
Journal of Computer Security 0 (2015) 1 1
IOS Press

Hails: Protecting Data Privacy in Untrusted
Web Applications

Daniel Giffin a, Amit Levy a, Deian Stefan b,∗,∗∗, David Terei a, David Mazières a,
John Mitchell a, and Alejandro Russo c

a Stanford University, 353 Serra Mall, Stanford, CA 94305, USA
b UC San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
c Chalmers University of Technology, Rännvägen 6B, 41296 Gothenburg, Sweden

Abstract. Many modern web-platforms are no longer written by a single entity, such as a company or individual, but consist of
a trusted core that can be extended by untrusted third-party authors. Examples of this approach include Facebook, Yammer, and
Salesforce. Unfortunately, users running third-party “apps” have little control over what the apps can do with their private data.
Today’s platforms offer only ad hoc constraints on app behavior, leaving users an unfortunate trade-off between convenience
and privacy. A principled approach to code confinement could allow the integration of untrusted code while enforcing flexible,
end-to-end policies on data access. This paper presents a new framework, Hails, for building web platforms, that adds mandatory
access control and a declarative policy language to the familiar MVC architecture. We demonstrate the flexibility of Hails by
building several platforms, including GitStar, a code-hosting website that enforces robust privacy policies on user data even
while allowing untrusted apps to deliver extended features to users.

Keywords: Web security, confinement, information flow control, MAC, MPVC, functional programming, Haskell, LIO, COWL

Introduction

Extensible web platforms represent an increasingly common way of developing and deploying software.
Such platforms provide extensibility by allowing third-party apps to integrate, in a restricted manner, with
the rest of the platform to offer additional features to users. Facebook popularized this extension model
for social networking. Others have emulated it: Yammer provides a similar social platform for enterprises
(running behind the firewall), while Dropbox and BitBucket provide a similar extension model for their
project management platforms. The functionality users experience on these sites is no longer the product
of a single entity. Instead, it is a combination of a core trusted platform, and apps written by less-trusted
third-parties.

Many apps are only useful when they are able to manipulate sensitive user data—personal information
such as financial or medical details, or non-public social relationships—but, unfortunately, once access
to this data has been granted, there is no holistic mechanism to constrain what the app may do with it on
today’s platforms. This puts users’ privacy at risk. For example, the Wall Street Journal reported that some

*Corresponding author. E-mail: deian@cs.ucsd.edu.
**Part of this work was done while the author was at Stanford University and Intrinsic (formerly GitStar).

0926-227X/15/$27.50 © 2015 – IOS Press and the authors. All rights reserved

2 Giffin et al. / Hails: Protecting Data Privacy in Untrusted Web Applications

of Facebook’s most popular apps, including Zynga’s FarmVille game, were transmitting users’ account
identifiers (sufficient for obtaining personal information) to dozens of advertisers and online tracking
companies [81]. Comparably, Business Insider reported that nearly 7 million Dropbox credentials were
leaked via third-party apps [43].

In a conventional platform model, a user sets a security policy on specific apps, or classes of apps,
but these policies either grant or deny access to information, they do not constrain how it can be used.
Apps are written to only function with all their access requests granted, giving them unfettered access to
sensitive information. This forces users to choose between privacy or functionality. The platform cannot
guarantee that the app will not mine private messages for credit card numbers and send this information
to the app’s developer. Furthermore, third-party apps run on servers outside of the control of the trusted
platform, meaning all data the app accesses is exfiltrated. Unfortunately, even if users understand an
app’s behavior, they are poorly equipped to understand the consequences of exfiltration. In fact, a wide
range of sophisticated third-party tracking mechanisms are available for collecting and correlating user
information, many based only on scant user data [58].

In order to protect its users, the operator of a conventional web platform is burdened with implementing
a complicated security system. These systems are usually ad hoc, relying on access control lists, human
audits of app code, and optimistic trust in various software authors. Moreover, while some of these
techniques are common, each platform ends up providing a different solution from others.

To address these problems, we have developed an alternate approach for building platforms that need
to confine untrusted apps. We demonstrate the system by describing GitStar, a social code hosting web
platform inspired by GitHub and BitBucket. GitStar takes a new approach to the app model: we host
third-party apps in an environment designed to protect data, rather than allow developers to host them on
a arbitrary server. In doing so, we can enforce security policies that restrict information flow into and out
of apps. This decision, in turn, enables a model wherein users can safely use apps without being asked
whether to disclose data.

We built GitStar using a new web framework we developed called Hails. While other frameworks are
geared towards monolithic web sites, Hails is explicitly designed for building web platforms, where it is
expected that a site will comprise many mutually-distrustful components written by various entities. Of
course, this also fits the degenerate case where a single entity is building the web site in full—in this
case, Hails allows the site developers to protect user data from third-party libraries and bugs in their own
application code.

Hails is distinguished by two design principles. First, security policies should be specified declaratively
alongside data schemas, rather than spread throughout the code-base as guards around each point of
access. Second, security policies should be mandatory even once code has obtained access to data.

The first principle leads to an architecture we call model–policy–view–controller (MPVC), an extension
to the popular model–view–controller (MVC) pattern. In MVC, models represent a program’s persistent
data structures, views provide a presentation layer for the user, and controllers decide how to handle and
respond to particular requests. The MVC paradigm does not give security and privacy a first-class role,
making it easy for programmers to introduce vulnerabilities [70,42,39,26]. By contrast, MPVC explicitly
associates every model with a security policy governing how the associated data may be used.

The second principle, that data access policies should be mandatory, means that policies must follow
data throughout the system and be enforced even once code has access to data. Hails uses a form of
mandatory access control (MAC) to enforce end-to-end policies on data as it passes through software
components with different privileges. While MAC has traditionally been used for high-security and

Giffin et al. / Hails: Protecting Data Privacy in Untrusted Web Applications 3

military operating systems, it can be applied effectively to the app-platform model when combined with
a notion of decentralized privileges such as that introduced by the decentralized label model [64,83].

Unlike the access control lists used by today’s web platforms, the MAC regime allows a complex system
to be implemented by a reconfigurable assemblage of software components that do not necessarily trust
each other. For example, when a user browses a software repository on GitStar, a code-viewing component
formats files of source code for convenient viewing. Even if this component is flawed or malicious, the
access policy attached to the data and enforced by MAC will prevent it from displaying a file to users
without permission to see it, or transmitting a private file to the component’s author. Thus, the GitStar
core component can make repository contents available to any other component, and users can safely
choose third-party viewers based solely on the features they deliver rather than on the trustworthiness of
their authors.

A criticism of past MAC systems has been the perceived difficulty for application programmers to
understand the security model. By extending the popular MVC pattern to bind security policy to the
model, giving us MPVC, Hails offers a new design point that we believe addresses these concerns. To
investigate this, we report on our experience and the experiences of other developers in using Hails to
both build web platforms and third-party apps for GitStar. While our sample is yet small, our experience
suggests MAC security does not impede application development within an MPVC framework.

Another weak point for MAC has been the discrepancy between formal models and actual imple-
mentation. Most notably, most existing MAC models do not account for covert channels which can, for
example, be easily abused by a third-party app to exfiltrate sensitive user information. We built Hails atop
LIO [84,88,37], a MAC enforcement system we designed to address such shortcomings. LIO accounts
for various covert channels [88,86] and is accompanied by a formal security proof of non-interference.
We report on these formal results as they broadly relate to Hails.

This paper extends an earlier conference version [33] with a more expressive policy-specification
language, additional model persistence layers, integration with the Confinement with Origin Web Labels

(COWL) browser confinement system [87], and several new applications. The remainder of this paper
describes the design of Hails and several applications built on top of Hails, including the GitStar platform.
We discuss design patterns used in building Hails web platforms, evaluate our system, provide a discussion,
survey related work, and conclude.

Design

The Hails MPVC architecture differs from traditional MVC web frameworks such as Rails and Django
by making security concerns explicit. An MVC framework has no inherent notion of security policy.
The effective policy results from an ad hoc collection of checks strewn throughout the application.
Unsurprisingly, these checks usually do not extend to third-party code, which constitute large parts
of modern web apps. By contrast, MPVC gives security policies a first-class role. Developers specify
policies in a domain-specific language (DSL) alongside the data model. The framework then enforces
these policies system-wide, regardless of the correctness or intentions of untrusted code, primarily using
language-level security.

MPVC applications are built from mutually distrustful components. These components fall into two
categories: MPs, comprising model and policy logic, and VCs, comprising view and controller logic.
An MP provides an API through which other components can access a particular database, subject to
its associated policies. A VC, on the other hand, interacts with the user (via their browser), invoking
different MPs to fetch and store data. Our language-level confinement ensures that a data-model’s policy
is respected throughout the system, across the different components. For example, if an MP specifies that

4 Giffin et al. / Hails: Protecting Data Privacy in Untrusted Web Applications

Bookmark

S
e
rv

e
r

View

Controller

View

Controller

View

Controller

git-based wiki

S
e
rv

e
r

View

Controller

View

Controller

View

Controller

Code viewer

S
e
rv

e
r

View

Controller

View

Controller

View

Controller

GitStarFollower

ViewView

ControllerControllerPolicy

Model

Fig. 1. Hails platform with three VCs and two MPs. Dashed lines denote HTTP communication; solid lines denote local function
calls; dotted lines denote message passing between browsing contexts; dashed-dotted lines denote communication with OS
processes. MPs VCs are confined at the programming language level by LIO. Client-side VC code is confined at the browsing
context level (iframes) by COWL. OS processes are jailed and can only communicate with the invoking VC via file descriptors.

“only the user’s friends may see their email address,” then a VC (or another MP) reading the user’s email
address loses the ability to communicate over the network except to the user’s friends (who are allowed
to see that email address).

Figure 1 illustrates the interaction between different application components in the context of GitStar.
Two MPs are depicted: GitStar, which manages projects and git data; and Follower, which manages
a directional relationship between users. Three VCs are shown invoking these modules: a source-code
viewer, a git-based wiki, and a bookmarking tool. The code viewer presents syntax-highlighted source
code and the results of static analysis tools such as splint [47]. Using the same MP, the wiki VC interprets
text files using markdown to transform articles into HTML. Finally, the bookmarking VC leverages both
MPs to give users quick access to projects owned by other users whom they follow.

Because an application’s components are mutually distrustful, the Hails design directly leads to greater
extensibility. For example, anyone who doesn’t like GitStar’s syntax highlighting is free to run a different
code viewer. Indeed, any of the VCs depicted in Figure 1 could be developed after the fact by someone
other than the author of the MPs; because Hails’s MAC security continues to restrict what code can do
with data even after gaining access to it, no special privileges are required to access an MP’s API.

Principals and privileges

Hails specifies policy in terms of principals who are allowed to read or write data. There are three types
of principal. Users are principals, identified by user-names (e.g., alice), that communicate with Hails
applications via web browsers. Remote web sites that a component may communicate with are principals,
identified by their origin URL [4] (e.g., and https://maps.google.com/); since VCs are simply web
sites (see Section 2.4) they too are are identified by the URL of the web server running the VC code (e.g.,
https://wiki.gitstar.org/ in Figure 1). Finally, MPs have unique principals which, by convention,
start with the prefix “_” (e.g., _GitStar in Figure 1).

An example policy an MP may want to enforce is “user alice’s mailing address can be read only by
alice or by https://maps.google.com/.” Such a policy would allow a VC to present alice her own
address (when she views her profile) or to fetch a Google map of her address and present it to her, but not
to disclose the address or map to anyone else. To be be flexible, Hails allows read and write permissions
to each be expressed using arbitrary conjunctions and disjunctions of principals.

Giffin et al. / Hails: Protecting Data Privacy in Untrusted Web Applications 5

Enforcing such policies requires knowing what principals an app represents locally and what principals
it is communicating with remotely. Remote principals are ascertained as one would expect. Hails uses
standard authentication facilities (e.g., OpenID [71]); a browser presenting a valid session token represents
the logged-in user’s principal. When code, server-side or in the browser, initiates outgoing HTTP requests
to remote web sites, we consider the remote server to act on behalf of the principal of the web site, i.e.,
the origin URL.

Within the confines of Hails, code itself can act on behalf of principals. In particular, Hails provides
unforgeable objects called privileges with which code can assert the authority of principals. The trusted
runtime passes appropriate privilege objects to MPs and VCs upon loading their code. For example, the
GitStar MP is granted the _GitStar privilege. Thus, when a user wishes to use GitStar to manager her
data, the policy on the data in question must specify _GitStar as a reader and writer so as to give
GitStar permission to read the data and write it to its database should it choose to exercise its _GitStar
privileges. In the browser, our trusted COWL runtime grants code running in a page the privilege of the
page’s origin.

When using (or exercising) privileges to act on behalf of principals, code can bypass (or relax) the
restrictions otherwise imposed by the MAC-based confinement (described next), for data belonging to
these principals. This is necessary for Hails to be maximally flexible and allow developers to build
applications we cannot foresee. As we discuss in Section 5, however, Hails provides several libraries and
design patterns that minimize the use of privileges in MPs, largely to boiler-plate serialization code, and
eliminate the need for privileges in almost all VC code. This is not only important because it minimizes
the amount of code that must be trusted—the trusted computing base (TCB)—but also because it allows
us to more easily bridge our formal verification results, which do not account for privileges, to real app
code (see Section 6.2).

