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Abstract
Protecting confidentiality of data has become increasingly im-
portant for computing systems. Information-flow techniques have
been developed over the years to achieve that purpose, leading to
special-purpose languages that guarantee information-flow secu-
rity in programs. However, rather than producing a new language
from scratch, information-flow security can also be provided as a
library. This has been done previously in Haskell using the arrow
framework. In this paper, we show that arrows are not necessary to
design such libraries and that a less general notion, namely mon-
ads, is sufficient to achieve the same goals. We present a monadic
library to provide information-flow security for Haskell programs.
The library introduces mechanisms to protect confidentiality of
data for pure computations, that we then easily, and modularly,
extend to include dealing with side-effects. We also present com-
binators to dynamically enforce different declassification policies
when release of information is required in a controlled manner. It
is possible to enforce policies related to what, by whom, and when
information is released or a combination of them. The well-known
concept of monads together with the light-weight characteristic of
our approach makes the library suitable to build applications where
confidentiality of data is an issue.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.3.3 [Program-
ming Languages]: Language Constructs and Features—Modules,
packages

General Terms Security, Languages

Keywords Information-flow, Declassification, Library, Monad

1. Introduction
Protecting confidentiality of data has become increasingly impor-
tant for computing systems. Often, software is so complex that it
is hard to see if a program can be abused by a malicious person
to gain access to private data. This is important when developing
software oneself, and becomes increasingly more important if one
is forced to trust other people’s code.

Information-flow techniques have been developed over the
years to achieve this kind of protection. For example, as a re-
sult, two main stream compilers, Jif (based on Java) and Flowcaml
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(based on Ocaml) have been developed to guarantee information-
flow security in programs.

However, it is a very heavy-weight solution to introduce a
new programming language for dealing with information-flow. In
this work, we explore the possibility of expressing restrictions on
information-flow as a library rather than a new language.

We end up with a light-weight monadic approach to the prob-
lem of expressing and ensuring information-flow in Haskell. Code
that exhibits information flows that are disallowed will be ill-typed
and rejected by the type checker. Our approach is general enough
to deal with practical concepts such as secure reading and writ-
ing to files (which can be generalized to capture any informa-
tion exchange with the outside world) and declassification (a prag-
matic way of allowing controlled information leakage (Sabelfeld
and Sands 2005)).

Our library might be used in scenarios where we want to incor-
porate in our programs some code written by outsiders (untrusted
programmers) to access our private information. Such code can be
also allowed to interact with the outside world (for example by ac-
cessing the web). We would like to have a guarantee that the pro-
gram will not send our private data to an attacker. A slightly differ-
ent, but related, scenario is where we ourselves write the possibly
unsafe code, but we want to have the help of the type checker to
find possible security mistakes.

Li and Zdancewic (Li and Zdancewic 2006) have previously
shown how to provide information-flow security also as a library,
but their implementation is based on arrows (Hughes 2000), which
naturally requires programmers to be familiar with arrows when
writing security-related code. In this work, we show that arrows
are not necessary to design such libraries and that a less general
notion, namely monads, is sufficient to achieve very similar goals.

1.1 Motivating example
Consider a machine running Linux with the default installation of
the Shadow Suite (Jackson 1996) responsible to store and manage
users’ passwords. In this machine, file /etc/passwd contains in-
formation regarding users such as user and group ID’s, which are
used by many system programs. This file must remain world read-
able. Otherwise, simple commands as ls -l stop working. Pass-
words are set in the file /etc/shadow, which can only be read and
written by root. From now on, we refer to the passwords stored in
this file as shadow passwords. Programs that verify passwords need
to be run as root. From the security point of view, this requirement
implies that very careful programming practices must be followed
when creating such programs. For instance, if a program running
as root has a shell escape, it is not desirable that such shell es-
cape runs with root privileges. The process to verify a password
usually consists of taking the input provided by the user, applying
some cryptographic algorithms to it, and comparing the result of
that with the user’s information stored in /etc/shadow. Observe
that an attacker can encrypt a dictionary of common passwords of-
fline and then, given some file /etc/shadow, try to guess users’
passwords by checking matches. This attack is known as an offline
dictionary attack and is one of the most common methods for gain-



ing or expanding unauthorized access to systems (Narayanan and
Shmatikov 2005). In order to obtain the content of /etc/shadow,
the attacker needs to obtain root privileges, which is not impossi-
ble to achieve (Local Root Exploit 2008). Given these facts, we can
conclude that there are mainly two security problems with shadow
passwords: programs require having root privileges to verify pass-
words and offline dictionary attacks. We start dealing with these
problems by firstly limiting the access to the password file. With
this in mind, we assume that information stored in /etc/shadow is
only accessible through an API. The following Haskell code shows
an example of such API.

data Spwd = Spwd { uid :: UID, cypher :: Cypher }

getSpwdName :: Name -> IO (Maybe Spwd)
putSpwd :: Spwd -> IO ()

Data type Spwd stores users’ identification number (uid::UID)
and users’ password (cypher :: Cypher). For a simple presentation,
we assume that passwords are stored as plain text and not cyphers.
Function getSpwdName receives a user name and returns his (her)
password if such user exists. Function putSpwd takes a register of
type Spwd and adds it to the shadow password file. This API is
now the only way to have access to shadow passwords. We can still
be more restrictive and require that such API is only called under
root privileges, which is usually the case for Unix-like systems.
Unfortunately, this restriction does not help much since attackers
could obtain unauthorized root access and then steal the passwords.
However, by applying information-flow techniques to the API and
programs that use it, it is possible to guarantee that passwords are
not revealed while making possible to verify them. In other words,
offline dictionary attacks are avoided as well as some requirements
as having root privileges to verify passwords. In Section 3.3, we
show a secure version of this API.

1.2 Contributions
We present a light-weight library for information-flow security in
Haskell. The library is monadic, which we argue is easier to use
than arrows, which were used in previous attempts. The library
has a pure part, but also deals with side-effects, such as the secure
reading and writing of files. The library also provides novel and
powerful means to specify declassification policies.

1.3 Assumptions
In the rest of the paper, we assume that the programming language
we work with is a controlled version of Haskell, where code is di-
vided up into trusted code, written by someone we trust, and un-
trusted code, written by the attacker. There are no restrictions on the
trusted code. However, the untrusted code has certain restrictions;
certain modules are not available to the untrusted programmer. For
example, all modules providing IO functions, including exceptions
(and of course unsafePerformIO) are not allowed. Our library
will reintroduce part of that functionality to the untrusted program-
mer in a controlled, and therefore, secure way.

2. Non-interference for pure computations
Non-interference is a well-known security policy that preserves
confidentiality of data (Cohen 1978; Goguen and Meseguer 1982).
It states that public outcomes of programs do not depend on their
confidential inputs.

