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Abstract
IoT applications are often developed in programming lan-
guages with low-level abstractions, where a seemingly in-
nocent mistake might lead to severe security vulnerabilities.
Current IoT development tools make it hard to identify these
vulnerabilities as they do not provide end-to-end guaran-
tees about how data flows within and between appliances.
In this work we present Haski, an embedded domain spe-
cific language (eDSL) in Haskell for secure programming of
IoT devices. Haski enables developers to write Haskell pro-
grams that generate C code without falling into many of C’s
pitfalls. Haski is designed after the synchronous program-
ming language Lustre, and sports a backwards compatible
information-flow control extension to restrict how sensitive
data is propagated and modified within the application. We
present a novel eDSL design which uses recursive monadic
bindings and allows a natural use of functions and pattern
matching to write embedded programs. To showcase Haski,
we implement a simple smart house controller where com-
munication is done via low-energy Bluetooth on the Zephyr
IoT OS.

CCS Concepts: • Software and its engineering → Do-
main specific languages; • Security and privacy→ In-
formation flow control.

Keywords: Synchronous programming, Information-flow
Control, eDSL, IoT, Haskell
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1 Introduction
The Internet of Things (IoT) conceives a futurewhere “things”
(embedded electronics) can be interconnected. While a com-
pelling vision, recent events have demonstrated the high
vulnerability of IoT (e.g., [Bertino and Islam 2017; Fernandes
et al. 2016; Schuster et al. 2018; Wang et al. 2018]). Hence, it
has become important to develop security solutions which
address the concerns of unauthorized access to data and
privacy loss.

We believe there are two major aspects which contribute
to the current poor state-of-the-art in IoT security: the cho-
sen programming languages for development and the lack of
end-to-end guarantees. IoT development is often done in pro-
gramming languages (like C) with low-level of abstractions,
where a seemingly innocent mistake might lead to severe
vulnerabilities like buffer overflows. Similarly, development
tools present no end-to-end guarantees about how data flows
within and between devices—thus making it hard to confine
sensitive information.
Figure 1 shows the running example throughout this pa-

per: a simplified smart house controller called Halexa. Halexa
consists of a micro-controller with Wifi access (required to
fetch software updates) which is connected to three Blue-
tooth devices: a thermometer, a motion sensor, and a window.
The micro-controller software is responsible for opening the
window when it is too hot inside the house. We assume that
there is no Air Conditioning in the house—not an uncom-
mon assumption in, for example, Nordic countries. While
simple, this scenario presents interesting security and safety
concerns: (i) to avoid robbery, windows must only be opened
when there is someone at home, and (ii) the motion sen-
sor data should be kept confined within the system and not
leaked via Internet—leaking it can hint burglars about the va-
cancy of the house. Observe that the micro-controller needs

https://doi.org/10.1145/3406088.3409027
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to have access to the sensors’ data in order to deliver its
function. Can we use Haskell to program constrained de-
vices and ensure the mentioned security requirements by
construction?
In this paper, we present Haski, an embedded domain

specific language in Haskell for secure programming of IoT
devices. Haski enables developers to write Haskell programs
that generate C code without falling into many of C’s pitfalls
(e.g., those related to memory safety, undefined behavior,
etc.). Haski follows the footsteps of the synchronous pro-
gramming language Lustre [Caspi et al. 1987; Halbwachs
et al. 1991], which is an event-driven programming language
with strong guarantees on resource usage—a must when
programming low-power devices often found in IoT systems.
Haski enhances Lustre with confidentiality and integrity se-
curity guarantees, as well as a means of communicating with
streams generated by callback functions.

By adopting a synchronous programming model, Haski is
able to provide resource bounds while removing memory-
based security vulnerabilities by construction. Haski’s de-
sign and implementation is unique compared with previous
Haskell eDSLs for Lustre-like languages [Bjesse et al. 1998;
Hawkins et al. 2011]. Firstly, Haski presents a novel monadic
design which allows programmers to leverage Haskell’s
monadic bindings (i.e., do and mdo) to specify streams as
literate as possible. Secondly, Haski conceives a new DSL
technique to compile Haskell functions on Haski-expressions
into callable components of the target language. Finally,
Haski provides user-defined enumeration types, where de-
velopers can simply use Haskell’s case expression to inspect
them, while raising a type-error in case of non-exhaustive

Figure 1. A Smarthouse example

patterns—thus making the code more robust. To address end-
to-end guarantees, Haski incorporates information-flow con-
trol (IFC) techniques [Sabelfeld and Myers 2003] to restrict
how data propagates and gets modified—thus protecting the
confidentiality and integrity of data. With IFC, developers
can, for instance, incorporate third-party Haski code to ana-
lyze sensitive data like that coming from the motion sensor
while still preventing data leaks. To keep the types in eDSL
simple, Haski enforces IFC at code-generation time by only
tracking data propagation among end-points streams indi-
cated by developers, e.g., the thermometer, motion sensor,
window and Internet communication channel in Figure 1.

Contributions. The main research contribution of this
paper is the design and implementation of Haski. We show
how to design a synchronous language that is type-safe,
protects confidentiality and integrity of data, handles I/O, and
generates C code. Importantly, our design does not require
any modifications to GHC or the use of compiler plug-ins.
Instead, Haski uses embedding techniques by leveraging
advanced type-level features of GHC such as GADTs [Peyton
Jones et al. 2006], data kinds [Yorgey et al. 2012], existential
types, and pattern synonyms [Pickering et al. 2016]. Some of
the techniques developed for Haski can be generalized and
used for general DSL design in Haskell.

2 Haski by Example
Haski programs are written in Haskell using a special set of
combinators. In this section, we illustrate various examples
of Haski programs and showcase these combinators. For the
upcoming examples, we use the data typeAction to represent
an action indicating whether our user Octavius has left (or
entered) the house.

data Action = Left | Entered
The purpose of the Action data type (instead of, for example,
Bool) is to illustrate the use of user-defined data types in
Haski programs.

Recursive definitions. A Haski program is a collection
of stream definitions written in the Haski monad. A simple
stream can be defined using the letDef combinator, which
has the following type.

letDef :: Stream a→ Haski (Stream a)
Using Haskell’s do notation, we can use this combinator to
bind streams to variables as follows.

left :: Haski (Stream Action)
left = do

x ← letDef (val Left)
return x

This program defines the constant stream that repeats the
action Left as Left, Left, Left, ... using the combinator val ::
HT a ⇒ a → Stream a. The type constraint HT ensures
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that a type is recognized by the Haski compiler and can be
compiled by it. In this case, we may suppose that Action
already satisfies this constraint, but we will later see how
this is made possible.
Streams may also be defined recursively using the fby

combinator (read followed by).

fby :: HT a⇒ a→ Stream a→ Haski (Stream a)
The stream v ‘fby‘ s begins with the value v and is followed
by the stream s. For example, we can define a stream of al-
ternating actions such as Left, Entered, Left, Entered, ... using
the fby combinator as follows.

alt :: Haski (Stream Action)
alt = mdo
x ← Left ‘fby‘ y
y ← Entered ‘fby‘ x
return x

The stream x here defines a stream that begins with Left
and is followed by y. Similarly, y begins with Entered and is
followed by x. We use the keyword mdo1 instead of do for
(mutually) recursive definitions.