Labels and MAC-based confinement

Hails associates a security policy with every piece of data in the system, specifying which principals
can read and write the data. Such policies are known as labels. The particular labels used by Hails are
called DC labels. We designed DC labels to express policies that concern mutually distrusting principals
without a central authority, similar to the seminal decentralized label model (DLM) [65]. DC labels,
though mostly equivalent to the DLM (see [62] for a formal comparison of the different label models),
make it easier to express web application policies. Specifically, a DC label is a pair of positive boolean
formulas over principals: a secrecy formula, specifying who can read the data, and an integrity formula,
specifying who can write it. For example, a file labeled 〈alice∨bob, alice〉 specifies that alice or bob
can read from the file and only alice can write to the file. Such a label is subjected on the code viewer
VC of Figure 1, for example, when fetching alice’s source code. The label allows the VC to present the
source code to the project participants, alice and bob, but not disseminate it to others. The label also
allows VCs running with alice’s privilege to write to the file.1

To ensure data protection, the Hails trusted runtime checks that remote principals are allowed to read
(respectively, write) data according to the labels protecting the data, before permitting any communication.
For instance, data labeled 〈alice ∨ bob, alice〉 cannot be sent to a browser that acts on behalf of

1

By design, Hails does not grant VCs such user privileges. Indeed, user privileges are not even granted to MPs. Instead, as
described in Section 5, Hails applications rely on several design patterns that ensure least privilege and privilege separation
when updating or deleting user data. Specifically, untrusted VCs must encode write actions as user requests that a corresponding
MP can then verify (the integrity of) and perform the write on behalf of the user.

6 Giffin et al. / Hails: Protecting Data Privacy in Untrusted Web Applications

charlie; it can, however, be sent to alice’s browser. The actual checks performed involve verifying
logical implications. Data labeled 〈S, I〉 can be sent to a principal (or combination of principals) p only
when p =⇒ S. Conversely, remote principal p can write data labeled 〈S, I〉 only when p =⇒ I. Given
these checks, 〈true, true〉 labels data readable and writable by any remote principal, i.e., the data is
public, while p = true means a remote party is acting on behalf of no principals (e.g., when a user
session is not authenticated).

The same checks would be required for local data access if code had unrestricted network access. Hails
could only allow code to access data it had explicit privileges to read. For example, code without the
alice privilege should not be able to read data labeled 〈alice, true〉 if it could subsequently send the
data anywhere over the network. However, Hails offers a different possibility: code without privileges
can read data labeled 〈alice, true〉 so long as it first gives up the ability to communicate with remote
principals other than alice. Such communication restrictions are the essence of MAC.

To keep track of communication restrictions, the runtime associates a current label with each thread.
The utility of the current label stems from the transitivity of a partial order called “can flow to.” We
say a label L1 = 〈S1, I1〉 can flow to another label L2 = 〈S2, I2〉 when S2 =⇒ S1 and I1 =⇒ I2—in
other words, any principals p allowed to read data labeled L2 can also read data labeled L1 (because
p =⇒ S2 =⇒ S1) and any principals allowed to write data labeled L1 can also write data labeled L2

(because p =⇒ I1 =⇒ I2).
More generally, and as we show in [83], DC labels form a security lattice [22], where the elements of

the lattice—labels—are partially ordered according to the can flow to relation. Since every piece of data
is labeled, this simplifies the security checks that Hails must perform to checking labels according to this
relation: Hails only allows information to flow—via a read or a write—from one entity (e.g., the current
thread) to another (e.g., the network) if the label of the former can flow to the label of the latter.

For example, a thread can read a local data object only if the object’s label can flow to the current
label; it can write an object only when the current label can flow to the object’s label. Data sent over
the network is always protected by the current label. (Data may originate in a labeled file Or database
record but always enters the network via a thread with a current label.) The transitivity of the can flow

to relation ensures no amount of shuffling data through objects or components can result in sending the
data to unauthorized principals.

A thread may adjust the current label to read otherwise prohibited data, only if the old label can flow
to the new label. We refer to this as raising the current label. Allowing the current label to change
without affecting security requires very carefully designed interfaces. Otherwise, labels themselves could
leak information. In addition, threads could potentially leak information by not terminating (so called
“termination covert channels”) or by changing the order of observable events (so called “internal-timing
covert channels”). The MAC enforcement system underlying Hails, LIO, is the first production system to
address these threats at the language level. LIO is carefully implemented to correctly enforce confinement
as well as its relaxation via privileges. Importantly, privileges (and their exercise) seemly interplay with
the abstractions used for confinement (e.g., monads [61] and labeled values).

In [85,37], we formally prove progress-sensitive non-interference [36] for LIO—i.e., we verify that
LIO programs cannot leak data, even if threads diverge, to attackers capable of observing intermediate
outputs. Our proof is limited to a model of LIO and not the actual implementation of LIO and its
runtime, as implemented in Haskell. Unfortunately, this leaves LIO vulnerable to covert channel attacks
that leverage implementation details not otherwise modeled (e.g., hardware caches). To narrow the gap
between the formal model and our implementation we did, however, extend LIO to deal with cache timing
attacks (see [86]) and are actively working on addressing other model-implementation discrepancies (e.g.,

Giffin et al. / Hails: Protecting Data Privacy in Untrusted Web Applications 7

Haskell’s laziness [11] and garbage collection). Equally important, however, we designed LIO to allow
developers to use clearance to restrict what any code can read and thus leak (e.g., via unforeseen covert
channels).

In Hails, a VC’s clearance is set according to the user making the request. Clearance serves as an
upper bound on the current label and prevents the current label from accumulating restrictions that would
ultimately prevent the VC from communicating back to the user’s browser. Thus, an attempt to read data
that could never be sent back to the browser will fail, confining observation to a “need-to-know” pattern.
This is an important design choice for security, since it ensures that a malicious VC can only “leak” data
to the remote user (who may be both the VC author and attacker) via covert channels (even “external
timing covert channels” which encode information by carefully delaying HTTP response [9,30]) insofar
as it can read the data. At the same time, clearance is important for usability: it ensures that a VC’s current
label is never raised to a point where it cannot reply to the end user.

Model-Policy (MP)

Hails applications rely on MPs to define the application’s data model and security policies. An MP is a
library with access to a dedicated database. Though MPs may contain arbitrary code and can expose an
arbitrary API, we encourage using the dedicated database. In doing so, MP code only needs to specify
what sort of data may be stored in the database and what access-control policies should be applied to it.
This also ensures that other components can access the MP via a common interface—the Hails database
API. Better still, it allows MP developers to leverage our DSL, described in Section 2.3.1, for specifying
data policies in a concise manner. This additionally makes it easier for MPs to use canonical libraries and
design patterns that minimize the use of privileges, as describe in Section 5.

The Hails database system provides a common document-oriented interface, similar to MongoDB [16],
atop different persistence layers (e.g., MongoDB, filesystem, or even a REST API). Logically, a Hails
database consists of a set of collections, each storing a set of documents. Each document, in turn, contains
a set of fields, or named values. Some fields are configured as keys, which are indexed and identify the
document in its collection; all other fields are non-indexed elements.

An MP can restrict access to the different database layers using labels. A label is associated with every
database, restricting who can access the collections in the database and, at a coarse level, who can read
from and write to the database. Similarly, a label is associated with a collection, restricting who can read
and write documents in the collection. The collection label additionally serves the role of protecting the
keys that identify documents—a computation that can read from a collection can also read all the key
values.

Automatic, fine-grained labeling

While static policies on databases and collections are often sufficient, in many web applications, dynamic
fine-grained policies on documents and fields are desired. Consider the simplified models shown in
Figure 2. Each user profile model contains fields corresponding to a user’s user-name, email address,
and full name, while each follower model is a mapping from one user-name to another (the user-name
of the user they are following). In this scenario, the MP may configure user-names as keys in order
to, for example, allow VCs to search for alice’s profile. Additionally, the MP may specify database
and collection labels that restrict access to documents at a coarse grained level. However, these labels
are not sufficient to enforce fine grained dynamic policies such as “only alice may modify her profile
information” and “only her friends (bob, joe, etc.) may see her email address.”

Hails introduces a novel approach to specifying document and field policies by assigning labels to
documents and fields as a function of the document contents itself. This approach is based on the

8 Giffin et al. / Hails: Protecting Data Privacy in Untrusted Web Applications

DocumentCollectionLabeled by: Field

user: alice

city: Palo Alto

email: alice@...

GitStar document:

,

,

,

,

user: alice

date: 2015-11-19

follows: bob

Follower document:

,

,

,

,

Fig. 2. GitStar MP user documents and follower MP friend relationship documents. Each user document is indexed by a key
(user-name) and contains the user’s email address and city. Documents and email fields are dynamically labeled using a
data-dependent policy; the secrecy of the user key and is protected by the static collection label, the document label protects
its integrity. The “unlabeled” city fields are protected by their corresponding document labels. Each follower relationship
document contains two indexable keys—the user and follows, the name of the user they follow—and a field containing the
date the user started following their friend.

observation that, in many web applications, the authoritative source for who should access data is a function
of the data itself. For example, in Figure 2, the user-name field (user) values can be used to specify the
user profile document and field policies mentioned above: alice’s document is labeled 〈true, alice ∨

_GitStar〉, while the email field value is labeled 〈alice ∨ bob ∨ joe ∨ · · · ∨ _GitStar, true〉. The
document label guarantees that only alice or the MP can modify any of the constituent fields. The label
on the email-address field additionally guarantees that only alice, the MP, or her friends—information
available in the followers model—can read her address. Though accumulating more label restrictions
with nesting can clearly impact expressivity (e.g., to write a field one must be also able to write to the
containing document), we impose these restrictions to ensure that labels themselves (and the policies
creating them) are protected—field labels are protected by document labels, document labels are protected
by collection labels, etc.

Hails’s data-dependent approach to automatically labeling data simplifies reasoning about security
policies and localizes label logic to a small amount of source code. Figure 3 shows the implementation of
the GitStar users policy, as described above, using our Haskell DSL. Specifying labels on the database and
collections is simply done by setting the respective readers and writers in the database and collection

sections. Similarly, setting a document or field label is done using a function from the document itself to
a pair of readers and writers.

In contrast to our original DSL [33], which disallowed side effects when computing labels, our current
DSL allows MPs to perform arbitrarily complex actions, such as database queries, using the run keyword.
Such actions can be used when labeling collections, documents, and fields. For example, in Figure 3,
the GitStar MP performs a database lookup of the user’s list of friends (via the Follower MP) when
computing the label of their email address. Importantly, when an MP executes such actions, the Hails
runtime ensures that they are confined according to MAC—i.e., run actions are themselves subject to
security checks. We remark that, while this added flexibility may appear to make it harder to reason about
policy code, our experience suggests otherwise; in sections 6 and 7, we discuss this and the trade-off of
this design choice.

Database access and policy application

MP policies are applied on every database operation. For example, when a thread attempts to insert a
document into an MP collection, the Hails runtime first checks that the thread can read and write to the
database and collection, by comparing the thread’s current label with that of the database and collection.
Subsequently, the field- and document-labeling policy functions are applied by the Hails runtime to the

Giffin et al. / Hails: Protecting Data Privacy in Untrusted Web Applications 9

database $ do

-- Set database label:

access $ do

readers ==> anybody

writers ==> anybody

-- Set policy for new "users" collection:

collection "users" $ do

-- Set collection label:

access $ do

readers ==> anybody

writers ==> anybody

-- Declare user field as a public indexable key:

field "user" $ public-index

-- Set document label, given document doc:

document $ λdoc → do

readers ==> anybody

writers ==> ("user" ‘from‘ doc) \/ _GitStar

-- Set email field label, given document doc:

field "email" $ labeled $ λdoc → do

let user = "user" ‘from‘ doc

-- Fetch all the user’s friends via the Follower MP:

friends ← run $ withFollowerMP $ do

-- Get all user, follower documents:

fs ← findAll $ select ["user" -: user] "followers"

-- Return list of followers:

return $ map (λu → "follower" ‘from‘ u) fs

readers ==> user \/ (fromList friends) \/ _GitStar

writers ==> anybody

Fig. 3. DSL-specification for the GitStar users policy. Here, anybody corresponds to the boolean formula true; fromList
converts a list of principals to a disjunction of principals; and, "x" ‘from‘ doc retrieves the value of field x from document
doc; the $ operator is redudant and only used to ommit parantheses—it allow f (g x) to be written as f $ g x. The
database and collection labels are static. Field user is configured as a public indexable key. Finally, each document and
email field is labeled according to a function from the document itself to a set of readers and writers. The latter invokes
the Follower MP to fetch the user’s list of friends (i.e., users they follow).

document and fields. If the policy application succeeds—it may fail if the thread cannot label data as
requested—the Hails runtime removes all the labels on the document and performs the write. By removing
labels and ensuring that every database operation is mediated according to the policy, we ensure that
policy code is localized to MPs and not sprinkled throughout the database.

Hails also allows threads to insert already-labeled documents (e.g., documents retrieved from another
MP or directly from the user). As before, when inserting a labeled document, the MP database and
collection must be readable and writable at the current label. Different from above, the thread does not

10 Giffin et al. / Hails: Protecting Data Privacy in Untrusted Web Applications

need to apply the policy functions; instead, the Hails runtime verifies that the labels on fields and the
document agree with those specified by the MP. Finally, if the check succeeds, the Hails runtime strips
the labels and performs the write.

Naturally, application components can also fetch stored data. When performing a fetch, application
components specify a query predicate on indexed keys. As with insert, when fetching data, the runtime
first checks that that the thread can read from the database and collection. Next, the documents matching
the predicate are retrieved from the database. Lastly, the field- and document-labeling policy functions are
applied to each document and field; the resultant labeled documents are returned to the invoking thread.

