
Capabilities for information flow

Arnar Birgisson Alejandro Russo Andrei Sabelfeld
Chalmers University of Technology

{arnar.birgisson,russo,andrei}@chalmers.se

Abstract
This paper presents a capability-based mechanism for permissive
yet secure enforcement of information-flow policies. Language ca-
pabilities have been studied widely, and several popular implemen-
tations, such as Caja and Joe-E, are available. By making the con-
nection from capabilities to information flow, we enable smooth
enforcement of information-flow policies using capability systems.
The paper presents a transformation that given an arbitrary source
program in a simple imperative language produces a secure pro-
gram in a language with capabilities. We present formal guarantees
of security and permissiveness and report on experiments to enforce
information-flow policies for web applications using Caja.

1. Introduction
Secure composition Secure composition is a crucial challenge for
modern computing systems. In the context of the web, straightfor-
ward integration of components (such as script inclusion in web
pages) is a driving force for rich networked applications. A partic-
ularly thriving area is the area of web mashups [37], where stan-
dalone web services are mashed into integrated web portals. Often
the integrated services combine code that operates on sensitive data
(such as financial and health) with third-party code (such as adver-
tisement and statistics). Blind integration implies security hazards
of stealing and/or corrupting sensitive information across different
components.

Integration vs. separation A key issue when building secure
mashups is the delicate balance between integration and separa-
tion [40]. Integration drives rich features, while separation helps
security. In an ideal world, we might like a mashup designer to fo-
cus on features while relying on a clean security policy that protect
interactions among the different components from attacks. How-
ever, the state of the art in building secure mashups is dominated
by separation-based approaches. For example, Yahoo! ADSafe [9],
Facebook FBJS [17] and Google Caja [34] rely on conservative lan-
guage subset techniques to allow integration of untrusted JavaScript
code in mashups. In order not to force the programmer into pro-
gramming on subsets directly, FBJS and Caja offer transformations
that perform static analysis on JavaScript code and transform it into
code within the respective subsets, rewriting sensitive parts and in-
serting dynamic checks.

Capability enforcement The Caja approach is particularly in-
spiring. Caja is based on the object-capability model [33, 35]. Ca-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLAS ’11 June 5, 2011, San Jose, California June 05, USA.
Copyright c© 2011 ACM [to be supplied]. . . $10.00

pabilities [11, 26] are in essence unforgeable references for ac-
cessing critical resources. Language capabilities have been studied
widely, and several popular implementations in addition to Caja,
such as E [13, 33], Joe-E [32], Emily [46], and W7 [38] are avail-
able. However, end-to-end security policies have been out of reach
for capability languages. By focusing on possessing references, ca-
pability languages fall short of such end-to-end guarantees as dis-
tinguishing between secure and insecure dependencies. Jaradin et
al. remark when introducing the capability language SCOLL [22]:

In capability systems, preventing data to flow is harder
than preventing capabilities from being propagated, even if
we only consider overt communication channels.

Information-flow policies This paper addresses closing the gap
between intuitive policies and practical enforcement. Our goal is to
build on the machinery of capability-based enforcement, but at the
same time provide the mashup designer with a light and abstract
way to specify security policies in source programs: in terms of
sources and sinks of information and restrictions on information
flow among them, ignoring implementation details internal to pro-
gram execution.

We believe that a connection between information-flow policies
and capability-based enforcement is particularly promising for se-
curing web applications. Imagine a loan calculator web application
that operates on secret data such as income but at the same time
collects statistics about the use of popular features. A natural se-
curity policy is to stipulate that the income is a secret source, the
statistics is a public sink and to require noninterference [8, 19]:
that outputs to the public sink are independent of inputs from the
secret source. Information-flow policies are particularly attractive
for expressing mashup security policies. They allow expressing a
range of decentralized policies from mutual distrust to controlled
information release (or declassification [43]) of information among
mashup components [28].

By making the connection from capabilities to information flow,
we enable smooth enforcement of information-flow policies using
capability systems. In the loan calculator scenario, the job of the
transformation is to translate the policy to capabilities and apply
capability-based enforcement. This enables flexibility for the pro-
grammer as the source code may manipulate data of different levels
of sensitivity. At the same time, security is not compromised: the
target of the transformation is a program in a capability language
like Caja, which can be safely run within the browser.

Transformation This paper presents a capability-based mech-
anism for permissive yet secure enforcement of information-flow
policies. The main contribution is a transformation that given an
arbitrary source program in a simple imperative language produces
a secure program in a language with capabilities. The key ingredi-
ents in the target language that allow us such a transformation are
references and scopes. Unforgeable references allow for tight con-
trol over critical operations with side effects, such as writing to a
location. We are able to track information flow by disabling refer-

ences to variables that are necessary to perform unsafe side effects
in critical scopes (when the value to be written might depend on
secret data).

Information flow in programs can be classified into two ba-
sic types: explicit flows, when secret data is passed to a public
destination, or implicit flows [10], where information is leaked
through branching on secret data and exposing different publicly-
observable behavior in the branches.

For explicit flows, assigning an expression to a variable requires
a capability to write to the variable. When the expression is secret,
the transformation ensures that no capability to write the value of
the expression to a public variable is passed. For implicit flows,
whenever entering branches of a conditional with a secret guard or
the body of a loop with a secret guard, again, the transformation
ensures that no capability to write the value of the expression to a
public variable is passed.

We have intentionally stripped down our language setting to the
simplest possible, in order to pin down the essence of the problem:
information flow can be tracked by controlling capabilities of code
segments. Perhaps surprisingly, objects are not necessary in the
target language: all we need is references and scopes.

Security and permissiveness We present formal guarantees of
security and permissiveness for the transformation. We show that
no matter what the source program is, the result of transformation
satisfies the security condition of noninterference [8, 19]. Trans-
formed programs might get stuck, e.g., as a result of not having a
reference to perform an operation. However, we demonstrate that
the transformation does not introduce abnormal termination at the
price of permissiveness.

Our reference points for evaluating permissiveness are typ-
ical static and dynamic information-flow mechanisms from the
information-flow literature. Classical static Denning-style enforce-
ment [10, 47] rules out programs with explicit and implicit flows at
compile time. It is known [42] to be less permissive than monitors
that block explicit and implicit flows at runtime. For example, pro-
grams with insecure dead code might be rejected by the former but
accepted by the latter.

It turns out that the permissiveness of the transformation is the
same as that of dynamic monitoring: if the transformed program
diverges, then so does the original program when monitored by
a typical dynamic information-flow monitor [42], and vice versa.
Further, we show a transparency result: if a transformed program
terminates, then so does the original program and the two of them
agree on the final result.

Thus, our transformation can be viewed as an inlining [16] of a
dynamic information-flow monitor. The advantage of inlining secu-
rity checks is that security can be enforced without modifying the
runtime environment (e.g, a browser). In contrast to building a cus-
tom inlining transformation for information flow, we benefit from
the infrastructure already in place for such capability enforcement
systems as Caja.

Caja-based experiments Finally, we report on experiments
to enforce information-flow policies for web applications using
Caja. Using the loan calculator as a running example, we give
a simple implementation in an imperative language, show how it
translates to a capability program and illustrate its security and
permissiveness.

Overview Section 2 presents a simple language with capabil-
ities. Section 3 defines an information-flow security condition for
this language. Section 4 describes a transformation from a simple
imperative language to the language with capabilities. This section
also contains a security and a permissiveness theorem. Section 5
describes our experiments with transforming JavaScript code to a
capability safe subset. Section 6 discusses related work. Section 7
contains concluding remarks and future work.

Expressions e ::= a |x | e ∗ e | null
Commands c ::= skip |x := e | c ; c

| if e then c else c
| while e do c | call p(~x)

Variables Var = {x, y, p, . . . }
Values Val = {a, b, . . . }
Operators ∗ ∈ {+,−, . . . }
Procedures Proc = { proc (~y) c , . . . }

Memory µ : Loc ↪→ Val
References ρ : Var ↪→ Loc ∪ Proc

Figure 1. Notation and syntax

2. Language
Capabilities are a widely known method for protection at operating-
system level [11, 26]. At the heart of capability-based security is
that code possessing a capability, such as a reference to a file or
system object, is allowed to access the resource. Capabilities can be
thought of as tokens, tickets, or keys that give to the code the ability
to access some resources. In a programming-language context,
the object-capability model [33] provides means to isolate certain
parts of the code by not giving them certain capabilities. Several
programming languages implement this model (e.g., E[13, 33], Joe-
E[32], Emily[46], W7[38] and Caja[34]) by eliminating language
constructs that might leak authority by passing capabilities to code
that is not intended to have them.