In imperative languages, information leaks arise from the pres-
ence of explicit and implicit flows inside of programs (Denning and
Denning 1977). Explicit flows are produced when secret data is
placed explicitly into public locations by an assignment. Implicit
flows, on the other hand, use control constructs in the language in
order to reveal information. In a pure functional language, how-
ever, this distinction becomes less meaningful, since there are no

newtype Sec s a

instance Functor (Sec s)
instance Monad (Sec s)

sec :: a -> Sec s a
open :: Sec s a -> s -> a

Figure 1. The Sec monad

assignments nor control constructs. For example, a conditional (if-
then-else) is just a function as any other function in the language. In
a pure language, all information-flow is explicit; information only
flows from function arguments to function results.

To illustrate information leaks in pure languages, we proceed
assuming that a programmer, potentially malicious, needs to write
a function f :: (Char,Int) -> (Char,Int) where characters
and integers are considered respectively secret and public data. We
assume that attackers can only control public inputs and observe
public results when running programs, and can thus only observe
the second component of the pair returned by function f. For sim-
plicity, we also assume that type Char represents ASCII characters.

If a programmer writes the code

f (c, i) = (chr (ord c + i), i+3)

then the function is non-interferent and preserves the confiden-
tiality of c; the public output of f is independent of the value of c
1. If a programmer instead writes

f (c, i) = (c, ord c)

then information about c is revealed, and the program is not non-
interferent! Attackers might try to write less noticeable information
leaks however. For instance, the code

f (c, i) = (c, if ord c > 31 then 0 else 1)

leaks information about the printability of the character c and
therefore should be disallowed as well.

In this section, we show how monads can be used to avoid leaks
and enforce the non-interference property for pure computations.

2.1 The Sec monad
In order to make security information-flow specific, we are going
to make a distinction at the type level between protected data
and public data. Protected data only lives inside a special monad
(Wadler 1992). This security monad makes sure that only the parts
of the code that have the right to do so are able to look at protected
data.

In larger programs, it becomes necessary to talk about several
security levels or areas. In this case, values are not merely protected
or public, but they can be protected by a certain security level s.

Take a look at Fig. 1, which shows the API of an abstract type,
Sec, which is a functor and a monad. There are two functions
provided on the type Sec; sec is used to protect a value, and
open is used to look at a protected value. However, to look at a
protected value of type Sec s a, one needs to have a value of type
s. Restricting access to values of different such types s by means
of the module system allows fine control over which parts of the
program can look at what data. (For this to work, open needs to be
strict in its second argument.)

For example, if we define a security area H in the following way:

1 Function chr returns an exception when the received argument does
not represent an ASCII code. By observing occurrences of exceptions or
computations that diverge, an attacker can deduce some information about
secrets. However, we only consider programs that terminate successfully.



module Lattice where

data L = L
data H = H

class Less sl sh where
less :: sl -> sh -> ()

instance Less L L where
less _ _ = ()

instance Less L H where
less _ _ = ()

instance Less H H where
less _ _ = ()

Figure 2. Implementation of a two-point lattice

data H = H

then we can model the type of the function f given in the beginning
of this section as follows:

f :: (Sec H Char, Int) -> (Sec H Char, Int)

The first, secure, example of f can be programmed as follows:

f (sc,i) = ((\c -> chr (ord c + i)) ‘fmap‘ sc,i+3)

However, the other two definitions can not be programmed without
making use of H or breaking the type checker.

So, for a part of the program that has no means to create non-
bottom values of a type s, direct access to protected values of
type Sec s a is impossible. However, computations involving
protected data are possible as long as the data stays protected.
This can be formalized by stating that type Sec guarantees a non-
interference property. For any type A, and values a1, a2 :: A, a
function

f :: Sec H A -> Bool

will produce the same result for arguments a1 and a2. See (Russo
et al. 2008a) for more details.

We will later show the implementation of the type Sec and its
associated functions.

2.2 Security lattice
Valid information flows inside of programs are determined by a
lattice on security levels (Denning 1976). Security levels are asso-
ciated to data in order to establish its degree of confidentiality. The
ordering relation in the lattice, writtenv, represents allowed flows.
For instance, l1 v l2 indicates that information at security level l1
can flow into entities of security level l2.

For simplicity, in this paper, we will only use a two-point lattice
with security levels H and L where L v H and H 6v L. Security
levels H and L denote secret (high) and public (low) information,
respectively. The implementation of the lattice is shown in Figure
2. Type class Less encodes the relation v and security levels are
represented as singleton types (Pierce 2004). The role of less is
explained in Section 4. Public information is characterized by the
security level L. Constructor L is then publicly available so that data
at security level L can be observed by anyone, which also includes
attackers.

As explained earlier, attackers must have no access to the con-
structor H. In Section 4, we describe how to achieve such restriction.

Finally, to capture the fact that valid information flows occur
from lower (L) to higher (H) security levels, we introduce the
function

up :: Less sl sh => Sec sl a -> Sec sh a

The function up can be used to turn any protected value into a
protected value at a higher security level. The implementation of
up will be shown later.

3. Non-interference and side-effects
The techniques described in Section 2 do not perform computations
with side-effects. The reason for that is that side-effects involving
confidential data cannot be executed when they are created inside
of the monad Sec s.

Even if we allowed a restricted and secure form of file reading
and writing in the IO-monad, that would still not be enough. For
example, if we, read information from file A, and depending on
the value of a secret, want to write either to a file B or file C,
we would obtain a computation of type IO (Sec H (IO ())). It
is easy to see that these types quickly become unmanagable, and,
more importantly, unusable.

In this section, we show how we can augment our security API
to be able to deal with controlled side-effects while still maintaining
non-interference properties.

In this paper, we concentrate how to provide an API that allows
reading and writing protected data from and to files. For this to
work properly, files need to contain a security level, so that only
data from the right security level can be written to a file. We assume
that the attacker has no way of observing what side-effects were
performed, other than through our API. (The attacker, so to say,
sits within the Haskell program and has no way of getting out2.)

The ideas for reading and writing files can be extended to
deal with many other controlled IO operations, such as creating,
reading and writing secure references, communicating over secure
channels, etc. We will however not deal with the details of such
operations in this paper.

3.1 Secure files
We model all interactions with the outside world by operations for
reading and writing files (Tanenbaum 2001). For that reason, we
decide to include secure file operations in our library. We start by
assigning security levels to files in order to indicate the confiden-
tiality of their contents. More precisely, we introduce the abstract
data type File s. Values of type File s represent names of files
whose contents have security level s. These files are provided by
the trusted programmer. We assume that attackers have no access
to the internal representation of File s. In Section 4, we show how
to guarantee such assumption.

A first try for providing secure file operations is to provide the
following two functions:

readSecIO :: File s -> IO (Sec s String)
writeSecIO :: File s -> Sec s String -> IO ()

These functions do not destroy non-interference, because they do
not open up for extra information-flow between security levels. The
data read from a file with security level s is itself protected with
security level s, and any data of security level s can be written to a
file of security level s.