The Hails database system supports other standard operations, including (partial) update and delete.
The restrictions imposed by these operations are similar to those of insert and fetch. Hence, we elide their
details and refer the interested reader to the Hails library documentation for details [35]. In Section 5 we
discuss some of these operations in the context of least privilege design patterns.

View-Controller (VC)

VCs interact with users. Specifically, controllers handle user requests, and views present interfaces to the
user. However, VCs do not define database-backed models. Instead, a controller invokes one or more MPs
when it needs to store or retrieve user data. This data can also be passed on to views when rendering user
interfaces. Views can be rendered server-side or in the browser, where VCs can execute JavaScript.

Each VC is a standalone process, linked against the MP libraries it depends on to provide a data model.
The VC author solely provides a definition for a main controller, which is a function from an HTTP
request to an HTTP response. This function may perform side-effects: it may access a database-backed
model by invoking an MP, read files from the labeled filesystem, etc. On the server, Hails relies on LIO’s
language-level confinement to prevent the VC and the MPs it invokes from modifying or leaking data
in violation of access permissions; we use OS-level resource management and isolation mechanisms to
enforce platform-specific policies not otherwise enforced at the language level.

At the heart of every VC is the trusted Hails HTTP server. The server receives HTTP requests and invokes
the main VC controller to handle them. The request is labeled according to any browser-supplied Sec-COWL
headers to reflect the current label of the browsing context that made the request (see Section 2.4.2).
When a request is from an authenticated user, the server additionally sets the X-Hails-User header to
the user’s user-name and attests to the request’s contents for the benefit of VCs and MPs that care about
request provenance and integrity. Given such a request, the main VC controller processes it by returning
an HTTP response, potentially calling into MPs to interact with persistent state in the interim. The trusted
server returns the provided response to the browser on the condition that it depend only on data the user
is permitted to observe; otherwise, it returns an error response.

Enhancing VC functionality with MAC-aware libraries

To carry out their duties, components typically need access to various capabilities beyond persistent
database access. While LIO provides many libraries (e.g., a filesystem and threads library) “out of the
box,” we extended LIO with several libraries. Below, we describe two of them: the Hails HTTP client and
a library for safely executing external programs.

Since many VCs (and MPs) rely on communication with external services, usually over HTTP, we
implemented an HTTP client on top of LIO. This HTTP client library is a port of the COWL HTTP
client—the labeled XMLHttpRequest (XHR) API [82]—that VC JavaScript code relies on browser-side.
Before establishing a connection, and on each read and write, the HTTP client checks that the current
label of the invoking thread is compatible with the remote server principal. In practice, this means VCs

Giffin et al. / Hails: Protecting Data Privacy in Untrusted Web Applications 11

can only communicate with external hosts when they have not read any sensitive data or when they have
only read data explicitly labeled for the external server.

However, when communicating with other Hails servers, the HTTP client—both server-side and in the
browser—can be more flexible in not performing any read checks. Instead, it can return a fine-grained
labeled response, which the VC can then inspect at its own will (e.g., when ready to raise its label).
The label of the response is supplied by the remote server via a Sec-COWL header. As described in the
COWL spec [82], the HTTP client only considers responses with valid labels, i.e., labels whose integrity
formula is implied by the remote principal—this ensures that https://evil.appspot.com cannot forge
responses from https://gitstar.org, for example. A potentially more flexible, but also more complex,
approach to communicating between different MAC-confined domains is to use the DStar protocol [99].

In addition to communicating with external services, real-world applications also rely on external
programs to implement different functionality. For example, as highlighted in Figure 1, GitStar’s code
viewer relies on splint, a standalone C program, to flag possible coding errors. Addressing this need, Hails
provides a mechanism—the implementation detailed of which are given in Section 3.2—for spawning
confined Linux processes with no network access, no visibility of other processes, and no writable
filesystem shared by other processes. Each such processes is governed by a fixed label—the VC’s current
label at the time the external program was spawned. In turn, (labeled) file handles are used to communicate
with the process, subject to the restrictions imposed by the current thread’s label.

Safely executing code in the browser

When a user examines a private repository through an apps such as the GitStar code viewer, Hails prevents
the code viewer VC from leaking private contents directly (e.g., using the HTTP client) and indirectly
(e.g., via the database) within the confines of the server-side environment. However, VCs typically ship
content to the browser where JavaScript or HTML may also attempt to leak data.

Hails prevents code from inappropriately leaking sensitive data on the client-side with COWL [87,82].
COWL is a language-level confinement system that adopts the MAC-based mechanisms of Section 2.2 to
the browser. Most notably, COWL extends the browser with labeled browsing contexts, i.e., labeled pages
and iframes. These labeled browsing contexts are analogous to server-side labeled threads: code running
within a context is confined according to MAC; our trusted runtime restricts code from communicating
with other contexts or web servers according to labels. For instance, a GitStar user profile page labeled
〈alice∨ https://gitstar.org ∨ https://gravatar.com, true〉 is allowed to fetch alice’s image
avatar from the Gravatar servers or use the XMLHttpRequest (XHR) constructor to fetch data from the
main GitStar VC, but it cannot, for example, communicate with evil.appspot.com. Importantly, COWL
and Hails’ LIO provide similar security guarantees for confined code—i.e., non-interference which can
be relaxed by exercising privileges; this enables reasoning about web application security uniformly and
end-to-end.

To ensure that code running in the browser is appropriately confined, the server-side Hails HTTP server
supplies a Sec-COWLHTTP response header with every VC response. The response header value specifies
the initial label and privilege of the browsing context, which is, in turn, set by the COWL runtime. By
default, a page’s label is set to the label of the VC thread that produced the response. But, VC code
running in the browser can also raise the context label to subsequently read more sensitive information.
For example, in the example above, the initial profile page may have been public. But in fetching alice’s
profile information via XHR, the page’s label was raised to protect her sensitive data.

In addition to setting context labels, the Sec-COWL header is used to communicate labels on data
between the server and client. For example, when responding to an XHR request for profile data, the

12 Giffin et al. / Hails: Protecting Data Privacy in Untrusted Web Applications

GitStar VC may specify (explicitly or implicitly, via its current label) that the label of the response
is 〈alice∨ https://gitstar.org ∨ https://gravatar.com, true〉; of course, in most cases such
labels are specified by the MP.

Within the confines of the browser, VCs can execute arbitrary code and use many web platform
APIs [87,82], subject to confinement. COWL, however, provides additional APIs for labeling data client-
side and thus imposing restrictions on how such data can be used by other contexts (e.g., an iframe of
a different VC, or a third-party service such as Google maps) and remote servers. This allows much of
the VC functionality to be implemented client-side, in JavaScript, as opposed to server-side, in Haskell
without giving up on security. In fact, COWL enables Hails applications to not only be extensible server-
side, but also in the browser. This, in turn, enables new kinds of applications, such as secure third-party
mashups, not previously possible due to security (see [87]).

Life-cycle of an application

In this section, we use GitStar’s deployment model to illustrate the life-cycle of a Hails application from
development, through deployment, to servicing a user request.

Application development and deployment

A third-party application developer may introduce a new data model to the GitStar platform by writing an
MP . For example, the Follower MP shown earlier specifies a data-model for storing a relation between
users, as well as a policy specifying who is able to read, create and modify those relationships. Once
written, the developer uploads the library code to the GitStar servers where it is compiled and installed.
The platform administrator generates a unique privilege for the new MP and associates it with a specific
database in a globally-accessible configuration file. Subsequently, any Hails code may import the MP,
which, when invoked, will be loaded with its privilege and database handle.

The third-party developer may build a user interface to the newly-created model by writing a VC
and registering a subdomain with the platform. As with MPs, developers upload their VC code to the
GitStar servers where it is compiled and linked against any MPs it depends on. Thereafter, the platform
administrator generates a privilege for the new VC, which corresponds to the hostname of the VC, and
uses a program called hails, which contains the Hails runtime and HTTP server, to dynamically load
the main VC controller and service user requests on the dedicated subdomain.

While in this example both the VC and MP were implemented by a single developer, third-party
developers can implement applications consisting solely of a VC that interacts with MPs created by others.
In fact, in GitStar, most applications are simply VCs that use the GitStar MP to manage projects and
retrieve git object data. For example, the git-based wiki application, as shown in Figure 1, is simply a
VC that displays formatted text from a particular branch of a git repository.

An example user request

When an end-user request is sent to the GitStar platform, an HTTP proxy routes the request to the
appropriate VC server based on the hostname in the request.

The Hails server that receives the forwarded request invokes the main VC controller in a newly spawned
thread. The controller is executed with the VC’s privileges and sanitized, labeled request. The HTTP
server sanitizes the incoming request by removing potentially sensitive headers such as Cookie; it also
sets the X-Hails-User header to the user-name of the authenticated user, if the request is authenticated.
To ensure that sensitive data from the browser is not leaked server-side, the request is labeled according
to the Sec-COWL HTTP request header; the header contains the current label of the browsing context that
performed the request.

Giffin et al. / Hails: Protecting Data Privacy in Untrusted Web Applications 13

The main controller may be a simple request handler that returns a basic HTML page without accessing
any sensitive data (e.g., an index or about page). A more interesting VC may access sensitive user data
from an MP database before computing a response. In this case, the VC invokes the MP by performing a
database operation such as insert or fetch. The invocation consists of several steps. First, the Hails runtime
instantiates the MP with its privilege and establishes a connection to the associated database. Then, the
MP executes the database operations supplied by the VC, and, in coordination with the Hails runtime,
labels the data according to its policies. While some database operations are not sensitive (e.g., accessing a
public git repository in GitStar), many involve private information. In such cases, the database operation
will also “raise” the current label of the VC thread, and thus affect its capability to communicate thereafter.

When a VC produces an HTTP response, the runtime checks that the current label, which reflects all
data accesses or other sensitive operations, is still compatible with the end-user’s browser. For example,
if alice has sent a request to the code viewer VC asking for code from a private repository, the response
produced by code viewer will only be forwarded by the Hails server if the final label of the code viewer
VC thread can flow to 〈alice, true〉; otherwise, the Hails server responds with an error message. In
general, however, clearance ensures that the VC label ends up being compatible with the user’s browser
label.Indeed, clearance ensures that such failures are not delayed and occur early into the VC computation
(e.g., when the VC attempts to read overly sensitive data).2

To prevent leaks client-side, the Hails HTTP server associates a Sec-COWL HTTP response header with
every response. This header conveys the label of the response to browsers that support COWL [82]. When
the response is data (e.g., JSON) the COWL-enabled browser ensures that the data cannot be leaked by
code running in the browser. On the other hand, when the response is active content (e.g., an HTML
page), the browser ensures that the content code is confined according to the label.

As detailed in Section 3.3, our client-side confinement system, COWL [87,82], restricts all incoming
responses and outgoing requests according to the response label. For example, if the Code Viewer returns
a response labeled 〈alice∨ https://code.google.com, true〉, the rendered page may retrieve scripts
for prettifying code from https://code.google.com, but not retrieve images from https://haskell.

org. On the other hand, a publicly labeled response imposes no restrictions on the requests triggered by
the page.

Trust assumptions

The Hails runtime, including the confinement mechanisms, HTTP server, and libraries are part of the
TCB. Parts of the system, namely our labels and confinement mechanisms—LIO and COWL—have
been formalized in [84,83,85,62,37]. In Section 6.2 we describe how these formal results apply to
Hails applications. Here we remark that our our server-side language-level concurrent confinement
system differs from other MAC in being secure even in the presence of termination and timing covert
channels [85,37]. Like most MAC systems (e.g., [53]), however, we assume that the remaining Hails
components are correct and that the underlying OS, browser, and network are not under the control of an
attacker.

By visiting a web page, the MPs invoked by the VC presenting the page are trusted by users to preserve
the confidentiality and integrity of their data. This is a consequence of MPs being allowed to manage all
aspects of their database. However, one MP cannot declassify data managed by another, and thus users

2

It is possible for an MP to raise the clearance using its privilege as to allow the thread to read data more sensitive than
what the end-user is allowed to see. However, this data should not be sent client-side and thus the reason for performing the
aforementioned seemingly redundant check. MPs must explicitly declassify such data.

14 Giffin et al. / Hails: Protecting Data Privacy in Untrusted Web Applications

can choose to use trustworthy MPs. To facilitate this choice, platforms should make MP policies and
dependency relationships between VCs and MPs available for inspection.

Since a user can choose to invoke a VC according to the MPs it depends on, VCs are mostly untrusted.
On the server-side, VCs cannot exfiltrate user data from the database without collusion from an MP the
user has trusted. Nevertheless, VCs cannot be considered completely untrusted since they directly interact
with users through their browser. Unfortunately, in today’s browsers, even with COWL, a malicious VC
can coerce a user to declassify sensitive data (e.g., by tricking users to execute code in their browser
console).

Implementation

Hails employs a combination of language-level, OS-level, and browser-level confinement mechanisms
spread across all layers of the application stack to achieve its security goals. Most notably, we use language-
level information flow control (IFC) server-side and in the browser to enforce fine-grained policies. This
section describes some of the implementation details of these language-level mechanisms and our OS
sandbox.

Server-side language-level confinement

Hails applications are written in Haskell. Haskell is a statically- and strongly-typed, memory-safe language.
Crucially, Haskell’s type system distinguishes operations involving side-effects (such as potentially data-
leaking IO) from purely-functional computations. As a consequence, for example, compiling a VC’s main
controller with an appropriately specified type is sufficient to assert that the VC cannot perform arbitrary
network communication.