Syntax For the purpose of this paper, we consider a simple im-
perative language with capabilities (see Figure 1). Variables range
over x, y, p, . . . , while values range over a, b, Expressions e
consist of literals a, variables x, and composite expressions e ∗ e
(where ∗ is a binary operation). The special literal null denotes a
distinguished location that is never written to. We’ll use the syntac-
tic form null to refer to this location below when there is no risk
of ambiguity. Commands, denoted by c, consist of standard im-
perative instructions: skip, assignments, sequential composition,
conditionals, and loops. The language contains the additional com-
mand call p(~x) representing the call to a procedure pwith a list of
arguments ~x. Only variables are allowed as arguments, since they
will be passed by reference. Procedures are of the form proc (~y) c,
where~y is the list of its formal arguments, and the command c is its
body. We refer to commands that do not contain a call command
as simple commands.

For simplicity, we choose the approach of capability-based ad-
dressing [26], where variable identifiers are references to objects
in the system, which in our case are values stored in memory.
In our approach, however, we impose one level of indirection be-
tween identifiers and values to easily model deletion of capabilities.
More precisely, references refer to memory locations or procedures
(ρ : Var ↪→ Loc ∪ Proc), and memory locations refer to values
stored in memory (µ : Loc ↪→ Val). Capabilities are then modeled
using references. For instance, a piece of code with an identifier x,
denoting a non-null reference (ρ(x) 6= null), has the capability to
read and write the value stored into that location. To revoke such a
capability, it is enough to delete or overwrite the references to the
location where the value is stored. Observe that by doing so, the
value is still in memory but it is not accessible since the code has
no references to it.

Semantics The semantics of our language are given as small-
step operational semantics in Figure 2.

Configurations have the form 〈c | ρ, µ, S〉, where c is a com-
mand, ρ and µ are mappings as described before, and S is a call

SEQ1 〈skip; c | ρ, µ, S〉 → 〈c | ρ, µ, S〉
SEQ2

〈c1 | ρ, µ, S〉 → 〈c′1 | ρ′, µ′, S′〉
〈c1; c2 | ρ, µ, S〉 → 〈c′1; c2 | ρ′, µ′, S′〉

ASSIGN
v = eval(e, ρ, µ) ρ(x) 6= null

〈x := e | ρ, µ, S〉 → 〈skip | ρ, µ[ρ(x) 7→ v], S〉

IF1
true(eval(e, ρ, µ))

〈if e then c1 else c2 | ρ, µ, S〉 → 〈c1 | ρ, µ, S〉
IF2

¬true(eval(e, ρ, µ))

〈if e then c1 else c2 | ρ, µ, S〉 → 〈c2 | ρ, µ, S〉

WHILE1
true(eval(e, ρ, µ))

〈while e do c | ρ, µ, S〉 → 〈c; while e do c | ρ, µ, S〉
WHILE2

¬true(eval(e, ρ, µ))

〈while e do c | ρ, µ, S〉 → 〈skip | ρ, µ, S〉

CALL
ρ(p) = proc (~y) c ρ′ = ρ[yi 7→ ρ(xi)], i ∈ {1, . . . , n}

〈call p(~x) | ρ, µ, S〉 → 〈c; � | ρ′, µ, ρ :S〉
RETURN

〈� | ρ, µ, ρ′ :S〉 → 〈skip | ρ′, µ, S〉

Figure 2. Operational semantics

stack. If a transition leads to a configuration only with the com-
mand skip, then we say the execution terminates. We use the stan-
dard notation ρ[x 7→ l], where l ∈ Loc, to represent a mapping
ρ′ that is identical to ρ, except that ρ′(x) = l. We use the same
notation for updates of µ. We assume the existence of a (partial)
function eval , that assigns each expression its value, given a refer-
ence map and memory. The rule ASSIGN stores the result of eval-
uating an expression e into the memory location referenced by x
(µ[ρ(x) 7→ v]). Predicate true defines a truth value for each value
in Val . The semantic rules for conditionals, loops, and sequential
composition are standard [48], and thus we omit their description.

The rules for procedure calls deserve some explanation. In par-
ticular, procedure call arguments are invariably passed by refer-
ence, and procedures do not return values. The rule CALL is ap-
plied when a procedure is called. The rule pushes the current ref-
erence map ρ onto the call stack (ρ : S), binds the formal argu-
ments to the memory locations referenced by the actual arguments
(ρ′ = ρ[yi 7→ ρ(xi)]), and selects the procedure body for execu-
tion. We use the special command �, which is purely internal to
the semantics, to mark the return point from procedure calls. This
command invokes the rule RETURN, which restores the reference
map of the caller by popping it from the stack.

3. Security
We specify security for programs via noninterference [8, 19]. We
assume a security lattice L where security levels are ordered by a
partial order v, with the intention to only allow leaks from data at
level `1 to data at level `2 when `1 v `2. Each variable is associated
with a security level. The notation lev(e), where e is an expression,
refers to the least upper bound of the levels of variables appearing
in e.

Since security levels are assigned to variables, and variables
store references, we must be careful to avoid aliasing problems,
i.e., where two variables, with different security levels, refer to the
same memory location. The next definition introduces the notion
of aliasing safety in order to avoid such problems. It states that two
variables referring to the same location must have the same security
level.

Definition 1 (Aliasing safety). We say that a map of references ρ
is aliasing safe if and only if for any pair of variables x, y, it holds
that if ρ(x) = ρ(y) then lev(x) = lev(y).

Since our language has no primitives to alter or define refer-
ences, aliasing safety is trivially preserved by the program seman-
tics in Figure 2.

Lemma 1 (Preservation of aliasing safety). For any command c,
memory µ, stack S of aliasing safe mappings, and an aliasing safe
mapping ρ, if 〈c | ρ, µ, S〉 → 〈c′ | ρ′, µ′, S′〉, then ρ′ is aliasing
safe, and S′ contains only aliasing safe mappings.

The above might be avoided by assigning levels to locations
instead, but this causes more problems later, when we model capa-
bilities by assigning variables to the null location, as we will still
need to refer the level of the variable.

We assume an attacker model, where the attacker can only
observe values stored at locations under certain security level `. The
attacker’s view of program memory is defined by a `-equivalence
relation w.r.t. ρ. More precisely, we have the following definition.

Definition 2 (`-equivalence). Given a security level ` and an alias-
ing safe map of references ρ, we say that two memories µ, µ′ are
`-equivalent w.r.t. ρ if and only if they agree on all locations at
levels `′ v `,

∀x ∈ dom(ρ) : lev(x) v `⇒ µ(ρ(x)) = µ′(ρ(x))

We write this as µ ≈`,ρ µ′ and omit ρ when it is unambiguous from
the context.

We now define our security condition of noninterference. Intu-
itively, if a program is run, under some references ρ and memory
µ, and produces some results below or at security level `, then the
same program will produce the same results below or at level `
under a `-equivalent memory µ′ (µ ≈`,ρ µ′).

Definition 3 (Termination-insensitive noninterference). Given a
security level `, and an aliasing safe reference map ρ, a command
c satisfies termination-insensitive noninterference if and only if
for any two memories µ1 and µ2 that are `-equivalent w.r.t. ρ
(µ1 ≈l,ρ µ2), if

〈c | ρ, µ1, S〉 →∗ 〈skip | ρ, µ′1, S〉
and 〈c | ρ, µ2, S〉 →∗ 〈skip | ρ, µ′2, S〉,

then µ′1 ≈l,ρ µ′2.

Note that the two terminating traces must agree on the reference
map and the call stack. We later prove that, in our setting, this is
always the case for any terminating command c (see Lemma 2 in
Section 4).

T-SKIP ` skip skip
T-SEQ

P1 ` c1 ĉ1 P2 ` c2 ĉ2
P1, P2 ` c1; c2 ĉ1; ĉ2

T-ASSIGN
p fresh

{p 7→ proc (~W) x̄ := e} ` x := e call p(~W�lev(e))

T-BRANCH
P1 ` c1 ĉ1 P2 ` c2 ĉ2 p1, p2 fresh

P1, {p1 7→ proc (~W) ĉ1},
P2, {p2 7→ proc (~W) ĉ2}

` if e then c1
else c2

if e then call p1(~W�lev(e))

else call p2(~W�lev(e))

T-LOOP
P ` c ĉ p fresh

P, {p 7→ proc (~W) ĉ} ` while e do c while e do call p(~W�lev(e))

Figure 3. Program transformation rules

4. Transformation
Figure 3 presents the transformation rules. They have the form
P ` c ĉ, where a simple command c (i.e., without procedure
calls) is transformed into command ĉ containing calls to procedures
defined in P . More specifically, P is a mapping with elements of
the form p 7→ proc (~y) c. Note that in a rule P ` c ĉ,
the set P is essentially an output of the rule. We have chosen to
write it in the position of a context object on the left to improve
the readability of our proofs. When extending a mapping P with a
procedure named p /∈ dom(P), we write P, {p 7→ proc (~y) c}.
We write P1, P2 to the union of mappings P1 and P2 provided that
dom(P1) ∩ dom(P2) = ∅.