However, the above functions are not enough to preserve confi-
dentiality of data. Take a look at the following program:

writeToAFile :: Sec H String -> Sec H (IO ())
writeToAFile secs =
(\s -> if length s < 10

then writeSecIO file1 s
else writeSecIO file2 s) ‘fmap‘ secs

2 A situation where the attacker is in league with a hacker who has gotten
access to our system, and can for example read log files, is beyond our
control and the guarantees of our library.



newtype SecIO s a

instance Functor (SecIO s)
instance Monad (SecIO s)

value :: Sec s a -> SecIO s a

readSecIO :: File s’ -> SecIO s (Sec s’ String)
writeSecIO :: File s -> String -> SecIO s ()

plug :: Less sl sh => SecIO sh a -> SecIO sl (Sec sh a)
run :: SecIO s a -> IO (Sec s a)

Figure 3. The SecIO monad

Here, file1, file2 :: File H is assumed to be defined else-
where.

The behavior of the above function is indeed dependent on
the protected data in its argument, as indicated by the result type.
However, only the side-effects of the computation are dependent
on the data, not the result value. Why is this important? Because
we assume that the attacker has no way of observing from within
the program what these side-effects are! (Unless the attacker can
observe the results of the side-effects, namely the change of file
contents in either file1 or file2, but that information can only
be obtained by someone with the appropriate security clearance
anyway.) This assumption is valid for the scenarios described in
Section 1.

In other words, since side-effects cannot be observed from
within a program, we are going to allow the leakage of side-effects.
Our assumption is only true if we restrict the IO actions that the
attacker can perform.

3.2 The SecIO monad
To this end, we introduce a new monad, called SecIO. This monad
is a variant of the regular IO monad that keeps track of the security
level of all data that was used inside it.

Take a look at Fig. 3, which shows the API for an abstract type
SecIO, which is a functor and a monad. Values of type SecIO
s a represent computations that can securely read from any file,
securely write to files of security level s (or higher), and look at
data protected at level s (or lower).

The function value can be used to look at a protected value at
the current security level. The function readSecIO reads protected
data from files at any security level, protecting the result as such.
The function writeSecIO writes data to files of the current security
level.

The function plug is used to import computations with side-
effects at a high level into computations with side-effects at a low
level of security. Observe that only the side-effects are “leaked”,
not the result, which is still appropriately protected by the high se-
curity level. This function is particularly suitable to write programs
that contain loops that depend on public information and perform,
based on secret and public data, side-effects on secret files in each
iteration.

These functions together with the return and bind operations for
SecIO s constitute the basic interface for programmers.

Based on that, more convenient and handy functions can then
be defined. For instance,

s_read :: Less s’ s => File s’ -> SecIO s String
s_read file = do ss <- readSecIO file

value (up ss)

s_write :: Less s’ s =>
File s -> String -> SecIO s’ (Sec s ())

s_write file str = plug (writeSecIO file str)

Observe that s read and s write have simpler types while
practically providing the same functionality as readSecIO and
writeSecIO, respectively.

In the next section, we show how to implement the core part
of our library: the monads Sec s and SecIO s. We continue this
section with an example that shows how these APIs can be used.

3.3 Developing a secure shadow passwords API
As an example of how to apply information-flow mechanisms, we
describe how to adapt the API described in the introduction to
guarantee that neither API’s callers or the API itself reveal shadow
passwords. Specifically, passwords cannot be copied into public
files at all. Hence, offline dictionary attacks are avoided as well
as the requirement of having root privileges to verify passwords.
As mentioned in the introduction, we assume that the contents of
/etc/shadow is only accessible through the API. For simplicity,
we assume that this file is stored in the local file system, which
naturally breaks the assumption we have just mentioned (user root
has access to all the files in the system). However, it is not difficult
to imagine an API that establishes, for example, a connection to
some sort of password server in order to get information regarding
shadow passwords.

We firstly start adapting our library to include the two-point
lattice mentioned in Section 2. We decide to associate security level
H, which represents secret information, to data regarding shadow
passwords. Then, we indicate that file /etc/shadow stores secret
data by writing the following lines

shadowPwds :: File H
shadowPwds = MkFile "/etc/shadow"

We proceed to modify the API to indicate what is the secret data
handled by it. More precisely, we redefine the API as follows:

getSpwdName :: Name -> IO (Maybe (Sec H Spwd))
putSpwd :: Sec H Spwd -> IO ()

where values of type Spwd are now “marked” as secrets 3.
The API’s functions are then adapted, without too much effort, to
meet their new types. In order to manipulate data inside of the
monad Sec H, API’s callers need to import the library in their
code. Since /etc/shadow is the only file with type File H in our
implementation, this is the only place where secrets can be stored
after executing calls to the API. By marking values of type Spwd
as secrets, we restrict how information flows inside of the API
and API’s callers while making possible to operate with them. In
Section 5, we show how to implement a login program using the
adapted API.

4. Implementation of monads Sec and SecIO
In this section, we provide a possible implementation of the APIs
presented in the previous two sections.

In Fig. 4 we show a possible implementation of Sec. Sec is im-
plemented as an identity monad, allowing access to its implemen-
tation through various functions in the obvious way. The presence
of less in the definition of function up includes Less in its typ-
ing constrains. Function unSecType is used for typing purposes
and has no computational meaning. Note the addition of the func-
tion reveal, which can reveal any protected value. This function
is not going to be available to the untrusted code, but the trusted
code might sometimes need it. In particular, the implementation of
SecIO needs it in order to allow the leakage of side-effects.

In Fig. 5 we show a possible implementation of SecIO. It is
implemented as an IO computation that produces a safe result. As

3 Values of type Maybe are not included inside of Sec H since the existence
of passwords is linked to the existence of users in the system, which is
considered public information.



module Sec where

-- Sec
newtype Sec s a = MkSec a

instance Monad (Sec s) where
return x = sec x

MkSec a >>= MkSec k =
MkSec (let MkSec b = k a in b)

sec :: a -> Sec s a
sec x = MkSec x

open :: Sec s a -> s -> a
open (MkSec a) s = s ‘seq‘ a

up :: Less s s’ => Sec s a -> Sec s’ a
up sec_s@(MkSec a) = less s s’ ‘seq‘ sec_s’

where (sec_s’) = MkSec a
s = unSecType sec_s
s’ = unSecType sec_s’

-- For type-checking purposes (not exported).
unSecType :: Sec s a -> s
unSecType _ = undefined

-- only for trusted code!
reveal :: Sec s a -> a
reveal (MkSec a) = a

Figure 4. Implementation of Sec monad

an invariant, the IO part of a value of type SecIO s a should
only contain unobservable (by the attacker) side-effects, such as
the reading from and writing to files.

There are a few things to note about the implementation. Firstly,
the function reveal is used in the implementation of monadic
bind, in order to leak the side-effects from the protected IO com-
putation. Remember that we assume that the performance of side-
effects (reading and writing files) cannot be observed by the at-
tacker. Some leakage of side-effects is unavoidable in any imple-
mentation of the functionality of SecIO. Secondly, the definition of
the type File does not make use of its argument s. This is also un-
avoidable, because it is only by a promise from the trusted program-
mer that certain files belong to certain security levels. Thirdly, func-
tion plug, similarly to function up, includes less and an auxiliary
function (unSecIOType) to properly generate type constraints.