Pattern matching definitions. Streams can also be de-
fined by pattern matching on values of other streams using
the match combinator.

match :: (FinEnum a, Streams b) ⇒ Stream a→ (a→ b) → Haski b

The combinator application match e f defines the streams
resulting from applying the observed value of e to f . The
definition of f enables pattern matching on the value of e.
The type constraint FinEnum subjects the type a to be finitely
enumerable, and the constraint Streams overloads the type b
to allow the function f to return multiple streams such as
lists or tuples of streams. The constraint FinEnum ensures
that match can only be used to pattern match on streams
with finitely many values—a restriction which later enables
code generation.
To illustrate the use of match, let us implement a simple

cache mechanism that accepts requests to read and write
actions, and responds with the last-written action, beginning
with Left. Let us represent the request protocol using the
data type Req.

data Req = Read | Write Action

Evidently, Req is finitely enumerable since it has only three
possible values: Read,Write Left, andWrite Entered. Hence
we may use match on a stream req :: Stream Req as follows.

...

resp← req ‘match‘ 𝜆case
Read → state
Write x → val x

1Enabled by the RecursiveDo extension

state← Left ‘fby‘ resp
...

We shall use ellipses (...) in the code to hide the parts that are
not relevant to the point being made. The response stream
resp is defined by matching against the request stream req,
where the second argument is a lambda-expression which
pattern matches on its argument. We write 𝜆case instead of
𝜆x → case x of ...2.

The combinator match allows us to leverage the benefits
of patternmatching in Haskell (such as variable binding, wild
cards, guards, etc.) to generate code with simpler branching
operators in the target language. For example, the definition
of respwhich patternmatches on req in the previous example,
generates the following C code.

switch (req) {
case READ → resp = ...

case WLEFT → resp = ...

case WENTERED→ resp = ...

}
The cases are representative of the C values generated for
the Haskell values of type Req.
A pattern match performed using match must handle all

possible cases, and is enforced by the Haski compiler. If we
leave out one of the cases in the above example, the Haski
compiler throws an error such as the following—with line-
numbers!
ghci> compile ...
*** Exception: Cache.hs:(20,18)-(21,22):
Non-exhaustive patterns in case

Nodes. The stream req in the previous example has not
been defined locally, and we wish for it to be a variable which
can be substituted for by different contexts. Nodes allow us
to define subprograms that abstract over stream expressions
such as req, and thus enable an external caller to supply them.
In Haski, nodes are written as Haskell functions, as shown
below.

cache :: Stream Req→ Haski (Stream Action)
cache = node "cache" $ 𝜆req→ mdo
resp← req ‘match‘ 𝜆case
Read → state
Write x → val x

state← Left ‘fby‘ resp
return resp

A node is created using the node combinator by providing
a name string and a function as arguments.

node :: (Arg a, Box b) ⇒ String → (a→ b) → (a→ b)
The name string is used to identify a node uniquely during
compilation, and the function defines the body of the node.
2Enabled by the LambdaCase extension
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The type constraints Arg and Box together ensure that the
function a→ b accepts streams as arguments and produces
a stream result in the Haski monad, i.e., has a type of the
shape Stream a′→ Stream b′→ ....→ Haski (Stream res).

Notice that the function which defines a node itself need
not be inside the Haski monad as Haski (Stream a′ →
Stream b′ → .... → Stream res). This allows for a more
natural type to be assigned to a node, and for them to be
called and used as regular Haskell functions without any
special combinators. For example, we may map over a list
of streams as mapM cache (requests :: [Stream Req]) to gen-
erate a list of responses, each corresponding to a call of the
node cache.

Compiling the node cache generates code which resembles
the following in C.

typedef unsigned short Enum;
struct 𝑐𝑎𝑐ℎ𝑒_𝑚𝑒𝑚 {Enum action; };
Enum 𝑐𝑎𝑐ℎ𝑒_𝑠𝑡𝑒𝑝 (struct 𝑐𝑎𝑐ℎ𝑒_𝑚𝑒𝑚 ∗ self , Enum req) {

...

return resp;
}

We shall return to the specifics later, but for now we simply
observe that the node cache is compiled to a C function with
an additional argument self . This argument maintains the
internal state of the returned stream, which in this case is the
last-written action. Also note that both the types (Req and
Action) have been compiled to values of type Enum, which
represents a small positive integer—a simplifying assumption
made for all finitely enumerable types.

Primitive types and operators. The Haski compiler sup-
ports standard primitive types of fixed size such as Bool, Int,
etc.

instance HT Bool where ...
instance HT Int where ...

-- similarly for other primitive types

The luxury of pattern-matching is limited to finitely enu-
merable types. Now suppose that we wish to adapt our cache
example to a read and write integers instead of actions. Inte-
gers are not considered to be finitely enumerable for practical
reasons, which means that we cannot use a Haskell data type
with an integer in it for pattern matching. Instead, we must
separate the request from the integer payload into two sepa-
rate streams as follows.

data Req_i = Read | Write

cache_i :: Stream Req_i→ Stream Int → Haski (Stream Int)
cache_i = ...

To program streams whose types are not finitely enumer-
able, we resort to the primitive operators supported by the
compiler. Haski supports a fixed set of operators that are

recognized by the target environment. These operators are
overloaded when possible (e.g., +, ∗, etc.) and provided sepa-
rately otherwise (e.g., gtE).

(+) :: Stream Int → Stream Int → Stream Int
(∗) :: Stream Int → Stream Int → Stream Int
gtE :: Stream Int → Stream Int → Stream Bool
...

Sampling operators. In addition to primitive operators,
Haski also supports sampling operators called when and
merge (from Lustre) for projecting and combining streams.
when :: FinEnum b⇒ Stream a→ (Stream b, b) → Stream a
merge :: FinEnum a⇒ Stream a→ (a→ Stream b) → Stream b

The operator when allows us to project streams to slower
ones: the stream s_1 ‘when‘ (s_2, x) produces the value of
s_1 only when the value of s_2 is x. Operator merge, on the
other hand, is a restrictive version ofmatch that requires the
streams returned by the function argument to be mutually
complementary (i.e., at most one stream must produce a
value at a time). As we will see in the next section, merge is
in fact used to implement match.