Hails relies on the safety of the Haskell type system when incorporating untrusted code. However, like
other languages, Haskell “suffers” from a set of features that allow programmers to perform unsafe, but
useful, actions (e.g., type coercion). To address this, we extended the Glasgow Haskell Compiler (GHC)
with Safe Haskell [91]. Safe Haskell, deployed with GHC as of version 7.2, guarantees type safety
by removing the small set of language features that otherwise allow programs to violate the type system
and break module boundaries.

With this change, Haskell permits the implementation of language-level dynamic IFC as a library.
Accordingly, we implemented LIO as a Haskell library that performs the label-tracking and confinement
enforcement described in Section 2.2. Despite sharing many abstractions with OS-level IFC systems,
such as HiStar [98] and Flume [44], LIO is more fine-grained (e.g., it allows labels to be associated with
values, such as documents and email addresses) and thus better suited for web applications.

We believe the Hails architecture is equally realizable in other languages, though possibly with less
backward compatibility. For example, JiF [65], Aeolus [14], and Breeze [38] provide similar confinement
guarantees and are also good choices. However, to use existing libraries JiF and Aeolus typically require
non-trivial modifications, while Breeze requires porting libraries to a new language. Conversely, about
12,500 modules in Hackage (34%), a popular Haskell source distribution site, have been safe (at the time
we released Hails) for applications to import. Of course, the functions that perform arbitrary IO are not
directly useful, and, like in JiF, must be modified to run in LIO. Nevertheless, many core libraries require
no modifications.

OS-level confinement

Hails uses Linux isolation mechanisms to confine processes spawned by application components. These
techniques are not novel, but it is important that they work properly. Using clone with the various
CLONE_NEW* flags, we give each confined process its own mount table and process ID namespace, as

Giffin et al. / Hails: Protecting Data Privacy in Untrusted Web Applications 15

well as a new network stack with a new loopback device and no external interfaces. Using a read-only
bind-mount and the tmpfs file system, we create a system image in which the only writable directory is
an empty /tmp. Using cgroups, we restrict the ability to create and use devices and consume resources.
With pivot_root and umount, we hide filesystems outside of the read-only system image. The previous
actions all occur in a setuid root wrapper utility, which finally calls setuid and drops capabilities before
executing the confined process.

Browser-side language-level confinement

As mentioned in Section 2.4.2, Hails prevents code from inappropriately leaking sensitive data on
the client-side with COWL [87,82]. COWL is a language-level confinement system that adopts the
confinement mechanisms of Section 2.2 to the browser, while retaining backward compatibility with the
existing Web. We implemented COWL as modifications to the Chromimum and Firefox browsers, largely
reusing existing mechanisms which are already in place for the Same-origin Policy [4] and Content
Security Policy (CSP) [89]. We refer the interested reader to [87] for a full description of COWL and its
implementation. Here, we instead remark on the challenge of browser-side confinement deployment.

Different from server-side, where platform developers can ensure that apps are implemented using
Hails atop LIO, we cannot impose that users download and use our custom browsers to reap the benefits
of COWL. However, we believe that the deployment story will improve in the near future: COWL
is undergoing standardization and is on the roadmap to be incorporated in browsers, by default [82].
Nevertheless, it is important to support legacy browsers, when possible.

When communicating with older browsers—specifically, browsers that do not support COWL but do
implement CSP—Hails can provide some confinement guarantees at the cost of flexibility. Specifically,
Hails can confine the content of a page according to the response label by associating a CSP header
that whitelists the origins that content can communicate with [89]. Unfortunately, this weakens our trust
model since CSP whitelists do not encompass navigation, so even with CSP, a malicious VC could leak
sensitive user data by navigating to a URL that encodes the sensitive information. Moreover, this limits
an application’s functionality: CSP is a discretionary access control mechanism [93] and thus not suitable
for certain scenarios, such as third-party mashups, where one needs to share sensitive data with a page
whose label (and thus CSP header) is not compatible with the label of the data (see [87]).

Applications

In this section we describe several applications built with Hails, focusing primarily on the GitStar platform
and its apps.

GitStar platform

We built and deployed GitStar, a Hails platform centered around source code hosting and project manage-
ment. We and others have authored a number Hails apps for the GitStar platform. Below we detail some of
these applications including the core management application, a code viewer, follower application, wiki
and messaging system.

GitStar At its core, GitStar includes a basic MP and VC. The MP manages users’ SSH public-keys,
project membership, and project meta-data such as the project name and description; the VC provides a
simple user interface for managing such projects and users.

Since Hails does not have built-in support for git or SSH, the GitStar platform includes an SSH server
(and git’s transport utilities) as an external service. Our modified SSH server queries the GitStar VC
when authenticating users and determining access control permissions for repositories. Conversely, the

16 Giffin et al. / Hails: Protecting Data Privacy in Untrusted Web Applications

GitStar MP communicates with an HTTP service atop this external git-repository server to access git
objects.

GitStar allows users to create projects to which they can push files via git. Projects may be public
(anyone can view or checkout repository contents) or private, in which case only specific users identified
as readers or collaborators may access the project. In both cases, only collaborators may push contents
to the project repository. GitStar provides an interface for managing these settings.

The rest of the platform functionality is provided by separately-administered, mutually-distrustful Hails
applications, some of which were written by third-party developers. Each application is independently
accessible through a unique subdomain. When a user “installs” an application in a project, GitStar creates
a link on the project page that embeds an iframe pointing to the application. This gives third-party
applications a first-class role in extending the user experience.

Code viewer One of the most useful features of source-code hosting sites is the ability to browse
a project’s code. We have implemented a code-viewing VC that allows users to navigate to different
branches in a project’s repository, view syntax-highlighted code, etc. Source code markup is done on the
client-side using Google’s Prettify JavaScript library [34]. Additionally, if the source file is written in C
or Haskell, the VC provides the user with the option to run static-analysis tools—respectively, splint [47]
and hlint [60]—on the checked-in code.

Like all third-party applications, the code viewer is considered untrusted and accesses repository
contents through the GitStar MP. When accessing objects in a private repository, the GitStar MP changes
the VC’s current label to restrict communication to authorized readers of the repository. Note that this
may also restrict the VC from subsequently writing to the database.

git-based wiki The git-based wiki displays Markdown files from the “wiki” branch of a project
repository as formatted HTML. It uses the pandoc library [56] to convert Markdown to HTML. Like the
code viewer, the wiki VC accesses source files through the GitStar MP, meaning it cannot show private
wiki pages to the wrong users. This application leverages functionality originally intended for the code
viewer for different purposes, demonstrating the power of separating policies from application logic.

Standalone wiki The standalone wiki is similar to the git-based wiki, except that pages are stored
directly in a database rather than in files checked into git. To accomplish this, the developer wrote both
an MP and a VC. The VC provides interfaces for rendering pages, editing pages, and creating new pages.
The MP stores the wiki page data and a map of project names to wiki pages. Wiki pages are labeled
dynamically to allow project readers and collaborators to read and write wiki pages. This policy is slightly
more permissive than the git-based wiki policy—it allows project readers to also create and modify wiki
pages even though they can only read data from the git repository. To compute the labels that protect the
pages themselves, the MP retrieves the project readers and collaborators from the GitStar MP database.

Follower GitHub introduced the notion of “social coding,” which combines features from social net-
works with project collaboration. This requires that a user be able to “follow” other users and projects.
GitStar does not provide this feature natively, but a follower MP has been developed to manage such rela-
tionships. With GitStar, users may add the “bookmark” application (implemented as a VC that interacts
with the follower MP) to their project pages, which allows other users to add the project to their list of
followed repositories. This same application can be used to allow one user to follow other users.

Messenger The messenger application provides a simple private-messaging system for users. Its MP, as
implemented by the developer, defines a message model and policies on the messaging data. The policy
allows any user to create a message, but restricts the reading of a message to the sender and intended

Giffin et al. / Hails: Protecting Data Privacy in Untrusted Web Applications 17

recipient. Interfacing with the MP, the messenger VC provides a page where users may compose messages,
and a separate page where they may read incoming messages.

LearnByHacking platform

We built and deployed LearnByHacking, a Hails blogging platform in the style of School of Haskell [31].
LearnByHacking allows users to write articles (e.g., blog posts, tutorials, or lectures) that contains active

code snippets, i.e., code that end users can modify and execute in the browser, without installing any
software on their machine. Below we describe the LearnByHacking core and a commenting application
built by another developer.

LearnByHacking At its core, LearnByHacking contains an MP and VC for managing user profiles,
articles, and tags. The application allows users to collaborate on articles; until published, the MP ensures
that articles can only be read and edited by its authors. Tags are public keywords that authors can associate
with their articles, as to allow users to more easily subscribe to articles of interests.

The LearnByHacking VC provides authors with an interface for managing articles (e.g., collaborators,
tags, published/draft state) and an interface for editing the article Markdown source, atop the CodeMirror
in-browser editor [19]. The VC also renders articles, using the pandoc library [56], which users can read
and interact with. Users can also subscribe to RSS feeds (according to tags, users, etc.) to read articles
offline.

To support active code, we extended Markdown code blocks with directives. Authors use these directive
to specify the language of the code block, whether it is executable, a name for the block, any other code
blocks it depends on. The latter two directives allow authors to chain different code blocks to, for example,
illustrate different execution sub-paths of a program to readers (e.g., failure and success). The VC relies on
our OS-level confinement mechanism to safely execute active code. We currently support code written in
the C, C++, JavaScript, Bash, and Haskell programming languages. However, extending LearnByHacking
with additional languages is straightforward and, importantly, does not rely on any modifying any trusted
code (i.e., the MP).

Commenter The commenter application provides a simple way for users of LearnByHacking to comment
on published articles. To provide this feature, the developer defined an MP for storing comments. The
MP policy ensures that the author of a comment is the only user allowed to modify their comment;
comments are publicly readable. The commenter VC is embedded in LearnByHacking published posts as
an iframe, providing users with ways for writing comments (both in response to an article and as replies
to other comments), editing their comments, and viewing all the comments associated with the article.
We remark that while the developer implemented the application for LearnByHacking, the commenting
system can easily be used by other applications as an alternative to the Disqus commenting system [24].
Indeed a more tightly-integrated commenting system would reuse LearnByHacking’s MP policy to allow
for comments to unpublished articles.

λChair

We built a simple conference management system called λChair, inspired by EasyChair. λChair is a
Hails application that can be used by conference chairs to manage paper submissions and reviews. The
application defines data models and policies for handling users, papers and reviews. After a user registers,
the chair can add and remove them from the committee, assign them to review papers, and manage
their conflicts of interests. Logged-in users can only upload, view, manage the conflicts of, and edit their
uploaded papers. Modifications are only allowed during the submission period. During the review period,
committee members can participate in the review process by reading and writing comments and reviews

18 Giffin et al. / Hails: Protecting Data Privacy in Untrusted Web Applications

for papers they are not in conflict with. Finally, after the review period, authors can additionally see their
papers’ reviews.

While λChair’s functionality is relatively straightforward, the application is particularly interesting
because of its security policy. Hails must ensure that only the right users are allowed to read and modify a
particular paper or review, and this changes according to assignments, conflicts of interests, and conference
state (in submission, review or done). Indeed, we introduced side-effects into our policy DSL because
of this use case; as further detailed in Section 7, the MP of our first λChair implementation was overly
complex because the policy language was not flexible enough.

Taskr

Taskr is a task and project management application. Taskr was built by a group of three undergraduate
students over a summer research internship. The students learned Haskell and Hails at the beginning of
the summer, and built Taskr in the last month of their internship.

The application defines data models and policies for users to collaborate on projects through task
assignment and a commenting system. Each project has one or more project leaders, who can change
project settings, as well as project members, who may contribute to the project. Any member may add
a task or comment on a project, but only leaders can make administrative changes to a project, such as
changing the membership list.

Projects may be public, in which case anyone can view them, including non-members. Alternatively,
they may be private and only visible to their members.

Hails enforces all of these policies in a single place: the MP. We found that, although the students
building the application were novices in both Haskell and Hails, once the policy was well-defined, they
were able to build the rest of the application rapidly. In Section 6.3 we discuss our improvements to Hails
based on feedback from these students.

Design Patterns

In this section, we detail the applicability of some existing security patterns within Hails, and various
design patterns that we have identified in the process of building the applications described in Section 4.

Minimizing privilege usage Since MPs are trusted by users to protect the confidentiality and integrity
of their data, a well-designed MP should be programmed defensively. For example, an MP should treat
all invoking VCs as untrusted, including ones written by the same author. This minimizes the damage
that any VC—whether malicious or vulnerable—could have on user data.

The easiest way to program defensively is to minimize the use of MP privileges and avoid granting
privilege, for example, to other components unnecessarily. In essence, MP developers should follow the
principles of least privilege and privilege separation [74]. When doing so, VCs that access the MP’s
database will only be able to fetch data that the end user can observe. Without privileges, VCs are also
restricted to inserting already-labeled documents (see Section 2.3.2) on behalf of users, i.e., without
privileges VCs can typically only insert data endorsed by the Hails HTTP server on behalf of the user).
This is in contrast to having MP privileges and thus unfettered access to data.

Trustworthy user input Since VCs can craft arbitrary HTTP requests, VC-constructed documents should
not always be trusted to represent the user’s intentions. Hence, MPs should ensure that VCs cannot
arbitrarily insert or modify data on behalf of users. To this end, MPs should, as discussed above, minimize
privilege usage and, moreover, they should set policies that disallow code from acting on behalf of users.
An example of such a policy is the policy on user documents given in Figure 3. The policy specifies that
only alice (or GitStar MP) is allowed insert and modify documents with the user-name set to alice.