For each variable x present in c, the transformation introduces
a fresh variable x̄ with the same security level as x. We write
~W for the ordered list of all such variables. For instance, if a

program has variables x, y, z, then ~W = x̄,ȳ,z̄. Observe that such
lists of variables can be used as arguments for procedures. We
define the syntax ~W�` for restricting a list of variables ~W based
on their security levels. Intuitively, ~W�` stores the null reference
into those variables that have security level no higher or equal than
`. Formally:

Definition 4 (Restriction on ~W). Given ~W = x̄1, . . . , x̄n, we
define ~W�` as the list of variables y1, . . . , yn such that

yi =

{
x̄i if ` v lev(xi)

null otherwise.

The key aspects of the transformation rely on the following
points about transformed programs: (i) Plain variables (e.g., x, y,
z) are only used for reading values from memory, (ii) writing into
a memory location indicated by variable x is only done through the
variable x̄. We refer to x̄ as the write reference of x. (iii) Write ref-
erences (e.g., x̄, ȳ, z̄) are bound through procedure parameters. In
that manner, it is possible to remove the capability for a procedure
invocation to write into a variable x by simply passing null as the
argument for x̄when calling it. This is illustrated in Figure 4, where
part (a) represents a reference map where x and x̄ are mapped to the
same location l, which maps to the value behind x. Part (b) shows
a situation where x̄ is a null-reference and thus the value behind
x cannot be modified. In a setting of capability languages, x and x̄
can be thought of as data diodes [33] that pass information only in
one direction (by reading and writing, respectively).

The rule T-SKIP is trivial. When transforming assignments, rule
T-ASSIGN uses capabilities to avoid explicit flows. An assignment
to variable x is translated to a procedure call that performs the as-
signment through the write reference x̄ (p 7→ proc (~W) x̄ := e).

x

x̄

l a
x

x̄

l a

null

(a) Writable x (b) Read-only x

Figure 4. References as capabilities

Observe that the procedure takes the list of write references (~W) as
arguments. When calling the procedure, the transformation makes
sure that x̄ is not null if the security level of x is greater than the
security level of the expression. These restrictions is achieved by
passing ~W�lev(e) as argument to the procedure (call p(~W�lev(e))).
In other words, the body of procedure p does not have the capability
to write to x if the security level of x is strictly below or incompa-
rable with the security level of e. The rule T-SEQ obtains ĉ1 and
ĉ2 by respectively transforming c1 and c2. Observe that the defi-
nition of procedures obtained when transforming each component
are concatenated in the conclusion of the rule (P1, P2).

The rule T-BRANCH deserves some attention. This rule helps
avoiding implicit flows. The transformed branches ĉ1 and ĉ2 are
placed each in a procedure of its own so that we can control
their capabilities. The transformed conditional statement calls the
respective procedures, taking care of passing only write capabilities
that are above or equal to the level of the conditional guard. Thus,
neither branch is able to write to locations that are strictly below or
incomparable with the guard level, which otherwise would allow
for implicit leaks to happen. The rule T-LOOP is analogous to the
rule T-BRANCH and thus we omit its explanation.

An execution of a program c on reference map ρ and memory µ
is replaced by an execution of the transformed program ĉ on ρ̂ and
µ. Here, ρ̂ is obtained by extending ρ with references to procedures
generated by the translation.

4.1 Soundness
In this section we prove that our translation provides sound enforce-
ment noninterference. We start by proving a simple property of our
language, namely that terminating executions of a command do not
change the reference map or the stack. Formally:

Lemma 2. Let c be a command, ρ a map of references, µ a memory
and S a stack, such that

〈c | ρ, µ, S〉 →∗ 〈skip | ρ′, µ′, S′〉.
Then ρ′ = ρ and S′ = S.

As seen in the definition of noninterference, this property allows
us to focus only on pairs of runs over different memories and not
worry about the output reference maps.

The next lemma is essential for proving soundness. It states that
if code only has the capabilities (i.e., non-null references) to write
into memory locations at or above certain security level `, then
it respects such capabilities. In other words, executing such code
does not alter memory locations at security level `′ where ` 6v `′.
This corresponds to the no write down (or *-property) in the Bell-
LaPadula model [3].

Lemma 3. Consider commands c and ĉ and procedures P such
that P ` c ĉ, an aliasing safe map ρ for the variables appearing
in c and memory µ. Choose a fresh name p /∈ dom(P) ∪ dom(ρ).
If

〈call p(~W�`) | ρ̂, µ, S〉 →∗ 〈ĉ′ | ρ̂′, µ′, S′〉,
where ρ̂ = ρ, P, {p 7→ proc (~W) ĉ}, then

∀x ∈ dom(ρ) : ` 6v lev(x)⇒ µ(ρ(x)) = µ′(ρ′(x)).

Now we can state our main security theorem, that any two termi-
nating runs of a transformed program from `-equivalent memories,
must terminate in `-equivalent memories as well. The proof of this
and further formal statements are reported in the appendix.

Theorem 1 (Security of transformed programs). Consider a se-
curity level `, commands c and ĉ and procedures P such that
P ` c ĉ, an aliasing safe map ρ for the variables appearing
in c, and a pair memories µ1 and µ2 with µ1 ≈`,ρ µ2. It then holds
that transformed program ĉ satisfies noninterference. Formally: If

〈ĉ | ρ̂, µ1, S〉 →∗ 〈skip | ρ′1, µ′1, S′1〉
and 〈ĉ | ρ̂, µ2, S〉 →∗ 〈skip | ρ′1, µ′2, S′2〉

where ρ̂ = ρ, P ; then µ′1 ≈`,ρ µ′2.

4.2 Permissiveness and transparency
Now that we have showed the soundness of the transformation, we
turn our focus to the price we pay for securing arbitrary programs:
how much semantic modification with respect to the original pro-
gram is caused by the transformation?

As foreshadowed in Section 1, our reference points for evaluat-
ing permissiveness are typical static and dynamic information-flow
mechanisms from the information-flow literature. Classical static
Denning-style enforcement [10, 47] rules out programs with ex-
plicit and implicit flows at compile time. It is known [42] to be less
permissive than monitors that block explicit and implicit flows at
runtime. For example, programs with insecure dead code might be
rejected by the former but accepted by the latter.

It turns out that the permissiveness of the transformation is the
same as that of dynamic monitoring. In the rest of this section, we
show permissiveness and transparency results. First, if the trans-
formed program diverges, then so does the original program when
monitored by a typical dynamic information-flow monitor [42], and
vice versa. Second, we show a transparency result: if a transformed
program terminates, then so does the original program and the two
of them agree on the final result.

Noninterference by a runtime monitor Our approach accepts
the same set of secure programs as a simple runtime monitor. To il-
lustrate that, we select the monitor from [42] for simple commands,
i.e., the language in Figure 1 without procedures. The semantics for
the monitor present transitions of the form st

α→ st, where st de-
notes a stack of security levels, and α ranges over events triggered
by commands. The monitor uses the information in the event to de-
termine if the execution can proceed. Intuitively, every time that a
command triggers an event α, the monitor allows execution to pro-
ceed if it is also able to perform the labeled transition α. We extend

Rule Event Interpretation
SEQ1 nop No operation
SEQ2 α Propagates event α from premise
ASSIGN a(x, e) Assignment
IF1, IF2 b(e) Entering branch
WHILE1 b(e) Entering loop iteration
WHILE2 nop Skipping loop
END f Exiting branch

Figure 5. Events

NOP
st

nop→ st

FLOW
lev(e) v lev(x) lev(st) v lev(x)

st
a(x,e)→ st

BRANCH

st
b(e)→ lev(e) :st

END

` :st
f→ st

Figure 6. Monitor semantics

the semantics given in Figure 2 to trigger events when performing
small-step transitions. Figure 5 shows the events triggered by each
semantic rule. For instance, rule ASSIGN triggers the event a(x, e),
i.e., the conclusion of the rule becomes:

〈x := e | ρ, µ, S〉 a(x,e)→ 〈skip | ρ, µ[ρ(x) 7→ v], S〉

Entering and leaving branches of conditionals and bodies of
loops are also recorded by the semantics. For example, the con-
clusion of rule IF1 becomes:

〈if e then c1 else c2 | ρ, µ, S〉
b(e)→ 〈c1; end | ρ, µ, S〉

where b(e) signals branching on expression e. Note the instrumen-
tation of the command in the resulting configuration. The special
command end is inserted in order to record when the computation
exists the branch or loop body. This command is appended in the
result of the transition rules IF1 ,IF2 , and WHILE1. The semantic
rule for executing end triggers event f to indicate to the monitor
that a branch has just finished executing. Formally:

END

〈end | ρ, µ, S〉 f→ 〈skip | ρ, µ, S〉
A monitored execution of a program is then driven by a single

transition rule:

〈c | ρ, µ, ε〉 α→ 〈c′ | ρ′, µ′, ε〉 st
α→ st′

〈c | ρ, µ; st〉 → 〈c′ | ρ′, µ′; st′〉
(?)