Labeling primitives. Streams which contain sensitive in-
formation can be labeled with a sensitivity level. Labeled
streams are given the type LStream a, and may be under-
stood as streams wrapped in a secure container whose access
is controlled using specific primitives. A stream can be la-
beled and unlabeled using the primitives label and unlabel
respectively, and the label of a stream can be queried using
the labelOf primitive.

label :: Label → Stream a→ Haski (LStream a)
unlabel :: LStream a→ Haski (Stream a)
labelOf :: LStream a→ Haski Label

To understand the use of these primitives, let us imple-
ment a new version of the cache node where the request and
response have been labeled. One reason to do this may be
because we wish to keep the actions of a user of our system
confidential. To implement the same behavior as before, we
must now use the labeling primitives explicitly to label and
unlabel the streams.

secCache :: LStream Req→ Haski (LStream Action)
secCache = node "secCache" $ 𝜆req_l → do

resp← unlabel req_l >>= cache
ℓ ← labelOf req_l
resp_l ← label ℓ resp
return resp_l

The code above unlabels the stream req_l as unlabel req_l.
This raises the senstivity level of the program secCache to
the label of req_l (also known as tainting), which forces all
subsequently labeled streams (like resp_l) to be at least as
sensitive as req_l. The sensitivity level of the program is then
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Figure 2. Phases of eDSL compilation. The dashed arrow
denotes a sequence of well-known compilation passes used
to compile Lustre nodes [Biernacki et al. 2008].

used by an administrator to enforce security policies on the
program during compilation—as we shall see in Section 5.

3 Overview of Haski Compiler
Haski at its core is an embedding of Lustre in Haskell with
support for IFC. This means that Haski enables the use of
Haskell as a host language to write Lustre programs. A Lus-
tre program, much like Haski, is a system of stream bindings
accompanied by a collection of nodes invoked by them. Com-
piling a Haski program first builds a Lustre program, and
then compiles it to C—thus generating low-level code as in
the examples of the previous section.
The compilation function compile, which has the type

HT a ⇒ Haski (Stream a) → IO (), compiles a Haski
program and generates C code as a side-effect. Compilation
builds a "main" node for the given program, which then acts
as the point of invocation for the entire program. Note that
the program is restricted to producing an output whose type
satisfies the HT constraint. This means that, although the
program may use any Haskell types, its result must be of a
type supported by the target language. This restriction, in
combination with similar type constraints on the combina-
tors, ensures that the use of Haskell’s features that are not
supported by the target environment (such as higher-order
functions) are "evaluated away" during compilation time.
The compilation of a Haski program is achieved in two

phases (see Figure 2): the Embedding phase constructs a list
of Lustre nodes from a Haski program, and the Lustre phase
then compiles the nodes to C functions. The first phase is
implemented using a combination of deep and shallow em-
bedding techniques, and consists of the compilation passes
building and node parsing. The second phase, on the other
hand, transforms Lustre nodes to C functions via an inter-
mediate object-oriented language called Obc. This phase

data HaskiSt = HaskiSt {defs :: [Def ], ... }
type Haski = State HaskiSt

data Def where
Let :: HT a⇒ Var a→ Stream a→ Def
Arg :: HT a⇒ String → Var a→ Stream a→ Def
Res :: HT a⇒ String → Var a→ Stream a→ Def

data Stream a where
Var :: HT a⇒ Var a→ Stream a
Val :: HT a⇒ a→ Stream a
Fby :: HT a⇒ a→ Stream a→ Stream a
When :: (FinEnum a) ⇒ Stream a

→ (Stream b, b) → Stream b
Merge :: (FinEnum a) ⇒ Stream a

→ Vec (Stream b) (Size a) → Stream b
-- plus primitive operators

type Var a = String
class (Bounded a, Enum a) ⇒ FinEnum a where

type Size a :: Nat

Figure 3. Types used to implement Haski

involves a sequence of compilation passes such as clock in-
ference, normalization and scheduling, that are well-known
in Lustre compilers [Biernacki et al. 2008].
The Lustre phase is implemented using a modular clock-

directed compilation approach that is well-studied and has
even been formally verified [Auger et al. 2012; Bourke et al.
2017]. We implement the passes in this phase by repeatedly
traversing the abstract syntax tree of Lustre nodes and an-
notating it with the result of each phase (following Najd
and Jones [2017]). Our implementation of this phase is a
straightforward adaptation of earlier work, and we do not
discuss the details in this paper. Instead, we focus on the
implementation details of the first phase, which also forms
the basis for the IFC enforcement.

4 Haski as a Lustre Embedding
During the building pass, each line of a Haski program writ-
ten using one of the combinators builds a corresponding
intermediate definition under the hood of the Haski monad.
These definitions are then parsed to construct a complete
Lustre program in the node parsing pass. The purpose of
this section is to describe the implementation of the building
pass, and outline the action performed by the node parsing
pass.

4.1 Building Recursive Definitions
The streams defined in the Haski monad are collected as
a list of definitions. When run with an appropriate initial
state, a Haski program produces a list of definitions which
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correspond to components of Lustre nodes. Definitions are
denoted by theDef data type, and expressions by Stream (see
Figure 3). A definition may be a simple binding that binds
a variable with a stream expression (Let), or an argument
(Arg) or result (Res) of a node call.

The program alt from Section 2 builds the following defi-
nitions under the hood of the Haski monad.

Let "x" ((Val Left) ‘Fby‘ v_y)
Let "y" ((Val Entered) ‘Fby‘ v_x)

where v_x = Var "x" and v_y = Var "y". We use the same
variables names as in the original program for readability,
but this can also be implemented automatically with some
compiler support [Mista and Russo 2020].

Let us now turn to the implementation of combinators in
the Haski monad. The combinator fby is implemented using
the letDef combinator as follows.

fby :: HT a⇒ a→ Stream a→ Haski (Stream a)
fby x s = letDef (Fby x s)

The combinator letDef is in turn implemented by adding a
Let binding with a fresh variable name to the list of defini-
tions in the Haski monad.

letDef :: Stream a→ Haski (Stream a)
letDef s = do

x ← freshVar
addDef (Let x s) -- updates state (‘defs‘)
return (Var x)

It returns the variable in place of the original stream ex-
pression, thus replacing any use of the expression in later
definitions with this variable. Returning a variable is the key
to enabling recursive definitions without sending the Haski
compiler into an infinite loop.
As fby, the implementation of match also builds defini-

tions containing expressions under the hood, but is slightly
more involved sincematch is derived from other expressions.
We discuss this next.

4.2 Building Pattern Matching Definitions
The combinatormatch is overloaded in its function argument
by the class Streams which has the following instances.

class Streams b where
match :: (FinEnum a) ⇒ Stream a→ (a→ b) → Haski b

instance Streams (Stream b) where ...
instance Streams b⇒ Streams [b] where ...
instance (Streams b, Streams c) ⇒ Streams (b, c) where ...

-- similarly for other “containers”

The overloading allows the matching function a→ b to re-
turn multiple streams, such as lists or tuples of streams. In
this section, we shall discuss the implementation of the in-
stance Streams (Stream b). We skip the remaining instances

since their implementation is mostly mechanical component-
wise applications of match.

