, numbersσ, y, andf so thaty + f > 0, Γ ⊢TS ci →֒ c′i whereci ∈ ~c and c′i ∈ ~c ′,
m1 =L m2, and〈|σ, 〈~c ′〉, m1|〉 →∗

y,f 〈|σ′, 〈~c ′′〉, m′
1|〉, then there existsm′

2 such that
〈|σ, 〈~c ′〉, m2|〉 →∗

y,f 〈|σ′, 〈~c ′′〉, m′
2|〉, andm′

1 =L m′
2.

Proof. By induction ony + f , case analysis oncσ, and by applying Lemmas 3 and 4
when necessary.

y = 1, f = 0) It holds by Lemma4.
y = 0, f = 1) It cannot happen since executing afork implies to executedyields.

Observe that the transformation rule forfork inserts at least oneyield in c′.
y + f = k + 1, k ≥ 1)

cσ = if e then c1 else c2) WhenΓ ⊢ e : low , the proof proceeds by applying
the semantic for threadpools to reduce theif construct, and by applying IH
afterwards. The interesting case is whenΓ ⊢ e : high and〈|e, m|〉 ↓ b1 and
〈|e, m|〉 ↓ b2, whereb1 6= b2. Without loosing generality, let us supposeb1 =
True andb2 = False. We know that

(〈|σ, c′σ ⊕ ~c ′
σ, mi|〉 ⇀ 〈|σ, (ci; yield)σ ⊕ ~c ′

σ, mi|〉)i=1,2
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By H, we know that(Γ ⊢TS ci : high)i=1,2. Thus, we can apply Lemma3 to
obtain that

(〈|σ, (ci; yield)σ ⊕ ~c ′
σ, mi|〉 ⇀∗ 〈|σ, (yield)σ ⊕ ~c ′

σ, m∗
i |〉)i=1,2

By executingyield, we have that

(〈|σ, (yield)σ ⊕ ~c ′
σ, m∗

i |〉 ⇀ 〈|σ∗,~c ′
σ, m∗

i |〉)i=1,2

By H, we know that

〈|σ∗,~c ′
σ, m∗

1|〉 ⇀∗
y−1,f 〈|σ′, 〈~c ′′〉, m′

1|〉 (12)

The result follows by applying IH on(12), and because(mi =L m∗
i )i=1,2.

cσ = while e do c) Loops with secrets on guards are not allowed by the transfor-
mation. Thus, the only possible case is whenΓ ⊢ e : low . The guarde needs
to be evaluated toTrue since otherwiseyield is executed only once, which
contradicts the hypothesis. The proof for when(〈|e, mi|〉 ↓ True)i=1,2 consists
on reducing the commandwhile once and then apply IH.

cσ = fork(c, ~d)) We know thatc′σ = fork(c′, ~d′), whereΓ ⊢ c →֒ c′ andΓ ⊢
~d →֒ ~d ′. By executing the commandfork, we have that

(〈|σ, (fork(c′, ~d ′))σ ⊕ ~c ′
σ, mi|〉 ⇀ 〈|σ, (c′)σ ⊕ ~c ′

σ ⊕ ~d ′, mi|〉) (13)

By H, we also know that

〈|σ, (c′)σ ⊕ ~c ′
σ ⊕ ~d ′, m1|〉 ⇀∗

y,f−1 〈|σ′, 〈~c ′′〉, m′
1|〉 (14)

The result follows by(13) and by applying IH to(14).
cσ = c1; c2) We assume, by associativity of sequential composition, that c1 is a

single command. Thus, the proof consists on case analysis overc1 and follow-
ing the same structure of the proofs for single commands.

2

Theorem 3.If Γ ⊢TS c →֒ c′ thenc′ satisfies termination-sensitive security.

Proof. By applying Lemma 5 with~c = 〈c〉, ~c ′ = 〈c′〉, andσ = 1 and observing that a
divergent configuration (originating fromc′) performs an infinite number ofyield’s. 2
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Abstract. A major difficulty for tracking information flow in multithreaded pro-
grams is due to theinternal timingcovert channel. Information is leaked via this
channel when secrets affect the timing behavior of a thread,which, via the sched-
uler, affects the interleaving of assignments to public variables. This channel is
particularly dangerous because, in contrast to external timing, the attacker does
not need to observe the actual execution time. This paper presents a composi-
tional transformation that closes the internal timing channel for multithreaded
programs (or rejects the program if there are symptoms of other flows). The
transformation is based on spawning dedicated threads, whenever computation
may affect secrets, and carefully synchronizing them. The target language fea-
tures semaphores, which have not been previously considered in the context of
termination-insensitive security.

1 Introduction

An active area of research is focused on information flow controls in multithreaded pro-
grams [SM03]. Multithreading opens new covert channels by which information can be
leaked to an attacker. As a consequence, the machinery for enforcing secure informa-
tion flow in sequential programs is not sufficient for multithreaded languages [SV98].
One particularly dangerous channel is theinternal timingcovert channel. Information
is leaked via this channel when secrets affect the timing behavior of a thread, which,
via the scheduler, affects the interleaving of assignmentsto public variables.
Suppose thath is a secret variable, andk andl are public ones. Assuming that‖ denotes
parallel composition, consider a simple example of an internal timing leak:

if h ≥ k then skip; skip else skip;
l := 1

‖
skip;
skip;
l := 0

(Internal timing leak)

Under a one-step round-robin scheduler (and a wide class of other reasonable sched-
ulers), if h ≥ k then by the time assignmentl := 1 is reached in the first thread,
the second thread has terminated. Therefore, the last assignment to execute isl := 1.
On the other hand, ifh < k then by the time assignmentl := 0 is reached in the
second thread, the first thread has terminated. Therefore, the last assignment to exe-
cute isl := 0. Hence, the truth value ofh ≥ k is leaked intol. Programs with dy-
namic thread creation are vulnerable to similar leaks. For example, a direct encoding
of the example above is depicted in Fig. 1 (wherefork(c) spawns a new threadc).
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fork(skip; skip; l := 0);
if h ≥ k
then skip; skip else skip;

l := 1

Fig. 1. Internal timing leak withfork

p := 0;
while n ≥ 0 do

k := 2n−1;
fork(skip; skip; l := 0);
if h ≥ k
then skip; skip else skip;

l := 1;
if l = 1
then h := h − k; p := p + k
else skip;

n := n − 1

Fig. 2. Internal timing leak magnified

This program also leaks whetherh ≥ k is true,
under many schedulers. Internal timing leaks
are particularly dangerous because, in contrast
to external timing, the attacker does not need
to observe the actual execution time. Moreover,
leaks similar to those considered so far can be
magnified via loops as shown in Fig. 2 (where
k, l, n, andp are public; andh is ann-bit secret
integer). Each iteration of the loop leaks one bit
of h. As a result, the entire value ofh is copied
into p. Although this example assumes a round-
robin scheduler, similar examples can be easily
constructed where secrets are copied into public
variables under any fair scheduler [SV98].

Existing proposals to tackling internal tim-
ing flows heavily rely on the modification of
run-time environment. (A more detailed dis-
cussion of related work is deferred to Sec-
tion 8.) A series of work by Volpano and
Smith [SV98, VS99, Smi01, Smi03] suggests
a specialprotect(c) statement that, by defi-
nition, takes one atomic computation step with
the effect of running commandc to the end. In-
ternal timing leaks are made invisible because
protect()-based security typed systems en-
sure that computation that branches on secrets is wrapped byprotect() commands.
However, implementingprotect() is a major challenge [SS00, Sab01, RS06a] be-
cause while a thread runsprotect(), the other threads must be instantly blocked.
Russo and Sabelfeld argue that standard synchronization primitives are not sufficient
and resort to primitives for direct interaction with scheduler in order to enable instant
blocking [RS06a]. However, a drawback of this approach (and, arguably, any approach
that implementsprotect() by instant blocking) is that it relies on the modification of
run-time environment: the scheduler must be able to immediately suspend all threads
that might potentially assign to public variables while a protected segment of code is
run, which limits concurrency in the program.

This paper eliminates the need for modifying the run-time environment for a class of
round-robin schedulers. We give a transformation that closes internal timing leaks by
spawning dedicated threads for segments of code that may affect secrets. There are no
internal timing leaks in transformed programs because the timing for reaching assign-
ments to public variables does not depend on secrets. The transformation carefully syn-
chronizes the dedicated threads in order not to introduce undesired interleavings in the
semantics of the original program. Despite the introduced synchronization, threads that
operate on public data are not prevented from progress by threads that operate on secret
data, which gives more concurrency than in [SV98, VS99, Smi01, Smi03, RS06a].
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For a program with internal timing leaks under a particular deterministic scheduler,
the elimination of leaks necessarily changes the interleavings and so possibly the final
result. What thread synchronization allows us to achieve isrefinement of results under
nondeterministic scheduling: the result of the transformed program (under round-robin)
is a possible result of the source program under nondeterministic scheduling. Although
an attacker would seek to exploit information about the specific scheduler in use, good
software engineering practice suggests that a program’s functional behavior should not
be dependent on specific properties of a scheduler beyond such properties as fairness.
The transformation does not reject programs unless they have symptoms that would
already reject sequential programs [DD77, VSI96]. The transformation ensures that the
rest of insecurities (due to internal timing) are repaired.
It is seemingly possible to remove internal timing leaks by applying the following naive
transformation. Suppose a command (program)c only has two variablesh andl to store
a secret and a public value, respectively. Assume thatc does not have insecurities other
than due to internal timing (this can be achieved by disallowing explicit and implicit
flows, defined later in the paper). Then the following programdoes not leak any infor-
mation abouth, while it computes output as intended forc (or diverges):

hi := h; li := l; h := 0; c; bar ; lo := l; h := hi; l := li; c; bar ; l := lo

wherebar is a barrier command that ensures that all other threads haveterminated be-
fore proceeding. This transformation suffers from at leasttwo drawbacks. Firstly, the
programc is run twice, which is inefficient. Secondly, it is hard to ensure that any kind
of nondeterminism (e.g., due to the scheduler, random number generator, or input chan-
nels) inc is resolved in the same way in both copies. For example, the transformation
does not scale up naturally whenc uses input channels. It is not obvious how to com-
municate inputs between the two copies of the program.
Another attempt to remove internal timing leaks could be done by applying slicing
techniques, which can automatically split the original program into low and high parts.
Unfortunately, these techniques in presence of concurrency are not enough to preserve
the semantics of the original program. The reason for that issimple: public variables,
which are updated by threads, might affect the computation of secrets. Therefore, an
explicit communication of public values to the high part is required.

2 Language

Although our technique is applicable to fully-fledged programming languages, we use
a simple imperative language to formalize the transformation. The language includes
a commandfork((λ~x.c)@~e), which dynamically creates and runs a new thread with
local variables~x with initial values given by the expressions~e. When the list of lo-
cal variables is empty, we sometimes use simpler notation:fork(c). The commandc
may also use the program’s global variables. The transformation requires dynamically
allocated semaphores, so these too are included in the language defined in this section.
Without making it precise, we assume that each variable is oftype integer or type
semaphore. There are no expressions of type semaphore otherthan semaphore vari-
ables. A main program is a single commandc, in the grammar of Fig. 3. Its free vari-
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c ::= skip | x := e | c; c | if e then c else c | while e do c | fork((λ~x.c) @~e)

| stop | sem := newSem(n) | wait(sem) | signal(sem)

Fig. 3. Command syntax (withx andsem ranging over variables, andn over integer literals)

(~e, m) ↓ ~v

〈|fork((λ~x.d) @~e), m|〉h
λ~x.d,~v
⇀ 〈|stop, m|〉h

(sem, m) ↓ r h(r).cnt = 0

〈|wait(sem), m|〉h
⊗r
⇀ 〈|stop, m|〉h

(sem, m) ↓ r h(r).cnt > 0 h′ = h[r.cnt := r.cnt − 1]

〈|wait(sem), m|〉h ⇀ 〈|stop, m|〉h′

(sem, m) ↓ r

〈|signal(sem), m|〉h
⊙r
⇀ 〈|stop, m|〉h

i = max(dom(h)) + 1 h′ = h ∪ {i 7→ (cnt = n, que= 〈〉)}

〈|s := newSem(n), m|〉h ⇀ 〈|stop, m[s := i]|〉h′

Fig. 4.Commands semantics

ables comprise theglobalsof the program. Thesource languageis the subset in which
there are nostop commands, no semaphore variables and therefore no semaphore allo-
cations or operations. Moreover, the list of local variables in everyfork must be empty.
Locals are needed for the transformation, but locals in source code would complicate
the transformation (because each source thread is split into multiple threads, and locals
are not shared between threads).