The modules Sec, SecIO, and Lattice can only be used by
trusted programmers. The untrusted programmers only get access
to modules SecLibTypes and SecLib, shown in Fig. 6. They im-
port the three previous modules, but only export the trusted func-
tions. Observe that the type L and its constructor L are exported,
but for H, only the type is exported and not its constructor. Method
less is also not exported. Therefore, functions up and plug are
only called with the instances of Less defined in Lattice.hs.

In order to check that a module is safe with respect to information-
flow, the only thing we have to check is that it does not import
trusted modules, in particular:

• Sec and SecIO

• any module providing exception handling, for example
Control.Monad.Exception,
• any module providing unsafe extensions, for example
System.IO.Unsafe

module SecIO where
import Lattice
import Sec

-- SecIO
newtype SecIO s a = MkSecIO (IO (Sec s a))

instance Monad (SecIO s) where
return x = MkSecIO (return (return x))

MkSecIO m >>= k =
MkSecIO (do sa <- m

let MkSecIO m’ = k (reveal sa)
m’)

-- SecIO functions
value :: Sec s a -> SecIO s a
value sa = MkSecIO (return sa)

run :: SecIO s a -> IO (Sec s a)
run (MkSecIO m) = m

plug :: Less sl sh => SecIO sh a -> SecIO sl (Sec sh a)
plug ss_sh@(MkSecIO m)

= less sl sh ‘seq‘ ss_sl
where

(ss_sl) = MkSecIO (do sha <- m
return (sec sha))

sl = unSecIOType ss_sl
sh = unSecIOType ss_sh

-- For type-checking purposes (not exported).
unSecIOType :: SecIO s a -> s
unSecIOType _ = undefined

-- File IO
data File s = MkFile FilePath

readSecIO :: File s’ -> SecIO s (Sec s’ String)
readSecIO (MkFile file) =
MkSecIO ((sec . sec) ‘fmap‘ readFile file)

writeSecIO :: File s’ -> String -> SecIO s ()
writeSecIO (MkFile file) s =
MkSecIO (sec ‘fmap‘ writeFile file s)

Figure 5. Implementation of SecIO monad

5. Declassification
Non-interference is a security policy that specifies the absence of
information flows from secret to public data. However, real-word
applications release some information as part of their intended be-
havior. Non-interference does not provide means to distinguish be-
tween intended releases of information and those ones produced
by malicious code, programming errors, or vulnerability attacks.
Consequently, it is needed to relax the notion of non-interference
to consider declassification policies or intended ways to leak in-
formation. In this section, we introduce run-time mechanisms to
enforce some declassification policies found in the literature.

Declassification policies have been recently classified in differ-
ent dimensions(Sabelfeld and Sands 2005). Each dimension repre-
sents aspects of declassification. Aspects correspond to what, when,
where, and by whom data is released. In general, type-systems to
enforce different declassification policies include different features,
e.g rewriting rules, type and effects, and external analysis (Myers
and Liskov 2000; Sabelfeld and Myers 2004; Chong and Myers
2004). Encoding these features directly into the Haskell type sys-
tem would considerably increase the complexity of our library. For



module SecLibTypes ( L (..), H, Less () ) where
import Lattice

module SecLib
( Sec, open, sec, up

, SecIO, value, plug, run,
, File, readSecIO, writeSecIO, s_read, s_write

)
where

import Sec
import SecIO

Figure 6. Modules to be imported by untrusted code

the sake of simplicity and modularity, we preserve the part of the
library that guarantees non-interference while orthogonally intro-
ducing run-time mechanisms for declassification. More precisely,
declassification policies are encoded as programs which perform
run-time checks at the moment of downgrading information. In
this way, declassification policies can be as flexible and general
as programs! Additionally, we provide functions that automatically
generate declassification policies based on some criteria. We call
such programs declassification combinators. We provide combina-
tors for the dimensions what, when, and who (where can be thought
as a particular case of when). As a result, programmers can com-
bine dimensions by combining applications of these combinators.

5.1 Escape Hatches
In our library, declassification is performed through some special
functions. By borrowing terminology introduced in (Sabelfeld and
Myers 2004), we call these functions “escape hatches” and we
represent them as follows.

type Hatch s s’ a b = Sec s a -> IO (Maybe (Sec s’ b))

Escape hatches are functions that take some data at security
level s, perform some computations with it, and then probably
return a result depending if downgrading of information to secu-
rity level s’ is allowed or not. Arbitrary escape hatches can be
included in the library depending on the declassification policies
needed for the built applications. In fact, escape hatches are just
functions. Types IO and Maybe are present in the definition of
Hatch s s’ a b in order to represent run-time checks and the
fact that declassification may not be possible on some circum-
stances. By placing Maybe outside of monad Sec s’, the fact that
declassification is possible or not is public information and pro-
grams can thus take different actions in each case. Consequently, it
is important to remark that declassification policies should not de-
pend on secret values in order to avoid unintended leaks (we give
examples of such policies later). Otherwise, it would be possible
to reveal information about secrets by inspecting the returned con-
structor (Just or Nothing) when applying escape hatches.

As mentioned in the beginning of the section, we include some
declassification combinators that are responsible for generating
escape hatches. The simplest combinator creates escape hatches
that always succeed when downgrading information. Specifically,
we define the following combinator.

hatch :: Less s’ s => (a -> b) -> Hatch s s’ a b
hatch f = \sa -> return(Just(return(f (reveal sa))))

Basically, hatch takes a function and returns an escape hatch
that applies such function to a value of security level s and returns
the result of that at security level s’ where s’ v s. Observe how
the function reveal is used for declassification.

The idea is that the function hatch is used by trusted code in
order to introduce a controlled amount of leaking to the attacker.
Note that it is possibly dangerous for the trusted code to export a
polymorphic escape hatch to the attacker! A polymorphic function
can often be used to leak an unlimited amount of information, by
for example applying it to lists of data. In general, escape hatches
that are exported should be monomorphic.

5.2 The What dimension
In general, type systems that enforce declassification policies re-
lated to “what” information is released are somehow conservatives
(Sabelfeld and Myers 2004; Askarov and Sabelfeld 2007; Mantel
and Reinhard 2007). The main reason for that is the difficulty to
statically predict how the data to be declassified is manipulated
or changed by programs. Inspired by quantitative information-
theoretical works (Clark et al. 2002), we focus on “how much”
information can be leak instead of determining exactly “what” is
leaked. In this light, we introduce the following declassification
combinator.

ntimes :: Int -> Hatch s s’ a b -> IO (Hatch s s’ a b)
ntimes n f
= do ref <- newIORef n

return (\sa -> do k <- readIORef ref
if k <= 0

then do return Nothing
else do writeIORef ref (k-1)

f sa )

Essentially, ntimes takes a number n and an escape hatch
h, and returns a new escape hatch that produces the same result
as h but that can only be applied at most n times. To achieve
that, the combinator creates the reference ref to the number of
times (n) that the escape hatch (h) can be applied. Every appli-
cation of the escape hatch then checks if the maximum number
of allowed applications has been reached by observing the condi-
tion k <= 0. Additionally, every application of the escape hatch
also reduce the number of possible future applications by execut-
ing writeIORef ref (k-1). The generated escape hatch returns
Nothing if the policy is violated as a manner to avoid leaking
more information than intended. Inspecting if the result of apply-
ing an escape hatch is Nothing or not can be considered as a covert
channels by itself when happening inside of computations related
to confidential data. Fortunately, escape hatches applied inside of
computations depending on secrets are never executed. For in-
stance, if we try to apply an escape hatch inside of some secret com-
putation, it will have the type Sec H (IO (Maybe (Sec L b)))
for some type b. Declassification is performed inside of the IO
monad and it is not possible to extract IO computations from the
monad Sec H unless than another escape hatches is declared to re-
lease IO computations. Therefore, escape hatches must be intro-
duced to release pure values rather than side-effecting computa-
tions, which seems to be the case for most applications.