The combinator match provides a convenient interface
for defining streams using the more fine-grained sampling
operatorsWhen and Merge. For instance, the stream resp in
the cache example from earlier defined using match on req,
builds the following definition.

Let "resp" (vreq ‘Merge‘ [
vstate ‘When‘ (vreq, Read)
, (Val Left) ‘When‘ (vreq,Write Left)
, (Val Entered) ‘When‘ (vreq,Write Entered)
])

When can be understood as a projection of a stream us-
ing another stream: the expression vstate ‘When‘ (vreq, Read)
produces the value of vstate when the value of vreq is Read,
and nothing otherwise. In the Merge expression above, the
vector (written using list notation) contains a stream for
each possible value of vreq. For every observed value of vreq,
Merge produces the value of the corresponding stream in the
vector. The use of When ensures that the branches of Merge
are mutually complementary, which, as mentioned earlier
in Section 2, is a restriction that is required of Merge.

Now consider implementing the instanceMatch (Stream b),
where match has the type FinEnum a⇒ Stream a→ (a→
Stream b) → Haski (Stream b). The matching function
a→ Stream b is expected to return an expression for every
possible value of type a. To achieve the semantics of match
illustrated above, we must implement match using Merge.
But notice that Merge requires a vector argument of type
Vec (Stream b) (Size a) instead of a function, where Size a
denotes the number of values that inhabit the type a. Using a
vector forces a Merge expression to provide as many stream
expressions as the number of values in the type a by con-
struction, and thus enables the generated code to also inherit
this property. This brings us to the question of implementing
match: how must we construct a vector of streams from a
function which returns them?
The solution to this problem is provided by the FinEnum

class, which requires all its instances to be both bound and
enumerable. Being bound and enumerable means that we
could enumerate all the values of an instance type. Addi-
tionally, FinEnum is also finitely bound by the type family
Size, which provides a type-level natural number of kind
Nat. This enables us to enumerate the values as a vector of
values, instead of a list of values. Let a function enumerate
which does this be defined by the following class.

class FinEnum a⇒ Enumerable a (n :: Nat) where
enumerate :: Vec a n

Let us defer its implementation for the time being and simply
assume that enumerate ::Vec a (Size a) returns all the values
of type a.
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Since the domain of the matching function is finitely enu-
merable, we can use enumerate to generate all possible ar-
guments to the function. Moreover, we can also apply the
function to the enumerated arguments to extract all possible
results of the function. Thus we have a way to extract all the
stream expressions returned by the function! This behavior
is implemented by the following function—named after “The
Trick” in partial evaluation [Jones et al. 1993].

theTrick :: FinEnum a⇒ (a→ b) → Vec b (Size a)
theTrick f = fmap f as

where as :: Vec a (Size a) = enumerate

Equipped with theTrick, we implement the desired imple-
mentation of match as follows.

instance Streams (Stream b) where
match s f = letDef $
let body = theTrick f

whens = theTrick (𝜆x → flip When (s, x))
in Merge s (zipWith ($) whens body)

We first construct the vector which contains the streams on
each branch of Merge in body :: Vec (Stream b) (Size a), and
then insert theWhen expressions by zipping it (by applica-
tion) with whens :: Vec (Stream b→ Stream b) (Size a).
Recollect from earlier that the matching function is en-

forced to handle all the possible cases of its argument. We
do not need any additional checks to enforce this behavior
because this is already the case! If the function does not han-
dle all possible cases, the invocation of the function theTrick
by the compiler crashes with a Non-exhaustive patterns
error—which, lucky for us, is exactly what we need!
It remains to implement enumerate, which is straightfor-

ward induction on the Nat parameter as follows3.

instance Enumerable a 1 where
enumerate = [minBound ]

instance (Enum a, Enumerable a n, n′∼n + 1)
⇒ Enumerable a n′ where
enumerate = succ (head ts) : ts
where ts :: Vec a n = enumerate

The first value in the vector is constructed using minBound
and the remaining elements are constructed by applying succ
on the previous value. These functions are provided by the
Bounded and Enum classes, respectively.

4.3 Building Nodes from Functions
As observed earlier, nodes are Haski subprograms that ab-
stract over streams. Nodes are given a more liberal type
which allows them to be regular Haskell functions that need
not be defined inside the Haski monad. But this creates a
challenge: how do we compile a Haskell function which rep-
resents a Haski node to a data representation of a Lustre
3Requires UndecidableInstances and the OVERLAPPING pragma

class Arg a where
argDef :: String → a→ Haski a

class Res a where
resDef :: String → a→ Haski a

instance Arg (Stream a) where ...
instance (Arg a,Arg b) ⇒ Arg (a, b) where ...
instance Res (Stream a) where ...

Figure 4. Interface used to register a node call

node? Moreover, we cannot have a simple Def constructor
that corresponds to a node call, since Haski nodes are not
called with a special combinator.
To solve this problem, we first note that result of a node

is always in the Haski monad. When fully applied, if we
“register” each argument of a node call as a separate definition
in the Haski monad, then we could recover the complete call
in a later pass (node parsing) which acts on the collected
list of definitions. The idea is to build definitions for a node
when it is called, such that the definitions retain sufficient
information for the node parsing pass to identify both the
node and its call. For instance, we wish to build the following
definitions for the call prevAct ← cache (Val Entered).
Arg "cache" "arg_1" (Val Entered)

Let "resp" (varg_1 ‘Merge‘ [ . . ])
Let "state" ((Val Left) ‘Fby‘ vresp)

Res "cache" "prevAct" vresp

The body of the cache node (containing Let definitions) is in-
lined at the call site by substituting its argument with a fresh
variable (varg_1) instead of the actual argument Val Entered.
From this invocation, we may recover both the body of the
cache node and its invocation which defines prevAct—which
is precisely the job of the node parsing pass. Multiple invo-
cations of a node cause its body to be inlined multiple times,
but the parsing pass simply ignores them if a node with a
specific name has already been encountered.
Since functions may be partially applied, the arguments

must be registered as they are received. Moreover, once all
the arguments have been provided the resulting stream must
be registered as one resulting from a node call. To achieve
this, we shall wrap the function used to create a node in-
side another function which has the same type, but is also
equipped with the ability to register the arguments and the
result. This sneaky behavior is implemented by the node
combinator.