3 Semantics

The formal semantics is defined in two levels: individual command and threadpool
semantics. The small-step semantics for sequential commands is standard [Win93], and
we thus omit these rules. The rules for concurrent commands are given in Fig. 4.
Configurations have the form〈|c, m|〉h, wherec is a command,m is a memory (map-
ping variables to their values), andh is a heap for dynamically allocated semaphores.
The expression language does not include dereferencing of semaphore references, so
evaluation of expressions does not depend on the heap. We write (e, m) ↓ n to say that
n is the value ofe in memorym. A heapis a finite mapping from semaphore references
(which we take to be naturals) to records of the form(cnt = n, que= ws) wheren is a
natural number andws is the list of blocked thread states.
Let α range over the followingevents, which label command transitions for use in the
threadpool semantics:⊙r, to indicate the semaphore at referencer is signaled;⊗r, to
indicate it is waited; or a pairλ~x.c, ~v where~v is a sequence of values that match~x.
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Threadpool configurations have the form〈|〈(c0, m0) . . . (ci, mi) . . . (cn−1, mn−1)〉, g,
h, j|〉, where each(ci, mi) is the state of threadi which is not blocked,g maps global
variables to their values,h is the heap,j ∈ 0 . . . n − 1 is the index of the thread that
will take the next step. For alli, dom(mi) is disjoint fromdom(g). Numbering threads
0 . . . n − 1 slightly simplifies some definitions related to round-robinscheduling.

The threadpool semantics is defined for any scheduler relation SC. We interpret(i, n,
n′, i′) ∈ SC to mean thati is the current thread taking a step,n is the current pool size,
n′ is the size of the pool after that step, andi′ is the next thread chosen by the scheduler.
This model is adequate to define a round-robin scheduler for which thread activation,
suspension, and termination do not affect the interleavingof other threads, and also
to model full nondeterminism. The fully nondeterministic schedulerND is defined by
(i, n, n′, i′) ∈ ND if and only if 0 ≤ i < n and0 ≤ i′ < n′.

A little care is needed with round-robin to maintain the order when threads are blocked
or terminated. The definition relies on some details of the threadpool semantics, e.g.,
when a step by threadi removes a thread from the pool (by termination or blocking),
that thread isi itself. Define the round-robin schedulerRR by (i, n, n′, i′) ∈ RR if and
only if 0 ≤ i < n and equation(1) holds.

i′ = i, if n′ < n andi < n − 1
= 0, if n′ < n andi = n − 1
= (i + 1) mod n′, otherwise

(1)

The threadpool semantics is given
in Fig. 5. Note that memories
in command configurations are
disjoint unionsmi∪g, wheremi

is the thread-local memory, and
g is the global one. We write
h[r.que := (r.que :: (c, m))] to
abbreviate an update of the record
at r in h to change its que field by
appending(c, m) at the tail. Although semaphores are stored in a heap, we streamline
the semantics by not including a null reference. Thus, an initial heap is needed. It is
defined to initialize semaphores to 1, which is an arbitrary choice. The security condi-
tion defined later refers to initial values for all global variables, for simplicity, but only
integer inputs matter.

Definition 1. Theinitial heap of sizek is the mappinghk with domain1 . . . k that maps
eachi to the semaphore state(cnt = 1, que= 〈〉). Suppose thatk of the globals have
type semaphore. Given a global memoryg, the initial global memorygk agrees with
g on integer variables, and theith semaphore variable (under some enumeration) is
mapped toi (i ∈ dom(hk)).

Define(c, g) ⇓ g′ if and only if 〈|(c, m), gk, hk|〉0 →∗ 〈|, g′, h′|〉j, for someh′ and j,
where→∗ is the reflexive and transitive closure of the transition relation→, andm is
the empty function (since the initial threadc has no local variables).

Note that the definitions of→∗ and⇓ depend on the choice of scheduler, but this is
elided in the notation.
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〈|ci, mi∪g|〉h ⇀ 〈|c′i, m
′
i∪g′|〉h′ (i, n, n, j) ∈ SC

〈| . . . (ci, mi) . . . , g, h|〉i → 〈| . . . (c′i, m
′
i) . . . , g′, h′|〉j

ci = stop (i, n, n − 1, j) ∈ SC

〈| . . . (ci, mi) . . . , g, h|〉i → 〈| . . . (ci−1, mi−1)(ci+1, mi+1) . . . , g, h|〉j

〈|ci, mi∪g|〉h
λ~x.d,~v
⇀ 〈|c′i, m

′
i∪g′|〉h′ m = {~x 7→ ~v} (i, n, n + 1, j) ∈ SC

〈| . . . (ci, mi) . . . (cn−1, mn−1), g, h|〉i → 〈| . . . (c′i, m
′
i) . . . (cn−1, mn−1)(d,m), g′, h′|〉j

〈|ci, mi∪g|〉h
⊗r
⇀ 〈|c′i, m

′
i∪g′|〉h′

h′′ = h′[r.que:= (r.que:: (c′i, m
′
i))] (i, n, n − 1, j) ∈ SC

〈| . . . (ci, mi) . . . , g, h|〉i → 〈| . . . (ci−1, mi−1)(ci+1, mi+1) . . . , g′, h′′|〉j

〈|ci, mi∪g|〉h
⊙r
⇀ 〈|c′i, m

′
i∪g′|〉h′

h′(r).que= (c, m) :: ws h′′ = h′[r.que:= ws] (i, n, n + 1, j) ∈ SC

〈| . . . (ci, mi) . . . (cn−1, mn−1), g, h|〉i → 〈| . . . (c′i, m
′
i) . . . (cn−1, mn−1)(c, m), g′, h′′|〉j

〈|ci, mi∪g|〉h
⊙r
⇀ 〈|c′i, m

′
i∪g′|〉h′

h′(r).que= 〈〉 h′′ = h′[r.cnt := r.cnt+ 1] (i, n, n, j) ∈ SC

〈| . . . (ci, mi) . . . , g, h|〉i → 〈| . . . (c′i, m
′
i) . . . , g′, h′′|〉j

Fig. 5. Threadpool semantics (for schedulerSC)

4 Security specification

Assume that all global non-semaphore variables are labeledwith low or high security
levels to represent public and secret data, respectively. We label all semaphore variables
as high in the target code (recall that the source program hasno semaphore variables).
To define the security condition, it suffices to definelow equalityof global memories,
writteng1 =L g2, to say thatg1(x) = g2(x) for all low variablesx.

Definition 2. Programc is secure if for allg1, g2 such thatg1 =L g2, if (c, g1) ⇓ g′1
and(c, g2) ⇓ g′2 theng′1 =L g′2, where⇓ refers to the round-robin schedulerRR.

The definition says that low equality of initial global memories implies low equality
of final global memories. Note that this definition is termination-insensitive [SM03], in
the sense that nonterminating runs are ignored.
Observe that the examples from the introduction are rejected by the above definition
because the changes in the final values of low variables breaklow equality. Consider
another example (wherek andl are low; andh is high):

if (h ≥ k) then skip; skip else skip ‖ l := 0 ‖ l := 1

This program is secure because the timing of the first thread does not affect how the
race between assignments in the second and third threads is resolved. This holds for
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round-robin schedulers that run each thread for a fixed number of steps (which covers
the case of a one-step round-robin schedulerRR), machine instructions, or even calls
to thefork primitive. Note, however, that schedulers that are able to change the order
of scheduled threads depending on the number of live threadswould not necessarily
guarantee secure execution of the above program. For example, consider a scheduler
that runs the first thread for two steps and then checks the number of live threads. If
this number is two then the second thread is scheduled; otherwise the third thread is
scheduled. This leaks the truth value ofh ≥ k into l. Round-robin schedulers are not
only practical but also in this sense more secure, which motivates our choice to adopt
them in the semantics.

5 Transformation

In this section, we give a transformation that rules outexplicitandimplicit flows [DD77]
and closes internal timing leaks under round-robin schedulers. The transformation rules
have the formΓ ;w , s , a, b,m ⊢ c →֒ c′, where commandc is transformed intoc′ under
the security type environmentΓ , which maps variables to their security levels, and
special semaphore variablesw , s , a, b, andm needed for synchronization. Moreover,
a fresh high variablehx is introduced for each low variablex in the source code. The
transformation comprises the rules presented in Figs. 6 and7, and the top-level rule:

Γ ;w , s, a, b,m ⊢ c →֒ c′ w , s fresh

Γ ⊢ c →֒t m := newSem(1); a := newSem(1);w := newSem(1); ~hl := ~l; c′
(2)

where~hl := ~l stands for copying all low variablesl into fresh high variableshl.
Definelow assignmentsto be assignments to low variables. Explicit flows are prevented
by not allowing high variables to occur in low assignments (see rule L-ASG). Define
high conditionals (loops)to be conditionals (loops) that branch on expressions that
contain high variables. Implicit flows for high conditionals and loops are prevented by
rules of the formΓ ⊢ c # c′, where commandc is transformed intoc′ underΓ . These
rules guarantee that highif’s andwhile’s do not have assignments to low variables
in their bodies. These rules for tracking explicit and implicit flows are adopted from
security-type systems for sequential programs [VSI96].
As illustrated by previous examples, internal timing channels are introduced by low as-
signments after high conditionals and loops. To close thesechannels, the transformation
introduces aforkwhenever the source code branches on high data (see rules (H-IF) and
(H-W)). Since such computations are now spawned in new threads, the number of ex-
ecuted instructions before low assignments does not dependon secrets. However, new
threads open up possibilities for new races between high variables, which can unex-
pectedly change the semantics of the program. To ensure thatsuch races are avoided,
the transformation spawns dedicated threads for all computations that might affect high
data (see rules (H-ASG) and (L-ASG)) and carefully places synchronization primitives
in the transformed program. We will illustrate this, and other interesting aspects of the
transformation, through examples.
Consider the following simple program that suffers from an internal timing leak:

(if h1 then skip; skip else skip); l := 1 ‖ d (3)
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∀v ∈ Vars(e). Γ (v) = low

Γ ⊢ e : low

∃v ∈ Vars(e). Γ (v) = high

Γ ⊢ e : high

Γ ;w , s, a, b,m ⊢ skip →֒ skip

(Γ ;w , s, a, b,m ⊢ ci →֒ c′i)i=1,2

Γ ;w , s, a, b,m ⊢ c1; c2 →֒ c′1; c
′
2

(H-ASG)
Γ ⊢ e # e′ Γ (x) = high

Γ ;w , s, a, b,m ⊢ x := e →֒ s := newSem(0);
fork((λŵ ŝ.wait(ŵ); x := e′; signal(ŝ)) @ws);
w := s