Note that the function ntimes is safe to be exported to the
attacker, since it only restricts the use of existing hatches.

As an example of how ntimes can be used, we write a login
program that uses the secure shadow password API described in
Section 3.3. It is not possible to write such program without hav-
ing means for declassification. The login program must release
some information about users’ passwords: if access is granted, then
the attacker knows that his input matches the password, otherwise
he knows that it does not. We present the program in Figure 7.
Module Policies introduces declassification policies for our lo-
gin program and states that a shadow password can be compared
by equality at most three times. This module is trusted and must
not be imported by untrusted code. Otherwise, attackers can create
an unrestricted number of escape hatches in order to leak secrets!



module Policies ( declassification ) where
import SecLibTypes ; import Declassification
import SpwdData

declassification
= ntimes 3 (hatch (\(spwd,c) -> cypher spwd == c))

:: IO (Hatch H L (Spwd, String) Bool)

module Main ( main ) where
import Policies
import Login

main = do match <- declassification
login match

module Login ( login ) where
import SecLibTypes ; import SecLib
import SpwdData ; import Spwd
import Maybe

check :: (?match :: Hatch H L (Spwd, Cypher) Bool)
=> Sec H Spwd -> String -> Int -> String

-> IO ()
check spwd pwd n u =

do acc <- ?match ((\s -> (s, pwd)) ‘fmap‘ spwd)
if (public (fromJust acc))

then putStrLn "Launching shell..."
else do putStrLn "Invalid login!"

auth (n-1) u spwd

auth 0 _ spwd = return ()
auth n u spwd = do putStr "Password:"

pwd <- getLine
check spwd pwd n u

login match
= do let ?match = match

putStrLn "Welcome!"
putStr "login:"
u <- getLine
src <- getSpwdName u
case src of

Nothing -> putStrLn "Invalid user!"
Just spwd -> auth 3 u spwd

Figure 7. Secure login program

Module SecLibTypes, described in Section 4, is extended to in-
clude type definitions related to declassification as, for instance,
Hatch s s’ a b. Module Declassification introduces de-
classification combinators (e.g. ntimes). These modules are part
of our trusted base. Module Declassification must not be im-
ported by untrusted code for the same reasons given for module
Policies. Modules SpwdData and Spwd respectively include
the data type declaration of Spwd and the API described in Sec-
tion 3.3. Module Main extracts declassification policies defined in
Policies and pass them to the login function. In general, this
module determines what functions are called from untrusted code
in order to run the program. In this case, it determines that login
must be called to perform the login procedure. Since the module
imports module Policies, it also belongs to the trusted base. The
most interesting module is Login. This module does not belong
to our trusted base and therefore it may contain code written by
possibly malicious programmers. Because declassification policies
can be applied at any part of the untrusted code, we place them into
implicit parameters (Lewis et al. 2000). Implicit parameters can be
thought as some kind of global variables and they are declared by

module Bid ( bid ) where

obtainBid :: FilePath -> IO Int
obtainBid file = do s <- readFile file

return (read s :: Int)

bid = do putStrLn "Bid system!"
putStrLn "-----------"
putStrLn ""
putStrLn "Obtaining the bids..."
a <- obtainBid "bidA"
-- writeFile "bidB" (show (a+1))
b <- obtainBid "bidB"
putStrLn (if a > b then "A wins!"

else "B wins!")

Figure 8. Insecure bidding system

writing variable names starting with the symbol ?. Module Login
contains three functions: check, auth, and login. Function check
takes the password spwd :: Sec H Spwd stored in the system for
the user u :: String and checks, by applying the escape hatch
placed in ?match, if the user’s input pwd :: String matches the
password stored in the field cypher of spwd. Assuming that is pos-
sible to perform the declassification described by ?match, variable
acc stores if the access is granted or not. We assume that untrusted
code has access to the function public :: Sec L a -> a to ex-
tract the public values from monad Sec L. In the example, public
is applied to values returned by ?match. If the access is denied,
check might give another chance to the user by calling the func-
tion auth. Function auth is responsible to ask the user’s password
and validates it at most n times. Function login asks for the user
name and checks that the user is registered in the system by calling
the function getSpwdName from the secure shadow password API.

Since program in Figure 7 type-checks, it respects the declas-
sification policies defined in module Policies, i.e. the password
can be compared for equality only three times. To illustrate that,
we place our selves in the role of the attacker and modify func-
tion check to call auth n u spwd instead. As a result, it would
be now possible to try as many passwords as the user wants and
thus increasing the amount of information leak by unit of time. Ob-
serve that this situation is particularly dangerous when passwords
have short length as PIN numbers in ATMs. Nevertheless, if we try
to run the modified code, we get the message *** Exception:
Maybe.fromJust: Nothing after the user tries more than three
times to check if the access can be granted or not.

5.3 The When dimension
As a motivating example for handling this dimension, we can
consider the scenario described in (Chong and Myers 2004) of
a sealed auction where each bidder submits a single secret bid
in a sealed envelope. Once all bids are submitted, the envelopes
are opened and the bids are compared. The highest bidder wins.
One security property that is important for this program is that
no bidder knows any of the other bids until all the bids have
been submitted. Program in Figure 8 simulates this process for
two bidders: A and B. We represent envelopes as files. Function
obtainBid opens an envelope and extracts the bid. The rest of the
program is self-explanatory. It is possible to incorrectly implement
the auction protocol by mistake or intentionally. For instance, if we
uncommented the line in Figure 8, the program uses the bid from
user A to make user B the winner. However, no information about
A’s bid must be available until B submits his (her) own bid.

The library introduces the when dimension by associating
events in the system that indicates at which time release of in-



formation may occur. For instance, “releasing a software key may
occur after the payment has been confirmed”. Inspired by (Broberg
and Sands 2006), we implement boolean flags called flow locks 4

that, when open, allow downgrading of information.
Flow locks are introduced by the following combinator.

when :: Hatch s s’ a b ->
IO (Hatch s s’ a b, Open, Close)

when f = do ref <- newIORef False
return (\sa -> do b <- readIORef ref

if b then f sa
else return Nothing

, writeIORef ref True
, writeIORef ref False)

Basically, when takes an escape hatch h and returns a new es-
cape hatch that produces the same result as h but that has associated
a flow lock to it. The combinator creates the reference ref to an
initially close flow lock represented as False. The returned escape
hatch can only be applied when the associated flow lock is open
(i.e. the corresponding boolean flag is set to True). Observe that,
by inspecting the value of b, every application of the escape hatch
checks that the flow lock is open before declassifying information.
The combinator also returns computations to open and close the
lock, which respectively have type Open and Close. These compu-
tations must be only used by trusted code. Otherwise, the attacker
can execute them at any time in the untrusted code and thus ignor-
ing the events that indicate when declassification may occur. Open
and Close are just synonymous type declarations for IO ().