Giffin et al. / Hails: Protecting Data Privacy in Untrusted Web Applications 19

Since Hails does not grant user privileges to any code, a VC, even one handling a request from alice,
is disallowed from constructing and inserting a document with the username set to alice (e.g., the
document of Figure 2), without alice or the MP first endorsing it.

We, however, need to allow VCs to insert, modify, and delete user data when requested by the user to
do so. To this end, the Hails HTTP server endorses requests on behalf of users before invoking a VC’s
main controller, reflecting the fact that requests may convey the user’s intent. Since VCs cannot directly
manipulate requests (e.g., to transform them into database actions) without the stripping off their integrity
labels, Hails also provides a library for transforming labeled requests into labeled documents. MPs may
use this library to expose transformers to VCs. These transformers take, as input, user-endorsed requests
and return MP-endorsed documents that VCs may, in turn, insert into the database.

In practice, MPs typically inspect requests before transforming them into labeled documents. This
avoids the need to completely trust VCs to construct HTTP requests that reflect the user’s intentions.
Indeed an MP may choose to only transform requests from VCs it trusts, or from VCs the user has
approved. Nevertheless, we recognize this as a limitation of our approach—since VCs ultimately interface
with users they cannot be considered completely untrusted. We, however, remark that policies, such as
that of Figure 3 prevent a VC trusted only by bob from modifying alice’s data. Moreover, using this
design pattern further proved to be useful in reducing and reasoning about the attack surface of Hails
applications: a VC cannot perform arbitrary actions that may result in data corruption without going
through an MP filter.

Partial update The trustworthy user input pattern is suitable for inserting and updating documents in
whole; it is not, however, directly applicable to partially updating documents. And, in many cases, it is
desirable to update only certain elements of a document. For example, in GitStar, users sometimes need
to (only) update their SSH keys, while in λChair authors need to be able to update a paper’s title and
abstract without uploading a new PDF. Updating a whole document is both error prone, since it requires
developers to include all document fields with every HTML form, and inefficient, since it requires sending
all the data from the server to the browser with every form (and back).

The HTTP request PATCH method precisely addresses this issue [27]; in contrast to PUT, which is
used by browsers to indicate that a document should be replaced with the supplied resource, PATCH
is used to convey partial modifications to a stored document. Naturally, Hails VCs use HTTP request
methods to convey the user’s intent to MPs (GET for fetching a document, POST for creating a new
document, PUT for updating a document, PATCH for partially updating a document, and DELETE for
deleting a document). However, since many browsers still only support a subset of these methods, we
still rely on request bodies to convey this information. In particular, when partially updating a document,
we found that a partial document that contains the newly-updated fields, the document keys, and a token
$hailsDbOp indicating the operation (PATCH, in this case) is sufficient for the MP to update an existing
document. This partial document must be endorsed by the user or MP by, for example, applying the
previous pattern, before the VC attempts to update the corresponding persistent document. Whenever a
VC invokes an MP to carry out a partial update, the MP first verifies that the user is aware of the update
by checking the presence of the operation token $hailsDbOp. Next, the MP uses the keys to fetch the
stored document. Finally, it merges the newly-updated fields into the original document and writes the
document to the database, imposing restrictions similar to those of Section 2.3.2.

Delete We have found that most applications require a pattern similar to the partial update pattern when
deleting documents: a VC invokes an MP with a document containing the target-document’s keys and
an operation token indicating a delete, i.e., $hailsDbOp set to DELETE. As in the partial update, this

20 Giffin et al. / Hails: Protecting Data Privacy in Untrusted Web Applications

document must be endorsed by the user or MP by applying the trustworthy input pattern. Thereafter,
the VC may invoke the MP with the labeled document, who, in turn, removes the target document after
inspection.

Privilege delegation Hails provides a call-gate mechanism, inspired by [98], with which code can
authenticate itself to a called function, i.e., prove possession of privileges, without actually granting any
privileges to the called function. One use of call gates is to delegate privileges. For instance, an MP can
provide a gate that simply returns its own privilege, on the condition that it was called by a particular VC.

An early version of GitStar relied on privileged delegation to allow the GitStar SSH server to read the
SSH keys stored in the GitStar MP database. Specifically, the GitStar project management VC used a call
gate to retrieve the GitStar MP privilege when looking up project readers and collaborators on behalf of
the GitStar SSH server. We’ve since refactored this code to not use privilege delegation. Instead of relying
on the MP privilege, we created a dedicated user account for the SSH server and added this principal as
a reader to the GitStar project collection policy.

While we have managed to avoid privilege delegation in most applications, changing policies as in
GitStar is not always possible and privilege delegation may prove necessary. We especially foresee this
being useful for non-platform appliations, i.e., applications written by a single team, at the cost of placing
more trust in VCs. Indeed, we’ve built several simple applications, similar to those of Section 4, but using
the call gate mechanism to retrieve a privilege corresponding to the current user3; in most cases, the code
turned out to be simpler than the corresponding code without privilege—but, of course, at the cost of
trusting VC code to properly utilize the user’s privilge.

Evaluation

We evaluate Hails on three dimensions:

1. Performance: we compare the performance of the Hails framework against existing web frame-
works.

2. Security: we give measurements of the TCB sizes of Hails applications we and other developers
have built as rough estimates of the applications’ attack surfaces. We also discuss the degree to
which our previous formal results apply to Hails applications.

3. Usability: we report on our experience and the experience of application authors not involved in the
design and implementation of the framework in building Hails applications.

Below we describe our methodology and evaluation results. We refer the interested reader to [87] for a
detailed performance evaluation of our client-side confinement system, COWL.

Performance Benchmarks

To demonstrate how Hails performs in comparison to other widely-used frameworks, we present the
results of four micro-benchmarks that reflect basic operations common to web applications. Figure 4
shows the performance of Hails, compared with:

– Ruby Sinatra framework [78] on the Unicorn web server. Sinatra is a common application framework
for small Ruby applications and APIs (e.g., the GitHub API is written using Sinatra).

3

Since MPs do not have access to user’s privilege, the privilege corresponding to the current user is actually an MP sub-privilege
(e.g., _GitStar ∨ alice).

Giffin et al. / Hails: Protecting Data Privacy in Untrusted Web Applications 21

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Pong Table DB Read DB Write

N
or

m
al

iz
ed

 R
eq

ue
st

s/
S

ec
on

d
(R

/S
)

82,275 R/S 618 R/S 23,118 R/S 9,9434 R/S

47,577 R/S

479 R/S

1,140 R/S

1,370 R/S

Hails
Sinatra

Java Jetty
Apache PHP

Fig. 4. Micro-benchmarks of basic web application operations. The measurements are normalized to the Java Jetty throughput.
All database operations are on MongoDB.

– PHP on the Apache web server with mod_php. Apache+PHP is one of the most widely deployed
technology for web applications, including WordPress blogs, Wikipedia, and earlier versions of
Facebook.

– Java on the Jetty web server [20]. Jetty is a container for Oracle’s Java Servlet specification, and
is widely used in production Java web-applications including Twitter’s streaming API, Zimbra and
Google AppEngine.

We use httperf [63] to measure the throughput of each server setup when 100 client connections
continuously make requests in a closed-loop—we report the average responses/second. The client and
server were executed on separate machines, each with two Intel Xeon E5620 (2.4GHz) processors, and
48GB of RAM, connected over a Gigabit local network.

In the Pong benchmark the server simply responds with the text “PONG”. This effectively measures
the throughput of the web server itself and overhead of the framework. Hails responds to 1.7× fewer
requests/second than Jetty. However, the measured throughput of 47,577 requests/second is roughly 28%
and 47× higher than Apache+PHP and Sinatra, respectively.

In the Table benchmark, the server dynamically renders an HTML table containing 5,000 entries,
effectively measuring the performance of the underlying language. Hails respectively responds to 30%
and 23% fewer requests/second than Jetty and Apache+PHP, but 6× more than Sinatra. Hails is clearly
less performant than Jetty and Apache+PHP for such workloads, even though Haskell should be faster
than PHP at CPU workloads. We believe that this is primarily because Hails does not allow pipelined
HTTP responses, so a large response body must be generated in memory and sent in its entirety at once (as
opposed to sent in chunks as output is available). Nonetheless, Hails responds to 6×more requests/second
than Sinatra.

The DB Read and DB Write benchmarks compare the performance of the read and write database
throughput. Specifically, for the DB Read benchmark the server responds with a document stored in the

22 Giffin et al. / Hails: Protecting Data Privacy in Untrusted Web Applications

Application Trusted MP code Untrusted app code Third-party library code

GitStar manager 251 1,590 54,109

GitStar code viewer 0 1,454 66,786
GitStar git-wiki 0 859 66,258

LearnByHacking 224 1,352 96,727

Commenter 34 212 46,685

Taskr 90 894 37,879
λChair 132 613 33,769

Table 1

Application line count, broken down into the amount of code that is essentially trusted (the MP code), the application code that
is not trusted (i.e., essentially the VC code), and third-party libraries. We only give the line count for the subset of applications
that have been deployed. We count every line in a Haskell source file, whether it is ultimately execute in the application or not.

MongoDB, while for the DB Write the server inserts (with MongoDB’s fsync and safe settings on) a new
document into a database collection and reports success. Like the Ruby library, the Haskell MongoDB
library does not implement a connection pool, so we lose significant parallelism in the DB Read workload
when compared to Jetty and Apache+PHP. In the DB Write workload, this effect is obviated since the
fsync option serializes all writes.

Evaluating the attack surface of Hails applications

As previously mentioned, our confinement mechanisms have underlying theoretical foundations with
accompanying proofs of strong security properties. For example, we proved that programs written in LIO
and COWL satisfy non-interference [84,88,37], i.e., they cannot leak or corrupt user-sensitive data. In
contrast to most dynamic language-level confinement systems, our formal models consider real-world
language features (e.g., exceptions and threads) and our theorems hold even in the presence of typical covert
channels, such as the termination, internal timing [85,37], and even hardware cache-timing channels [86].

Unfortunately, these results do not, in general, trivially extend to arbitrary Hails applications. This
is primarily because MPs (and VCs) may rely on privileges to accomplish their tasks and our formal
language models, like most results in this area, do not account for privileges. We are actively working on
such extensions to our formal models.

In practice, however, most Hails applications only use privileges in very structured ways—following
the least privilege and privilege separation patterns described in Section 5. For example, the VCs we built
do not use any privileges (see Section 6.3). This loosely means that the non-interference results for LIO
and COWL can be applied to such VCs. In particular, we can formally prove that VCs that do not use
privileges satisfy non-interference and cannot corrupt or leak user data. To formally do so, however, our
formal model needs to be extended with the Hails database layer, for example, by adopting the IFC model
of Lourenço et al. [54,55]. Since MPs use privileges in a structured ways, for example by transforming
“raw” HTTP requests to typed values, we believe that much of the MP code can similarly be encompassed
in such a formalism (e.g., by leveraging [92] to reason about transformation of labeled data).

We also report on the attack surface of typical Hails applications more qualitatively, under the trust
assumptions of Section 2.6. In particular, we report the TCB line count of some of the Hails applications
described in Section 4. Unlike traditional web frameworks, where the TCB of an application is essentially
the whole application codebase, including the third-party libraries it depends on, the TCB of a Hails
application is limited to the MP policy code and any code that uses MP privileges. We do not count VC
code as part of the TCB since we refactored all the VCs to eliminate the use of privileges (see Section 5).

Giffin et al. / Hails: Protecting Data Privacy in Untrusted Web Applications 23

Since a bug in any of this code could potentially be a vulnerability, we consider this to be the attack
surface of the application. (This is precisely the reason we encourage developers to use the privilege
separation patterns of Section 5.)

Table 1 gives the line counts (of Haskell code) for our applications; these numbers include the application
TCB size, i.e., the trusted MP code, and the untrusted application code, which entails the VC code and
third-party libraries. We remark that in general the amount of code that developers must get right is
relatively low—on the oder of a few hundred lines of Haskell—especially when considering the rest of
the application code, which orders on tens of thousands of lines of Haskell. More interestingly, we remark
on the evolution of the GitStar and LearnByHacking platforms. In both cases the applications grew with
new features and functionalities, respectively adding over 100,000 and 40,000 lines of code, but the attack
surface grew sub-linearly and remained under 300 lines of code.

Experience report on building Hails applications

When building systems such as Hails it is important to also consider its usability. Indeed, it is important
to consider both, usability and security, jointly when designing systems, since addressing traditional
usability concerns alone can negatively impact security and vice versa [41]. We iterated on the Hails
design and the underlying confinement mechanisms to address usability issues that arose when we (and
other developers) were building applications. In the process, we gathered experience reports from seven
developers, four of whom we interviewed as part of a small, mostly informal, usability analysis. We
remark that none of the developers had experience building web applications in Haskell. Their reflections
validate some of the design choices we made in Hails, as well as highlight some ways in which we could
make Hails more usable. Below we summarize these reports and our own experience building platforms
and applications. We refer the interested reader to [88] for a details on the LIO design evolution, which
was largely influenced by our work on Hails.

Understanding the security model We conjectured that MAC and the separation of code into MPs and
VCs leads to building applications for which it is easier to understand and reason about security. To
measure understanding we compared the mental model of the developers with our expert model, in the
style of [41]. Beyond validating their understanding though discussion, their understanding of policies
was also reflected in the code they wrote. For example, their VC code often gracefully handled failures
due to policy.