(L-ASG)
Γ ⊢ e : low Γ (x) = low Γ ⊢ e # e′

Γ ;w , s, a, b ⊢ x := e →֒ s := newSem(0);
wait(m); x := e; b := newSem(0);

fork((λŵ ŝâ b̂.wait(ŵ); wait(â); hx := e′;

signal(b̂); signal(ŝ))@wsab);
a := b; signal(m);
w := s

Γ ⊢ e : low Γ ;w , s, a, b,m ⊢ c →֒ c′

Γ ;w , s, a, b,m ⊢ while e do c →֒ while e do c′

Γ ⊢ e : low (Γ ;w , s, a, b,m ⊢ ci →֒ c′i)i=1,2

Γ ;w , s, a, b,m ⊢ if e then c1 else c2 →֒ if e then c′1 else c′2

(H-IF)

Γ ⊢ e : high Γ ⊢ e # e′

(Γ ⊢ ci # c′i)i=1,2 ct = if e′ then c′1 else c′2

Γ ;w , s, a, b,m ⊢if e then c1 else c2

→֒ s := newSem(0);
fork((λŵ ŝ.wait(ŵ); ct; signal(ŝ)) @ws);
w := s

(H-W)
Γ ⊢ e : high Γ ⊢ e # e′ Γ ⊢ c # c′ ct = while e′ do c′

Γ ;w , s, a, b,m ⊢ while e do c →֒ s := newSem(0);
fork((λŵ ŝ .wait(ŵ); ct; signal(ŝ))@ ws);
w := s

Γ ;w ′, s ′, a, b, m ⊢ d →֒ d′ w ′, s ′ fresh

ct = fork((λŵ ŝŵ ′.wait(ŵ); signal(ŵ); signal(ŝ); signal(ŵ ′))@ ŵ ŝw ′)

Γ ;w , s, a, b,m ⊢ fork(d) →֒ s := newSem(0);
fork((λŵ ŝ.w ′ := newSem(0); ct; d

′)@ ws);
w := s

Fig. 6.Transformation rules I
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Γ ⊢ e # e[hx/x]Γ (x)=low Γ ⊢ skip # skip

Γ (v) = high Γ ⊢ e # e′

Γ ⊢ v := e # v := e′
(Γ ⊢ ci # c′i)i=1,2

Γ ⊢ c1; c2 # c′1; c
′
2

Γ ⊢ e # e′ (Γ ⊢ ci # c′i)i=1,2

Γ ⊢ if e then c1 else c2 # if e′ then c′1 else c′2

Γ ⊢ d # d′

Γ ⊢ fork(d) # fork(d′)

Γ ⊢ e # e′ Γ ⊢ c # c′

Γ ⊢ while e do c # while e′ do c′

Fig. 7. Transformation rules II

whered abbreviates commandskip; skip; l := 0. The assignmentl := 1 may be
reached in three or two steps depending onh1. However, by spawning the high condi-
tional in a new thread, the number of instructions to executeit will no longer affect when
l := 1 is reached. More precisely, program (3) can be rewritten asfork(if h1 then

skip; skip; else skip); l := 1 ‖ d, where internal timing leaks are not possible. From
now on, we assume that the initial values ofl andh2 are always 0. Suppose now that
we modify program (3) by:

(if h1 then h2 := 2 ∗ h2 + l; skip else skip); l := 1 ‖ d (4)

where the final value ofh2 is always0. This code still suffers from an internal tim-
ing leak. Unfortunately, by putting afork around theif as before, we introduce1
as a possible final value forh2, which was not possible in the original code. This
discrepancy originates from an undesired new interleavingof the rewritten program:
l := 1 can be computed beforeh2 := 2 ∗ h2 + l. To prevent such an interleav-
ing, we introduce fresh high variables for every low variable in the code. We call
this kind of new variableshigh imagesof low variables. Since low variables are only
read, and not written, by high conditional and loops, it is possible to replace low vari-
ables inside of high contexts by their corresponding high images. Then, every time that
low variables are updated, their corresponding images willdo so but in due course.

w := newSem(1); //initialization from top-level rule (2)
s := newSem(0);
fork((λŵ ŝ.wait(ŵ); (if h1 then h2 := 2 ∗ h2 + hl; skip

else skip); signal(ŝ))
@ws)

w := s

l := 1; s := newSem(0);
fork((λŵ ŝ .wait(ŵ); hl := 1; signal(ŝ)) @ws)
w := s

(5)

To illustrate this, let us
rewrite the left side of pro-
gram (4) as in(5). Vari-
ablehl is the corresponding
high image of low variable
l. Two dedicated threads
are spawned with different
local snapshots ofw and
s, written asŵ and ŝ, re-
spectively. The second ded-
icated thread, which up-
dates the high image ofl to
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1, waits (wait(ŵ )) for the first one to finish, and the first one indicates when thesecond
one should start (signal(ŝ)). By doing so, and by properly updatingw ands in the
main thread, the commandhl := 1 is never executed before theif statement. Note that
the first dedicated thread does not need to synchronize with previous ones. Hence, the
top-level transformation rule, presented at the beginningof the section, initializes the
semaphorew to 1.
The threadd also needs to be modified to include an update tohl. Let us rewrited as
follows:

wd := newSem(1); skip; skip;
l := 0; sd := newSem(0);
fork((λŵdŝd.wait(ŵd); hl := 0; signal(ŝd))@wdsd);
wd := sd

(6)

Semaphore variableswd and sd do not play any important role here, since just one
dedicated thread is spawned. Note that if we run programs(5) and(6) in parallel, it
might be possible that the updates of low variables happen ina different order than the
updates of their corresponding high images. In order to avoid this, we introduce three
global semaphores, calleda, b, andm. The final transformed code is shown in Fig. 8,
wherec′1 runs in parallel withd′1. Semaphore variablesa andb ensure that the queuing
processes update high images in the same order as the low assignments occur. Since
a andb are globals, we protect their access with the global semaphore m. As in the
original program,h2 can only have the final value0. From now on, we assume that the
semaphorea is allocated and initialized with value1 .
Let us modify program (4) by adding assignments to high and low variables:

(if h1 then h2 := 2 ∗ h2 + l; skip else skip); l := 1; h2 := h2 + 1; l := 3 ‖ d (7)

The final value ofh2 is 1. As before, this code still suffers from internal timing leaks.
By puttingfork’s around high conditionals and introducing updates for high images as
in program (5), we would introduce2 as a new possible final value forh2, whenh1 is
positive. The new value arises from executingh2 := h2 + 1 before theif statement.
In order to remove this race, we use synchronization to guarantee that computations on
high data are executed in the same order as they appear in the original code. However,
this synchronization should not lead to recreating timing leaks: waiting

c′2 : c′1; s := newSem(0);
fork((λŵ ŝ.wait(ŵ); h2 := h2 + 1; signal(ŝ))

@ws;
w := s;
wait(m); l := 3; b := newSem(0);

fork((λŵ ŝâb̂.wait(ŵ); wait(â); hl := 3;

signal(b̂); signal(ŝ))@wsab);
a := b; signal(m);
‖ d′

1

(8)

for the if to finish before ex-
ecuting h2 := h2 + 1; l :=
3 would imply that the timing
of the low assignmentl := 3
could depend onh1. We resolve
this problem by spawning dedi-
cated threads for assignments to
high variables and synchronizing,
via semaphores, these threads with
other threads that either read from
or write to high data. The ded-
icated thread to computeh2 :=
h2 + 1 will wait until the last dedicated thread inc′1 finishes. The transformed code
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c′1 : w := newSem(1);
s := newSem(0);
fork((λŵ ŝ.wait(ŵ);

if h1 then h2 := 2 ∗ h2 + hl;
skip;

else skip;
signal(ŝ))@ws);

w := s

s := newSem(0);
wait(m); l := 1; b := newSem(0);

fork((λŵ ŝâb̂.wait(ŵ); wait(â); hl := 1;

signal(b̂); signal(ŝ))@wsab);
a := b; signal(m);
w := s

d′
1 : wd := newSem(1);

skip; skip;
sd := newSem(0);
wait(m); l := 0; b := newSem(0);

fork((λŵdŝdâb̂.wait(ŵd); wait(â);

hl := 0; signal(b̂); signal(ŝd))
@wdsdab);

a := b; signal(m);
wd := sd

Fig. 8.Transformed code for program(4)

is shown in(8). Note that spawned dedicated threads are executed in the same order as
they appear in the main thread.
Let us modify program (7) to introduce afork as follows:

if h1 then h2 := 2 ∗ h2 + l; skip else skip;
l := 1; h2 := h2 + 1; l := 3;
fork(h2 := 5) ‖ d

(9)

The final value ofh2 is 5. However, the rewritten program will spawn several dedicated
threads: for the conditional, for updating high images,h2 := h2 + 1, andh2 := 5,
which need to be synchronized. In particular,h2 := 5 cannot be executed beforeh2 :=
h2 +1 finishes. Thus, we need to synchronize dedicated threads in the main thread with
the dedicated threads from their children. This is addressed by the transformation as
follows:

c′2;
s := newSem(0);
fork((λŵ ŝ .w ′ := newSem(0);

fork((λŵ ŝŵ ′.wait(ŵ); signal(ŵ); signal(ŝ); signal(ŵ ′))@ŵ ŝw ′); d∗)@ws);
w := s; ‖ d′

1

(10)
whered∗ spawns a new thread that waits onw ′ to performh2 := 5. In order to be

able to receive a signal onw ′, it is necessary to firstly receive a signal onŵ , which
can be only done after computingh2 := h2 + 1. Note that the transformation spawns a
new thread to wait on̂w in order to avoid recreating timing leaks. When afork occurs
inside a loop in the source program, there is potentially a number of dynamic threads
that need to wait for the previous computation on high data tofinish. This is resolved by
passing-the-baton technique: whichever thread receives asignal first (wait(ŵ )) passes
it to another thread (signal(ŵ )).
The examples above show how to close internal timing leaks byspawning dedicated
threads that perform computation on high data. We have seen that some synchroniza-
tion is needed to avoid producing different outputs than intended in the original pro-
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hotel l := nextHotel();
hotelLocl := getHotelLocation(hotel l);
dh := distance(hotelLocl, userLoch);
closesth := hotel l;
while (moreHotels?()) do

hotel l := nextHotel ();
hotelLocl := getHotelLocation(hotel l);
d′

h := distance(hotelLocl, userLoch);
if (d′

h < dh) then dh := d′
h; closesth := hotel l

else skip

ih := 0;

while (moreTypeRooms?(closesth)) do
typeh := nextTypeRoom (closesth);
showTypeRoom(typeh, ih);
ih := ih + 1;

Fig. 9. Geo-localization example

gram. Transformed programs introduce performance overhead related to synchroniza-
tion. This overhead comes as a price for not modifying the run-time environment when
preventing internal timing leaks.

6 Geo-localization example

Inspired by a scenario from mobile computing [Mob06], we give an example of closing
timing leaks in a realistic setting. Modern mobile phones are able to compute their geo-
graphical positions. The widely used MIDP profile [JSR02] for mobile devices includes
API support for obtaining the current position of the handset [JSR03]. Furthermore,
geo-localization can be approximated by using the identityof the current base station
and the power of its signal. It is desirable that such information can only be used by
trusted parties.
Consider the code fragment in Fig. 9. This fragment is part ofa program that runs
on a mobile phone. Such a program typically uses dynamic thread creation (which
is supported by MIDP) to perform time-consuming computation (such as establishing
network connections) in separate threads [Knu02, Mah04].
The program searches for the closest hotel in the area where the handset is located.
Once found, it displays the types of available rooms at that hotel. Variables have sub-
scripts indicating their security levels (l for low andh for high). Suppose thathotell
and hotelLocl contain the public name and location for a given hotel, respectively.
The location of the mobile device is stored in the high variable userLoch. Variables
dh andd′h are used to compute the distance to a given hotel. Variableclosesth stores
the location of the closest hotel in the area. Variableih is used to index the type of
rooms at the closest hotel. Variabletypeh stores a room type, i.e., single, double, etc.
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FunctionnextHotel() returns the next available hotel in the area (for simplicity, we as-
sume there is always at least one). FunctiongetHotelLocation() provides the location
of a given hotel, and functiondistance() computes the distance between two loca-
tions. FunctionmoreHotels?() returns true if there are more hotels fornextHotel() to
retrieve. FunctionmoreTypeRooms?() returns true if there are more room types for
nextTypeRoom(). FunctionshowTypeRoom() displays room types on the screen.
This code may leak information about the location of the mobile phone through the
internal timing covert channel. The source of the problem isa conditional that branches
on secret data, where thethen branch performs two assignments while theelse branch
only skip. However, internal timing leaks can be closed by the transformation given
in Section 5 (provided the transformed program runs under a round-robin scheduler).
This example highlights the permissiveness of the transformation. For instance, the type
systems by Boudol and Castellani [BC01, BC02] reject the example because both high
conditionals and low assignments appear in the body of a loop. Transformations in
[SS00, KM06] also reject the example due to the presence of a high loop in the code.

