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Abstract. Language-based information-flow security considers programs that
manipulate pieces of data at different sensitivity levels. Securing information flow
in such programs remains an open challenge. Recently, considerable progress has
been made on understanding dynamic monitoring for secure information flow.
This paper presents a framework for inlining dynamic information-flow moni-
tors. A novel feature of our framework is the ability to perform inlining on the fly.
We consider a source language that includes dynamic code evaluation of strings
whose content might not be known until runtime. To secure this construct, our in-
lining is done on the fly, at the string evaluation time, and, just like conventional
offline inlining, requires no modification of the hosting runtime environment. We
present a formalization for a simple language to show that the inlined code is
secure: it satisfies a noninterference property. We also discuss practical consider-
ations and preliminary experimental results.

1 Introduction

Language-based approach to security gains increasing popularity [16, 36,45, 33,19, 27,
7,11] because it provides natural means for specifying and enforcing application and
language-level security policies. Popular highlights include Java stack inspection [45],
to enforce stack-based access control, Java bytecode verification [19], to verify byte-
code type safety, and web language-based mechanisms such as Caja [27], ADsafe [7],
and FBIJS [11], to enforce sandboxing and separation by program transformation and
language subsets.

Language-based information-flow security [33] considers programs that manipulate
pieces of data at different sensitivity levels. For example, a web application might oper-
ate on sensitive (secret) data such as credit card numbers and health records and at the
same time on insensitive (public) data such as third-party images and statistics. A key
challenge is to secure information flow in such programs, i.e., to ensure that informa-
tion does not flow from secret inputs to public outputs. There has been much progress
on tracking information flow in languages of increasing complexity [33], and, conse-
quently, information-flow security tools for languages such as Java, ML, and Ada have
emerged [28, 38, 39].

While the above tools are mostly based on static analysis, considerable progress
has been also made on understanding monitoring for secure information flow [12,43,
41,18,17,37,25,34,2,1]. Mozilla’s ongoing project FlowSafe [9] aims at empower-
ing Firefox with runtime information-flow tracking, where dynamic information-flow
reference monitoring [2, 3] lies at its core. The driving force for using the dynamic tech-
niques is expressiveness: as more information is available at runtime, it is possible to



use it and accept secure runs of programs that might be otherwise rejected by static
analysis.

Dynamic techniques are particularly appropriate to handle the dynamics of web
applications. Modern web application provide a high degree of dynamism, responding
to user-generated events such as mouse clicks and key strokes in a fine-grained fashion.
One popular feature is auto-completion, where each new character provided by the user
is communicated to the server so that the latter can supply an appropriate completion
list. Features like this rely on scripts in browsers that are written in a reactive style. In
addition, scripts often utilize dynamic code evaluation to provide even more dynamism:
a given string is parsed and evaluated at runtime.

With a long-term motivation of securing a scripting language with dynamic code
evaluation (such as JavaScript) in a browser environment without modifying the browser,
the paper turns attention to the problem of inlining information security monitors. In-
lined reference monitors [10] are realized by modifying the underlying application with
inlined security checks. Inlining security checks are attractive because the resulting
code requires no modification of the hosting runtime environment. In a web setting, we
envisage that the kind of inlining transformation we develop can be performed by the
server or a proxy so that the client environment does not have to be modified.

We present a framework for inlining dynamic information-flow monitors. For each
variable in the source program, we deploy a shadow variable (auxiliary variable that
is not visible to the source code) to keep track of its security level. Additionally, there
is a special shadow variable program counter pc to keep track of the security context,
i.e., the least upper bound of security levels of all guards for conditionals and loops that
embody the current program point. The pc variable helps tracking implicit flows [8] via
control-flow constructs.

A novel feature of our framework is the ability to perform inlining on the fly. We
consider a source language that includes dynamic code evaluation (popular in languages
as JavaScript, PHP, Perl, and Python). To secure dynamic code evaluation, our inlining
is performed on the fly, at the string evaluation time, and, just like conventional offline
inlining, requires no modification of the hosting runtime environment. The key element
of the inlining is providing a small library packaged in the inlined code, which imple-
ments the actual inlining.