More broadly, the developers also understood the implications of the MPVC paradigm on security, i.e.,
that MP code is security critical and that VCs need not be trusted to enforce policy. This was validated by
the application authors who remarked that although “experienced developers [need to] write the tough
[MP] code and present a good interface,” when compared to frameworks such as Rails, not having to
“sprinkle [security] checks in the controller” made it easier to be sure that “a check was not missing.” With
Hails, they, instead, “spent time focusing on developing the [VC] functionality.” Indeed, we also found this
to be reflected in the code they produced—most developers, ourselves included, did not include checks
in VCs that are typical to web apps (e.g., can these actions be performed by the current user?). In fact,
most applications written in Hails would traditionally be susceptible to the mass-assignment vulnerability
that affected GitHub [70,48], or the access control check vulnerabilities that affected Facebook [42]
and United [26]. But, because our developers specified MP policies that would disallow one user from
impersonating another, and because policies are enforced in a mandatory fashion, such “bugs” have no
security implications in Hails—exploiting such bugs typically revealed UI bugs. We argue that these
should not even be addressed: requests to the web app that result in a policy-violation attempt due to a

24 Giffin et al. / Hails: Protecting Data Privacy in Untrusted Web Applications

maliciously-crafted user request differ from well-behaved clients (often written by the same VC developer
that handles the request server-side); simply failing by returning an error response in this case is sufficient.

Policy specification usability Implementing MPs using an early version of Hails proved to be challenging
for most of the developers. In this version, we did not have the declarative DSL of Section 2.3.1; instead,
the “policy specification” entailed imperatively labeling the different database components (collections,
documents, etc.). While developers were typically effective in devising policies for a model, the API for
implementing policy modules was difficult to learn, inefficient, and error prone. Unsurprisingly, the policy
code was hard to understand, also negatively impacting the previous usability factor—understanding the
security model.

To address this, we designed the DSL described in the conference version of this paper [33], similar
to a subset of the DSL given in Section 2.3.1. We found this DSL, while less flexible than imperative
code, to make policy specification simpler and more efficient—developers were able to specify correct
policies in less time. Equally important, developers found it easier to understand what policy an MP was
enforcing, and thus make a more informed decision when deciding to use the library.

Unfortunately, since [33], we found that the DSL still has some usability-security concerns. First, we
found that new developers misunderstood the security implications of declaring fields to be keys. For
example, one blog developer marked article body fields as keys, despite specifying a relatively strict
document (article) policy. This was motivated by their want to implement a feature that would allow
full-text searching over articles. Unfortunately, this was not an isolated instance; we found that developers
who do not (yet) understand our database model’s intricacies and are mostly motivated to implement
features, are unlikely to be cautious when declaring a field to be indexable, especially if they’ve already
specified a policy for a document. To address this, we modified our DSL to use the modifier public-index
instead of key when declaring a field to be a key; this small change imposes fewer assumptions on the
developer, i.e., that they know that declaring fields as keys has security implications, and makes it easier
for to be vigilant about not declaring fields “public.”

Second, we found that restricting DSL policies to pure functions negatively affects efficiency and
understandability. In many cases purely-functional policies are sufficient and easy to reason about. How-
ever, when a policy relies on data not present in the document, developers would have to resort to us-
ing a level of indirection to accomplish their goal. Consider an example from our λChair implemen-
tation. In λChair, we needed to specify that a paper can be read by any committee member not in
conflict with the paper. But, since committee members and conflict-of-interest relationships are stored
in different collections, we didn’t have access to the data and ended up encoding this information in
the labels themselves. For example, alice’s submission, whose ID is 1, would initially be labeled
〈alice ∨ #paper : 1 ∨ _Chair, alice ∨ _Chair〉. The λChair MP would then use a transformer to
relabel papers by expanding group principals (e.g., #paper:1, above) into label formulae (e.g., john ∨
claire, the PC members not in conflict with alice) before returning control to the invoking VC. This
proved to be both inefficient and overly complicated—most developers had a hard time understanding the
additional level of indirection.

To address this, we extended the DSL with the run keyword which allows an MP to execute arbitrary
Hails code in the policy. When used to compute document or field labels, run restricts the computation
clearance to the MP collection label. (Similarly, run sets the clearance of its computation to the database
label when computing collection labels as such.) This ensures that the labels are not computed from

Giffin et al. / Hails: Protecting Data Privacy in Untrusted Web Applications 25

overly sensitive data. We imposed these semantics to demotivate MP developers from using sensitive data
in labels.4

We remark that our primary reason for originally making DSL policies pure functions was to make it
easy for developers to specify and understand policies; the extension with run is very much still in line
with this reasoning. Indeed run makes it easy to specify complex policies in a straight forward manner.
Moreover, it extends the DSL to use cases where imperative code would otherwise be required: specifying
dynamic policies on collections. This, for example, makes it possible for λChair to support multiple
conference while ensuring isolation between the different conference content.

Usability of framework libraries Given the task of building VCs and MPs, we learned that developers
found Hails to be an effective framework. But, in addition to the above usability concerns, we also
refactored other Hails APIs, as mostly used in VC code, to address various usability factors (e.g., efficiency
and satisfaction). For example, to improve the efficiency of VC development, we extended our database
APIs to provide developers with functions that are useful for common tasks—e.g., filtering results based
on the VC’s clearance and unlabeling them. Similarly, we introduced support for template frameworks to
address concerns raised by developers who found that our lack of “scaffolding tools for generating boiler-
plate code [and] a template framework” impedes the development process, when compared to frameworks
such as Rails. We are still working on improving the Hails development experience as a whole, currently
focusing on developers’ want for better documentation, recipes, debugging, and scaffolding tools that will
make it easier to build both VCs and MPs.

We remark that, while we believe that Hails is a usable framework, i.e., it can be used to achieve

specified goals with effectiveness, efficiency, and satisfaction [10,77], our conclusion is drawn from
external adoption of our systems and the short usability analysis we conducted.5 We believe that a more
formal and extensive usability analysis (e.g., one that defines small tasks for users to accomplish) is an
important future research goal that can lead to a more usably-secure framework. In retrospect, we should
have consulted HCI experts throughout the design process.

Discussion and Limitations

In this section, we discuss the ramifications of the design and implementation of Hails and suggest
solutions to some of its limitations.

OS-level confinement Since [33], both Docker and CoreOS have released products that use Linux
isolation, namespacing, and control group mechanisms to isolate Linux applications from each other.
Their underlying approach is very similar to ours, described in Section 3.2. Until recently, however,
neither was an appropriate replacement for our OS-level confinement (e.g., Docker did not originally
provide different user namespaces [100,67]). Indeed, because of their focus on providing app-deployment
solutions, both Docker and CoreOS/rkt are more complicated than our solution (and the reason for some
of their vulnerabilities [52]) and not well-suited to to be used as throw-away containers.6 Nevertheless,

4

They can still read sensitive data, but have to go through the additional step of raising the clearance.
5

Our MAC-based confinement mechanisms are seeing some adoption in both academia (e.g., LIO and COWL have been used
in several courses) and industry (e.g., COWL is a spec at the W3C while Hails and LIO have been adopted in a commercial
product at Intrinsic (formerly, GitStar)). We are actively trying to incorporate feedback from the different use cases to improve
the systems.
6

Their typical use case is long-lived applications, i.e., servers. This is different from ours, wherein containers are typically
short lived, usually the duration of a request.

26 Giffin et al. / Hails: Protecting Data Privacy in Untrusted Web Applications

we believe that using one of these solutions in place of our current OS-level confinement mechanisms can
have numerous benefits. Most interestingly, we can leverage their recent support for SELinux (see [32,25])
to make the confinement more flexible (e.g., to allow an OS-level confined process to communicate with
some remote servers); our OS-level confinement is unnecessarily restricting in disallowing any network
communication or shared filesystem access. We are actively extending LIO with support for this. In its
simplest form we can allow for static container policies (e.g., communicating with particular servers).
More interestingly, however, we can map between our MAC labels and SELinux’s MAC “labels” (domains
and types) to enforce the language-level policy on OS processes, end-to-end.7

Browser-level confinement In Section 2.4.2 we discussed the current status of our browser confinement
system, COWL, and an alternative approach to providing a limited form of confinement with CSP for older
browsers. A different, but complimentary, approach to both would be to re-write VC output at the server-
side before sending it to the client, neutralizing data-exfiltration risks. While such content-rewriting used
to be considered a dangerous proposition (largely because tools implemented by Google [59], Yahoo [21],
Facebook [28], and Microsoft [40] proved to all have vulnerabilities [57]), most browsers now have
JavaScript engines that support ECMAScript 5 (ES5) strict mode, which makes the prospect of safe
re-writing far more tractable. In addition, client-side tools with solid theoretical foundations, such as
SES [90], which builds on ES5 strict mode, and DJS [5], have shown promise in confining and isolating
increasingly complex applications which contain untrusted code. We leave the exploration of using such
tools and output re-writing to future work.

Query interface Hails queries are predicates on keys. By separating keys from the other fields, the
decision to permit a query is simple: if a Hails component can read from the database collection, it may
perform a key-based query. This limited interface is sufficient for many VCs, which may perform more
complex queries on other, labeled fields by inspecting them in their own execution contexts.

For large datasets, better performance would result from filtering on all relevant fields in the underlying
database system itself. Additionally, this would obviate the need to reason about the security semantics of
keys. However, providing this more-general interface to a Hails application would require sensitivity to
label policies inside the query engine. Since many persistence layers (e.g., MongoDB and PostgresSQL)
allow developers to plug in custom logic in their engines, we believe that compiling policy to code to run
in the database layer is viable and a useful improvement on our implementation.

We, remark, however, that since our policy DSL allows developers to execute arbitrary code in run

blocks, this may introduce some challenges. For example, if the MP code was fetching data from a remote
server in the policy code, it may not be sensible for such code to execute in the query engine. Luckily,
Haskell’s monads makes it easy to define sub-languages. This allows us to, for example, restrict (certain)
run blocks to only be composed of pure code and database queries as to facilitate compilation to query
engines.

Side-effecting policy code The ability to execute side-effecting computations in policy code does not
affect security—like all MP and VC code, run actions are restricted the LIO monad that imposes MAC.
But, as discussed in Section 6.3, the ability to execute arbitrary code in policies does not come without
trade-offs. For example, it is now possible for one developer to define a policy that depends on data from
another MP, the policy of which in turn depends on the first developer’s MP. Unlike non-terminating pure

7

The domain-and-type enforcement model, adopted by SELinux, is more flexible than the information flow control model we
enforce in Hails and LIO (see, for example [3]) and general enough to encompass our policies.

Giffin et al. / Hails: Protecting Data Privacy in Untrusted Web Applications 27

code, debugging such a policy may prove more difficult. As another example, it is possible for developers
to carelessly increase an application’s latency by performing network requests (without short timeouts)
and other IO within the policy code. While we have not run into such cases in practice, we foresee the
need for static analysis to help eliminate bugs in policy code. Indeed, even for purely-functional policy
code, static analysis (e.g., in the form of refinement types [72]) can be used to eliminate bugs early (e.g.,
VCs trying to read from a collection whose static label restricts read access to the MP).

Policy as code When code wishes to access data sored in the database, the Hails database layer will
always invoke the corresponding MP’s policy code to compute labels. An alternative approach could
have serialized labels alongside data (e.g., as in HiStar [98] and LIO’s file system). This has the benefit
of allowing code—and, in particular, code written in another language—to access labeled data without
invoking MP code. Unfortunately, it also has many drawbacks that Hails’ approach addresses. For example,
in taking this approach, Hails policies can be specified in a single location in a high-level, generic fashion
that applies to all the documents in the collection. This not only makes it easy and less error prone to
specify policy, but also easier to inspect and understand an application’s policy—reasoning about security
policy in terms of the many serialized labels is very difficult. More importantly, changing a policy simply
amounts to changing the MP policy specification code, updating the MP’s version in the platform’s global
configuration file, and re-linking affected apps—it, importantly, does not require relabeling data stored
in the database, a process that is both more inefficient and unsafe. Nevertheless, allowing applications
written in different languages to access labeled data is important, especially in enterprise scenarios. Hence,
the compilation of queries to an intermediate form that can be interpreted in different languages (e.g.,
JavaScript for MongoDB) seems like an interesting balance.

Deployment We have described the deployment of mutually-untrusted software components on a par-
ticular web “platform,” GitStar, which simply provides the minimal policy modules and apps necessary
to coordinate shared data and to unify the user interface. But there is nothing to prevent a constellation
of such platforms being deployed together, providing a rich ecology of functionality in which third-party
apps could thrive; for example, social-networking apps could operate on data managed by disparate plat-
forms. Services such as App Engine and Heroku have already shown that many developers are willing
to trust a centralized hosting provider to run their applications. Indeed, an interesting direction for future
work may be to implement a Hails platform wherein the MPs simply re-expose the user’s Facebook,
Twitter, etc. data, which is available via their platform APIs, by attaching labels to it. Such a hosting
platform would empower users by allowing them to use third-party apps that Hails can then ensure will
respect their privacy.

DoS attacks The Hails web framework does not address address denial-of-service (DoS) attacks in the
form of resource exhaustion or heavy network load, except when apps execute external programs. For
example, we do not restrict an app from participating in a distributed DoS attack by sending many HTTP
requests to a target host. Such concerns are platform-specific and outside the scope of our web framework.
We, however, remark that Hails composes well with existing OS-level isolation, resource management
and workload distribution mechanisms since each Hails app is run as a separate process.

Related Work

Information flow control and web applications The closest related work is LMonad [66]. LMonad
extends LIO and the Yesod [80] web framework to build secure web applications in Haskell. Like
Hails, LMonad ensures that database interactions adhere to policies. Different from Hails, LMonad does

28 Giffin et al. / Hails: Protecting Data Privacy in Untrusted Web Applications

not consider web platform; they only consider single-app scenarios. The tie in with the popular Yesod
framework does, however, make it easier to retrofit existing applications with security.