7 Soundness

This section shows that transformed programs are secure. Italso states that transformed
programs refine source programs in a suitable sense. The details of the proofs for lem-
mas and theorems shown in this section are to appear in an accompanying technical
report.

Security We identify two kinds of threads.High threads are dedicated threads intro-
duced by the transformation and threads in the source program spawned inside a high
conditional or a high loop. Other threads arelow threads. We designate high threads
by arranging that they have a distinguished local variable called~. It is not difficult to
modify the transformation in Section 5 to guarantee this.
In order to prove non-interference under round-robin schedulers, we firstly need to ex-
ploit some properties of programs produced by the transformation.

Definition 3. A commandc is syntactically secureprovided that (i) there are no ex-
plicit flows, i.e., assignmentsx := e with high e and low x; (ii) each low thread,
fork((λ~x.c′)@~e), in c satisfies the following: there are no high conditionals or high
loops orsignal() or wait() operations related to synchronize high threads, except
inside high threads forked inc′; and (iii) in high threads, there are neither low assign-
ments nor forks of low threads.

Lemma 1. If Γ ⊢t c →֒ c′ thenc′ is syntactically secure.

We let γ andδ range over threadpool configurations. We assume, for convenience in
the notation, thatγ = 〈|(c0, m0) . . . , g, h|〉j. We also defineγ.pool = 〈(c0, m0) . . .〉,
γ.globals = g, γ.heap = h, andγ.next = j. A program configurationγ is called
syntactically secureif every command inγ.pool and every command in a waiting queue
of γ.heap is syntactically secure.
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A thread configuration(c, m) is low, notedlow?(m), if and only if ~ /∈ dom(m).
Definelow?(i, γ) if and only if theith thread inγ.pool is low. DefineγL as the subse-
quence of thread configurations(ci, mi) in γ.pool that are low. For each thread config-
uration(ci, mi) ∈ γ that is low, definelowpos(i, γ) (and, for simplicity in the notation,
lowpos(i, γ.pool)) to be the index of the thread but inγL. The key property of a round-
robin scheduler is that the next low thread to be scheduled isindependent of the values
of global or local variables, the states of high threads (running or blocked), and even
the number of high threads in the configuration. We can formally capture this property
as follows. Definenextlow(γ) = j mod (#γ.pool ) wherej is the least number such
thatj ≥ γ.next andlow?(j mod (#γ.pool), γ).

Definition 4 (Low equality). DefineP =L P ′ for threadpoolsP = 〈(c1, m1) . . .〉 and
P ′ = 〈(c′1, m

′
1) . . .〉 (not necessarily the same length) if and only ifci ≡ c′j for all i, j

such thatlow?(mi), low?(m′
j), andlowpos(i, P ) = lowpos(j, P ′). Defineγ =L δ if

and only ifγ andδ are syntactically secure,γ.globals =L δ.globals,γ.pool =L δ.pool,
lowpos(nextlow(γ), γ) = lowpos(nextlow(δ), δ), and all threads blocked inγ.heap
andδ.heap are high.

Theorem 1. Letγ andδ be configurations such thatγ =L δ. If γ →∗ γ′ andδ →∗ δ′

whereγ′, δ′ are terminal configurations, thenγ′ =L δ′. Here→∗ refers to the semantics
using the round-robin schedulerRR.

Corollary 1 (Security). If Γ ⊢ c →֒t c′ thenc′ is secure under round-robin scheduling.

Refinement For programs produced by our transformation, the result from a round-
robin computation from any initial state is a result from theoriginal program using the
fully nondeterministic scheduler. In fact, any interleaving of the transformed program
matches some interleaving of the original code. Then, we have the following claim:

Claim 1. SupposeΓ ⊢ c →֒t c′ andg′1 andg′2 are global memories forc′ such that
(c′, g′1) ⇓ g′2 using the nondeterministic schedulerND . Letg1 andg2 be the restrictions
of g′1 andg′2 to the globals ofc. Then(c, g1) ⇓ g2 usingND .

8 Related work
Variants of possibilistic noninterference have been explored in process-calculus set-
tings [HVY00, FG01, Rya01, HY02, Pot02], but without considering the impact of
scheduling.
As discussed in the introduction, a series of work by Volpanoand Smith [SV98, VS99,
Smi01, Smi03] suggests a specialprotect(c) statement to hide the internal timing of
commandc in the semantics. In contrast to this work, we are not dependent on the ran-
domization of the scheduler. To the best of our knowledge, noproposals forprotect()
implementation avoid significantly changing the scheduler(unless the scheduler is co-
operative [RS06b]).
Boudol and Castellani [BC01, BC02] suggest explicit modeling of schedulers as pro-
grams. Their type systems, however, reject source programswhere assignments to pub-
lic variables follow computation that branches on secrets.
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Smith and Thober [ST06] suggest a transformation to split a program into high and low
components. Jif/split [ZCMZ03] partitions sequential programs into distributed code
on different hosts. However, the main focus is on security when some trusted hosts are
compromised. Neither approach provides any formal notion of security.
A possibility to resolve the internal timing problem is by considering external timing.
Definitions sensitive to external timing consider strongerattackers, namely those that
are able to observe the actual execution time. External timing-sensitive security defini-
tions have been explored for multithreaded languages by Sabelfeld and Sands [SS00]
as well as languages with synchronization [Sab01] by Sabelfeld and message pass-
ing [SM02] by Sabelfeld and Mantel. Typically, padding techniques [Aga00, SS00,
KM06] are used to ensure that the timing behavior of a programis independent of se-
crets. Naturally, a stronger attacker model implies more restrictions on programs. For
example, loops branching on secrets are disallowed in the above approaches. Further,
padding might introduce slow-down and, in the worst case, nontermination.
Another possibility to prevent internal timing leaks in programs is by disallowing any
races on public data, as pursued by Zdancewic and Myers [ZM03] and improved by
Huisman et al. [HWS06]. However, such an approach rejects innocent programs such
asl := 0 ‖ l := 1 wherel is a public variable.

9 Conclusion
We have presented a transformation that closes internal timing leaks in programs with
dynamic thread creation. In contrast to existing approaches, we have not appealed to
nonstandard semantics (cf. the discussion onprotect()) or to modifying the run-time
environment (cf. the discussion on interaction with schedulers). Importantly, the trans-
formation is not overrestrictive: programs are not rejected unless they have symptoms of
flows inherent to sequential programs. The transformation ensures that the rest of inse-
curities (due to internal timing) are repaired. Our target language includes semaphores,
which have not been considered in the context of termination-insensitive security.
Future work includes introducing synchronization and declassification primitives into
the source language and improving the efficiency of the transformation: instead of dy-
namically spawning dedicated threads, one could refactor the program into high and
low parts and explicitly communicate low data to the high part, when needed (and high
data to the low part, when prescribed by declassification).
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Abstract. Li and Zdancewic have recently proposed an approach to provide
information-flow security via a library rather than producing a new language from
the scratch. They show how to implement such a library in Haskell by using arrow
combinators. However, their approach only works with computations that have
no side-effects. In fact, they leave as an open question how their library, and the
mechanisms in it, need to be modified to consider these kind ofeffects. Another
absent feature in the library is support for multithreaded programs. Information-
flow in multithreaded programs still remains as a challenge,and no support for
that has been implemented yet. In this light, it is not surprising that the two main
stream compilers that provide information-flow security, Jif and FlowCaml, lack
support for multithreading.
Following ideas taken from literature, this paper presentsan extension to Li and
Zdancewic’s library that provides information-flow security in presence of ref-
erence manipulation and multithreaded programs. Moreover, an online-shopping
case study has been implemented to evaluate the proposed techniques. The case
study reveals that exploiting concurrency to leak secrets is feasible and danger-
ous in practice. To the best of our knowledge, this is the firstimplemented tool to
guarantee information-flow security in concurrent programs and the first imple-
mentation of a case study that involves concurrency and information-flow poli-
cies.

1 Introduction

Language-based information flow security aims to guaranteethat programs do not leak
confidential data. It is commonly achieved by some form of static analysis which re-
jects programs that would leak, before they are run. Over theyears, a great many such
systems have been presented, supporting a wide variety of programming constructs
[SM03]. However, the impact on programming practice has been rather limited.
One possible reason is that most systems are presented in thecontext of a simple, el-
egant, and minimal language, with a well-defined semantics to make proofs of sound-
ness possible. Yet such systems cannot immediately be adopted by programmers—they
must first be embedded in a real programming language with a real compiler, which
is a major task in its own right. Only two such languages have been developed—Jif
[Mye99, MZZ+06] (based on Java) and FlowCaml [PS02, Sim03] (based on Caml).
Yet when a system implementor chooses a programming language, information flow
security is only one factor among many. While Jif or FlowCamlmight offer the desired
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security guarantees, they may be unsuitable for other reasons, and thus not adopted. This
motivated Li and Zdancewic to propose an alternative approach, whereby information
flow security is provided via alibrary in an existing programming language [LZ06].
Constructing such a library is a much simpler task than designing and implementing a
new programming language, and moreover leaves system implementors free to choose
any language for which such a library exists.
Li and Zdancewic showed how to construct such a library for the functional program-
ming language Haskell. The library provides an abstract type of secure programs, which
are composed from underlying Haskell functions using operators that impose informa-
tion-flow constraints. Secure programs arecertified, by checking that all constraints are
satisfied, before the underlying functions are invoked—thus guaranteeing that no secret
information leaks. While secure programs are a little more awkward to write than or-
dinary Haskell functions, Li and Zdancewic argue that typically only a small part of a
system need manipulate secret data—for example, an authentication module—and only
this part need be programmed using their library.
However, Li and Zdancewic’s library does impose quite severe restrictions on what a
secure program fragment may do. In particular, these fragments may have no effects of
any sort, since the library only tracks information flow through the inputs and outputs
of each fragment. While absence of side-effects can be guaranteed in Haskell (via the
type system), this is still a strong restriction. Our purpose in this paper is to show that
the same idea can be applied to support secure programs with amuch richer set of
effects—namely updateable references in the presence of (cooperative) concurrency.
The underlying methods we use—an information-flow type-system for references, a
restriction on the scheduler—are taken from the literature; what we show here is how
to implementthem for a real programming language following Li and Zdancewic’s
approach.
The rest of this paper is structured as follows. In the next section we explain Li and
Zdancewic’s approach in more detail. One restriction of their approach is that data-
structures are assigned asinglesecurity level—so if any part of the output of a secure
program is secret, then the entire output must be classified as secret. We need to lift
this restriction in our work, allowing data-structures with mixed security levels, and in
Section 3 we show how. This enables us to add references in Section 4. We then intro-
duce concurrency, reviewing approaches to secure information flow in this context in
Section 5, in particular ways to close theinternal timingcovert channel, and in Section
6 we describe the implementation of our chosen approach. In Section 7 we present a
concurrent case study involving online shopping. With no countermeasures, an attack
based on internal timing leaks can obtain a credit-card number with high probability in
about two minutes. We show that our library successfully defends against this attack.
Finally, in Section 8, we draw our conclusions.