Our approach stays clear of the pitfalls of dynamic information-flow enforcement.
Indeed, dynamic information-flow tracking is challenging because the source of inse-
curity may be the fact that a certain event has not occurred in a monitored execution.
However, we draw on recent results on dynamic information-flow monitoring [34, 2]
that show that security can be enforced purely dynamically. The key is that the execu-
tion of a program that attempts to leak a secret either explicitly, by an assignment, or
implicitly, by public side effects once inside a conditional or loop that branches on se-
cret data, is simply blocked by the monitor. This gives us a great advantage for treating
dynamic code evaluation: the inlined monitor needs to perform no static analysis for the
dynamically evaluated code.

We present a formalization for a simple language to show that the result of the
inlining is secure: it satisfies the baseline policy of termination-insensitive noninterfer-
ence [6, 13,44,33]: whenever two runs of a program that agree on the public part of the



3
i

(def f(z) =¢;)*c e u=s|L|lx|e®el| f(e)|casecof (e : )t

¢ ==skip|x:=e]|c¢;c|if ethencelsec|whileedoc|letz =einc|eval(e) | stop
Fig. 1. Language

initial memory terminate, then the final memories must also agree on the public part.
We conclude by discussing practical considerations and preliminary yet encouraging
experimental results.

We remark that it is known that noninterference is not a safety property [26, 40].
Precise characterizations of what can be enforced by monitoring have been studied in
the literature (e.g., [35, 14]), where noninterference is discussed as an example of a
policy that cannot be enforced precisely by dynamic mechanisms. However, the focus
of this paper is on enforcing permissive yet safe approximations of noninterference.
The exact policies that are enforced might just as well be safety properties (or not), but,
importantly, they must guarantee noninterference.

2 Inlining transformation

We present an inlining method for a simple imperative language with dynamic code
evaluation. The inlined security analysis has a form of flow sensitivity, i.e., confiden-
tiality levels of variables can be sometimes relabeled during program execution. Our
source-to-source transformation injects purely dynamic security checks.

EVAL Language Figure 1 presents a
(e|m,X) s parse(s) = ¢ simple imperative language en-
(eval(e) |m, Z) — (c|m, Z) riched with functions, local vari-

ables, and dynamic code evalua-

tion. A program P is a possibly

Fig. 2. Semantics for dynamic code evaluation ~ empty sequence of function defi-

nitions (def f(xz) = e) followed

by a command c. Function bodies are restricted to using the formal parameter vari-

able only (FV(e) C {z}, where FV(e) denotes the free variables that occur in e).

Expressions e consist of strings s, security levels ¢, variables x, composite expressions

e @ e (where @ is a binary operation), function calls f(e), and non-empty case anal-

ysis (case e of (e : e)T). We omit explanations for the standard imperative instruc-

tions appearing in the language [46]. Command stop signifies termination. Command

let z = e in c binds the value of e to the local read-only variable =, which is only

visible in ¢. Command eval(e) takes a string e, which represents a program, and runs
1t.

Semantics A program P, memory m, and function environment X form a program con-
figuration (P | m, X). A memory m is a mapping from global program variables Vars
to values Vals. A function environment X' consists of a list of definitions of the form
def f(x) = e. A small semantic step has the form (P | m, X)) — (P’ | m/, X’) and



trans(y) =

case y of
” Skip” . ” Skip”
"xi=¢" : 7let ex =7 H vars("e’) H
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"whileedoc” :”let ex =7 H vars("e’) +H

"let pc’ = pc in pc := pc U lev(ex);while e do {7 +Htrans(c)
+H7}; pei=pc”

"letz=cinc” :"let ex =7 H vars("e’) H

"let ' = lev(ex) U pc inlet x = e in” +H-trans(c)