A series of work based on Jif addresses security in web applications. Servlet Information Flow (SIF) [18]
is a framework that allows programmers to write their web applications as Servlets in Jif. Swift [17],
based on Jif/split [97,101], compiles Jif-like code for web applications into JavaScript code running
on the client-side and Java code running on the server by applying a clever partitioning algorithm. SIF
and Swift do not support information flow control involving databases or untrusted executables as Hails
does. However, we believe that their partitioning approach could potentially be used by Hails to confine
JavaScript in legacy browsers.

Ur/Web [15] is a domain specific language for web application development that includes a static
information flow analysis called UrFlow. Policies are expressed in the form of SQL queries and while
statically enforced, can depend on dynamic data from the database. Security can also be enforced on
the client side in a similar manner to Swift, with Ur/Web compiling to both the server and client. A
crucial difference from Hails is that Ur/Web does not aim to support a platform architecture consisting
of mutually distrustful applications. Moreover, Hails is more amendable to extensions such as executing
untrusted binaries or scaling to a distributed setting.

Logical attestation [79] allows specifying a security policy in first-order logic and the system ensures
that the policy is obeyed by all server-side components. This system was implemented as a new OS,
called Nexus [79]. Hails’s DC labels are similar to Nexus’ logical attestation, but based on a simpler
logic: propositional logic. A crucial difference between Nexus and Hails is that Hails provides fine
grained labeling and a framework for separating data-manipulating code from other application logic at
the language level. For a web framework, fine grained policies are desirable; the language-level approach
used by Hails also addresses the limitations of cobufs used in Nexus, as discussed in [79]. Moreover,
requiring users to install a new OS as opposed to a library is not always feasible. Nevertheless, their
work is very much complimentary: A Hails platform could potentially use Nexus to execute untrusted
executables in an environment that is less restricting that our Linux jail (e.g., it could have network access
as directed by Nexus).

Laminar [73] combines operating systems and programming languages IFC techniques to jointly
provide application and OS end-to-end guarantees. At the application level, Laminar enforces IFC within
certain code regions named security regions—where labeled data can be accessed. This is similar to our
underlying confinement system, LIO, which enforces IFC at the thread level. Unlike Hails, Laminar does
not extend enforcement to the browser nor address a challenge that underlies most IFC systems: how to
specify policy. However, their OS confinement approach is considerably more flexible than ours; as with
Nexus, using Laminar’s OS-level confinement in Hails would be an interesting direction.

Another closely related work is Jeeves [94]. Jeeves is a language-level IFC system that separates policy
specification from the rest of the program that implements functionality. This is similar to our approach
of separating applications into MPs, where policy and data models are specified, and VCs, where the app
functionality is implemented. They, however, impose this design principle in the language design, whereas
Hails imposes this in the framework, atop LIO. This has allowed us to change the policy specification
language over time to address usability factors—and, importantly, still allows others to use wholly different
policy languages. Moreover, this design choice has allowed us to iterate on the design of LIO itself; in
contrast to Jeeves, and most dynamic language-level IFC systems, LIO proves a stronger security theorem
(termination-sensitive noninterference), supports advanced language features (e.g., threads, exceptions,
recovery from IFC failures, etc.), provides good performance (as demonstrated by Hails) and does not
impose new language semantics.

Giffin et al. / Hails: Protecting Data Privacy in Untrusted Web Applications 29

In Jeeves, programmers that implement functionality do so by writing policy-agnostic code. This is a
desirable property since it would mean, in the context of Hails, that a VC developer wouldn not need to
be aware of the policies specified by an MP. And indeed, a subset of the Hails database API does handel
labels transparently (e.g., findOne unlabels documents) to hide some details from the developer. However,
our experience implementing web applications so far suggests that programmers need to be aware of and
able to inspect labels. This is needed, for instance, to cleanly handle policy violations when they occur. It
would, however, be an interesting exploration to extend Hails to a hybrid model that additionally supports
faceted values, potentially by building on the work of Austin et al. [2].

Jeeves was recently used in the Jacqueline web framework [95], which allows Jeeves policies to be
specified on data stored in a database. As discussed in Section 7, Hails does not yet support this—all
application code must interface with an MP. Jacqueline’s guarantees do not extend to the browser or OS,
but we do not see a fundamental limitation.

Another closely related work is W5 [45]. Similar to Hails, they propose a separation of user data and
policies (MPs), from from the application logic (VCs). Moreover, they propose an architecture that, like
Hails, uses IFC to address issues with current website architectures. W5’s design is structured around OS-
level IFC systems. This approach is less flexible in being coarser grained, but, like Nexus, complimentary.
A distinguishing factor from W5 is our ability to report on the implementation and evaluation of a system
that has been used in production.

Secure web frameworks OKWS [46], Diesel [29], and Radiatus [13] are web frameworks that use
privilege separation and least privilege to reduce damages due vulnerable app code. OKWS applies
privilege separation to application services, Radiatus to users, and Diesel focuses on separating database
access rights. Unlike IFC, the mechanisms underlying these frameworks provide weaker guarantees. For
example, they assume that applications are written by developers that have the user’s best interests at
heart, and thus cannot protect against untrusted code or code injection attacks.

Resin [96] allow developers to specify data flow policies that the runtime then enforces on application
code. This is sufficient for many applications, but like the aforementioned (non-IFC) secure frameworks,
Resin provides weaker guarantees and is not appropriate for platform deployments. Resin’s policies are,
however, more general and expressive than our label model (since they allow for arbitrary code).

Passe [6] isolates applications (into controllers) and enforces data and control-flow dependencies
between the app, browser and database. The system’s guarantees are not as strong as Hails’ IFC guarantees
and its somewhat complex training phase make its difficult for Passe to be applied to platforms. However,
Passe can be used to secure existing applications, whereas Hails and most other frameworks require
developers to change their applications. Moreover, Passe infers an application’s policy from tests and does
not require developers to a-priory specify policies. We believe that it is possible for us to infer policies
from applications traces (with most-permissive policies) in much the same way, but we leave this to future
work.

Mylar [69] is a web framework that provides data confidentiality and authenticity even when a server is
under the control of an attacker. Mylar relies on CryptDB [68] to protect data stored in the database and
assumes that code running in the browser is trusted. Mylar is mostly complimentary to our approach. In
particular, we believe that COWL can be used to address certain shortcomings of Mylar—that of leaking
data client-side—while Mylar and CryptDB can be used to address shortcomings in our work—e.g.,
reduce (or eliminate) the need to trust MPs.

Trust management Trust Management is an approach to distributed access control and authorization,
popularized in [7]. Related work includes [1,8,23,50,49]. One central idea in trust management, which

30 Giffin et al. / Hails: Protecting Data Privacy in Untrusted Web Applications

we follow in the present paper, is to separate policy from other components of the system. However, trust
management makes access control decisions based on policy supplied by multiple parties; in contrast,
our approach draws on information flow concepts, avoiding the need for access requests and grant/deny
decisions.

Persistent storage Li and Zdancewic [51] enforce information flow control in PHP programs that
interact with a relational database. They statically indicate the types of the input fields and the results
of a predetermined number of database queries. In contrast, Hails allows arbitrary queries on keys and
automatically infers the security levels of the returned results.

Extending Jif, Fabric [53] is an IFC language that is used to build distributed programs with support for
data stores and transactions. Fabric safely stores objects, with exactly one security label, into a persistent
storage consisting of a collection of objects. Different from Fabric, Hails store units (documents) can
have different security labels for individual elements. Like Fabric, Hails can only fetch documents based
on key fields.

BStore [12] separates application and data storage code in a similar fashion to Hails’s separation of code
into VCs and MPs. Their abstraction is at the file system granularity, enforcing policies by associating
labels with files. Our main contribution provides a mechanism for associating labels with finer grained
objects—namely Haskell values. We believe that BStore is complimentary since they address similar
issues, but on the client side.

SeLINQ [75], IFDB [76], and [54,55] enforce information flow control in database systems. Most
of these works are complimentary. One important aspect of making Hails usable is the policy DSL
(which is tied to the data model); the dependent types approach of [54,55] have a similar data model and
policy application approach to ours, but in a static setting. Using database systems such as these would
potentially allow Hails applications to fetch and store data without invoking MP code and thus facilitate
multi-language platforms.

Conclusion

Ad hoc security and privacy mechanisms based on access control lists are an awkward fit for modern
web frameworks that must protect sensitive user data while incorporating third-party apps. To address
this, we developed Hails, a framework for building web platforms that applies confinement mechanisms
at the language, OS, and browser levels, allowing mutually-untrusted apps to interact safely. Because the
framework promotes information flow policies to first-class status, platform and app authors may specify
policy concisely in one place and be assured that the desired constraints on confidentiality and integrity
are enforced in a mandatory fashhion across all components in the system, whatever their quality or
provenance.

As a demonstration of the expressiveness of Hails, we built a production system, GitStar, whose central
function of hosting source-control repositories with user-configurable sharing is enriched by various third-
party apps. Beyond GitStar, we built several other platforms using Hails and enlisted several third-party
develoers to build VCs and MPs for these platforms. These experiences demonstrate the ability of Hails
to support a platform consisting of mutually-distrustful apps written by numerous authors, where flexible
security policies, as required by real-world users, can nevertheless be enforced.

Acknowledgments

We thank Amy Shen, Samuel Alazar, Nicole Crawford, Ryan Diaz, Enzo Haussecker, Michael Lublin,
Ashwin Siripurapu, Eric Stratmann, for sharing their Hails development experience with us. We thank
Anshul Chandan, Jon Howell, Diego Ongaro, Mike Piatek, Justine Sherry, Joe Zimmerman, the OSDI’12

Giffin et al. / Hails: Protecting Data Privacy in Untrusted Web Applications 31

reviewers, and the JCS reviewers for their helpful comments on earlier drafts of this paper. We thank
our editors Toby Murray, Andrei Sabelfeld, and Lujo Bauer for their help in preparing this paper. We
thank the Intrinsic (formerly GitStar) team and the UPenn CRASH team for their helpful comments on
the confinement mechanism designs and implementations. This work was funded by DARPA CRASH
under contract #N66001-10-2-4088, by multiple gifts from Google, by a gift from Mozilla, and by the
Swedish research agency VR and STINT. Deian Stefan was supported by the DoD through the NDSEG
Fellowship Program.

References

[1] M. Abadi, M. Burrows, B. Lampson, and G. Plotkin. A calculus for access control in distributed systems. ACM
Transactions on Programming Languages and Systems, 15(4):706–734, Oct. 1993.

[2] T. H. Austin, K. Knowles, and C. Flanagan. Typed faceted values for secure information flow in Haskell. Technical Report
UCSC-SOE-14-07, 2014.

[3] L. Badger, D. F. Sterne, D. L. Sherman, K. M. Walker, and S. A. Haghighat. Practical domain and type enforcement for
unix. In Security and Privacy, pages 66–77. IEEE, 1995.

[4] A. Barth. The web origin concept. Technical report, IETF, 2011. URL https://tools.ietf.org/html/rfc6454.

[5] K. Bhargavan, A. Delignat-Lavaud, and S. Maffeis. Language-based defenses against untrusted browser origins. In
USENIX Security, pages 653–670, 2013.

[6] A. Blankstein and M. J. Freedman. Automating isolation and least privilege in web services. In Security and Privacy,
pages 133–148. IEEE, 2014.

[7] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust management. In Security and Privacy, pages 164–173. IEEE,
1996.

[8] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis. The KeyNote Trust-Management System Version 2. RFC 2704
(Informational), Sept. 1999. URL http://www.ietf.org/rfc/rfc2704.txt.

[9] A. Bortz and D. Boneh. Exposing private information by timing web applications. In World Wide Web. ACM, 2007.
[10] British Standards Institution. Ergonomic requirements for office work with visual display terminals (VDTs). 1998.

[11] P. Buiras and A. Russo. Lazy programs leak secrets. In Nordic Conference on Secure IT Systems, pages 116–122. Springer,
2013.

[12] R. Chandra, P. Gupta, and N. Zeldovich. Separating web applications from user data storage with BSTORE. In USENIX
conference on Web application development, 2010.

[13] R. Cheng, W. Scott, P. Ellenbogen, J. Howell, and T. Anderson. Radiatus: Strong user isolation for scalable web
applications. Technical report, University of Washington, 2014.

[14] W. Cheng, D. Ports, D. Schultz, V. Popic, A. Blankstein, J. Cowling, D. Curtis, L. Shrira, and B. Liskov. Abstractions for
usable information flow control in Aeolus. In USENIX Annual Technical Conference, 2012.

[15] A. Chlipala. Static checking of dynamically-varying security policies in database-backed applications. In Operating
Systems Design and Implementation. USENIX, 2010.

[16] K. Chodorow and M. Dirolf. MongoDB: the definitive guide. O’Reilly Media, Inc., 2010.

[17] S. Chong, J. Liu, A. C. Myers, X. Qi, K. Vikram, L. Zheng, and X. Zheng. Secure web applications via automatic
partitioning. pages 31–44, Oct. 2007.

[18] S. Chong, K. Vikram, and A. C. Myers. SIF: Enforcing confidentiality and integrity in web applications. In USENIX
Security, pages 1–16, 2007.

[19] CodeMirror. CodeMirror, November 2015. http://codemirror.net/.

[20] M. B. Consulting. Jetty webserver, March 2012. http://jetty.codehaus.org/jetty/.
[21] D. Crockford. Making JavaScript safe for advertising. http://adsafe.org/.