2 Encoding Information Flow in Haskell

Li and Zdancewic’s approach represents secure program fragments asarrowsin Haskell
[Hug00]. Arrows can be visualised as dataflow networks, mapping inputs on the left to
outputs on the right. Arrows are constructed from Haskell functions using combinators,
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f f g

pure f f >>> g

g

f
(b,d)(a,c)

a b

c d

f***g

Fig. 1.Basic arrow combinators.

of which the most important are illustrated in Figure 1—pure converts a Haskell func-
tion to an arrow,(>>>) sequences two arrows, and(***) pairs arrows together. Any
required left-to-right static dataflow can be implemented using these combinators—for
example, an arrow that computes the average of a list could beconstructed as

squareA = pure tee >>>
(pure sum *** pure length) >>>
pure divide

where tee x = (x,x)
divide (x,y) = x/y

Its effect is illustrated in Figure 2. To express a dynamic choice between two arrows,
there is an additional combinatorf|||g, whose input is of Haskell’s sum type:

data Either a b = Left a | Right b

Its effect is illustrated in Figure 3.
Haskell allows any suitable type to be declared to be an arrow, by providing implemen-
tations for the basic arrow combinators. This is usually used to encapsulate some kind
of effects. For example, we might define an arrow for programming with references,
by declaringArrowRef a b to be the type of arrows froma to b, implementing the
basic combinators, and then providing arrows

createRefA :: ArrowRef a (Ref a)
readRefA :: ArrowRef (Ref a) a
writeRefA :: ArrowRef (Ref a,a) ()

tee

sum

length

divide

Fig. 2.Average of a list.
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f

g

Either a b

a

b c

Fig. 3.Choice betweenf andg.

to perform the basic operations on references. With these definitions, we can write side-
effecting programs in a dataflow style. For example, an arrowto increment the contents
of a reference could be programmed as

incrRefA :: ArrowRef (Ref Int) ()
incrRefA =

(pure id &&& (readRefA >>> pure (+1)))
>>> writeRefA
where f &&& g = pure tee >>> (f***g)

Li and Zdancewic found another use for arrows: they realisedthat, since all the data- and
control-flow in an arrow program is expressed using the arrowcombinators, then they
could define a type offlow arrows, whose primitive arrow combinators implement the
type checking of an information flow type system. Their type system assigns asecurity
labeldrawn from a suitable lattice, such as

data Label = LOW | MEDIUM | HIGH
deriving (Eq, Ord)

to the input and output of each arrow (where thederiving clause declares that
LOW≤MEDIUM≤HIGH). Their arrows themselves are represented by the Haskell type
FlowArrow l arr a b, which is actually anarrow transformer: the typel is the
security lattice,a andb are the input and output types, andarr is anunderlying arrow
type such asArrowRef. Flow arrowscontainarrows of typearr a b, together with
flow information about their inputs and outputs.
In the information flow type system, an arrow is assigned a flowtypeℓ1 → ℓ2 under a
set of constraints, whereℓ1 andℓ2 are security labels. The rules forpure and(>>>)
are given in Figure 4. TheFlowArrow type represents not only the underlying com-
putation, but also the information flow typing—it is represented as a record

data FlowArrow l arr a b = FA
{ computation :: arr a b,
flow :: Flow l,

⊢ pure f : ℓ → ℓ

C1 ⊢ f : ℓ1 → ℓ2 C2 ⊢ g : ℓ3 → ℓ4
C1, C2, ℓ2 ⊑ ℓ3 ⊢ f>>>g : ℓ1 → ℓ4

Fig. 4. Typing rules forpure and>>>.
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sL ::= ℓ | (sL, sL) | (either sL sL )ℓ

Fig. 5.Extended security types

constraints :: [Constraint l]
}

data Flow l = Trans l l | Flat
data Constraint l = LEQ l l

Here theflow component represents eitherℓ1 → ℓ2 (Trans l1 l2), or the “poly-
morphic”ℓ → ℓ for anyℓ (Flat), which is needed to give an accurate typing forpure.
Theconstraints field just collects the constraints on the left of the turnstile. With
this representation, it is easy to implement the typing rules in the arrow combinators. Se-
curity labels are introduced and checked by the arrowtag l, with flow Trans l l,
which forces both its input and output to have the given security label.
Note that the information flow types are quite independent ofthe Haskell types! More-
over, they are not checked during Haskell type-checking. Rather, when a flow arrow
is constructed during program execution, all the necessaryconstraints are collected
dynamically—but they are checked before the underlying computation is run. Li and
Zdancewic’s library exportsFlowArrow as an abstract type, and the only way to ex-
tract the underlying computation is via a certification function which solves the con-
straints first. If any constraint is not satisfied, then the underlying code is rejected.
Li and Zdancewic also considered declassification, which requires adding the user’s
security level as a context to the typing rules, and a new formof constraint—but we
ignore the details here.

3 Refining Security Types

Li and Zdancewic’s library uses single security labels as security types. As a conse-
quence, values are classified secrets when they contain, partially or totally, some con-
fidential information. For instance, if one component of a pair is secret, the whole pair
becomes confidential. This design decision might be a potential restriction to build some
applications in practice. With this in mind, we extend Li andZdancewic’s work to in-
clude security types with more than one security label. The presence of several security
labels in security types allows to develop a more precise, and consequently permissive,
analysis of the information flow inside of a program.

3.1 Security Types

We assume a given security latticeL where security levels, denoted byℓ, are ordered by
a partial order≤. Top and bottom elements are written⊤ and⊥, respectively. Security
types are given in Figure 5 and their subtyping relationshipin Figure 6. Security type
(sL, sL) provides security annotations for pair types. Security type (either sL sL )ℓ

provides annotations for typeEither. Security typeℓ decorates any other Haskell
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ℓ1 ≤ ℓ2
ℓ1 ⊑ ℓ2

sL

1 ⊑ sL

3 sL

2 ⊑ sL

4

(sL

1 , sL

2) ⊑ (sL

3 , sL

4)

ℓ1 ⊑ ℓ2 sL

1 ⊑ sL

3 sL

2 ⊑ sL

4

(either sL

1 sL

2)ℓ1 ⊑ (either sL

3 sL

4)
ℓ2

Fig. 6. Subtyping relationship

type (e.g.Int, Float, [a], etc.). Security types are represented in our library as
follows:

data SecType l
= SecLabel l
| SecPair (SecType l) (SecType l)
| SecEither (SecType l) (SecType l) l

wherel implements a lattice of security levels.

3.2 Defining FlowArrowRef

The abstract data typeFlowArrowRefdefines our embedded language by implementing
anarrow interface:

data FlowArrowRef l a b c = FARef
{ computation :: a b c
, flow :: Flow (SecType l)
, constraints :: [Constraint (SecType l)] }

This definition is similar to the definition ofFlowArrow except for using the type
(SecType l) as type argument forFlow andConstraint. ConstructorFlat
needs to be removed from data typeFlow as a consequence of dealing with security
types with more than one security label. InFlowArrow,Flat is used to establish that
pure computations have the same input and output security type. Unfortunately,Flat
cannot be used inFlowArrowRef, otherwise secrets might be leaked. For instance,
consider the programpure ( (x,y) -> (y,x) ) that just flips components in
a pair. Assume thatx, annotated with security labelHIGH, is a secret input andy,
annotated with security labelLOW, contains public information. If(HIGH,LOW) is the
input and output security types for that program, the value of x will be immediately
revealed!
Similarly to Li and Zdancewic’s work,FlowArrowRef encodes a typing judgement
to verify information-flow policies. Naturally, our encoding is more complex than that
in FlowArrow. This complexity essentially arises from considering richer security
types. The typing judgment has the form:C ⊢ f : τ1 | sL

1 → τ2 | sL

2 , wheref is a
purely-functional computation,C is a set of constrains that, when satisfied, guarantees
information-flow policies, andτ1 | sL

1 → τ2 | sL

2 is aflow type, which denotes that
f receives input values of typeτ1 with security typesL

1 , and produces output values of
type τ2 with security typesL

2 . Except for combinatorpure, most of the typing rules
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f :: τ1 → τ2

∅ ⊢ pure f : τ1 | sL

1 → τ2 | only join(sL

l )

Fig. 7.Typing rule for combinatorpure

in Li and Zdancewic’s work can be easily rewritten using thistyping judgment, and
therefore, we omit them here.

3.3 Security Types and Combinatorpure

Different from Li and Zdancewick’s work, it is not straightforward to determine se-
curity types for computations built with arrow combinators. Basically, the difficulty
comes from deciding the output security type for combinatorpure. This combinator
can take any arbitrary Haskell function as its argument. Then, the structure of its out-
put, and consequently its output security type, can be different in every application. For
instance, output security types forpure computations that return numbers and pair of
numbers consist of security labels and pair of security labels, respectively. Moreover,
although the structure of the output security type could be determined, it is also dif-
ficult to establish the security labels appearing in it. To illustrate this point, consider
the computationpure ( \(x,y) -> (x+y, y) ), where inputsx andy have
security labelsLOW andHIGH, respectively. It is clear that the output security type for
this example is(HIGH,HIGH). However, in order to determine that, it is necessary to
know how the input is used to build the output. This input-output dependency might be
difficult to track when more complex functions are considered. With this in mind, we
introduce a new security type tosL:

sL ::= ℓ | (sL, sL) | (either sL sL )ℓ | only ℓ

Security typeonly ℓ represents any security type that contains all their security labels
asℓ. Typing rule forpure is given in Figure 7. Observe the use of the Haskell typing
judgment (written::) in the hypothesis of the rule. Functionjoin(sL

1 ) computes the
join of all the security labels insL

l . Essentially, the typing rule over-approximates the
output security type by using the security labels found in the input security type. By
only having one piece of secret information as input, results of pure computations
are thus confidential regardless what they do or what kind of result they return. As a
consequence, computations that follow combinatorpure cannot operate on public data
any more. As an example, consider the programf >>> pure ( \(x,y) -> y +
1) >>> g, where computationg operates on public data and computationf produces
a pair where the first and second components are secret and public values, respectively.
This simple program just adds one to the public output off and provides that as the
input ofg. However, the program is rejected by the encoded type systemin our library,
even though no leaks are produced by this code. The reason forthis is that programg
receives confidential information frompure while it expects only public inputs. Since
pure is responsible for allowing the use of any Haskell functionsin the library, this
restriction seems to be quite severe to implement concrete applications.
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3.4 CombinatorlowerA

CombinatorlowerA is introduced to mitigate the restriction of not allowing compu-
tations on public data to take some input produced bypure combinators. Basically,
lowerA takes a security labelℓ and an arrow computationp, and returns a compu-
tationp′. Computationp′ behaves likep and has the same input type, output type, and
input security type asp. However, its output security type might be different. The output
security type is constructed based on the output type ofp and it contains only security
labels of valueℓ. In other words,lowerA downgrades the output ofp to the security
levelℓ. In principle, this combinator might be also used to leak secrets. An attacker can
just apply(lowerA LOW) to every computation that involves secrets! To avoid this
kind of attacks,lowerA filters out data with security level higher thanℓ.