The functions argDef and resDef (see Figure 4) provide an
interface for registering arguments and result of a node. The
instances Arg (Stream a) and Res (Stream a) allow a stream
to be registered as an argument or a result respectively. Their
implementation is similar to letDef . Additionally, a pair of
arguments can also be registered by applying argDef on both
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components of the pair. As we shall see shortly, this instance
has to do with registering multiple arguments.
The combinator node is implemented by “boxing” the

given function using a class Box which is overloaded in the re-
turn type of the function. It has two instances, Box (Haski b)
for the base case where the function receives a single argu-
ment, and Box (b → c) for the inductive case where the
function receives more than one argument.

class Box b where
node :: Arg a⇒ String → (a→ b) → (a→ b)

instance (Res b) ⇒ Box (Haski b) where
node name f = 𝜆e→ do
x ′← argDef name e
r ← f x ′

r ′← resDef name r
return r ′

instance (Arg b, Box c) ⇒ Box (b→ c) where
node name f = curry (node name (uncurry f ))

In the base case instance Box (Haski b), the function f has
the type a → Haski b. To box this function, we register
the argument using argDef and call the function with the
result of the registration. This substitutes the occurrences of
the argument in the body of the function with the variable
returned by argDef . Finally we register the result of the func-
tion using resDef and return the corresponding definition.

For the inductive case, observe that we need to box a func-
tion f :: a→ (b→ c), and the instance declaration provides
us instances of Arg b and Box c as the induction hypotheses.
Additionally, we are also given an instance Arg a by the
declaration of the function node. The instances Arg a and
Arg b yield an instance for Arg (a, b). Thus, using instances
Arg (a, b) and Box c, we can box the function f by currying
it, and then uncurrying back to return the desired result.

5 Information-Flow Control
Haskell is well-known for providing information-flow con-
trol (IFC) through security libraries. These libraries ensure
that code written using their API does not reveal secrets to
unauthorized parties. Many of the existing (monadic) secu-
rity libraries (e.g., SecLib [Russo et al. 2008], LIO [Stefan et al.
2011b], MAC [Russo 2015], and HLIO [Buiras et al. 2015]) are
designed for writing secure code. In this work, however, we
consider a different scenario wherewe would like to extend an
existing DSL to provide IFC security while minimizing changes
to existing code. Following this goal leads us to the design of
an IFC enforcement where security checks are performed at
code-generation time rather than at runtime (like in LIO) or
type-checking time (like in MAC). In this section, we give a
brief overview of IFC and explain the design choices of our
IFC enforcement for Haski.

-- Labeled streams
data LStream a
-- Manipulation of labeled streams

labelOf :: LStream a→ Label
label :: Label → Stream a→ Haski (LStream a)
unlabel :: LStream a→ Haski (Stream a)

-- Current label
getLabel :: Haski a→ Haski Label
-- Label creep avoidance

toLabeled :: Haski (Stream a) → Haski (LStream a)

Figure 5. IFC interface for Haski

5.1 Security Lattices
IFC policies enforced by Haski are specified by a security
lattice [Denning and Denning 1977], which defines a partial
order between security levels (labels). These labels represent
the sensitivity of program inputs and outputs and the order
between them dictates which flows of information are al-
lowed in a program. Concretely, we write ℓ1 ⊑ ℓ2 if data
at security level ℓ1 can flow to data ℓ2 according to the se-
curity lattice. For example, the classic two-point lattice
L = ({L,H }, ⊑) classifies data as either public (L) or se-
cret (H ) and only prohibits sending secret inputs into public
outputs, i.e., H ̸⊑ L.

5.2 Enforcement Design
We design a coarse-grained IFC enforcement [Rajani and
Garg 2018], where developers only provide label annota-
tions to security-relevant streams—rather than labeling ev-
ery stream in a program. A labeled stream of type LStream
is implemented by associating a stream expression with its
label as follows.
data LStream a = LStream {getLabel :: Label, getStr :: Stream a}

The type LStream acts as an opaque container since its imple-
mentation is not exposed to the programmer. For instance,
the labeled stream LStream Halexa (val 42) is a constant
stream that is confidential to the smart house controller
Halexa .

Figure 5 shows Haski’s IFC interface, which provides prim-
itives to manipulate labeled streams while avoiding informa-
tion leakage. Function labelOf obtains the label associated
with a labeled stream. To understand the rest of the primi-
tives, we need to introduce the concept of a floating label.
Every line in the Haski monad is associated with a spe-

cial label known as the floating label (denoted by ℓf), which
“floats above” the label of any observed stream during pro-
gram execution, and thus represents an upper-bound on the
sensitivity of all the streams in scope. The floating label is
tracked in the state of the Haski monad:

data HaskiSt = HaskiSt {defs :: [Def ], ℓf :: Label, ... }
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In order to enforce IFC policies, Haski regulates the inter-
action between Haski programs and labeled streams. Haski
programs cannot write and read labeled streams directly,
but must use the primitives in Figure 5. Let us discuss the
implementation of these primitives next.

5.3 Implementing Labeling Primitives
The labeling primitives create and read labeled streams in
compliance with specific security rules to avoid information
leakage [Bell and La Padula 1976].

The primitive label labels a stream with a given label and
does not affect the floating label of the program. Its imple-
mentation ensures that a desired label ℓ is at least the floating
label of the program, i.e., ℓf ⊑ ℓ , thus enforcing a no write-
down policy. Intuitively, label creates a labeled stream as
long as the decision to do so depends on less sensitive data.
For example, given ℓf = L, the invocation label H s (for some
s ::Stream Int, for instance) is legal since ℓf ⊑ H . This means
that a program which has read sensitive data cannot write
public information in an attempt to leak it. If this criteria is
not met, label inserts an error using fail in the Haski monad,
thus crashing compilation.

The primitive unlabel acts as the dual of label and extracts
the stream underlying a labeled stream. Unlike label, how-
ever, unlabel never crashes compilation and always succeeds.
Instead, an invocation of unlabel on a stream s_l with label
ℓ raises the floating label of the program to ℓf ⊔ ℓ .

Haski, as any other floating-label based IFC systems, suf-
fers from the label creep problem. Unlabeling sensitive streams
raises the floating label of the program, and hence a program
which reads many sensitive streams risks raising its level to
a point where it may not be able to produce any observable
result. This problem is remedied using the toLabeled prim-
itive, which addresses it by (i) creating a separate context
where some sensitive computation can take place and (ii)
restoring the original floating label afterwards.
The argument of toLabeled is a sensitive computation of

type Haski (Stream a), that cannot return its result to the
outer context—since that would be a leak. Instead, toLabeled
wraps the result in a labeled stream using the floating label
resulting from the execution of the sensitive computation.
Unlike unlabel, toLabeled produces a labeled stream of type
LStream a and its invocation does not affect the floating label.
An invocation of toLabeled never crashes compilation.