Veval(e)” :71let ex =" H vars("e”) +H

"let pc’ = pc in pc := pc U lev(ex); eval(trans(e)); pc := pc

St

Fig. 3. Inlining transformation

ex,pc, pc’, 1, ..., o, € Fresh(c)
I'tdef fi(z) =e1;...;def fi(x) =er;c~ def fi(x) =e1;...;def fi(z) = ex;
def vars(y) = ...;def lev(y) = ...;def trans(y) = .. .;

pc = L;x} = [(z1);...; 2, := I'(z,); eval(trans(c))
Fig. 4. Top-level transformation

possibly updates the command, memory, and function environment. The semantics for
dynamic code evaluation is shown in Figure 2. Dynamic code evaluation occurs when
expression e evaluates, under the current memory and function environment, to a string
s ({e | m, X)) | s), and that string is successfully parsed to a command (parse(s) = ¢).
For simplicity, we assume that executions of programs get stuck when failing to parse.
In a realistic programming language, however, failing to parse would result in a runtime
error. Semantics rules for the other commands are standard [46] and thus we omit them.

Inlining transformation Figure 3 contains the transformation for inlining. At the core of
the monitor is a combination of the no sensitive upgrade discipline by Austin and Flana-
gan [2] and a treatment of dynamic code evaluation from a flow-insensitive monitor by
Askarov and Sabelfeld [1]. String constants are enclosed by double-quote characters
(e.g., "text”). Operator H concatenates strings (e.g., ”conc” -H-”atenation” results
in ”concatenation”). Since trans only works on strings that represent programs, we
consider programs and strings as interchangeable terms. In order for the transformation
to work, variables x’ (for any global variable x), as well as ex, pc’, and pc must not
occur in the string received as argument. The selection of names for these variables
must avoid collisions with the source program variables, which is particularly impor-
tant in the presence of dynamic code evaluation. In an implementation, this can be
accomplished by generating random variable names for auxiliary variables. We differ
this discussion until Section 4.



Before explaining how the transformation works, we state our assumptions regard-
ing the security model. For convenience, we only consider the security levels L (low)
and H (high) as elements of a security lattice, where L = H and H [Z L. Security levels
L and H identify public and secret data, respectively. We assume that the attacker can
only observe public data, i.e., data at security level L. The lattice join operator Ll returns
the least upper bound over two given levels.

We now explain our inlining technique in detail. Given the source code src (as a
string) and a mapping I (called security environment) that maps global variables to
security levels, the inlining of the program is performed by the top-level rule in Figure
4. The rule has the form I - src ~ trg, where, under the initial security environ-
ment I, the source code src is transformed into the target code ¢rg. This rule defines
three auxiliary functions vars(-), lev(-), and trans(-) for extracting the variables in a
given string, for computing the least upper bound on the security level of a given string,
and for on-the-fly transformation of a given string, respectively. We discuss the defini-
tion of these functions below. The top-level rule also introduces an auxiliary shadow
variable pc, setting it to L, and a shadow variable ' for each source program global
variable z, setting it to the initial security level, as specified by the security environ-
ment ['. This is done to keep track of the current security levels of the context and of
the global variables (as detailed below). The shadow variables are fresh, i.e., their set is
disjoint from the variables that may occur in the configuration during the execution of
the source program. We denote by = € Fresh(c), whenever variable = never occurs in
the configuration during the execution of program c. With these definitions in place, the
inlined version of src is simply eval(trans(src)), which has the effect of on-the-fly
application of function ¢rans to the string src at runtime.

On-the-fly inlining We now describe the definition of function ¢rans(y) according to
the cases on y. Since functions are side-effect free, the inlining of function declarations
is straightforward: they are simply propagated to the result of the transformation. The
inlining of command skip requires no action. As foreshadowed above, special shadow
variable pc is used to keep track of the security context, i.e., the join of security levels
of all guards for conditionals and loops that embody the current program point. The pc
variable helps to detect implicit flows [8] of the form if h then ! := 0 else ] := 1,
where h and [ are secret and public variables, respectively. In addition, Austin and
Flanagan [2] use pc to restrict updates of variables’ security levels: changes of variables’
security levels are not allowed when the security context (pc) is set to H. This restriction
helps to prevent attackers from turning flow sensitivity into a channel for laundering
secrets [34,31]. With this in mind, the inlining of z := e demands that pc C x’ before
updating z’. In this manner, public variables (2’ = L) cannot change their security level
in high security contexts (pc = H). The security level of x is updated to the join of pc
and the security level of variables appearing in e.