Input Filtering Mechanism Filtration of data is done by replacing some pieces of
information withundefined 1. This idea is implemented by the member function
removeData of the type-classFilterData. The signature of the type-class is the
following:

class (Lattice l) => FilterData l t where
removeData :: l -> t -> (SecType l) -> t

MethodremoveData receives a security levell, a value of typet, and a security
type(SecType l), and produces another value of typet where the information with
security label higher thanl is replaced byundefined. As an example, instantiations
for integers and pairs are given in Figure 8. Observe how the use of type-classes allows
to define different filtering policies for different kind of data. This is particularly useful
when references are introduced in the language (see Section4.6).
The introduction of undefined values might also introduce leaks due to termination. For
instance, if filtered values are used inside of computationsthat branches on secrets, then
the program might terminate (or not) depending on which branch is executed. However,
these kind of leaks only reveal one bit of information about confidential data. In some
scenarios, leaking one bit due to termination is acceptableandtermination-insensitive
security conditions are adopted for those cases. In fact, our library is particularly suit-
able to guaranteetermination-insensitivesecurity specifications.

Building Output Security Types Besides introducing a filtering mechanism,lowerA
constructs output security types where security labels areall the same. We define the
following type-class:

class (Lattice l) => BuildSecType l t where
buildSecType :: l -> t -> (SecType l)

MethodbuildSecType receives a security labell and a value of typet, and produces
a security type fort where security labels arel. For instance, it produces security type
(l,l) for pair of integers. Instantiations for pairs and integersare given in Figure 9.

1 This is an undefined value in Haskell and it is member of every type.
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instance (Lattice l)
=> FilterData l Int where

removeData l x (SecLabel l’) =
if label_leq l’ l then x
else undefined

instance (Lattice l, FilterData l a,
FilterData l b)
=> FilterData l (a,b) where
removeData l (x, y) (SecPair lx ly) =

(removeData l x lx, removeData l y ly)

Fig. 8. Instantiations forFilterData

instance (Lattice l) =>
BuildSecType l Int where
buildSecType l _ = (SecLabel l)

instance
(Lattice l, BuildSecType l a, BuildSecType l b)
=> BuildSecType l (a,b) where

buildSecType l _ =
(SecPair (buildSecType l (undefined::a))

(buildSecType l (undefined::b)))

Fig. 9. Instantiations forBuildSecType

Observe that the value of the second argument ofbuildSecType is not needed, but
its type. Type-classes provide a mechanism to access information about types in Haskell
and take different actions, like building different security types, depending on them.
WhenlowerA receives a computation as an argument, it needs to know its output type
in order to properly applybuildSecType. For that purpose, we introduce another
type-class:

class (Lattice l, Arrow a)
=> TakeOutputType l a b c where

deriveSecType :: l -> (a b c) -> (SecType l)

MethodderiveSecType receives a security labell, an arrow computation(a b
c), and returns the corresponding security type(SecType l) for the output typec.
The instantiation of this type-class is shown in Figure 10.
To put it briefly, combinatorlowerA creates a new computation that behaves as the
computation received as argument, but calling the described methodsremoveData
andbuildSecType in due course. The type signature forlowerA is given in Figure
11. Typing rule forlowerA is shown in Figure 12. Observe how the output security
type is changed. Functionρ is defined in Figure 13 and implemented by the method
buildSecType. As a simple example of the use oflowerA, we rewrite the example
in Section 3.3 as follows:f >>> lowerA LOW (pure (\(x,y) -> y + 1))
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instance
(Lattice l, BuildSecType l c, Arrow a)
=> TakeOutputType l a b c where
deriveSecType l ar =

buildSecType l (undefined::c)

Fig. 10. Instantiation forTakeOutputType

lowerA :: ( Lattice l, Arrow a,
FilterData l b, BuildSecType l c,
TakeOutputType l (FlowArrowRef l a) b c )

=> l -> FlowArrowRef l a b c -> FlowArrowRef l a b c

Fig. 11.Type signature forlowerA

>>> g. Observe that the value received by programg is not confidential anymore, and
consequently, the program passes the type-checking tests in our library. In this exam-
ple, the filtering mechanism oflowerA does not introduce leaks due to termination. In
general, the possibilities to exploit undefined values introduced by some computation
like lowerA LOW p are related to the security ofp. If p only producesLOW values,
no leaks due to termination are introduced. Otherwise, ifp presents, for instance, some
flows from secret data to its output, a one-bit leak due to termination might happen as a
price to pay for not being able to predict the input-output dependency ofp and avoiding
leaking the whole secret.
One alternative implementation to the input filter mechanism inlowerA ℓ p could have
been to reject computationp if it takes some input with security label higher thanℓ. Un-
fortunately, this idea might not work properly when programs take input from external
modules or components, which frequently provide data with different security levels
to arrow computations. Consequently, the patternlowerA ℓ (pure f) is particularly
useful to get any values at security levels belowℓ regardless the security input type of
pure f .

4 Adding References

Dealing with information-flow security in languages with reference manipulation is
not a novelty. Unsurprisingly, Jif and FlowCaml include them as a language feature.
Nevertheless, it is stated as an open question how Li and Zdancewic’s library needs
to be modified to consider side-effects. In particular, whatarrows could be used to
handle them and how their encoded type system needs to be modified. We have already
started answering these question with the modification ofpure and the introduction of
lowerA in Section 3. We will complete answering Li and Zdancewic’s questions by
showing how to extend their library to introduce references. The developed techniques
in this section can be considered for other kind of side-effects as well.
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C ⊢ f : τ1 | sL

1 → τ2 | sL

2

C ⊢ lowerA ℓ f : τ1 | sL

1 → τ2 | ρ(ℓ, τ2)

Fig. 12.Typing rule forlowerA

ρ(int, ℓ) → ℓ

ρ(τ, ℓ) → sL

1

ρ(τ ref , ℓ) → sL

1 ref ℓ

ρ(τ1, ℓ) → sL

1 ρ(τ2, ℓ) → sL

2

ρ((τ1, τ2), ℓ) → (sL

1 , sL

2)

ρ(τ1, ℓ) → sL

1 ρ(τ2, ℓ) → sL

2

ρ(either τ1 τ2, ℓ) → (either sL

1 sL

2)
ℓ

Fig. 13.Definition for Functionρ

4.1 Security Types for References

The treatment of references is based on Pottier and Simonet’s work [PS02]. They intro-
duce security types for references containing two parts: a security type and a security
label. The security type provides information about the data that is referred to, while
the security label gives a security level to the reference itself as a value. Following the
same approach, we extend our security types as follows:

sL ::= ℓ | (sL, sL) | (either sL sL )ℓ | only ℓ | sL ref ℓ

Observe that security types for references (sL ref ℓ) are composed of two parts as men-
tioned before. The subtyping relationship is also extendedas follows:

sL

1 = sL

2 ℓ1 ⊑ ℓ2

sL

1 ref ℓ1 ⊑ sL

2 ref ℓ2
(1)

In order to avoid aliasing problems[NNH99], this rule imposes an invariant in the sub-
typing relationship by requiringsL

1 to be the same assL

2 . Clearly, this invariant needs to
be preserved by the arrow combinators in the library. However, lowerA could break
that invariant! Remember that it changes every security label in the output security type
of a given computation. As a consequence, we need to modify its implementation (see
Section 4.2).
Data typeSecType is extended as follows:

data SecType l
= SecLabel l
| SecPair (SecType l) (SecType l)
| SecEither (SecType l) (SecType l) l
| SecRef (SecType l) l

whereSecRef (SecType l) l represents security types for references.
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4.2 References and CombinatorlowerA

CombinatorlowerA could break the subtyping invariant for references described in
(1). As a result, aliasing problems, and therefore leakage of secrets, might be intro-
duced. The root of this problem comes from the fact thatlowerA only uses output
types to determine output security types. To illustrate this problem, consider a program
that has two public references,r1 andr2, with security type(SecRef (SecLabel
LOW) LOW). Assume that both references refer to the same value. Ifr1, for instance,
is fed into the computationlowerA HIGH (pure id), the output produced, which
is obviouslyr1, will have security type(SecRef (SecLabel HIGH) HIGH).
Observe that the security type for the content of the reference has changed. After do-
ing that, leaks can occur by writing secrets usingr1 and reading them out by using
r2. Naturally,lowerA could also examine input security types, but unfortunatelythis
is not enough. Once again, the difficulty to track input-output dependencies ofpure
computations (see Section 3.3) makes it difficult to determine, for instance, which ref-
erence from the input correspond to which reference in the output. Consequently, it is
also difficult to determine security types for references inthe output based on the input
security types. To overcome this problem, we use a mechanismthat can transport secu-
rity information about contents of references from the input to the output of an arrow
computation. In this way,lowerA can read this information and place the correspond-
ing security types references when needed, and thus keep thesubtyping invariant. This
mechanism relies on the use of singleton types, which are thetopic of the next section.

4.3 Preserving Subtyping Invariants

On one side, combinatorlowerA builds output security types based on the output type
of computations. On the other hand, security types for the content of references must
never be changed. So, why not encoding in the Haskell type system the security type
for the content of references? Hence,lowerA can take the encoded information and
precisely determines the corresponding security type for the content of each reference.
Singleton types [Pie04] are adequate to represent specific values at the level of types.
Essentially, they allow to have a match between values and types and vice versa. Our
goal is, therefore, to encode values of type (SecType l) in more fine-grained Haskell
types. For instance, the encoding for values of type(SecType Label) can be done
as follows:

data SLow = VLow
data SMedium = VMedium
data SHigh = VHigh

data SSecLabel lb = VSecLabel lb
data SSecPair st1 st2 = VSecPair st1 st2
data SSecEither st1 st2 lb= VSecEither st1 st2 lb
data SSecRef st lb = VSecRef st lb

Observe how one type has been introduced for each constructor appearing inLabel
andSecType. With this encoding, we can now represent security types in the Haskell
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type system. As an example, security type(SecRef (SecLabel HIGH) LOW)
can be encoded using the value(VSecRef (VSecLabel VHigh) VLow) of type
(SSecRef (SSecLabel SHigh) SLow).
As mentioned before,lowerA should use the encoded information to place the corre-
sponding security types for content of references. In orderto achieve that, we need a
mapping from singleton types to values of type(SecType l). The following code
implements that:

class STLabel lb l where
toLabel :: lb -> l

instance STLabel SLow Label where
toLabel _ = LOW

instance STLabel SMedium Label where
toLabel _ = MEDIUM

instance STLabel SHigh Label where
toLabel _ = HIGH

class STSecType st l where
toSecType :: st -> SecType l

instance STLabel lb l
=> STSecType (SSecLabel lb) l where
toSecType _
= SecLabel (toLabel (undefined::lb))

instance (STSecType st l, STLabel lb l)
=> STSecType (SSecRef st lb) l where
toSecType _
= SecRef (toSecType (undefined::st))

(toLabel (undefined::lb))
instance (STSecType st1 l, STSecType st2 l)

=> STSecType (SSecPair st1 st2) l where
toSecType _
= SecPair (toSecType (undefined::st1))

(toSecType (undefined::st2))
instance (STSecType st1 l,

STSecType st2 l, STLabel lb l)
=> STSecType (SSecEither st1 st2 lb) l where
toSecType _
= SecEither (toSecType (undefined::st1))

(toSecType (undefined::st2))
(toLabel (undefined::lb))

FunctionstoLabel andtoSecType return security labels and security types based
on singleton types, respectively.
Having our encoding ready, we introduce references as values of the data type:data
Ref st a = Ref st (IORef a), where(IORef a) is the type for references
in Haskell andst is a singleton type encoding the security type for its content. At this
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point, we are in conditions to extend the functionbuildSecType, used bylowerA,
to build output security types:

instance (Lattice l, STSecType st l)
=> BuildSecType SecType l (SRef st a) where

buildSecType l _
= (SecRef (toSecType (undefined::st)) l)

Observe howbuildSecType calls toSecType to build the security type for the
content of the reference by passing an undefined value of singleton typest. The sub-
typing invariant is now preserved bylowerA. In fact, this technique can be used to
preserve any subtyping invariant required in the library.