5.4 Running Programs Securely
DC-labels. Haski uses DC-labels [Stefan et al. 2011a],

which is an expressive label format that can capture the
security concerns of principals. DC-labels are pairs of con-
fidentiality and integrity policies, noted <C, I> where C is
the confidentiality policy and I is the integrity one. Both
policies are positive propositional formulas in conjunctive
normal form (CNF), where propositional constants represent
principals. We assume that operations on formulas always

<C_1, I_1>⊑<C_2, I_2>⇐⇒ (𝐶2 ⇒ 𝐶1) ∧ (𝐼1 ⇒ 𝐼2)

<C_1, I_1> ⊔ <C_2, I_2>⇐⇒ <C_1 ∧ C_2, I_1 ∨ I_2>

<C_1, I_1> ⊓ <C_2, I_2>⇐⇒ <C_1 ∨ C_2, I_1 ∧ I_2>

⊥ ≡<True, False> ⊤ ≡<False, True>

Figure 6. DC-labels semantics

reduce their results to CNF. For simplicity, we focus on con-
fidentiality since the integrity part comes as a dual of it.
Given two confidentiality policies 𝐶1 and 𝐶2, we interpret
<C_1, I> ⊑ <C_2, I> as: 𝐶2 is at least as confidential as 𝐶1.
For instance, <Halexa ∨ Octavius, I > ⊑ <Octavius, I >,
which means that data readable by either Halexa or the
Octavius is less confidential than data readable only by the
Octavius. In contrast, given two integrity policies 𝐼1 and 𝐼2,
we interpret <C, I_1> ⊑ <C, I_2> as: 𝐼1 is more trustworthy
than 𝐼2, i.e., there are more principals taking responsibil-
ity for the data labeled with 𝐼1 than with 𝐼2. For instance,
<C,Octavius ∧ Halexa> ⊑ <C,Halexa>, which means
that Halexa and the Octavius are jointly responsible for the
data, which is more trustworthy than data only vouched by
Octavius. Figure 6 presents the formalization of operations
we will use in the rest of this section together with the def-
inition of ⊔ and ⊓ in the security lattice. With DC-labels
in place, we can associate the different components of our
system to different principals, thus enabling them to impose
different restrictions on the confidentiality and integrity of
data.

Configuring security policies. A Haski program that
returns a stream (labeled or not) can be run using the runAs
function on behalf of a principal. This function is intended to
be used by an administrator who compiles a Haski program
and assigns the right privilege to it—we assume that the
administrator is part of the trusted computing base. Function
runAs is defined as follows:

class IsStream f where
runAs :: Haski (f a) → Principal → Haski (Label, Stream a)

The result of the Haski (f a) argument is overloaded in f to
allow for both labeled and unlabeled streams to be returned.
The Principal argument is used to set the initial floating
label of the Haski computation and denotes the source of
authority, i.e., the entity, that this program represents. For
example, runAs prog "Halexa" runs a computation on be-
half of Halexa with the DC-label <Halexa,Halexa>. As a
result, any stream that is labeled by prog will contain Halexa
in both the confidentiality and integrity components of its
label—which means that the stream is confidential to Halexa,
and also that Halexa has contributed to its content.
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The runAs function returns a label that corresponds to
the final floating label of the computation joined with the
label of its result, along with the result that it returns. The
returned label is intended to be used by the administrator to
enforce application-specific security policies. Observe that
the result is an unlabeled stream. This is due to the fact that
runAs is run by the administrator, i.e., a person that we trust,
so there is no need to protect the resulting stream by labeling
it.
We implement the runAs function using the toLabeled

primitive. This is because toLabeled allows us to create a
separate context for the program to be run in, and restore
the floating label of the administrator prior to execution.
Restoring the floating label of the administrator allows the
administrator to run programs on behalf of various prin-
cipals without getting tainted by them. Here is the Stream
instance which implements runAs for computations that re-
turn expressions.

instance IsStream Stream where
runAs prog princ = do
(LStream ℓ res) ← toLabeled $ do
setLabel (newDCLabel princ princ)
prog

return (ℓ, res)

Function setLabel can only be used by the administrator
and it is part of the trusted computed base, i.e., it is present
in the IFC interface exposed to developers. The function
newDCLabel creates a label from the given principal by using
it for both the confidentiality and integrity components.
The instance for the case of labeled expressions is imple-

mented in turn using the above instance by simply unlabeling
the result.

instance IsStream LStream where
runAs prog princ = runAs (prog >>= unlabel) princ

The intended effect of this implementation is for the resulting
label to be ℓ ⊔ ℓf, where ℓf is the floating label of prog at the
end of its execution, and ℓ is the label of its result.

6 A Sample Application
In this section we illustrate the structure of the Halexa appli-
cation and its security policy in Haski. The purpose of our
application is to make a decision on opening a window, based
on the current temperature in the house and the status of the
user Octavius. Halexa is expected to open the window when
the temperature in the room is over 30◦C provided Octavius
is at home. If Octavius is not home, however, Halexa must
close the window regardless of the temperature. We consider
the status of Octavius sensitive information and thus require
Halexa to confine the status and any information derived
from it. That is, the status should not be used to build streams
less sensitive than the DC-label <Octavius,Octavius>.

type Status = Maybe Action
data WindowOp = Skip | Open | Close
halexa :: Stream Int → LStream Status

→ Haski (LStream WindowOp)
halexa = node "halexa" $ 𝜆temp stat_l → do

isHot ← letDef $ temp ‘gtE‘ 30
toLabeled $ do
stat ← unlabel stat_l
pastAct ← (stat ‘match‘mkReq) >>= cache
recentAct ← stat ‘match‘ (maybe pastAct val)
dec ← recentAct ‘match‘ 𝜆case

Left → val Close
Entered → ifte isHot (val Open) (val Skip)

return dec
where
mkReq :: Status→ Stream Req
mkReq Nothing = val Read
mkReq (Just x) = val (Write x)

Figure 7. Implementation of Halexa

We model Halexa as a node which accepts two streams
as arguments (see Figure 7): one of type Stream Int for the
temperature reading, and another of type LStream Status for
a labeled stream of notifications which notify Halexa about
the actions of Octavius. The notifications specify whether
Octavius has left (Just Left), entered (Just Entered), or that
there is no change in status (Nothing). In response, the node
returns a stream of instructions denoted by StreamWindowOp
which instructs whether thewindow should be opened (Open),
closed (Close), or whether nothing should be done (Skip). In
essence, we implement Halexa using the toLabeled primi-
tive to unlabel the labeled stream stat_l, thus ensuring that
Halexa does not read its contents.
To understand the logic of the implementation, notice

that a status stream stat need not contain any update in
Octavius’s action since it may be Nothing. Hence it is up
to us to compute the whereabouts of Octavius from the
most recently observed action. We compute this in the stream
recentAct as follows: if the current value of stat is Nothing
then use the last available action of the user (given by pastAct),
else simply use the action given by stat. The stream pastAct
retains the last action of the user using the cache node from
earlier. Finally, we define a decision stream by matching on
the recentAct stream, which produces the desired result. The
combinator ifte is simply a shortened version of a match
expression which pattern matches on True and False.