Function lev(s) returns the least upper bound of the security levels of variables
encountered in the string s. The formal specification of lev(s) is given as L,/ cpy(s)7'.
Observe that directly calling lev(e) does not necessarily returns the confidentiality level
of e because the argument passed to lev is the result of evaluating e, which is a constant
string. To illustrate this point, consider w = "text”, w’ = H, and e = w. In this case,
calling lev(e) evaluates to lev(”text”), which is defined to be L since "text” does not



involve any variable. Clearly, setting lev(”text”) = L is not acceptable since the string
is formed from a secret variable. Instead, the transformation uses function vars to create
a string that involves all the variables appearing in an expression e (vars(”e”)). Observe
that such string is not created at runtime, but when inlining commands. Function vars
returns a string with the shadow variables of the variables appearing in the argument
string. For instance, assuming that e = "text” +H w H y, we have that vars(”e”) =
"w’ H y'”. Shadow variable «’ is then properly updated to pc Ul lev(ez), where ex =
vars(”e”). When pc [Z 2/, the transformation forces the program to diverge (loop) in
order to preserve confidentiality. We define loop as simply while 1 do skip. This is
the only case in the monitor where the execution of the program might be interrupted
due to a possible insecurity.

The inlining for sequential composition c;; cs is the concatenation of transformed
versions of ¢; and cg. The inlining of if e then c; else ¢ produces a conditional,
where their branches are transformed. The current value of pc is stored in the local vari-
able pc’, to be restored after the execution of the branch (pc := pc’). This manner to ma-
nipulate the pc, similar to traditional security type systems [44], avoids over-restrictive
enforcement. The inlining of while e do c is similar to the one for conditionals. The
inlining of let x = e in c determines the security level of the new local variable =
(2’ = lev(ex) U pc) and transforms the body of the let (trans(c)).

The inlining of dynamic code evaluation is the most interesting feature of the trans-
formation. Similarly to conditionals, the inlining of eval(e) saves the value of pc
(pc’ = pc) before updating it. Observe that the execution of commands depends on
the confidentiality level of e as well as the current value of pc (pc := pc U lev(ex)).
The value of pc is then restored by using pc’ after the execution of eval (pc := pc’).
In the transformed code, the transformation wires itself before executing calls to eval
(eval(trans(e))). As a consequence, the transformation performs inlining on-the-fly,
i.e., at the application time of the eval.

3 Formal results

This section presents the formal results. We prove the soundness of the transformation.
Soundness shows that transformed programs respect a policy of termination-insensitive
noninterference [6, 13,44, 33]. Informally, the policy demands that whenever two runs
of a program that agree on the public part of the initial memory terminate, then the final
memories must also agree on the public part. Two memories m; and my are I'-equal
(written m1; =p myo) if they agree on the variables whole level is L according to I’
(m1 =r mg =V € Vars. I'(x) = L = my(x) = my(x)). The formal statement of
noninterference is as follows.

Definition 1. For initial and final security environments I" and I"', respectively, a pro-

gram P satisfies noninterference (written |= {I"} ¢ {I"'}) if and only if whenever my =p

ma, (P|myq,-)—"(stop | m}, X1), and (P | mg, -)—"(stop | mb, 35), thenm/| =p
/

mh.

We sketch three lemmas that lead to the proof of noninterference. We start by show-
ing that the transformation only introduces shadow and local variables.



Lemma 1. Given a string e and a variable x, if x & FV(e), then x & FV(trans(e)).

Similarly to I'-equality, we define indistinguishability by a set of variables. Two
memories are indistinguishable by a set of variables V' if and only if the memories agree
on the variables appearing in V. Formally, m; =y maq EVreV- m1(z) = ma(x).
Given a memory m, we define L(m) to be the set of variables whose shadow variables
are set to L. Formally, L(m) = { z | « € m,2’ € m, ¢’ = L}. In the following
lemmas, let function environment X' contain the definitions of vars, lev, and trans as
described in the previous section. The next lemma shows that there are no changes in

the content and set of public variables when pc is set to H.