4.4 Reference Manipulation

Li and Zdancewic’s library uses theunderlying arrow(->) to perform computations.
However, we need to modify that in order to include side-effects produced by refer-
ences. The following data type defines theunderlying arrowused in our library: data
ArrowRef a b = a -> IO b. Underlying computationscan therefore take an ar-
gument of typea and return a value of type(IO b), which probably produces some
side-effects related to references.
Three primitives are provided to create, read, and write references:createRefA,
readRefA, andwriteRefA. Basically, these functions lift the traditional Haskell op-
erations to manipulate references intoFlowArrowRef, but performing some checking
related to information-flow security (see Section 4.5). However, from a programmer’s
point of view, they look similar to any primitives that deal with references. For instance,
createRefA has the following signature:

createRefA :: (Lattice l, STSecType st l, BuildSecType l a)
=> st -> l -> FlowArrowRef l ArrowRef a (Ref st a)

where singleton typest encodes the security type for the content of the reference,
andl is the security level of the reference as a value. Observe that ArrowRef is
used for the underlying computation. As an example,(createRefA (VSecLabel
VHigh) LOW) returns a computation that creates a public reference to a secret value
received as argument. This is the only primitive where programmers must use single-
ton types and where the library exploits the correspondencebetween values and types.
Because of that, it could be possible to remove the argumentst from createRefA
to make its type signature simpler. However, by doing that, programmers would need
to explicitly specify the type for every occurrences ofcreateRefA with their corre-
sponding(STSecType st l) and(Ref st a).

4.5 Typing Rules for Reference Primitives

Pottier and Simonet present a type-based information flow analysis for CoreML pro-
vided with references, exceptions and let-polymorphism [PS02]. Particularly, their type
system is constraint-based and uses effects to deal with references. We restate some
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e(ℓ) → ℓ

e(sL

1) → ℓ1 e(sL

2) → ℓ2

e((sL

1 , sL

2)) → ℓ1 ⊔ ℓ2

e((either sL

1 sL

2)
ℓ) → ℓ e(only ℓ) → ℓ

e(sL ref ℓ) → ℓ

Fig. 14.Definition for Functione

(PURE )
f : τ1 → τ2

⊤, ∅ ⊢ pure f : τ1 | sL

1 → τ2 | only ℓ

(SEQ)
pc1, C1,⊢ f1 : τ1 | sL

1 → τ2 | sL

2 pc2, C2 ⊢ f2 : τ2 | sL

3 → τ4 | sL

4

pc1 ⊓ pc2, C1 ∪ C2 ∪ {sL

2 ⊑ sL

3} ⊢ f1 >>> f2 : τ1 | sL

1 → τ4 | sL

4

(CHOICE )
pc1, C1 ⊢ f1 : τ1 | sL

1 → τ2 | sL

2 pc2, C2,⊢ f2 : τ3 | sL

3 → τ2 | sL

4

pc1 ⊓ pc2, C1 ∪ C2 ∪ C3 ⊢ f1 ||| f2 : flow

flow = either τ1 τ3 | (either sL

1 sL

3)
ℓ → τ2 | ↑ (sL

2 ⊔ sL

4 , ℓ)

C3 = {(eithersL

1 sL

3)
ℓ
� (pc1 ⊓ pc2), (either sL

1 sL

3)ℓ
� e(↑ (sL

2 ⊔ sL

4 , ℓ))}

Fig. 15.Typing rules for pure, sequential composition, and choice combinators

of their ideas in the framework of our library. More precisely, we adapt our encoded
type-checker to include effects and consequently involve references.
We enhance the typing judgement introduced in Section 3.2 asfollows:pc , C ⊢ f : τ1 |
sL

1 → τ2 | sL

2 , where the new parameter,pc, is a lower bound on the security level
of the memory cell that is written. In Figure 15, we show how typing rules for pure,
sequential, and branching computations are rewritten using this new parameter. Typ-
ing rules for other combinators are adapted similarly. Rule(PURE) produces no side-
effects and therefore it imposes no lower bounds inpc. Rule(SEQ) takes the meet of
the lower bounds for side-effects as the newpc. Rule(CHOICE) essentially requires
that the branching computation does not produce side-effects or results that are below
the guard of the branch, which has typeeither τ1 τ3. These requirements are enforced
by (eithersL

1 sL

3 )ℓ
� (pc1⊓ pc2) and(either sL

1 sL

3)ℓ
� e(↑ (sL

2 ⊔ sL

4 , ℓ)), respectively.
As defined in Simonet and Pottier’s work, constraintsL

�ℓ imposesℓ as an upper bound
for every security label insL. Functione determines the security level of a given value
(see Figure 14). Operator↑ lifts security labels that are below certain security level, but
not violating subtyping invariants (see Figure 16).
Typing rules for references are introduced in Figure 17. Singleton typesL encodes
the security typesL and is generated by the value(sL)v. Rule(CREATE) requires
that the singleton type passed as argument matches the inputsecurity type. Otherwise,
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ℓ1 ⊑ ℓ2
↑ ℓ1 ℓ2 → ℓ2

ℓ2 < ℓ1
↑ ℓ1 ℓ2 → ℓ1

ℓ1 ⊑ ℓ2

↑ (sL ref ℓ1) ℓ2 → sL ref ℓ2

ℓ2 < ℓ1

↑ (sL ref ℓ1) ℓ2 → sL ref ℓ1
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1 ℓ → sL

3 ↑ sL
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4
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1 , sL

2) ℓ → (sL

3 , sL

4)

ℓ1 ⊑ ℓ2 ↑ sL

1 ℓ2 → sL

3 ↑ sL

2 ℓ2 → sL

4

↑ (either sL

1 sL

2)
ℓ1 ℓ2 → (either sL

3 sL

4)ℓ2

ℓ2 < ℓ1 ↑ sL

1 ℓ2 → sL

3 ↑ sL

2 ℓ2 → sL

4

↑ (either sL

1 sL

2)
ℓ1 ℓ2 → (either sL

3 sL

4)
ℓ1

ℓ1 ⊑ ℓ2

↑ (only ℓ1) ℓ2 → only ℓ2

ℓ2 < ℓ1
↑ (only ℓ1) ℓ2 → only ℓ1

Fig. 16.Definition for Function↑

(CREATE)
e(sL

1), ∅ ⊢ createRefA (sL

1)v ℓ : τ | sL

1 → τ ref | sL

1 ref ℓ

(READ)
⊤, ∅ ⊢ readRefA : τ ref | sL

1 ref ℓ → τ | ↑ (sL

1 , ℓ)

(WRITE)
e(sL), {ℓ � sL} ⊢ writeRefA : (τ ref, τ ) | (sL ref ℓ, sL) → () | ⊥

Fig. 17.Typing rules for reference primitives

programmers could introduce inconsistencies in the type-checking process. The side-
effect produced by creation of references is allocation of memory. Therefore, thepc
is related with the security level of the content of the created reference (e(sL

1)). Rule
(READ) lifts security labels in the output security type considering the security level
of the reference (↑ (sL

1 , ℓ)). Rule(WRITE) imposes the constraintℓ � sL. Similarly
to Simonet and Pottier’s work, constraintℓ � sL requiressL to have security levelℓ or
greater, and is used to record a potential information flow.

We modify the implementation of the type-system in our library to include effects.
Consequently, data typeFlowArrowRef is extended with a new field calledpc to
represent lower bounds for side-effects as explained above. Data typeConstraint is
also extended to involve operators� and�. Moreover, we add unification mechanisms
inside of arrow combinators to pass information about security types when needed. As
a consequence, a few security annotations need to be provided by programmers. Li
and Zdancewic’s library does not need this feature since their security types are very
simple. One of the interesting aspect of implementing unification inside of arrows is
the generation of fresh names. Our library generates fresh names by applying renaming
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functions when arrow combinators are applied, but we omit the details here due to lack
of space.

4.6 Filtering References

References introduce the possibility of having shared resources in programs. In Section
3.4, the filtering mechanism replaces some pieces of information with undefined.
Nevertheless, it is not recommended to replace the content of some reference with
undefined since it might be used by other parts (or threads) in the program. We
still need to restrict the access to that content somehow. Inorder to do that, we intro-
duce projection functions for each reference handled by thelibrary. Projection func-
tions are basically functions that return values less informative than their arguments.
The concept of projection functions has been indirectly used in semantic models for
information-flow security [Hun91, SS99]. The instance for references of the method
removeData creates projection functions that, when applied to the contents of their
associated references, return values where some information higher than some secu-
rity level is replaced byundefined. However, the content of the reference itself is
not modified. Observe that the filtering principle applied byprojection functions and
removeData is the same. CombinatorreadRefA is also modified to return the con-
tent of the reference by firstly passing it through its corresponding projection function.
Due to lack of space, we omit the implementation of these ideas here.

5 Information Flow in a Concurrent Setting

Concurrency introduces new covert channels, or unintendedways, to leak secret infor-
mation to an attacker. As a consequence, the traditional techniques to enforce informa-
tion flow policies in sequential programs are not sufficient for multithreaded languages
[SV98]. One particularly dangerous covert channel is called internal timing. It allows
to leak information when secrets affect the timing behaviorof a thread, which via the
scheduler, affects the order in which public computations occur. Consider the following
two imperative programs running in two different threads:

t1 : (if h > 0 then skip(120) else skip(1)); l := 1

t2 : skip(60); l := 0 (2)

Variablesh andl store secret and public information, respectively. Assumeskip(n)
executes n consecutiveskip commands. Notice that botht1 andt2 are secure in isolation
under the notion ofnoninterference[SM03]. However, by running them in parallel, it
is possible to leak information abouth. To illustrate that, we assume an scheduler with
time slice of 80 steps that always starts by runningt1. On one hand, ifh > 0, t1 will
run for 80 steps, and while being runningskip(120), t2 is scheduled and run until
completion. Then, the control is given again tot1, which completes its execution. The
final value ofl is 1. On the other hand, ifh ≤ 0, t1 finishes first its execution. After
that, t2 is scheduled and run until completion. In this case, the finalvalue ofl is 0.
An attacker can, therefore, deduce ifh > 0 (or not) by observing the final value ofl.
Different from theexternal timingcovert channel, the attacker does not need to observe
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the actual execution time of a program in order to deduce somesecret information.
Moreover, internal timing leaks can also be magnified via loops, where each iteration
of the loop can leak one bit of the secret. Hence, entire secret values can be leaked.
There are several existing approaches to tackling internaltiming flows. Several works
by Volpano and Smith [SV98, VS99, Smi01, Smi03] propose a special primitive called
protect. By definition,protect(c) takes one atomic step in the semantics with the
effect of executingc to the end. Internal timing leaks are removed if every computa-
tion that branches on secrets is wrapped byprotect() commands. However, imple-
mentingprotect imposes a major challenge [SS00, Sab01, RS06a] (except for co-
operative schedulers [RS06b]). These proposals rely on themodification of the run-
time environment or the assumption of randomized schedulers, which are rarely found
in practice. Russo et al. [RHNS06] propose a transformationto close internal timing
channels that does not require the modification of the run-time environment. The trans-
formation works for programs that run under a wide class of round-robin schedulers
and only rejects those ones that have symptoms of illegal flows inherent from sequen-
tial settings. Boudol and Castellani [BC01, BC02] propose type systems for languages
that do not rely on theprotect primitive. However, they reject programs with assign-
ments to low variables after some computation that brancheson secrets. Internal tim-
ing problem can also be solved by considering external timing. Definitions related to
external timing involve stronger attackers. As expected, an stronger attacker model im-
poses more restriction on programs. For instance, loops branching on secrets are disal-
lowed. There are several works on that direction [Aga00, SS00, Sab01, SM02, KM06].
Zdancewic and Myers [ZM03] prevent internal timing leaks bydisallowing races on
public data. However, their approach rejects innocent secure programs likel := 0 ‖
l := 1 where l is a public variable. Recently, Huisman et al. [HWS06] improved
Zdancewic and Myers’ work by using logic-based characterizations and well known
model checking techniques. Several proposals have been explored in process-calculus
settings [HVY00, FG01, Rya01, HY02, Pot02], but without considering the impact of
scheduling.
The referred works above have neglected to consider implementing case studies where
the proposed enforcement mechanisms are applied. This workpresents, to the best of
our knowledge, the first concrete implementation of a case study that consider informa-
tion -flow policies in presence of concurrency.