An administrator who wishes to run Halexa must provide
the appropriate input streams to the node and assign the right
policies using the function runAs. One such implementation
is the following.
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admin :: Haski (Stream WindowOp)
admin = do
temp← ...

status← ...

status_l ← label ℓ𝑜 status
(res, ℓ) ← runAs (halexa temp status_l) (princ "Halexa")
unless (ℓ ⊑ (ℓ𝑜 ⊔ ℓℎ)) (fail "Bad Halexa")
return res
where
ℓ𝑜 = newDCLabel "Oct" "Oct"

ℓℎ = newDCLabel "Halexa" "Halexa"

The security policy unless... in admin asserts that the result-
ing label must at most be a combination (⊔) of the labels of
Octavius and Halexa. A simple case of obtaining the inputs
would be to simply use fresh variables to define streams temp
and status, which are then later initiated by the runtime. For
a more realistic system, however, we require a way to obtain
streams from entities outside of a Haski program. We discuss
one possibility to address this requirement via bluetooth in
the next section.

7 Reacting to Streams Outside of Haski
A typical IoT application communicates with several other
applications and reacts to triggers which may originate from
remote devices. To use Haski to build more realistic appli-
cations, it is important to enable streams to be provided by
external sources. In this section, we consider the case of ob-
taining streams from remote devices via Bluetooth, which
is a common means of communication in low power IoT
devices. We manage to run Halexa by creating a small C
runtime around the code generated by Haski. In essence, the
runtime obtains the temp and status streams from earlier via
the Bluetooth Low-Energy (BLE) API of Zephyr OS on the
nrf52840DK board using the techniques discussed here with
some manual intervention.

7.1 Briefly about Bluetooth Low Energy
The Bluetooth component we target uses the BLE stack on
Zephyr OS4, where the most common way that data flows
through a BLE application is through a Generic Attribute
Profile (GATT) server. Specifically, a device that has some
data it wishes to make available to other devices will take
the role of a GATT server. It will organise the data it has as
characteristics that belong to services. As an example, a device
might expose a biometrics service which in turn exposes the
heart rate characteristic and the temperature characteristic.
A remote device that wishes to access or modify these

values will take the role of a GATT client. A GATT client will
initiate a connection to a GATT server, after which it scans
for services and characteristics. Depending on the server
configuration the client can update a remote characteristic,
4https://www.zephyrproject.org/

read a characteristic or subscribe to be notified about changes
to a characteristic.

7.2 Preparing Halexa for Foreign Streams
A Haski program works on streams, yet the APIs we want
to use in Zephyr OS use commands and callback functions.
These need to be connected somehow.

For example, the Bluetooth API contains a function called
bt_gatt_subscribe that is used to register a callback function
whenever a message is received from a specified device. In
Haski, when we subscribe to a device, we do not provide a
callback function, but we receive a Haski stream instead:

btGattSubscribe :: DeviceID→ Haski (Stream a)

So, for example, in order to connect the Halexa example
from the previous section to the devices tempSensor and
motionSensor , we can write the following code:

temp ← btGattSubscribe tempSensor
status← btGattSubscribe motionSensor
...

The compilation process will then generate an invocation of
the C function bt_gatt_subscribe in the generated code and
registers a callback to the step function—which is generated
for every node—of Halexa. This means that the step function
is called every time the devices tempSensor andmotionSensor
provide an update. Since the step function receives two ar-
guments and the devices only produce one of them at a time,
the step function is called with a default argument for the
other. For example, the value of the status stream is Nothing
when tempSensor provides an update.

7.3 The Halexa GATT Client
The BLE code that ties together the Halexa example with
the remote temperature and the motion sensor assumes the
role of a GATT client. The GATT client will scan for remote
devices by calling the bt_le_scan_start BLE API function.
The following function signatures have been simplified and
rewritten in Haskell notation, and many less interesting
functions have been omitted. The actual C versions of the
API functions can be found in Appendix A.1.

bt_le_scan_start :: ScanParams
→ (RemoteDeviceInfo→ Int) → Int

The second argument is a function that will be invoked when
a device has been found. Once a remote device is found, a
connection will be initiated with bt_conn_le_create.

bt_conn_le_create :: RemoteAddress
→ CreateParams→ ConnectionParams
→ Connection→ Int

When the connection has been established, we will scan it
for the services it exposes. We expect to discover, e.g., the

https://www.zephyrproject.org/
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temperature service. To do this, we need to create some
discovery parameters and then invoke bt_gatt_discover .

bt_gatt_discover :: Connection→ DiscoverParams→ Int

A subexpression of DiscoverParams is a function that will be
called when a service have been discovered. This function
will subscribe to a found service by invoking bt_gatt_subscribe.
This will make sure thatHalexa is notified about any changes
to the remote temperature value.

bt_gatt_subscribe :: Connection→ SubscribeParams→ Int

The SubscribeParams contain a function that will be called
every time a notification is received. The function will be
invoked with values describing the connection that issued
the notification as well as the actual payload.
Recollect from earlier that a node in Haski is compiled

to step function in C which is invoked in response to the
availability of its arguments. Compiling Halexa from the
previous section generates a corresponding step function
halexa_step. This function has the following signature.

Enum halexa_step (struct halexa_mem ∗ self ,
int temp, Enum motion)

In addition to this function, compiling Halexa also gener-
ates a struct halexa_mem, an instance of which is provided
as the argument self to function halexa_step. This argument
maintains the internal state of the stream returned byHalexa.

struct halexa_mem { ... };
For every call of a node in a Haski program, an instance of
such a struct is initialized globally before the first invocation,
and passed as an argument to every subsequent invocation
of the correponding step function. For Halexa, initialization
is done as follows.

/∗ Global definition ∗/
struct halexa_mem ∗mem;
...

/∗ Evaluated by main ∗/
mem = k_malloc (sizeof (struct halexa_mem));
Using these definitions we build a function that is registered
as a callback to be invoked whenever the BLE application
receives, for example, a new temperature reading (as shown
below).

static u8_t notify_temperature (..., const void ∗ data ) {
...

int ∗ temperature = (int∗) data ;
...

halexa_step (mem, ∗temperature,NOTHING);
...

}
We invoke the function halexa_stepwith its internal memory
mem, which stores the internal state of the node. Notice that

we pass NOTHING, a representation of the corresponding
Haskell value, for the status stream here. This is because the
function notify_temperature is invoked in response to the
temperature sensor, which does not provide a status update.
A similar callback function must be registered for the status
stream by invoking halexa_step with a default temperature
reading.

We emphasize that the small C runtime we implemented
here is tailored to BLE and it requires some manual inter-
vention to make the coupling between the generated code
by Haski and Zephyr OS’s API—we leave as future work to
devise an automatic mechanism to do that.

7.4 Going Forward
The attentive reader might have paused to think while read-
ing the previous section. The previous section describes how
we compile a synchronous programming language to a tar-
get which uses callbacks and events instead of streams. It is
not immediately obvious how to do this automatically. This
discrepancy leads to the need for manual intervention when
connecting the generated code to the outside world via BLE.
There are a few questions that need to be addressed in

future work to bridge this gap. How is a continuous stream
created from the sporadic events given to a callback function
by the outside world? How do you compile a Haski node and
dynamically register and unregister it as a callback?
We believe nicely generalising this is possible, and leave

this and more questions as future work.