We can then implement a secure bidding system. We firstly de-
fine our security lattice composed by the security levels A, B, and L,
where L v A and L v B. Security levels A and B are respectively as-
sociated to information coming from users A and B, while L denotes
public information. We implement these security levels as singleton
types with constructors A :: A, B :: B, and L::L. The described
security lattice is very simple and therefore we omit details about
its implementation. The secure bidding system is shown in Figure
9. At first glance, it might seem that this implementation is much
more complex than the insecure one. However, the module Bid,
the core of the bidding system, has approximately the same size as
before. The rest of the modules are related to properly setting up
the security level of different resources in the program as well as
the corresponding declassification policies. Module Files declares
the security level A and B for the files that store the bids of users A
and B, respectively. Module Policies defines the escape hatches
ha and hb to release information that belongs to users A and B, re-
spectively. Computations openA and closeA (openB and closeB)
open and close the flow lock associated to hA(hB), respectively. As
mentioned before, the opening and closing of locks are produced
by trusted code. In this case, the opening of locks happens when
bids are read from files. We then place function obtainBid in the
trusted module Main. We also adapt such function to read files at
security level s and return their contents, but opening the flow lock
received as argument. Function main obtains the escape hatches
from declassification and defines trusted function responsi-
ble for opening flow locks. Function obtainBidA (obtainBidB)
reads the bid of user A (B) and opens the lock for releasing the bid
of user B (A). Differently from the insecure version in Figure 8,
function bid receives as arguments escape hatches and functions
to obtain bids. Module Bid is written by the attacker or possibly

4 The notion presented here about flow locks is not exactly the same that is
introduced in Broberg and Sands’s paper. For instance, their work can stati-
cally check if a program respects the declassification policies determined by
the flow locks. Moreover, the state of the locks is not related with the state
of programs at all. We differ from these two points due to the dynamic na-
ture of our approach. However, the intuitive idea of allowing downgrading
of information when locks are open is preserved in our implementation.

module Files ( bidAF, bidBF ) where
import Sec (secret, File (File) ) ; import Lattice

bidAF :: File A
bidAF = MkFile "bidA"

bidBF :: File B
bidBF = MkFile "bidB"

module Policies ( declassification ) where
import SecLibTypes ; import Declassification

declassification
= do (pA :: Hatch A L Int Int, openA, closeA)

<- when (hatch id)
(pB :: Hatch B L Int Int, openB, closeB)

<- when (hatch id)
return (pA, openA, closeA, pB, openB, closeB)

module Main ( main ) where
import Policies ; import Files ; import SecLib
import Bid

obtainBid :: File s -> Open -> IO (Sec s Int)
obtainBid file open
= do sec <- run (do r <- s_read file

return (read r :: Int))
open
return sec

main = do (hA, openA, closeA,
hB, openB, closeB) <- declassification
let obtainBidA = obtainBid bidAF openB

obtainBidB = obtainBid bidBF openA
bid hA obtainBidA hB obtainBidB

module Bid ( bid ) where
import SecLibTypes ; import SecLib

bid hA obtainBidA hB obtainBidB
= do putStrLn "Bid system!"

putStrLn "-----------"
putStrLn ""
putStrLn "Obtaining the bids..."
bidA <- obtainBidA
-- Just cheat <- hA bidA
bidB <- obtainBidB
Just seca <- hA bidA
Just secb <- hB bidB
putStrLn(if (public seca) > (public secb)

then "A wins!"
else "B wins!")

Figure 9. Secure bidding system

malicious programmer. In this module, function bid obtains the
bids to later compare them. In order to compare bids, they need
to be extracted from values of type Sec A Int and Sec B Int
through the escape hatches ha and hb, respectively. It is then not
possible to determine which bid is the highest before obtaining all
for them. For instance, if we uncommented the line in function bid,
we obtain a program that tries to release the bid from user A before
getting the bid for user B, which is clearly a non-desirable behav-
ior for the auction system. However, if we run the program, we
get the message *** Exception: Maybe.fromJust: Nothing
since the flow lock associated to release A’s bid is not open. In order
to open it, we firstly need to get B’s bid!



To illustrate why flow locks may need to be closed, we take the
example on step further by thinking of a bidding system that allows
the users to bid more than once. In this case, function bid is called
several times and flow locks related to hA and hB must be closed
between each call. Otherwise, all the flow locks are open at the
second call of bid, which allows bids to be released at any time. It
is not difficult to imagine this implementation by considering that
function main calls computations closeA and closeB before each
call of bid.

For simplicity, we considered an auction system with only two
users. However, it is possible to use flow locks when more users
are present in the auction. Indeed, we can create escape hatches
that are associated to as many flow locks as users. In order to do
that, we can compose when with itself as many times as users we
have in the system. In this way, the escape hatch obtained in the
end is associated to as many flow locks as users. Then, when a user
submits its bid, his corresponding flow lock is open.

Attackers can still write programs that wrongly implement the
auction system. For instance, we can write a program that makes
user A the winner all the time by just replacing the if-then-else
in Figure 9 by putStrLn "The user A wins!". However, user
A is going to be the winner because the program is not implemented
correctly, but not because the program “cheated” by inspecting B’s
bid. Correctness of programs are stronger properties than those
ones captured by declassification policies.

5.4 The Who dimension
In the Decentralized Label Model (DLM) (Myers and Liskov 1997,
1998, 2000) data is marked with a set of principals who owns the
information. While executing a program, the code is authorized to
act on behalf of some set of principals known as authority. Then,
declassification makes a copy of the released data and marked it
with the same principals as before the downgrading but excluding
those ones appearing in the authority of the code. We do not con-
sider situations where some principals can act on behalf of others.