Lemma 2. Given a memory m and a string s representing a command c such that
m(pc) = H and (eval(trans(s)) | m, Xy—"(stop | m', X'), we have L(m) =
L(m') and m =,y m'.

The next lemma shows that neither the set of shadow variables set to L nor the
contents of public variables depend on secrets. More specifically, the lemma establishes
that two terminating runs of a transformed command ¢, under memories that agree on
public data, always produce the same public results and set of shadow variables assigned
to L.

Lemma 3. Given memories my, mo and a string s representing a command ¢, if L(m,) =
L(ma), m1 =p(m,) M2, and we have that (eval(trans(s)) | my, Xs)—"(stop | my, X7),
and (eval(trans(e)) | ma, X;)—"(stop | mb, Xb), then it holds that L(m/) = L(m)
and m’l =L(m}) m’2

To prove this lemma, we apply Lemma 2 when the program hits a branching instruc-
tion with secrets on its guard. The lemmas lead to a theorem that guarantees the sound-
ness of the inlining, i.e., that transformed code satisfies noninterference. Formally:

Theorem 1 (Soundness). For an environment I" and a program P, we have I' +
P ~ P = | {I'} P'{I""}, where I can be extracted from the shadow vari-
ables of any run that succeeds to terminate, i.e., the above is true for any I"' such that
if (P | m,-y—"(stop | m’, %) then I''(x) = L for all variables from L(m') and
I'"(x) = H, otherwise.

The theorem above is proved by evaluating the program P’ until reaching function
trans and then applying Lemma 3.

4 Experiments

With JavaScript as our target language, we have manually translated code according to
the transformation rules described in Section 2. In a fully-fledged implementation, the
transformation function can be implemented either as a set of regular expressions that
parse the supplied string and inline the monitor code or using a full JavaScript parser.
Although the parsing by the transformation function may not be generally equivalent to
the parsing by the browser, this does not affect the security of the resulting program.



var h = true; var 1 = true; var h = true; var 1 = true;
var 1 = false; var h = false; var 1 = false; var h = false;
if (h) { if (1) | if (h) { if (1) |

1 = true; h = true; eval (’1=true”’); eval ("h=true”’);

} } } }

Listing 1.1. Listing  1.2. Listing 1.3.Insecure Listing 1.4. Secure

Insecure code Secure code code with eval code with eval
var h = true; var h = true;
var 1 = false; var 1 = false;
let (pc = pc || shadow[’h’]) { let (pc = pc || shadow[’h”]) {
if (h) { if (h) {
if (!'pc || shadow[’17]) { let (pc = pc || false) {
shadow[’1’] = false || pc; eval (trans (’/1=true’));
1 = true; }
} }
else else {
throw new Error; throw new Error;
} }
} }
Listing 1.5. Listing 1.1 transformed Listing 1.6. Listing 1.3 transformed

Manual inlining The design of the monitor affects its performance in comparison to
the unmonitored code. Our analysis of the performance of the monitor shows that using
the 1let statement (which is readily available in, e.g., Firefox) has minimal impact on
the performance.

Consider the sample programs in Listings 1.1-1.4. Listing 1.1 is an example of
an implicit flow that is insecure: whether a low variable is assigned depends on the
value of a high variable in the guard. Listing 1.2 is a dual example that is secure. List-
ings 1.3 and 1.4 are versions of the same program with an eval. For simplicity, the
code includes the initialization of variables (both high, /, and low, [, ) with constants.
Listings 1.5 and 1.6 display the results of transformations for Listings 1.1 and 1.3 (with
some obvious optimizations). Tables 1 and 2 present the average performance of our
sample programs as well as their respective transformations. The performance is mea-
sured as the number of milliseconds to execute the specified number of iterations of a
loop that contains a given piece of code. Our experiments were performed on a Dell
Precision M2400 PC running Firefox version 3.5.7 on the Windows XP Professional
SP3 operating system. We have not included other browsers in our performance test
since Firefox is the only browser yet to support the let 1let-statement. The next sec-
tion discuss alternatives to using let and their impact on performance. As can be seen
from these results, the inlined monitor either entirely removes (when an insecurity is
suspected) or adds an overhead of about 2-3 times the execution time of the untrans-
formed code. The source code for these performance tests is available via [24].