8 Related Work
Synchronous languages. The seminal work of Lustre

[Caspi et al. 1987] (sometimes called "classical Lustre") shows
how a declarative synchronous programming style can ben-
efit from memory and computational time bounds. Lustre’s
ideas have been applied in a wide-range of scenarios ranging
from hardware design (e.g., [Bjesse et al. 1998]) to real-time
reactive systems (e.g., [Qian et al. 2015]).

Haski is based on a variation of classical Lustre from Bier-
nacki et al. [2008], the semantics of which has been formal-
ized and verified by Auger et al. [2012] and Bourke et al.
[2017]. The main difference between classical Lustre and the
variant used by Haski is the absence of the current opera-
tor and the addition of the merge and reset operators. For a
more detailed discussion on the differences, see Bourke et al.
[2017]. Haski does not (yet) implement the reset operator.

A notable implementation of Lustre that is closely related
to ours is Lucid Synchrone [Caspi et al. 2008]. Lucid Syn-
chrone uses OCaml as the host language and allows a rich
programming interface with many higher-order features of
OCaml. Unlike Haski, it allows pattern matching on complex
data types (e.g., streams of functions) that are not limited
to finitely enumerable types. Naturally, the richer features
offered by Lucid Synchrone also place higher demands from
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the runtime system, such as the need for a garbage collector.
Haski, on the other hand, targets memory constrained IoT
devices and thus strives to keep the runtime system mini-
mal. The code generated by compiling a Haski program can
be executed with a fixed amount of memory and does not
require garbage collection.

Functional Reactive Programming. Functional Reac-
tive Programming (FRP) [Elliott and Hudak 1997] is a pro-
gramming style for programming asynchronous reactive sys-
tems. Unlike Lustre, it has the convenience of incorporating
higher-order functions at the price of possibly introducing
memory leaks—as noticed and addressed in subsequent work
(e.g., [Bahr et al. 2019; Courtney et al. 2003; van der Ploeg
and Claessen 2015]). Haski does not support higher-order
functions as first class values, but enables developers to uti-
lize them to build first-order Lustre programs. The staged
programming approach ensures that all higher-order func-
tions are eliminated at compile time, thus removing the need
to address space leaks which may be caused by them.

Code generation for C. We are not the first ones to pro-
pose an eDSL in Haskell for generating memory safe C code.
Closest to our work is Copilot [Pike et al. 2013], an eDSL for
stream-based programming for avionics. While Copilot pro-
vides similar guarantees on the generated code w.r.t. constant
space and execution time, Haski presents a different program-
ming experience (e.g., a monadic interface) as well as IFC
security features. Haskino [Grebe and Gill 2016] is an eDSL
to write programs to be run in an Arduino board while sup-
porting a light-weight notion of threads. Like Haski, Haskino
deploys the generated-C code into a custom made runtime.
Feldspar [Axelsson et al. 2010] is a DSL for describing digital
signal processing algorithms in Haskell and generate C code.
Ivory [Elliott et al. 2015] is an advanced DSL for writing
memory-safe C code within Haskell. It uses a simple notion
of memory regions and also provides access control security
checks to restrict side-effects in the generated C-code.

Language-based security for IoT. Pyronia [Melara et al.
2019] provides access control and IFC for embedded devices
written in Python. Pyronia runs under a custom-made run-
time responsible to perform system call interposition, call
stack inspection, and memory protection. Such modifica-
tion are required to ensure that Python, where by design
data is public, can safely execute and interact with C pro-
grams. In contrast, Haskell provides good abstractions to de-
liver a pure language-based IFC solution [Russo 2015; Russo
et al. 2008; Stefan et al. 2011b], which enables Haski to not
require special runtimes and run on commodity IoT OSes.
SainT [Celik et al. 2018] delivers an static IFC analysis for
commodity SmartThings apps. SainT builds an intermedi-
ate representation for Groovy (object-oriented) SmartThings
programs, where IFC checks are carried out. SainT targets
legacy code while Haski provides security by construction

using a coarse-grained IFC approach. Hence, SainT needs
to extend the semantics of Groovy commands to reason
about IFC. Instead, Haski provides modular security types
(LStream) and primitives (e.g., label and unlabel) atop of our
synchronous language. Velox VM [Tsiftes and Voigt 2018]
provides a Scheme virtual machine for constrained devices.
Every app run by the VM has an associated access control
policy file, which is used to restrict apps from accessing sen-
sitive data and resource usage. As future work, Haski could
integrate resource usage control as done by Velox VM.

Haskell security libraries. The closest Haskell IFC li-
braries to our approach are LIO [Russo 2015], HLIO [Buiras
et al. 2015], and MAC [Stefan et al. 2011b]. Our approach to
enforce IFC at compile-time leads us to a new design space,
where our API is a simplified version of the LIO’s one due
to executing the analysis at compile-time. More specifically,
LIO takes an extra parameter in toLabeled to avoid leakage
via labels [Buiras et al. 2014], which Haski does not suffer
from by taking an static (compile-time) approach. Compared
with HLIO and MAC, Haski is static but does not rely on
Haskell’s type-system for security checks but rather on the
Haski compiler. Generally speaking, Haski’s IFC API is a
static, simplified, version of LIO’s API while not going all
the way to HLIO or MAC—it is something in between.

9 Final Remarks
We have presented Haski, a Haskell eDSL for writing soft-
ware in embedded devices. Haski generates C code with
memory consumption guarantees as well as information-
flow security thanks to many program analyses realized by
the compiler. We showcase that Haski programs can be easily
integrated with a realistic runtime like the BLE in Zephyr OS.
We expect this work to be a foundation to build IoT applica-
tions that leverage, not only BLE, but most of the underlying
embedded OS functionality while providing security prop-
erties. Furthermore, we leave as future work to adapt our
eDSL to allow users to be “in the loop” when relaxing IFC
restrictions, e.g., to enable opening windows when the user
is not home or to allow sending occupancy information to
a security monitor firm. The Haski core development5 (ex-
cluding the BLE runtime) currently consists of 2621 lines of
Haskell code.
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A Appendix
A.1 BLE API in C
In Section 7, the signatures of functions in the BLE API of
Zephyr OS were rendered as Haskell types for the sake of
brevity. Below, we show the original signatures for these
methods in C.
int bt_le_scan_start (const struct bt_le_scan_param ∗ param,

bt_le_scan_cb_t device_found)
int bt_conn_le_create (const bt_addr_le_t ∗ peer,
const struct bt_conn_le_create_param ∗ create_param,

const struct bt_le_conn_para ∗ conn_param,

struct bt_conn ∗ conn)
int bt_gatt_discover (struct bt_conn ∗ conn,

struct bt_gatt_discover_params ∗ params)
int bt_gatt_subscribe (struct bt_conn ∗ conn,

struct bt_gatt_subscribe_params ∗ params)
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