This formalizes the idea that every triggered event α must be syn-
chronized with the monitor. The monitor might disallow execution
by stopping it (whenever it is unable to perform an α transition).
The symbol ε denotes the empty call stack. Observe that we do not
need a call stack since we only consider monitored executions of
programs without procedure calls.

As mentioned earlier, the state of the monitor consists on a stack
of security levels. The stack st, which initially is empty, keeps track
of the dynamic security context [18][24]: the security levels of ex-
pressions appearing in the guards of branching commands (i.e.,
conditionals and loops) governing the current control flow. Intu-
itively, the security stack plays a similar role as program counters
in security type systems [47].

The semantics for the monitor is described in Figures 6. The no-
tation lev(st) works the same as for expressions, i.e., it represents
the least upper bound of all levels appearing in st. Security levels
are pushed on the stack by events b(e), which are emitted when
entering a branch or a loop iteration (rule BRANCH), and popped
from the stack by events f , emitted when leaving the branch or
loop iteration (rule END).

The rule FLOW ensures that programs possibly leaking informa-
tion become stuck. The first premise of this rule (lev(e) v lev(x))
prevents explicit flows, while the second one (lev(st) v lev(x))
prevents implicit flows. The soundness of this monitor is proved in
the full version of [42].

Permissiveness and transparency w.r.t. monitoring We will
show that the transformation in Figure 3 is exactly as permissive
as the monitor in Figure 6. In other words, any terminating moni-
tored execution of a given program has an equivalent terminating
execution on its transformed version, and any program that gets
stuck in the monitor does so in the transformed version as well. To
prove such a result, we need a series of lemmas. First we define
a relationship between a reference map and a monitor stack. This
relationship establishes that a reference map has exactly the write
references of variables that a monitor would allow updates to, given
a stack of security levels.

Definition 5. Given a security stack st and a reference map ρ,
st ∼0 ρ if and only if for all x̄ in dom(ρ) it holds that

ρ(x̄) =

{
ρ(x) if lev(st) v lev(x)

null otherwise.

We extend the definition of ∼0 to give a relationship between
a monitor stack and all reference maps on a program stack.

Definition 6. Given a call stack S = ρ0 : · · · : ρn and a security
stack st = `1 : · · · :`n, where n ≥ 0, then st ∼ S if and only if

∀i = 0, . . . , n− 1 : (`i+1 : · · · :`n) ∼0 ρi

and ρn(x̄) = ρn(x) for all x.

The intention of this definition is to provide a relation between
a monitor and program stacks, so that when a reference map is
popped of the program stack, it will be related by ∼0 to the
monitor stack if one element after popped of it as well.

The next theorem states two things simultaneously, that our
transformation based enforcement is at least as permissive as en-
forcement through a run-time monitor, and that the enforcement is
transparent. Transparency means that programs that the enforce-
ment admits maintain their correct semantics, i.e., that the resulting
memory after termination is the same for monitored runs and runs
of the transformed program. For this theorem we need to add the
transformation rule ` end � for technical reasons.

Theorem 2 (Correspondence with monitor). Consider a command
c and its transformed version ĉ, such that P ` c ĉ. Let ρ be an
aliasing safe map for the variables of c, and ρ̂ be the union of ρ and
P with additional write references for every variable. Assume that
st and S are a monitor stack and a call stack, respectively, such
that st ∼ ρ̂ :S. For any (possibly partial) execution of a monitored
program

〈c | ρ, µ; st〉 →∗ 〈c′ | ρ, µ′; st′〉,
there is a corresponding execution of the transformed one

〈ĉ | ρ̂, µ, S〉 →∗ 〈ĉ′ | ρ̂′, µ̂′, S′〉,
such that the following conditions hold.

i) P ′ ` c′ ĉ′ with P ′ ⊆ P ,
ii) st′ ∼ ρ̂′ :S′, and

iii) µ′ = µ̂′.

We note that the important special case of the theorem is when
considering terminating traces, i.e., ones where c′ = ĉ′ = skip.
The next theorem provides similar correspondence, but now for
configurations that are blocked by the monitor.

Theorem 3 (Correspondence on blocked runs). Consider a com-
mand c, different from skip, and its transformed version ĉ, such
that P ` c ĉ. Let ρ be an aliasing safe map for the variables of
c, and ρ̂ be the union of ρ andP with additional write references for
every variable. Assume st and S are monitor and program stacks,
respectively, and together with ρ̂ are such that st ∼ ρ̂ :S. If the
monitored execution from 〈c | ρ, µ; st〉 is blocked by the monitor,
then the execution of 〈ĉ | ρ̂, µ, S〉 gets stuck.

Together, Theorems 2 and 3 give the equivalence of the two
enforcement methods.

Corollary 1. Consider a command c and its transformed version
ĉ, such that P ` c ĉ. Let ρ be an aliasing safe map for the
variables of c, and ρ̂ be the union of ρ and P with additional write
references for every variable. Then it holds that

〈c | ρ, µ; ε〉 →∗ 〈skip | ρ, µ′; st′〉
iff 〈ĉ | ρ̂, µ, ε〉 →∗ 〈skip | ρ̂′, µ′, ε〉,

Transparency w.r.t. the original program While the above
corollary states transparency with respect to the monitor, most use-
ful is the transparency with respect to the original program. Be-
cause the only possibility of affecting the semantics by the monitor
is by blocking execution, it is straightforward to show (e.g., [5])
that the monitored execution, when it terminates, does not alter the
program semantics. It then follows directly that if a transformed
program terminates, it must preserve the semantics of the original
program as well.

Corollary 2 (Transparency). Let c, ĉ and P be as before. Assume
ρ is an aliasing safe map and ρ̂ = ρ, P . Let µ be a memory. If the
transformed program ĉ terminates,

〈ĉ | ρ̂, µ, S〉 →∗ 〈skip | ρ̂, µ′, S〉,

then so does the original,

〈c | ρ, µ, ε〉 →∗ 〈skip | ρ, µ′′, ε〉,

and their results agree µ′ = µ′′.

5. Caja-based experiments
We have manually experimented with translating a simple impera-
tive subset of JavaScript to a capability safe subset. The latter is a
subset called Core Cajita and is defined and proven to be capability
safe in [27]. Cajita itself is a subset of JavaScript which forms the
basis of Caja, an isolation system for web mashups [34].

In Core Cajita, a program consists of a set of modules, repre-
sented by a top-level function. The body of a module must adhere
to rules restricting which constructs are used. These rules ensure
that a module cannot gain capabilities (references to objects) other
than those given to it by its caller. Furthermore, all property access
and modification must be done through the Cajita runtime functions
getPub and setPub, which act as a reference monitor. When in-
voking a module, the caller can freeze objects before passing their
reference to another module, in which case the callee module has
read-only access to that object enforced by the getPub/setPub
functions.

The notational noise of introducing getPub and setPub may
be avoided by rewriting to full Caja. However, since only Core
Cajita has been proven capability safe, where direct property access
is disallowed, we have chosen it as our target language. Another
future candidate could be Secure EcmaScript (SES) [15].

if (h && !l) {
h = false;

} else {
l = false;

}

function p1(H,L) {
p11(H,L);

}
function p2(H,L) {

p21(H,L);
}

if (getPub(H, ’h’)
&& !getPub(L, ’l’)) {

p1(H, deepSnapshot(L));
} else {

p2(H, deepSnapshot(L));
}

Figure 7. Translating a conditional

The translation works very much like the formal translation
described in Figure 3, where modules correspond to procedures.
We partition variables into two levels, high and low, and store them
as properties of two objects, H and L. When calling modules which
represent code running inside conditionals and loops with high
guards, or one that assigns the value of a high expression, we pass
a reference to H unmodified, but only a snapshot (a frozen copy) of
L. This differs a little from the formal translation, where we send
null-references. There however, the procedure arguments are only
write references, while here they are objects used for both reading
and writing. Sending a frozen object makes the low variables read-
only, which is exactly the intention with sending a null write
reference in the formal translation.