The experiment with the manual inlining shows that the overhead is not unreason-
able but it has to be taken seriously for the transformation to scale. Thus, a fully-fledged
HhsraashenionbetdWe hieehildisclisomliprivaizes sosthwd ateBgsdid dmplpositsillides
fomapemiagtiohdritpBevdpting this equivalent structure in JavaScript would be to sur-
round the code block with a with statement. The with statement appends an object to
the scope chain, much like the 1et statement, so that its properties are directly accessi-



Iterations||Listing 1.1|Listing 1.5 (Listing 1.1 transformed)||Listing 1.2|Listing 1.2 transformed

10° 11 0 11 29

107 107 0 99 176
108 379 0 336 890
10° 2696 0 2677 8194

Table 1. Browser performance comparison for simple code

Iterations||Listing 1.3|Listing 1.6 (Listing 1.3 transformed)||Listing 1.4|Listing 1.4 transformed

103 37 0 38 58
10% 172 0 196 262
10° 1179 0 1219 1898
10° 13567 0 13675 18654

Table 2. Browser performance comparison for code with eval

ble as variables, effectively masking existing variables with the same name until the end
of the block. For example, invar x = { pc: true }; with(x){ pc },the
pc inside the with block refers to x . pc. This implementation would however be dis-
astrous for the monitor because the dynamic creation of new objects and manipulation
of the scope chain gave high resource demands, making it more than 1000 times slower
than the original code. A more efficient alternative to to 1let can be implemented by
defining the pc as an array. When entering a new block of code, the current index i
of the pc is incremented and pc [1] is set to the new value, e.g., pc[++1] = pc[i
-1] || shadow[’h’].

Secure inlining In a fully-fledged implementation, a secure monitor requires a method
of storing and accessing the shadow variables in a manner which prevents accidental or
deliberate access from the code being monitored and ensure their integrity.

By creating a separate name space for shadow variables, inaccessible to the moni-
tored code, we can prevent them from being accessed or overwritten. In JavaScript, this
can be achieved by creating an object with a name unique to the monitored code and
defining the shadow variables as properties of this object with names reflecting the vari-
able names found in the code. Reuse of names makes conversion between variables in
the code and their shadow counterparts simple and efficient. However, the transforma-
tion must ensure that the aforementioned object is not accessed within the code being
monitored.

The ability of code to affect the monitor is crucial for the monitor to be secure.
JavaScript, however, provides multiple ways of affecting its runtime environment. Even
if the code is parsed to remove all direct references to the monitor state variables,
like pc, indirect access as in x = ‘pc’; this[x] provides another alternative.
Not only is the integrity of the auxiliary variables important, but also the integrity of
the transformation function. Monitored code can attempt to replace the transformation
function with, e.g., the identity function, i.e., this [’ trans’] = function (s) {

return s }. We envisage a combination of our monitor with safe language subset
and reference monitoring technology [27,7, 11,22,21] to prevent operations that com-
promise the integrity of the monitor.



Scaling up Although these results are based on a subset of JavaScript, they scale to
a more significant subset. We expect the handling of objects to be straightforward, as
fields can be treated similarly to variables. Compared to static approaches, there is no
need to restrict aliasing since the actual alias are available at runtime. In order to prevent
implicit flows through exceptions, the transformation can be extended to extract control
flow information from try/catch statements and use it for controlling side effects.
In order to address interaction between JavaScript and the Document Object Model, we
rely on previous results on tracking information flow in dynamic tree structures [32]
and on monitoring timeout primitives [30].

5 Related Work

Language-based information-flow security encompasses a large body of work, see an
overview [33]. We briefly discuss inlining, followed by a consideration of most related
work: on formalizations of purely dynamic and hybrid monitors for information flow.

Inlining Inlined reference monitoring [10] is a mainstream technique for enforcing
safety properties. A prominent example in the context of the web is BrowserShield [29]
that instruments scripts with checks for known vulnerabilities. The focus of this paper is
on inlining for information-flow security. Information flow is not a safety property [26],
but can be approximated by safety properties (e.g., [4, 34, 2]), just like it is approximated
in this paper (see the remark at the end of Section 1).