Similarly to (Li and Zdancewic 2006), we adapt the idea of
DLM to work on a security lattice. Authorities are assigned with
a security level l in the lattice and they are able to declassify data at
that security level. To achieve that, we introduce a declassification
combinator that checks the authority of the code before applying
an escape hatch. As indicated in (Broberg and Sands 2006), DLM
can be expressed using flow locks. Fortunately, our implementation
is also suitable for that. More precisely, we have the following
declassification combinator.

data Authority s = Authority Open Close

who :: Hatch s s’ a b -> IO (Hatch s s’ a b, Authority s)
who f = do (whof, open, close) <- when f

return (whof, Authority open close)

certify :: s -> Authority s -> IO a -> IO a
certify s (Authority open close) io =

s ‘seq‘ (do open ; a <- io ; close ; return a)

Combinator who takes an escape hatch an returns another escape
hatch that is associated with a flow lock. The main idea here is
that the flow lock is open when the code runs under the same
authority as the security level appearing as the argument of the
escape hatch. The mechanisms to open and close the flow lock are
placed inside of the data type Authority s. The constructor of
this data type is not accessible for attackers. Otherwise, they can
avoid the certification process to determine that some piece of code
runs under some authority. Such certification process is carried
out by the function certify. This function takes an element of
security type s, an Authority s, and a computation IO a. In
Section 4, we explain that constructors that belongs to security
levels above the security level of the attacker are not exported. For

Tax OfficeBank

Public

Government

Figure 10. Security lattice

instance, in the two-point lattice considered so far, attackers can
only observe data at security level L, and thus constructor H :: H
is not exported to untrusted modules. This assumption needs to be
relaxed in order to consider this dimension for declassification. To
certify that some code has authority s, we require that such code,
possibly malicious, has only access to the constructors for security
level s and the security level denoting public information. In this
way, it is reflected that code running under authority s can freely
declassify data from security level s as expected in DLM. Function
certify checks that it receives a valid constructor for the security
type s by applying seq to it, and then respectively opens and closes
a flow lock before and after running the IO computation received as
argument. Observe that this function can be freely used by attackers
since it requires to provide the right constructor for some security
level s and only authorities at that level must have it. Therefore,
assignments of authorities to pieces of code must be clearly part of
the trusted code.

As a motivating example for this dimension, we start consider
the security lattice in Figure 10. We have the security levels: Gov-
ernment, Bank, Tax Office, and Public to represent information
related to citizens that is used for such entities. Unless that infor-
mation is made public, banks cannot have access to information
stored in the tax office and vice versa. Government, on the other
hand, can have full access to the information stored at banks and
the tax office, which can be debatable for any real government.
However, we made such assumption to simplify the example and
rather illustrate how functions who and certify can be used. We
implement the security levels Government, Bank, Tax Office, and
Public with the singleton types G, B, T, and L, respectively. The
described security lattice is very simple and therefore we omit de-
tails about its implementation. We assume that the declassification
polices are the followings: banks can declassify the status of their
accounts ( i.e. if an account is open or close), the tax office can
release the address of the citizens, and the government can provide
information about new immigrants to the tax office as well as re-
vealing results of financial studies related to the economy of the
country to the banks. Observe that, for instance, it is possible for
the government to declassify some information to a bank, and then
the bank divulges that information to the public by opening or clos-
ing some accounts. In order to avoid that, a more complex security
lattice needs to be encoded. However, for simplicity, we tighten to
the lattice in Figure 10. In Figure 11, we give the skeleton of an ap-
plication that uses these security levels and the mentioned declassi-
fication policies. Module Policies declares declassification poli-
cies constructed by combinator who. Accounts, status of accounts,
citizens, addresses, immigrants, financial studies, and outcomes of
financial studies are represented by data types Account, Status,
Citizen, Address, Immigrant, Study, and Result, respec-
tively. Functions status, address, immigrant, and study have
types Account -> Status, Citizen -> Address, Immigrant
-> Citizen, and Study -> Result, respectively. These func-
tions together with declarations of data types related to the applica-
tion are placed in the module Data. Function declassification



module Policies ( declassification ) where
import SecLibTypes ; import Declassification
import Data

declassification
= do (hB :: (Hatch B L Account Status),

authBank) <- who (hatch status)
(hT :: (Hatch T L Citizen Address),
authTax) <- who (hatch address)
(hG :: (Hatch G T Immigrant Citizen),
authG) <- who (hatch inmigrants)
(hG’ :: (Hatch G B Study Result),
authG’) <- who (hatch studies)
return ((hB, authBank), (hT, authTax),

(hG, authG), (hG’, authG’))

module Bank ( bank ) where
import SecLibTypes ; import SecLib
import Data

bank :: B -> (Hatch B L Account Status,
Authority B) -> IO ()

bank = ...

module TaxOffice ( taxoffice ) where

import SecLibTypes ; import SecLib
import Data

taxoffice
:: T -> (Hatch T L Citizen Address, Authority T)

-> IO ()
taxoffice = ...

module Government ( government ) where
import SecLibTypes ; import SecLib
import Data

government
:: G -> (Hatch G T Immigrant Citizen,

Authority G) -> (Hatch G B Study Result,
Authority G) -> IO ()

government = ...

module Main ( main ) where
import Policies ; import Lattice
import Bank ; import TaxOffice ; import Government

main
= do (whohB, whohT, whohG, whohG’)

<- declassification
bank B whohB
taxoffice T whohT
government G whohG whohG’
return ()

Figure 11. Skeleton for an application

implements the declassification policies described before. Mod-
ules Bank, TaxOffice, and Government are untrusted and they
might include malicious code. Functions bank, taxoffice, and
government receive the escape hatches together with values of
type Authority s for some corresponding instances of s. Ob-
serve that bank, taxoffice, and government expects to receive
the constructor for security types B, T, and G, respectively. In other
words, the authority for bank, taxoffice, and government is set
to B, T, and G, respectively. Consequently, it is then possible for
those functions to apply cerfity with escape hatches that release
information at their authority level. Module Main sets the authority

for each of the given functions while providing the corresponding
escape hatches. Observe how constructors B :: B, T :: T, and G
:: G are given to functions bank, taxoffice, and government,
respectively. Malicious code placed in one function only compro-
mises confidential information related to its authority’s security
level. For instance, if function bank contains malicious code, then
confidential information related to the bank may be at risk. How-
ever, if government is compromised, all the information in the
system may be affected. Function government should be carefully
designed, or perhaps other restrictions regarding the application of
the escape hatch must be imposed in this function (see next subsec-
tion). This phenomenon also occurs in DLM when a process running
with the authority of all the principals in the system contains mali-
cious code.

5.5 Combining dimensions
For some application, declassification policies are not so simple as
those ones captured by the dimensions of what, when, and who. For
those scenarios, the user of the library has basically two options.
One one hand, the user can program his own policy, which pro-
vides enough flexibility. However, such flexibility could be danger-
ous when declassification policies are not implemented carefully.
For instance, an escape hatch must not decide if declassification
is possible by inspecting confidential data. Otherwise, attackers
learn information about secrets when applying escape hatches by
inspecting if the returned values are Nothing or not. On the other
hand, users can specify more interesting declassification policies
by combining applications of ntimes, when, and who together. For
instance, we extend the what-policy from the example given in Sec-
tion 5.2 to consider more dimensions as follows.

comb = do h <- ntimes 3
(hatch (\(spwd,c) -> cypher spwd == c))

(h’, open, close) <- when h
(h’’, auth) <- who h’
return (h’’:: Hatch H L (Spwd, String) Bool,

open, close, auth)

Observe how comb defines an escape hatch that releases infor-
mation if it is applied in a piece of code with authority H when some
events that execute open happened and information has not been
previously released more than three times. Other combinations are
also possible. To the best of our knowledge, this is the first imple-
mentation of mechanisms to enforce more than one dimension for
declassification.