We should note that both Caja and EcmaScript 5 provide only
shallow snapshotting and freezing of objects, meaning that proper-
ties on nested objects are still writable. In our translation, we as-
sume the existence of a deepSnapshot function, which constructs
a deep snapshot recursively. Writing such a function is non-trivial,
e.g. since variables captured by lexical scoping cannot be extracted
from function values. Creating deep snapshots thus requires some
restrictions on what objects can be stored in the variables H and L,
which we do not discuss here. There are other subtle issues here,
for example that high properties of low objects will become read-
only in high contexts, meaning that the enforcement is not fully
transparent compared with a monitor. Solutions exist, but are out of
scope for the current discussion. Since the experiments with Cajita
are meant as proof-of-concept, we leave those loose ends for future
work.

In the following examples, assume that h and l are high and
low variables, respectively. To translate an assignment such as
l = l + h; we choose a fresh name p and output the following
module,

function p(H,L) {
var tmp = getPub(L, ’l’) + getPub(H, ’h’);
cajita.setPub(L, ’l’, tmp);

}

and rewrite the assignment as

p(H, deepSnapshot(L));

since the expression being evaluated is high. For expressions that
only contain low variables, we simply pass L unmodified.

Rewriting conditional blocks similarly follows the formal rewrit-
ing. For example, an if-statement translates to two Cajita modules,
as shown in Figure 7. p11 and p21 referenced in the modules are
the modules generated by translating the two assignments in the if
branches.

We observe that we can make a couple of optimizations without
breaking the enforcement of noninterference. First, since we know
at the time of transformation if a direct assignment results in an

explicit leak, we do not need to create a separate module (i.e.,
function) to compute the expression value. Instead, if the level of
the expression is higher than the level of the variable assigned, we
can simply insert a statement that raises an error. In this case, we
only create modules for blocks of conditional statements and loops.

Second, we can avoid unnecessary copying of the L object when
it is already frozen, by replacing deepSnapshot(L) in the above
with

(isFrozen(L) ? L : deepSnapshot(L))

where isFrozen comes from the Cajita runtime.
ECMAScript 5 [14] has native support for freezing objects.

However, capability safety is not provided in general, so a transla-
tion to Caja/Cajita is still needed to ensure code cannot access the
L object unless it is explicitly passed to it. We leave as future work
how the above approach can be extended to use only ECMAScript
5 features without compromising the guarantees that the capability
model provides.

Figure 8 shows a side-by-side comparison of an (optimized)
transformation. The program on the left is a simple loan calculator,
taking several inputs (prefixed with in). Of the inputs, the princi-
pal amount and a boolean stating if the customer already has a loan
with the current bank, are considered confidential information. The
outputs of the calculation is a monthly payment, shown to the user,
and statistics intended to be collected by the web-application (pre-
fixed by stats). The statistics are considered public outputs, and
must be independent of the confidential inputs.

This is enforced by the transformed program. For example,
if one were to update the statistic output variables inside one of
the conditional branches, the rewritten program would fail as the
procedures p1 and p2 are passed read-only snapshots of the L
store. If the original program contained an explicit assignment, say
assigning real rate to stats rate, this assignment would not
be included in the transformed program, and instead replaced by an
error statement.

The translation of the set-up code is simply a specification of
a policy. Here we have chosen to simply indicate the level of
variables with a comment, but one could imagine other ways of
policy specification.

In a program rewritten with the optimized rewriting rules, extra
method calls are only generated for control blocks and snapshotting
is only performed when necessary. Therefore we expect the per-
formance overhead to be reasonable for code where enforcing an
information flow policy is critical. Indeed, our initial experiments
show that a rewritten program runs as fast or only marginally slower
than a program without enforcement, although experiments with a
more involved case study are required to state definitive results.

6. Related work
Information flow vs. access control McLean [30, 31] scrutinizes
the relation between information-flow and access-control policies.
He observes that the former are expressed in terms of dependen-
cies between inputs and outputs whereas the latter are expressed
in terms of privileges of principals to perform critical operations.
Schneider [44] and Hamlen et al. [20] discuss noninterference as a
typical example of a policy that is not a safety property, in contrast
to access control. Our paper demonstrates that dependency policies
can be securely approximated by reference-based access control:
we let segments of code play the role of principals and enforce se-
cure information flow by restricting operations with publicly visible
side-effects for appropriate code segments. Such an enforcement
does not demand new classes of expressive power: the expressive
power of our technique is exactly the same as that of online refer-
ence monitors.

C
ontrol-flow

blocks

M
ain

program

Set-up

/
/

I
n
p
u
t
s

v
a
r

i
n
_
h
a
s
_
l
o
a
n

=
t
r
u
e
;

/
/

h
i
g
h

v
a
r

i
n
_
p
r
i
n
c
i
p
a
l

=
1
5
0
0
0
0
;

/
/

h
i
g
h

v
a
r

i
n
_
m
o
n
t
h
s

=
3
6
0
;

/
/

l
o
w

v
a
r

i
n
_
r
a
t
e

=
0
.
0
8
;

/
/

l
o
w

v
a
r

i
n
_
d
i
s
c
o
u
n
t

=
0
.
1
;

/
/

l
o
w

/
/

O
u
t
p
u
t
s

v
a
r

o
u
t
_
p
e
r
_
m
o
n
t
h

=
n
u
l
l
;

/
/

h
i
g
h

v
a
r

s
t
a
t
s
_
m
o
n
t
h
s

=
n
u
l
l
;

/
/

l
o
w

v
a
r

s
t
a
t
s
_
r
a
t
e

=
n
u
l
l
;

/
/

l
o
w

/
/

I
n
t
e
r
m
e
d
i
a
t
e

v
a
r
i
a
b
l
e
s

v
a
r

r
e
a
l
_
r
a
t
e

=
n
u
l
l
;

/
/

h
i
g
h

v
a
r

m
o
n
t
h
l
y
_
r
a
t
e

=
n
u
l
l
;

/
/

h
i
g
h

i
f

(
i
n
_
h
a
s
_
l
o
a
n

&
&

i
n
_
r
a
t
e

>
0
.
0
5
)

{
r
e
a
l
_
r
a
t
e

=
i
n
_
r
a
t
e
*
(
1
-
i
n
_
d
i
s
c
o
u
n
t
)
;

}
e
l
s
e

{
r
e
a
l
_
r
a
t
e

=
i
n
_
r
a
t
e
;

}m
o
n
t
h
l
y
_
r
a
t
e

=
r
e
a
l
_
r
a
t
e

/
1
2
.
0
;

o
u
t
_
p
e
r
_
m
o
n
t
h

=
i
n
_
p
r
i
n
c
i
p
a
l

*
(
m
o
n
t
h
l
y
_
r
a
t
e
+
m
o
n
t
h
l
y
_
r
a
t
e

/
(

M
a
t
h
.
p
o
w
(
1
+
m
o
n
t
h
l
y
_
r
a
t
e
,

i
n
_
m
o
n
t
h
s
)
-
1

)
)
;

s
t
a
t
s
_
m
o
n
t
h
s

=
i
n
_
m
o
n
t
h
s
;

s
t
a
t
s
_
r
a
t
e

=
i
n
_
r
a
t
e
;

f
u
n
c
t
i
o
n

m
a
i
n
(
)

{
v
a
r

H
=

{
i
n
_
h
a
s
_
l
o
a
n
:

t
r
u
e
,

i
n
_
p
r
i
n
c
i
p
a
l

:
1
5
0
0
0
0
,

r
e
a
l
_
r
a
t
e
:

n
u
l
l
,

m
o
n
t
h
l
y
_
r
a
t
e

:
n
u
l
l
,

o
u
t
_
p
e
r
_
m
o
n
t
h
:

n
u
l
l

}
;

v
a
r

L
=

{
i
n
_
m
o
n
t
h
s
:

3
6
0
,

i
n
_
r
a
t
e
:

0
.
0
8
,

i
n
_
d
i
s
c
o
u
n
t
:

0
.
1
,

s
t
a
t
s
_
m
o
n
t
h
s
:

n
u
l
l
,

s
t
a
t
s
_
r
a
t
e
:

n
u
l
l

}
;

p
0
(
H
,
L
)
;

}f
u
n
c
t
i
o
n

p
0

(
H
,
L
)

{
i
f

(
c
a
j
i
t
a
.
g
e
t
P
u
b
(
H
,

’
i
n
_
h
a
s
_
l
o
a
n
’
)

&
&

c
a
j
i
t
a
.
g
e
t
P
u
b
(
L
,

’
i
n
_
r
a
t
e
’
)

>
0
.
0
5
)

{
p
1
(
H
,

(
c
a
j
i
t
a
.
i
s
F
r
o
z
e
n
(
L
)