[22] D. E. Denning. A lattice model of secure information flow. Communications of the ACM, 19(5):236–243, 1976.
[23] J. DeTreville. Binder, a logic-based security language. In Security and Privacy, pages 105–113. IEEE, 2002.

[24] Disqus. Disqus, November 2015. https://disqus.com/.

[25] Docker. Introduction to container security, March 2015. https://d3oypxn00j2a10.cloudfront.net/assets/img/
Docker%20Security/WP_Intro_to_container_security_03.20.2015.pdf.

[26] C. Doctorow. United website breach let fliers see each others’ private data, January 2015. https://boingboing.net/
2015/01/28/united-website-breach-let-flie.html.

32 Giffin et al. / Hails: Protecting Data Privacy in Untrusted Web Applications

[27] L. Dusseault and J. M. Snell. PATCH method for HTTP. Technical report, IETF, 2010. URL https://tools.ietf.
org/html/rfc5789.

[28] Facebook. FBJS (Facebook JavaScript). http://developers.facebook.com/docs/fbjs/.

[29] A. P. Felt, M. Finifter, J. Weinberger, and D. Wagner. Diesel: applying privilege separation to database access. In
Symposium on Information, Computer and Communications Security, pages 416–422. ACM, 2011.

[30] E. W. Felten and M. A. Schneider. Timing attacks on web privacy. In Computer and Communications Security. ACM,
2000.

[31] FP Complete. School of Haskell, November 2015. https://www.fpcomplete.com/school.
[32] M. Garrett. Container security with SELinux and CoreOS, September 2015. https://coreos.com/blog/container-

security-selinux-coreos/.

[33] D. B. Giffin, A. Levy, D. Stefan, D. Terei, D. Mazières, J. Mitchell, and A. Russo. Hails: Protecting data privacy in
untrusted web applications. In Operating Systems Design and Implementation. USENIX, October 2012.

[34] Google. Google code prettify, September 2012. http://code.google.com/p/google-code-prettify/.
[35] Hails team. The hails [Haskell] package. http://hackage.haskell.org/package/hails.

[36] D. Hedin and A. Sabelfeld. A perspective on information-flow control. In Software Safety and Security - Tools for
Analysis and Verification, pages 319–347. IOS Press, 2012.

[37] S. Heule, D. Stefan, E. Z. Yang, J. C. Mitchell, and A. Russo. IFC inside: Retrofitting languages with dynamic information
flow control. In Principles of Security and Trust. Springer, 2015.

[38] C. Hriţcu, M. Greenberg, B. Karel, B. C. Pierce, and G. Morrisett. All your IFCException are belong to us. In Security
and Privacy, pages 3–17. IEEE, 2013.

[39] M. Huilgol. Facebook’s latest security vulnerability allows third party applications to delete Facebook pages permanently,
August 2015. http://techpp.com/2015/08/27/facebook-pages-security-vulnerability/.

[40] S. Isaacs. Microsoft web sandbox. http://www.websandbox.org/.
[41] R. Kainda, I. Flechais, and A. Roscoe. Security and usability: Analysis and evaluation. In Availability, Reliability, and

Security, pages 275–282. IEEE, 2010.

[42] S. Khandelwal. Facebook vulnerability allows hacker to delete any photo album, February 2015. https://
thehackernews.com/2015/02/hacking-facebook-photo-album.html.

[43] S. Kovach. Nearly 7 million Dropbox passwords have been hacked, October 2014. http://www.businessinsider.
com/dropbox-hacked-2014-10.

[44] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek, E. Kohler, and R. Morris. Information flow control for
standard OS abstractions. In Symposium on Operating Systems Principles, October 2007.

[45] M. Krohn, A. Yip, M. Brodsky, R. Morris, and M. Walfish. A World Wide Web Without Walls. In Hot Topics in
Networking, Atlanta, GA, 2007.

[46] M. N. Krohn. Building secure high-performance web services with OKWS. In USENIX Annual Technical Conference,
pages 185–198, 2004.

[47] D. Larochelle and D. Evans. Statically detecting likely buffer overflow vulnerabilities. In USENIX Security, August 2001.

[48] L. Latif. Github suffers a Ruby on Rails public key vulnerability, March 2012. http://www.theinquirer.net/
inquirer/news/2157093/github-suffers-ruby-rails-public-key-vulnerability.

[49] N. Li and J. C. Mitchell. RT: A role-based trust-management framework. In DARPA Information Survivability Conference
and Exposition. IEEE Computer Society, 2003.

[50] N. Li, W. H. Winsborough, and J. C. Mitchell. Distributed credential chain discovery in trust management. Journal of
Computer Security, 11(1):35–86, Feb. 2003.

[51] P. Li and S. Zdancewic. Practical information-flow control in web-based information systems. In Computer Security
Foundations. IEEE Computer Society, 2005.

[52] F. Lifton. Advancing Docker security: Docker 1.4.0 and 1.3.3 releases, December 2014. https://blog.docker.com/
2014/12/advancing-docker-security-docker-1-4-0-and-1-3-3-releases/.

[53] J. Liu, M. D. George, K. Vikram, X. Qi, L. Waye, and A. C. Myers. Fabric: A platform for secure distributed computation
and storage. In Symposium on Operating Systems Principles. ACM, 2009.

[54] L. Lourenço and L. Caires. Information flow analysis for valued-indexed data security compartments. In Trustworthy
Global Computing, pages 180–198. Springer, 2014.

[55] L. Lourenço and L. Caires. Dependent information flow types. In Principles of Programming Languages, pages 317–328.
ACM, 2015.

Giffin et al. / Hails: Protecting Data Privacy in Untrusted Web Applications 33

[56] J. MacFarlane. Pandoc: a universal document converter. http://johnmacfarlane.net/pandoc/.

[57] S. Maffeis and A. Taly. Language-based isolation of untrusted JavaScript. In Computer Security Foundations, pages
77–91. IEEE Computer Society, 2009.

[58] J. Mayer and J. Mitchell. Third-party web tracking: Policy and technology. In Security and Privacy, pages 413–427.
IEEE, 2012.

[59] M. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay. Caja: Safe active content in sanitized javascript. http://google-
caja.googlecode.com/files/caja-spec-2008-06-07.pdf, June 2008.

[60] N. Mitchell. HLint Manual. http://community.haskell.org/~ndm/darcs/hlint/hlint.htm.
[61] E. Moggi. Notions of computation and monads. Information and Computation, 93(1):55–92, 1991.

[62] B. Montagu, B. C. Pierce, and R. Pollack. A theory of information-flow labels. In Computer Security Foundations. IEEE
Computer Society, 2013.

[63] D. Mosberger and T. Jin. httperf-a tool for measuring web server performance. ACM SIGMETRICS Performance
Evaluation Review, 26(3):31–37, 1998.

[64] A. C. Myers and B. Liskov. A decentralized model for information flow control. In Symposium on Operating Systems
Principles, pages 129–142. ACM, 1997.

[65] A. C. Myers and B. Liskov. Protecting privacy using the decentralized label model. ACM Transactions on Computer
Systems, 9(4):410–442, 2000.

[66] J. L. Parker. LMonad: Information flow control for Haskell web applications. Master’s thesis, University of Maryland,
2014.

[67] J. Petazzoni. Containers & Docker: How secure are they?, August 2013. https://blog.docker.com/2013/08/
containers-docker-how-secure-are-they/.

[68] R. A. Popa, C. Redfield, N. Zeldovich, and H. Balakrishnan. CryptDB: protecting confidentiality with encrypted query
processing. In Symposium on Operating Systems Principles, pages 85–100. ACM, 2011.

[69] R. A. Popa, E. Stark, J. Helfer, S. Valdez, N. Zeldovich, M. F. Kaashoek, and H. Balakrishnan. Building web applications
on top of encrypted data using Mylar. In Networked Systems Design and Implementation, pages 157–172, 2014.

[70] T. Preston-Werner. Public key security vulnerability and mitigation, March 2012. https://github.com/blog/1068-
public-key-security-vulnerability-and-mitigation.

[71] D. Recordon and D. Reed. OpenID 2.0: a platform for user-centric identity management. In Workshop on Digital Identity
Management, pages 11–16. ACM, 2006.

[72] P. M. Rondon, M. Kawaguci, and R. Jhala. Liquid types. In SIGPLAN Notices, volume 43, pages 159–169. ACM, 2008.
[73] I. Roy, D. E. Porter, M. D. Bond, K. S. McKinley, and E. Witchel. Laminar: Practical Fine-grained Decentralized

Information Flow Control. In Programming Language Design and Implementation. ACM, 2009.

[74] J. H. Saltzer and M. D. Schroeder. The protection of information in computer systems. Proceedings of the IEEE, 63(9):
1278–1308, September 1975.

[75] D. Schoepe, D. Hedin, and A. Sabelfeld. SeLINQ: tracking information across application-database boundaries. In
International Conference on Functional Programming, pages 25–38. ACM, 2014.

[76] D. Schultz and B. Liskov. IFDB: decentralized information flow control for databases. In European Conference on
Computer Systems, pages 43–56. ACM, 2013.

[77] B. Shackel. Usability-context, framework, definition, design and evaluation. Human factors for informatics usability,
pages 21–37, 1991.

[78] Sinatra. Sinatra, September 2012. http://www.sinatrarb.com/.

[79] E. Sirer, W. de Bruijn, P. Reynolds, A. Shieh, K. Walsh, D. Williams, and F. Schneider. Logical attestation: an authorization
architecture for trustworthy computing. In Symposium on Operating Systems Principles, pages 249–264. ACM, 2011.

[80] M. Snoyman. Developing web applications with Haskell and Yesod. " O’Reilly Media, Inc.", 2012.
[81] E. Steel and G. Fowler. Facebook in privacy breach. The Wall Street Journal, 18, October 2010.

[82] D. Stefan. Confinement with origin web labels. http://www.w3.org/TR/2015/WD-COWL-20151015/, October 2015.

[83] D. Stefan, A. Russo, D. Mazières, and J. C. Mitchell. Disjunction category labels. In Nordic Conference on Secure IT
Systems. Springer, 2011.

[84] D. Stefan, A. Russo, J. C. Mitchell, and D. Mazières. Flexible dynamic information flow control in Haskell. In Symposium
on Haskell, pages 95–106, 2011.

[85] D. Stefan, A. Russo, P. Buiras, A. Levy, J. C. Mitchell, and D. Mazières. Addressing covert termination and timing
channels in concurrent information flow systems. In International Conference on Functional Programming. ACM, 2012.

34 Giffin et al. / Hails: Protecting Data Privacy in Untrusted Web Applications

[86] D. Stefan, P. Buiras, E. Z. Yang, A. Levy, D. Terei, A. Russo, and D. Mazières. Eliminating cache-based timing attacks
with instruction-based scheduling. In European Symposium on Research in Computer Security. Springer, 2013.

[87] D. Stefan, E. Z. Yang, P. Marchenko, A. Russo, D. Herman, B. Karp, and D. Mazières. Protecting users by confining
JavaScript with COWL. In Operating Systems Design and Implementation. USENIX, 2014.

[88] D. Stefan, A. Russo, D. Mazières, and J. C. Mitchell. Flexible dynamic information flow control in the presence of
exceptions. Journal of Functional Programming, 27, 2017.

[89] B. Sterne, Mozilla Corp., A. Barg, and Google Inc. Content Security Policy, May 2012. https://dvcs.w3.org/hg/
content-security-policy/raw-file/tip/csp-specification.dev.html.

[90] A. Taly, Ú. Erlingsson, J. C. Mitchell, M. S. Miller, and J. Nagra. Automated analysis of security-critical javascript APIs.
In Security and Privacy. IEEE, 2011.

[91] D. Terei, S. Marlow, S. P. Jones, and D. Mazières. Safe Haskell. In Symposium on Haskell, 2012.

[92] M. Vassena, P. Buiras, L. Waye, and A. Russo. Flexible manipulation of labeled values for information-flow control
libraries. In European Symposium on Research in Computer Security, pages 538–557. Springer, 2016.

[93] E. Yang, D. Stefan, J. Mitchell, D. Mazières, P. Marchenko, and B. Karp. Toward principled browser security. In Hot
Topics in Operating Systems. USENIX, 2013.

[94] J. Yang, K. Yessenov, and A. Solar-Lezama. A language for automatically enforcing privacy policies. In Principles of
Programming Languages, pages 85–96. ACM, 2012.

[95] J. Yang, T. Hance, T. H. Austin, A. Solar-Lezama, C. Flanagan, and S. Chong. End-to-end policy-agnostic security for
database-backed applications. CoRR, abs/1507.03513, 2015. URL http://arxiv.org/abs/1507.03513.

[96] A. Yip, X. Wang, N. Zeldovich, and M. F. Kaashoek. Improving application security with data flow assertions. In
Symposium on Operating systems principles, pages 291–304. ACM, 2009.

[97] S. Zdancewic, L. Zheng, N. Nystrom, and A. C. Myers. Untrusted hosts and confidentiality: Secure program partitioning.
In Symposium on Operating Systems Principles. ACM, 2001.

[98] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières. Making information flow explicit in HiStar. In Operating
Systems Design and Implementation, pages 263–278, 2006.

[99] N. Zeldovich, S. Boyd-Wickizer, and D. Mazières. Securing distributed systems with information flow control. In
Networked Systems Design and Implementation, pages 293–308, 2008.

[100] L. Zeltser. Security risks and benefits of Docker application containers, June 2015. https://zeltser.com/security-
risks-and-benefits-of-docker-application/.

[101] L. Zheng, S. Chong, A. C. Myers, and S. Zdancewic. Using replication and partitioning to build secure distributed
systems. In Security and Privacy. IEEE, 2003.