Most recently, and independently of this work, Chudnov and Naumann [5] have
investigated an inlining approach to monitoring information flow. They inline a flow-
sensitive hybrid monitor by Russo and Sabelfeld [31]. The soundness of the inlined
monitor is ensured by bisimulation of the inlined monitor and the original monitor.

Dynamic information-flow enforcement Fenton [12] discusses purely dynamic mon-
itoring for information flow but does not prove noninterference-like statements. Vol-
pano [43] considers a purely dynamic monitor to prevent explicit flows. Implicit flows
are allowed, and so the monitor does not enforce noninterference. In a flow-insensitive
setting, Sabelfeld and Russo [34] show that a purely dynamic information-flow monitor
is more permissive than a Denning-style static information-flow analysis, while both
the monitor and the static analysis guarantee termination-insensitive noninterference.

Askarov and Sabelfeld [1] investigate dynamic tracking of policies for information
release, or declassification, for a language with dynamic code evaluation and communi-
cation primitives. Russo and Sabelfeld [30] show how to secure programs with timeout
instructions using execution monitoring. Russo et al. [32] investigate monitoring infor-
mation flow in dynamic tree structures.

Austin and Flanagan [2, 3] suggest a purely dynamic monitor for information flow
with a limited form of flow sensitivity. They discuss two disciplines: no sensitive-
upgrade, where the execution gets stuck on an attempt to assign to a public variable
in secret context, and permissive-upgrade, where on an attempt to assign to a public
variable in secret context, the public variable is marked as one that cannot be branched
on later in the execution. Our inlining transformation draws on the no sensitive-upgrade
discipline extended with the treatment of dynamic code evaluation.
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Hybrid information-flow enforcement Mechanisms by Venkatakrishnan et al. [41], Le
Guernic et al. [18, 17], and Shroff et al. [37] combine dynamic and static checks. The
mechanisms by Le Guernic et al. for sequential [18] and concurrent [17] programs are
flow-sensitive.

Russo and Sabelfeld [31] show formal underpinnings of the tradeoff between dy-
namism and permissiveness of flow-sensitive monitors. They also present a general
framework for hybrid monitors that is parametric in the monitor’s enforcement actions
(blocking, outputting default values, and suppressing events). The monitor by Le Guer-
nic et al. [18] can be seen as an instance of this framework.

Ligatti et al. [20] present a general framework for security policies that can be en-
forced by monitoring and modifying programs at runtime. They introduce edit automata
that enable monitors to stop, suppress, and modify the behavior of programs.

Tracking information flow in web applications is becoming increasingly important
(e.g., a server-side mechanism by Huang et al. [15] and a client-side mechanism for
JavaScript by Vogt et al. [42], although, like a number of related approaches, they do
not discuss soundness). Dynamism of web applications puts higher demands on the
permissiveness of the security mechanism: hence the importance of dynamic analysis.

6 Conclusions

To the best of our knowledge, the paper is the first to consider on-the-fly inlining for
information-flow monitors. On-the-fly inlining is a distinguished feature of our ap-
proach: the security checks are injected as the computation goes along. Despite the
highly dynamic nature the problem, we manage to avoid the caveats that are inherent
with dynamic enforcement of information-flow security. We show that the result of the
inlining is secure. We are encouraged by our preliminary experimental results that show
that the transformation is light on both performance overhead and on the difficulty of
implementation.

Future work is centered along the practical considerations and experiments reported
in Section 4. As the experiments suggest, optimizing the transformation is crucial for
its scalability. The relevant optimizations are both JavaScript- and security-specific op-
timizations. For an example of the latter, 1et injection is unnecessary when the guard
of a conditional is low. Our larger research program pursues putting into practice mod-
ular information-flow enforcement for languages with dynamic code evaluation [1],
timeout [30], tree manipulation [32], and communication primitives [1]. A particularly
attractive application scenario with nontrivial information sharing is web mashups [23].
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