?
L

:
c
a
j
i
t
a
.
d
e
e
p
S
n
a
p
s
h
o
t
(
L
)
)
)
;

}
e
l
s
e

{
p
2
(
H
,

(
c
a
j
i
t
a
.
i
s
F
r
o
z
e
n
(
L
)

?
L

:
c
a
j
i
t
a
.
d
e
e
p
S
n
a
p
s
h
o
t
(
L
)
)
)
;

}v
a
r

n
2

=
c
a
j
i
t
a
.
g
e
t
P
u
b
(
H
,

’
r
e
a
l
_
r
a
t
e
’
)

/
1
2
.
0
;

c
a
j
i
t
a
.
s
e
t
P
u
b
(
H
,

’
m
o
n
t
h
l
y
_
r
a
t
e
’
,

n
2
)
;

v
a
r

n
3

=
c
a
j
i
t
a
.
g
e
t
P
u
b
(
H
,

’
i
n
_
p
r
i
n
c
i
p
a
l
’
)

*
(
c
a
j
i
t
a
.
g
e
t
P
u
b
(
H
,

’
m
o
n
t
h
l
y
_
r
a
t
e
’
)

+
c
a
j
i
t
a
.
g
e
t
P
u
b
(
H
,

’
m
o
n
t
h
l
y
_
r
a
t
e
’
)

/
(
M
a
t
h
.
p
o
w
(

1
+

c
a
j
i
t
a
.
g
e
t
P
u
b
(
H
,

’
m
o
n
t
h
l
y
_
r
a
t
e
’
)
,

c
a
j
i
t
a
.
g
e
t
P
u
b
(
L
,

’
i
n
_
m
o
n
t
h
s
’
)
)

-
1
)

)
;

c
a
j
i
t
a
.
s
e
t
P
u
b
(
H
,

’
o
u
t
_
p
e
r
_
m
o
n
t
h
’
,

n
3
)
;

v
a
r

n
4

=
c
a
j
i
t
a
.
g
e
t
P
u
b
(
L
,

’
i
n
_
m
o
n
t
h
s
’
)
;

c
a
j
i
t
a
.
s
e
t
P
u
b
(
L
,

’
s
t
a
t
s
_
m
o
n
t
h
s
’
,

n
4
)
;

v
a
r

n
6

=
c
a
j
i
t
a
.
g
e
t
P
u
b
(
L
,

’
i
n
_
r
a
t
e
’
)
;

c
a
j
i
t
a
.
s
e
t
P
u
b
(
L
,

’
s
t
a
t
s
_
r
a
t
e
’
,

n
6
)
;

}f
u
n
c
t
i
o
n

p
1

(
H
,
L
)

{
v
a
r

n
0

=
c
a
j
i
t
a
.
g
e
t
P
u
b
(
L
,

’
i
n
_
r
a
t
e
’
)

*
(
1

-
c
a
j
i
t
a
.
g
e
t
P
u
b
(
L
,

’
i
n
_
d
i
s
c
o
u
n
t
’
)
)
;

c
a
j
i
t
a
.
s
e
t
P
u
b
(
H
,

’
r
e
a
l
_
r
a
t
e
’
,

n
0
)
;

}f
u
n
c
t
i
o
n

p
2

(
H
,
L
)

{
v
a
r

n
1

=
c
a
j
i
t
a
.
g
e
t
P
u
b
(
L
,

’
i
n
_
r
a
t
e
’
)
;

c
a
j
i
t
a
.
s
e
t
P
u
b
(
H
,

’
r
e
a
l
_
r
a
t
e
’
,

n
1
)
;

}

Figure
8.

O
riginalprogram

(left)and
its

transform
ed

version
(right)

The work by Leroy et al. [25] and Bierman et al. [4] have the
ability to perform checks when assignments are performed in order
to guarantee some safety properties. In a similar manner, we can
say that our transformation carefully removes some capabilities
when assignments are performed in order to preserve security.
However, different from those work, our transformation also relies
on removing capabilities when branches are executed.

Jia and Zdancewic encodes non-interference using logic-based
access control in the pure programming language AURA [23]. The
main idea of the encoding is to use principals as security levels
and allow access to secret information only by providing specific
proofs. More specifically, a secret value of type t is encoded as a
value of type pf (H says Reveal) → t. In that manner, the secret
value of type t can be only accessed by providing a proof that prin-
cipalH , representing the security level for confidential data, allows
that (i.e., pf (H says Reveal)). The proof of pf (H says Reveal)
can be thought as the reading capability for secret values. Different
from that work, we consider computations with side-effects and
writing capabilities.

Capabilities As mentioned earlier, capabilities [11] originate
from the area of operating systems. Capabilities are deployed by
the Cambridge CAP computer, the Hydra System, StarOS, IBM
System/38, the Intel iAPX423, and Amoeba [26]. In this context,
capability is an unforgeable reference to a file or a system object.
Access to this file or system object is only possible when possessing
the capability.

Language-based capabilities have been explored in the con-
text of the object-capability model [33, 35]. The object-capability
model argues for objects to play the role of both subjects and ob-
jects in traditional access-control models. Capabilities guard re-
sources at a fine-grained, language-based level. An object might not
be allowed to access a particular field of another object but at the
same time might be allowed to call a particular method. The object-
capability model is at core of languages E [13, 33], Joe-E [32],
Emily [46], W7 [38], and Caja [34].

Miller et al. [35] provide insights on what is within the reach
for capabilities. They discuss examples when, using data diodes,
capabilities can help guarantee the mandatory access-control disci-
pline no write down in the Bell-LaPadula model. In a similar vein,
Spiessens and Van Roy [45] spell out the examples from [35] in a
more abstract setting.

With the goal to enforce information confinement, Jaradin et
al. [21] extend an Oz-based capability language with membranes,
execution contexts associated with a set of token values. It would
be interesting to see what semantic properties can be guaranteed by
membranes.

Maffeis et al. [27] appear to be the first to investigate semantic
guarantees offered by pure capabilities. In particular, they formalize
the principles from the object-capability literature “only connec-
tivity begets connectivity” and “no authority amplification” using
programming-language semantics. They prove that these principles
are guaranteed for a class of object-capability languages, including
a Caja-based subset of JavaScript.

Information flow Information-flow control is a lively area of
research [41]. A number of alternatives are possible for enforc-
ing information-flow policies. Popular choices include static anal-
ysis [10, 36, 47], where leaks are prevented at compile time and
dynamic analysis [18, 24, 42], where leaks are blocked at runtime.
However, significant program analysis machinery needs to be built
in order to track information flow whenever the language is not
trivial.

Our approach can be viewed as a form of an inlining transforma-
tion, where the enforcement mechanism is embedded in the code it-
self. Inlining transformations for information flow receive increas-
ing attention.

Chudnov and Naumann [7] present an inlining approach to
monitoring information flow. They inline a flow-sensitive hybrid
monitor by Russo and Sabelfeld [39]. Flow sensitivity allows secu-
rity levels of variables to change over time. The soundness of the
inlined monitor is ensured by bisimulation of the inlined monitor
and the original monitor.

Magazinius et al. [29] investigate on-the-fly inlining of a dy-
namic information-flow monitor. Dynamic code evaluation is han-
dled by transforming the code on the fly. The monitor is based on
no sensitive upgrade by Austin and Flanagan [1] that allows a form
of flow sensitivity.

Our target programs incorporate dynamic enforcement that is
flow-insensitive, and thus not comparable in permissiveness to the
above two approaches [39]. As we discussed earlier, its permissive-
ness is the same as for dynamic monitoring [42]. However, we can
easily imagine extensions of the transformation to correspond to
dynamic disciplines such as no sensitive upgrade.

Devriese and Piessens [12] consider enforcing noninterference
by running multiple runs of the program, one for each security
level. Secret inputs are replaced with dummy values in a public run.
A secret run may use values computed by public runs but not vice
versa. Whenever the original program satisfies noninterference, the
semantics of the multi-run is unchanged. An advantage of this
approach is its language-independence: it is sufficient to focus on
channeling inputs and outputs to the copies of the right security
level. For permissiveness, not modifying the semantics of programs
that satisfy noninterference is a benefit. However, from an error-
reporting point of view, it might be a disadvantage that insecurities
result in silent behavior modification instead of alarms. In this light,
our approach is less permissive, but instead whenever a run of
a transformed program terminates normally, it is guaranteed that
this run is both secure and unmodified with respect to the original
program.

7. Conclusions
We have showed that capability languages are suitable for enforc-
ing information-flow policies. We grant capabilities to write to a
variable only if the write operation is free of explicit and implicit
flows. This opens up a connection between clean information-flow
policies and practical enforcement based on capabilities.