6. Related work
Much previous related work addresses non-interference and func-
tional languages consider reduced programming languages (Heintze
and Riecke 1998; Volpano et al. 1996; Volpano and Smith 1997)
or require designing compilers from scratch (Pottier and Simonet
2002; Simonet 2003). Rather than implementing compilers, Li
and Zdancewic (Li and Zdancewic 2006) show how to provide
information-flow security as a library for a real programming lan-
guage. They provide an implementation for Haskell based on ar-
rows combinators(Hughes 2000), which naturally requires pro-
grammers to be familiar with arrows when writing security-related
code. Their library still imposes restrictions on what kind of pro-
grams can be written. In particular, their approach does not gener-
alize naturally in the presence of side-effects or information com-
posed of data with different security levels. To incorporate these
features, the library requires major changes as well as the introduc-
tion of new combinators (Tsai et al. 2007).

In this paper, we show that a less general notion, namely mon-
ads, is enough to provide information-flow security as a library. We
propose a light-weight library (∼ 400 LOC) able to handle side-
effecting computations and that requires programmers to be famil-
iar with monads rather than arrows. Moreover, by just placing data



into corresponding Sec s monads, our library is also able to handle
data composed of elements with different security levels. However,
there exists one restriction in our approach w.r.t. to the arrow ap-
proach. Since our security levels are represented by types, all of
them have to be known statically at compile-time5, whereas in the
arrow approach, they can be constructed at run-time.

Abadi et. al. developed the dependency core calculus (DCC)
(Abadi et al. 1999) based on a hierarchy of monads to guarantee
non-interference. Similarly, Sec constructs a hierarchy of monads
when applied to security levels s. However, DCC uses non-standard
typing rules for its bind operations while our library just provides
instances of the type class Monad. Tse and Zdancewic translate
DCC to System F and show that non-interference can be stated
using the parametricity theorem for F (Tse and Zdancewic 2004).
They also provide an implementation in Haskell for a two-point
lattice. Their implementation encodes each security level as an ab-
stract data type constructed from functions and binding operations
to compose computations with permitted flows. The same kind of
ideas relies behind Sec s, open, and close (see Section 4). Their
implementation requires, at most,O(n2) definitions for binders for
n-points lattices. Since they consider the same non-standard fea-
tures for binders as in DCC, they provide as many definitions for
binders as different type of values produced after composing secure
computations. Moreover, their implementation needs to be com-
piled with the flag -fallow-undecidable-instances in GHC.
On one hand, our library requires, at most, O(n2) instantiations
on the type class Less for n-points lattices, but it does not provide
more than one definition for binders nor requires allowing undecid-
able instances in GHC 6. DCC and Tse and Zdancewic’s approach
do not consider computations with side-effects. Moreover, Tse and
Zdancewic leaves as an open question how to encode more expres-
sive policies, such as declassification, directly in the type system of
Haskell.

Harrison and Hook show how to implement an abstract oper-
ating system called separation kernel (Harrison and Hook 2005).
Programs running under this multi-threading operating system are
non-interferent. To achieve that, the authors rely on properties re-
lated to monad transformers as well as state and resumption mon-
ads. Basically, each thread is represented as an state monad that
have access to the locations related to the thread’s security level
while state monad transformers act as parallel composition. Inter-
leaving and communication between threads is carried out by plug-
ging a resumption monads on top of the parallel composition of all
the threads in the system. Non-interference is then enforced by the
scheduler implementation, which only allow signaling threads at
the same, or higher, security level as the thread that issued the sig-
nal. Different from that, our library enforces non-interference by
typing. The authors also use monads differently than we do since
their goals are constructing secure kernels rather than providing
information-flow security as a library. For instance, we do not use
state monads, state transformers, or resumption monads since we
do not model threads. As a result, our library is simpler and more
suitable to write sequential programs in Haskell. It is stated as a
future work how to extend our library to include concurrency.

Crary et. al. design a monadic calculus for non-interference for
programs with mutable state(Crary et al. 2003). Their language
distinguishes between term and expressions, where terms are pure
and expressions are (possibly) effectful computations. The calculus
mainly tracks flow of information by inspecting the security levels
of effects produced by expressions. Expressions can be included at

5 We are investigating the use of polymorphic recursion to alleviate this –
this remains future work however.
6 All the code shown in the paper works with the Glasgow Haskell Compiler
(GHC) with the flag -fglasgow-exts

the term level as an element of the monadic type©(r,w)A, which
denotes a suspended computation where the security level r is an
upper bound on the security levels of the store locations that the
suspended computation reads, while w is a lower bound on the se-
curity level of the store locations to which it writes. Authors in-
troduce the notion of informativeness in order to relax some typ-
ing rules so that reading and writing into secret store locations can
be included in large computations related to public data. A type
A is informative at security level r or above if its values can be
used or observed by computations that may read data from secu-
rity level r or above. In our library, the type SecIO s a makes the
value of type a only informative at security level s. In principle,
the value of type a cannot be used anywhere but inside the monad
SecIO s. Considering a two-point lattice, we introduce the func-
tion plug :: Less L H => SecIO H a -> SecIO L (Sec H
a) to allow reading and writing secret files into computations re-
lated to public data. Observe that the function preserves the infor-
mativeness of a by placing it inside of the monad Sec H.

Recently, several approaches have been proposed to dynami-
cally enforce non-interference (Guernic et al. 2006; Shroff et al.
2007; Nair et al. 2007). In order to be sound, these approaches still
need to perform some static analysis prior to or at run-time. Au-
thors argue, in one way or another, that their methods are more
precise than just applying an static analysis to the whole program.
For instance, if there is an insecure piece of dead code in a program,
most of the static analysis techniques will reject that program while
some of their approaches will not. The reason for that relies in the
fact that dead code is generally not executed and therefore not ana-
lyzed by dynamic enforcement mechanisms. Our library also com-
bines static and dynamic techniques but in a different way. Non-
interference is statically enforced through type-checking while run-
time mechanisms are introduced for declassfication. By dynami-
cally enforcing declassification policies, we are able to modularly
extend the part of the library that enforce non-interference to add
downgrading of information and being able to enforce several di-
mensions for declassification in a flexible and simple manner. To
the best of our knowledge, this is the first implementation of declas-
sification policies that are enforced at run-time and the first imple-
mentation that allows combining dimensions for declassifications.

7. Conclusions
We have presented a light-weight library for information-flow se-
curity in Haskell. Based on specially designed monads, the library
guarantees that well-typed programs are non-interferent; i.e. secret
data is not leaked into public channels. When intended release of
information is required, the library also provides novel means to
specify declassification policies, which comes from the fact that
policies are dynamically enforced and it is possible to construct
complex policies from simple ones in a compositional manner.

Taking ideas from the literature, we show examples of declassi-
fication policies related to what, when, and by whom information
is released. The implementation of the library and the examples de-
scribed in this paper are publicly available in (Russo et al. 2008a).
The well-known concept of monads together with the light-weight
and flexible characteristic of our approach makes the library suit-
able to build Haskell applications where confidentiality of data is
an issue.
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