6 Closing Internal Timing Channels

We incorporate a run-time mechanism to close internal timing covert channels in our
library. We base our approach in a combination of ideas takenfrom the literature. On
one hand, Russo and Sabelfeld [RS06b] show how to implementprotect() for co-
operative schedulers. Essentially, their work states thatthreads must not yield control
inside of computations that branch on secrets. Russo et al. [RHNS06], on the other
hand, express that a class of round-robin schedulers does not suffer from leaks due to
dynamic thread creation. As a consequence, creation of threads can be allowed at any
point in programs. By mixing these two ideas, we modify theunderlyingarrow com-
binators in order to implement a cooperative round-robin scheduler and to guarantee
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that computations branching on secrets do not yield controlwhen running. In this way,
internal timing leaks are removed from programs and a flexible treatment for dynamic
thread creation is also obtained. In fact, the introduced modifications are completely
independent to the encoded type system described in Section3 and 4.
Cooperative schedulers are based on yielding control when programs indicate that. On
the other hand, programs are written using arrow combinators, which can be seen as
a kind ofbuilding blocks. In our library,simplearrow combinators yield control after
finishing their execution if they are not part of computations that branch on secrets.
Example of such combinators arepure, createRef, readRef, andwriteRef.
Computations branching on secrets do not yield control regardless how many build-
ing blocks compose them. As result,simplearrow combinators and computations that
branch on secrets are atomic computational units involved in interleavings. The round-
robin scheduler is obtained by yielding control in a particular way.
Concurrency is introduced in our implementation by importing the Haskell module
Control.Concurrent [SPJF96, The] . This module provides dynamic thread cre-
ation and pre-emptive concurrency. Since threads can be scheduled anytime, some syn-
chronization is needed to restrict their execution as round-robin. Software transactional
memory(STM) [HHMJ05] provides easy-to-reason and simple primitives to do that.
We could have chosen more standard primitives like semaphores orMVar [SPJF96].
However, the obtained code would have been more complicated.
We start introducing information concerning scheduling upon theunderlyingarrow
ArrowRef:

data RRobin a = RRobin
{ data :: a, iD :: ThreadId,
queue :: TVar [ThreadId], blocks :: Int }

data ArrowRef a b
= AR ((RRobin a) -> IO (RRobin b))

Data type(RRobin a) stores information related to scheduling in the input and out-
put values of arrows. Fielddata stores the input data for the arrow. FieldiD stores the
thread identification number where the arrow computation isexecuted. Fieldqueue
stores a round-robin list of threads identifiers and its access is protected by a mutex
(TVar [ThreadId]). The list is updated when creation or termination of threads
occur. Fieldblocks indicates if the thread executing the arrow computation must wait
for its turn to run and then, when finishing, yields the control to another thread. This
field plays an essential rôle to guarantee atomic executionof computations that branch
on secrets.
We introduce two new combinators in the underlying arrow:waitForYield and
yieldControl. Essentially, these combinators are responsible for implementing a
round-robin scheduler. CombinatorwaitForYield blocks until the content of the
head of the round-robin queue (TVar [ThreadId]) is the same as the thread identi-
fication (iD) running this combinator. CombinatoryieldControl removes the head
of the round-robin queue and put it as the last element. Both combinators have no com-
putational effects if the fieldblocks is different from zero. The implementation of
these combinators is shown in Figure 18. Functionatomically guarantees mutual
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waitTurn :: RRobin a -> IO ()
waitTurn sch = if (blocks sch) > 0 then return ()

else atomically (
do q <- readTVar (queue sch)

if head q /= (iD sch)
then retry
else return ())

waitForYield :: ArrowRef a a
waitForYield = AR (\sch -> do waitTurn sch

return sch)

nextTurn :: RRobin a -> IO ()
nextTurn sch

= if (blocks sch) > 0 then return ()
else atomically (

do q <- readTVar (queue sch)
writeTVar (queue sch)

((tail q)++[head q])
return () )

yieldControl :: ArrowRef a a
yieldControl = AR (\sch -> do nextTurn sch

return sch)

Fig. 18.Primitives for yielding control

exclusion access to the round-robin queue. Functionretry blocks the thread until
queue changes its value. When this happens, it resumes its execution from the first
command wrapped byatomically. It is important to remark that combinators in the
underlying arrow are not accessible for users of the library.

Simplearrow combinators include nowwaitForYield andyieldControl before
and after finishing their computations, respectively. Nevertheless, combinators related
with branches are threaded differently. Computations thatbranch on secrets must not
yield control until finishing their execution. Branching combinators, like(|||), can be
applied to arrow computations that involveyieldControl in their bodies. As a con-
sequence, when the guard of the branch involves some secrets, these combinators must
no yield control to other threads. We introduce two more combinators to theunderlying
arrow: beginAtomic andendAtomic. When placed likebeginAtomic >>> f
>>> endAtomic, they leave without any effect the combinatorswaitForYield
andyieldControl appearing inf. Therefore, programf executes until completion
without yielding control to other threads. We then modify the implementation of com-
binators related with branchings in order to includebeginAtomic andendAtomic
when the condition of the branch depends on secrets. We show the Implementation de-
tails ofbeginAtomic andendAtomic in Figure 19. Observe thatbeginAtomic
andendAtomic count how many computations branching on secret are nested.Com-
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beginAtomic :: ArrowRef a a
beginAtomic

= waitForYield >>>
AR (\sch -> return sch {blocks =

((blocks sch)+1)} )

endAtomic :: ArrowRef a a
endAtomic

= AR (\sch -> return sch {blocks =
((blocks sch)-1)})

>>> yieldControl

Fig. 19.Primitives for atomicity

pc, C ⊢ f : τ1 | sL

1 → τ2 | sL

2

pc, C ⊢ forkRef f : τ1 | sL

1 → () | ⊥

Fig. 20.Typing rule forforkRef

binatorswaitForYield,yieldControl,beginAtomic andendAtomic need
to be pairwise to properly work.
Dynamic thread creation is introduced by the new arrow combinatorforkRef. It takes
a computation as argument and spawns it in a new thread with anexception handler. If
the new thread raises an exception, the handler forces all the program to finish, reducing
the bandwidth of leakings due to no termination. The typing rule forforkRef is shown
in Figure 20. Observe that the returned value off is discarded sincef will be run in
another thread.

7 Case Study: Online Shopping

In order to evaluate the flexibility of the arrow combinatorsand techniques proposed
in Sections 3, 4, and 6, we implemented a case study of an online shopping server.
Basically, the server processes transactions related to buying products. It receives in-
formation from the network and spawn different threads to perform purchases for each
client. For simplicity, we assume that there is only one product to buy and that the
only information provided by clients are their names, billing addresses, and credit card
numbers composed of 16 digits. We also assume that there are security levelsHIGH
andLOW for secret and public information, respectively. Our library guarantees, in this
example, that the confidentiality of credit card numbers is preserved.
The server program consists of three components:protectData, purchase, and
showPurchase. ComponentprotectData receives information from clients and
determines that credit card numbers are the only secrets in the system. The imple-
mentation ofprotectData is just a few lines that apply combinatortag to its in-
put. We consider this component as part of the trusted computing based. Component
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Secret: 100011100001101111001001101111110000001111111111111111

Run Leaked credit card number Seconds

1 101011111001111111111011101111110000011111111111111111 27
2 110011100001101111011101101111010000001111111111111111 27
3 101011100001101111101001101111110000001111111111111111 28
4 100011100101101111001001101111110000001111111111111011 28
5 100011100001101111001001101111110100001111111111111111 29

Inferred Secret: 100011100001101111001001101111110000001111111111111111

Fig. 21.Results produced by the malicious code

purchase simulates buying products. Moreover, it copies the client credit card num-
ber and the rest of his/her information into two different databases, respectively. We
simulate the access to these databases with references to different lists of data. Compo-
nentshowPurchase retrieves information from the database with public information
and shows it on the screen (a public channel).
The online shopping server can be modified to execute malicious code that exploits
the internal timing covert channel. An attack similar to(2) can be implemented if no
countermeasures are taken. However, such an attack only reveals one bit of the secret. In
order for the attacker to obtain complete credit card numbers, it is necessary to magnify
the attack by introducing a loop. Each iteration of the loop leaks one bit of the secret.
The implementation of this attack reveals a credit card number in about two minutes
2. Notoriously, it was quite straightforward to leak the sixteen digits of a credit card
number even though we have no information about the run-timeenvironment. This
shows how feasible and dangerous are internal timing leaks in practice.
Our malicious code concatenates credit card numbers after the billing addresses of
clients. Thus, credit card numbers can be displayed on the screen by just invoking
showPurchase. To illustrate that, we consider a client with the credit card num-
ber9999999999999999. We run the attack several times obtaining different leaked
credit card numbers (see Figure 21). These numbers differ inat most three bits from the
binary representation of the secret. This imprecision comes from the lack of knowledge
about the run-time environment, in particular, the lack of knowledge about scheduler
policies. Scheduler policies are important for an internaltiming attack to succeed. Nev-
ertheless, by repeatedly running the attack and taking the most frequent boolean values
in each position, it is possible to obtain the value of the secret with very high confidence.
Observe that the secret and the inferred secret are the same in Figure 21.
We repeatedly run the malicious code mentioned above but with the countermeasures
described in Section 6. In this opportunity, the leaked credit card number was always
0. In other words, the attack did not succeed. There is an obvious overhead introduced
by restricting the scheduler in the run-time environment tobehave like a round-robin

2 Every experiment was run on a laptop Pentium M 1.5 GHz and 512 MB RAM.
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one. However, this is acceptable since only small parts of a system need to manipulate
secrets and therefore be written using our library.

8 Conclusions

We have presented an extension to Li and Zdancewic’s libraryto consider secure pro-
grams with reference manipulation and concurrency. On one hand, introducing refer-
ences requires to handle more richer security types than those in Li and Zdancewic’s
work. As consequence, a more precise analysis for information-flow security is needed.
In order to obtain that, we combine several ideas from the literature in our implementa-
tion: singleton types, type-classes in Haskell, and projection functions. On the other
hand, supporting concurrency requires to deal with internal-timing attacks. The ex-
tension includes a mechanism to close internal-timing covert channels and provides
a flexible treatment for dynamic thread creation. Therefore, it is not necessary to mod-
ify the run-time environment to obtain secure programs. These achievements are re-
sult of taking several ideas from the literature: round-robin cooperative schedulers and
software transactional memories. Similarly to Li and Zdancewic’s work, the technical
development in this paper is informal, although we have implemented it in Haskell.
The type system encoded inFlowArrowRef can be mainly justified by following
standard techniques to prove non-interference properties[VSI96, PS02]. A case study
has been also implemented to evaluate the techniques proposed in this work. It reveals
that internal-timing leaks are feasible and dangerous in practice and how our library
properly repairs them. To the best of our knowledge, this is the first tool that supports
information-flow security and concurrency, and the first case study implemented that in-
volves concurrent programs and information-flow policies.The implementation of the
library and the case study is publicly available in [TR].
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