Our work is a first step in the area, intended to invite further
efforts of the community. As mentioned earlier, we have intention-
ally stripped down our language setting to the simplest possible, in
order to pin down the essence of the problem: information flow can
be tracked by controlling capabilities of code segments.

Although the present formalization is based on controlling capa-
bilities to write operations, we note that controlling read operations
provides further alternatives. When dealing with explicit flows, an
alternative to restricting write operations based on the security level
of the right-hand side of an assignment, is to instead restrict read
capabilities. Indeed, explicit flows can be prevented by not allowing
to read from variables whose security levels are not lower or equal
to the level of the variable being assigned. This corresponds to the
no read up (or simple security) in the Bell-LaPadula model [3]. It is
however less natural to control implicit flows by read capabilities:
when branching on an expression and thus, in effect, performing
a read of the expression, it is too early in the execution to decide
whether the read is allowed because its security consequences de-
pend on the side effects (writes) in the branches. This motivates
focusing on write operations for implicit flows (explicit flows are
tracked via write operations for uniformity).

We expect our approach to naturally scale to more complex lan-
guages. The core of the transformation is extracting control-flow
regions and handing out to these regions appropriate write capabil-
ities, depending on the guards at branching points. Given a control-

flow analyzer for a language, it can be used to build the control-flow
graph of a given program. From the control-flow graph, we extract
the “interesting” segments of the program: assignments with sen-
sitive variables on the right-hand side, as well as segments whose
reachability depends on sensitive data: the branches of conditionals
with sensitive conditions and bodies of loops with sensitive guards.
The rest of the job of the transformation is to create procedures
for these segments and pass to them capabilities to write only to
sensitive variables.

Performance is obviously a concern. As hinted earlier, the trans-
formation can be optimized to avoid creation of unnecessary pro-
cedures. For example, when the guard of a conditional is public,
there is no need to create a procedure for the branches. Further, we
see benefits in decoupling the underlying static analysis from the
actual transformation. In this scenario, the programmer writes code
in a capability language, and our static analysis checks for infor-
mation flows. Placing more burden on the programmer, this avoids
breaking the program up into unnecessarily small units.

Support for declassification is vital because many programs
need to release information as a part of legitimate functionality.
Capabilities are a natural fit for expressing declassification poli-
cies. Suppose a declassification policy allows releasing the average
salary of a company’s employees. This is modeled by creating a
procedure that calculates the average and stores into a public vari-
able. Such a declassification-based procedure is exempt from trans-
formation: it is passed to the result of transformation unchanged.
The resulting code can use this procedure in public computation.

We do not anticipate obstacles in making our approach flow-
sensitive, with the possibility of security levels of variables to
change over time. Disciplines like no sensitive upgrade [1] and
permissive upgrade [2] help steer clear of security pitfalls with
dynamic flow-sensitive information-flow enforcement [39].

We remark that results dual to the ones in this paper are feasible:
information-flow enforcement can be used for enforcing capability
properties. To prevent implicit flows, the program counter mecha-
nism for information-flow control ensures that no variables that are
below or incomparable with a given security level are updated in
sensitive context. By manipulating the program counter appropri-
ately, we can tune information-flow enforcement to enforce capa-
bility properties.

Future work is focused on language extensions and declassifi-
cation support, as outlined above. We also plan to advance our ex-
periments to the area of securing web mashups. With lattice-based
decentralized policies [28] on the policy side and Caja on the en-
forcement side, we plan further case studies with security-critical
mashups.

Our approach is hybrid. At transformation time, it is guaran-
teed that the control-flow regions are carefully recorded and as-
signments are rewritten to respect explicit and implicit flows. At
runtime, we rely on the capability sets to preserve secure infor-
mation flow. Since the transformation is custom-made and the ca-
pabilities are standard, we aim at pushing the line to rely more on
capabilities and less on the transformation. For example, when pro-
cessing a conditional that branches on secret, we no longer need to
transform the branches because they will not receive capabilities to
update public data. Further, there are aspect-oriented alternatives to
rewrite the assignments.

Acknowledgments
Thanks are due to Úlfar Erlingsson, Mark Miller, and the Google
Caja team for inspiring discussions. This work was funded by the
European Community under the WebSand project and the Swedish
research agencies SSF and VR. Arnar Birgisson is a recipient of the
Google Europe Fellowship in Computer Security, and this research
is supported in part by this Google Fellowship.

References
[1] T. H. Austin and C. Flanagan. Efficient purely-dynamic information

flow analysis. In Proc. ACM Workshop on Programming Languages
and Analysis for Security (PLAS), June 2009.

[2] T. H. Austin and C. Flanagan. Permissive dynamic information flow
analysis. In Proc. ACM Workshop on Programming Languages and
Analysis for Security (PLAS), June 2010.

[3] D. E. Bell and L. J. LaPadula. Secure computer systems: Mathematical
foundations. Technical Report MTR-2547, Vol. 1, MITRE Corp.,
Bedford, MA, 1973.

[4] G. Bierman, M. Hicks, P. Sewell, G. Stoyle, and K. Wansbrough.
Dynamic rebinding for marshalling and update, with destruct-time
λ. In In Proc. International Conference of Functional Programming,
pages 99–110. ACM Press, 2003.

[5] A. Birgisson, A. Russo, and A. Sabelfeld. Unifying Facets of Informa-
tion Integrity. In Information Systems Security: 6th International Con-
ference, ICISS 2010, volume 6503 of LNCS, pages 48–65. Springer-
Verlag, 2010.

[6] A. Birgisson, A. Russo, and A. Sabelfeld. Capabilities for infor-
mation flow. Technical report, Chalmers University of Technology,
Apr. 2011. Located at http://www.cse.chalmers.se/~russo/
flowcaps-tr.pdf.

[7] A. Chudnov and D. A. Naumann. Information flow monitor inlining.
In Proc. IEEE Computer Security Foundations Symposium, July 2010.

[8] E. S. Cohen. Information transmission in sequential programs. In
R. A. DeMillo, D. P. Dobkin, A. K. Jones, and R. J. Lipton, editors,
Foundations of Secure Computation, pages 297–335. Academic Press,
1978.

[9] D. Crockford. Making javascript safe for advertising. adsafe.org,
2009.

[10] D. E. Denning and P. J. Denning. Certification of programs for secure
information flow. Comm. of the ACM, 20(7):504–513, July 1977.

[11] J. B. Dennis and E. C. VanHorn. Programming semantics for multi-
programmed computations. Comm. of the ACM, 9(3):143–155, Mar.
1966.

[12] D. Devriese and F. Piessens. Non-interference through secure multi-
execution. In Proc. IEEE Symp. on Security and Privacy, May 2010.

[13] The E language. http://erights.org/elang/.

[14] ECMA International. Standard ECMA-262, 5th edition, 2009.

[15] Secure ecmascript. http://wiki.ecmascript.org/doku.php?
id=ses:ses, 2009.

[16] U. Erlingsson. The inlined reference monitor approach to security
policy enforcement. PhD thesis, Cornell University, Ithaca, NY, USA,
2004.

[17] FBJS. http://wiki.developers.facebook.com/index.php/
FBJS, 2009.

[18] J. S. Fenton. Memoryless subsystems. Computing J., 17(2):143–147,
May 1974.

[19] J. A. Goguen and J. Meseguer. Security policies and security models.
In Proc. IEEE Symp. on Security and Privacy, pages 11–20, Apr. 1982.

[20] K. W. Hamlen, G. Morrisett, and F. B. Schneider. Computability
classes for enforcement mechanisms. ACM TOPLAS, 28(1):175–205,
2006.

[21] Y. Jaradin, F. Spiessens, and P. V. Roy. Capability confinement by
membranes. Technical Report RR2005-03, Universit catholique de
Louvain, 2005.

[22] Y. Jaradin, F. Spiessens, and P. V. Roy. SCOLL: A language for safe
capability based collaboration. Technical report, Universit catholique
de Louvain, 2005.

[23] L. Jia and S. Zdancewic. Encoding information flow in aura. In
Proceedings of the ACM SIGPLAN Fourth Workshop on Programming
Languages and Analysis for Security, PLAS ’09. ACM, 2009.

[24] G. Le Guernic, A. Banerjee, T. Jensen, and D. Schmidt. Automata-
based confidentiality monitoring. In Proc. Asian Computing Sci-

ence Conference (ASIAN’06), volume 4435 of LNCS. Springer-Verlag,
2006.

[25] X. Leroy and F. Rouaix. Security properties of typed applets. In In
Conference Record of POPL ’98: The 25th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 391–
403. ACM Press, 1999.

[26] H. M. Levy. Capability-Based Computer Systems. Butterworth-
Heinemann, 1984.

[27] S. Maffeis, J. C. Mitchell, and A. Taly. Object capabilities and isola-
tion of untrusted web applications. In Proceedings of IEEE Security
and Privacy’10. IEEE, 2010.

[28] J. Magazinius, A. Askarov, and A. Sabelfeld. A lattice-based approach
to mashup security. In Proc. ACM Symposium on Information, Com-
puter and Communications Security (ASIACCS), Apr. 2010.

[29] J. Magazinius, A. Russo, and A. Sabelfeld. On-the-fly inlining of
dynamic security monitors. In Proceedings of the IFIP International
Information Security Conference (SEC), Sept. 2010.

[30] J. McLean. Security models and information flow. In Proc. IEEE
Symp. on Security and Privacy, pages 180–187, May 1990.

[31] J. McLean. The specification and modeling of computer security.
Computer, 23(1):9–16, Jan. 1990.

[32] A. Mettler and D. Wagner. The Joe-E language specification (draft).
Technical report, U.C. Berkeley, 2006.

[33] M. Miller. Robust composition: Towards a unified approach to access
control and concurrency control. PhD thesis, Johns Hopkins Univer-
sity, 2006.

[34] M. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay. Caja: Safe
active content in sanitized javascript, 2008.

[35] M. Miller, K. Yee, and J. Shapiro. Capability myths demolished.
Technical Report SRL2003-02, Johns Hopkins University, 2003.

[36] A. C. Myers. JFlow: Practical mostly-static information flow control.
In Proc. ACM Symp. on Principles of Programming Languages, pages
228–241, Jan. 1999.

[37] Programmable web. http://programmableweb.com.

[38] J. A. Rees. A security kernel based on the lambda-calculus. Technical
report, Massachusetts Institute of Technology, 1996.

[39] A. Russo and A. Sabelfeld. Dynamic vs. static flow-sensitive security
analysis. In Proc. IEEE Computer Security Foundations Symposium,
July 2010.

[40] P. D. Ryck, M. Decat, L. Desmet, F. Piessens, and W. Joose. Security
of web mashups: a survey. In Nordic Conference in Secure IT Systems,
LNCS, 2010.

[41] A. Sabelfeld and A. C. Myers. Language-based information-flow
security. IEEE J. Selected Areas in Communications, 21(1):5–19, Jan.
2003.

[42] A. Sabelfeld and A. Russo. From dynamic to static and back: Riding
the roller coaster of information-flow control research. In Proc. Andrei
Ershov International Conference on Perspectives of System Informat-
ics, LNCS. Springer-Verlag, June 2009.

[43] A. Sabelfeld and D. Sands. Declassification: Dimensions and princi-
ples. J. Computer Security, 17(5):517–548, Jan. 2009.

[44] F. B. Schneider. Enforceable security policies. ACM Transactions on
Information and System Security, 3(1):30–50, 2000.

[45] F. Spiessens and P. Van Roy. A practical formal model for safety anal-
ysis in capability-based systems. In Trustworthy Global Computing,
volume 3705 of LNCS, pages 248–278. Springer-Verlag, 2005.

[46] M. Stiegler. Emily: A high performance language for enabling secure
cooperation. In C5, pages 163–169, 2007.

[47] D. Volpano, G. Smith, and C. Irvine. A sound type system for secure
flow analysis. J. Computer Security, 4(3):167–187, 1996.

[48] G. Winskel. The Formal Semantics of Programming Languages: An
Introduction. MIT Press, Cambridge, MA, 1993.

Appendix: Selected proofs
We include the proof of security. For the proofs of correspondence
with dynamic monitors, the interested reader is referred to a tech-
nical report [6] containing full proofs of all theorems.

Proof of Lemma 3. We prove this by induction on the original pro-
gram c. (i.e. where ĉ is the translation of c). First let ρ̂, µ̂ and S.
The case for c = skip is trivial.
Case c = x := e : Then, ĉ = call p′(~W�`(e)) where p′ 7→
proc (~W ′) x̄ := e. The first steps of the trace are

〈call p(~W�`) | ρ̂, µ, S〉 → 〈call p′(~W�lev(e); � | ρ1, µ, ρ̂ :: S〉
→ 〈x := e; �; � | ρ2, µ, ρ1 :: ρ̂ :: S〉.

Here ρ1 is identical to ρ̂ except that ρ1(ŷ) equals the null-location
for all y with ` 6v lev(y). Likewise, ρ2 is identical to ρ1 but with
some write references set to null. At this point, if ` v lev(x)
the execution continues by updating the location referred to by x̄
(and thus x), but then the theorem is vacuously true. In case of the
opposite, execution becomes stuck since x̄ is a null-reference.

The three remaining cases, for sequential composition, if and
while statements, follow easily by induction.

Proof of Theorem 1. We proceed by induction on the syntax of the
original program c. The case c = skip is trivial.
Case c = x := e : It is easy to see that the execution of ĉ
at most modifies locations referenced by x (through x̂). Thus, if
lev(x) 6v `, there is nothing more to prove. If lev(x) v `, then we
observe that ĉ = call p(~W�lev(e)). If lev(e) v `, then its evalua-
tion yields the same value over µ̂1 and µ̂2 so the theorem holds. If
lev(e) 6v `, then Lemma 3 gives that evaluation of ĉ does not alter
locations that are not above or equal to lev(e), which in particular
includes all levels below (and equal to) `, and the theorem holds.
Case c = c1; c2 : Follows directly by induction.
Case c = if e then c1 else c2 : In ĉ, the two branches are rep-
resented by procedures p1, p2, whose bodies are transformed ver-
sions of c1, c2. The bodies thus satisfy noninterference by induc-
tion. In that case, the only way for the resulting memories to differ
on low values after executing ĉ from µ̂1 and µ̂2, is if in each execu-
tion a separate branch is taken. If lev(e) v `, then the evaluation
of e is the same in both executions, so the same branch will be ex-
ecuted. If however lev(e) 6v `, then we note that each branch con-
sists of a call, passing ~W�lev(e) as write capabilities. In this case,
Lemma 3 again gives that neither branch will modify locations of
levels not above lev(e). This includes the level ` and all levels be-
low it.
Case c = while e do c : This case is in principle the same as
the previous case, since we do not consider non-terminating exe-
cutions. At the start of each iteration there is a branching point, in
which both executions agree if the level of e is below `. Otherwise,
Lemma 3 is again used to show that the body does not alter low
parts of the memories.

Appendix: JavaScript example
In this appendix, Figure 10 includes the full (non-optimized) rewrit-
ing of the loan calculator example from Section 5.

The rewritten programs refer to a Cajita runtime. To test the pro-
grams in an ECMAScript 5 compatible interpreter, such as Node.js
(http://nodejs.org/), one may use the mock runtime in Fig-
ure 9, which simulates the necessary API by using ECMAScript 5
features. Note that this mock runtime only serves the purpose of our
examples, and is not general. In particular, the deep snapshot func-
tion only works within one interpreter (frame) on JSON objects,
i.e. objects that are primitive values or non-prototypical instances
of Object or Array.

var cajita = (function () {

function getPub(obj , prop) {
return obj[prop];

}

function setPub(obj , prop , val) {
obj[prop] = val;

}

function deepSnapshot(obj) {
if (!(obj instanceof Object)) return obj;
var o = {};

for (prop in obj) {
o[prop] = deepSnapshot(obj[prop]);

}
return Object.freeze(o);

}

return {
getPub: getPub ,
setPub: setPub ,
deepSnapshot: deepSnapshot

};
})();

Figure 9. A mock Cajita runtime that uses ECMAScript 5 features to freeze objects

function main() {
var H = {

// Inputs
in_has_loan : true ,
in_principal : 150000 ,

// Intermediaries
real_rate : null ,
monthly_rate : null ,

// Outputs
out_per_month : null

};
var L = {

// Inputs
in_months : 360,
in_rate : 0.08,
in_discount : 0.1,

// Outputs
stats_months : null ,
stats_rate : null

};

p0(H,L);
return {H: H, L: L};

}

function p0 (H,L) {

if (cajita.getPub(H, ’in_has_loan ’) &&
cajita.getPub(L, ’in_rate ’) > 0.05)

{
p1(H, cajita.deepSnapshot(L));

} else {
p2(H, cajita.deepSnapshot(L));

}

p0_1(H,cajita.deepSnapshot(L));
p0_2(H,cajita.deepSnapshot(L));

p0_3(H,L);

p0_4(H,L);
}

function p1 (H,L) {
p1_1(H,L);

}

function p2 (H,L) {
p2_1(H,L);

}

function p1_1 (H,L) {
var n0 = cajita.getPub(L, ’in_rate ’)

* (1.0 - cajita.getPub(L, ’in_discount ’));
cajita.setPub(H, ’real_rate ’, n0);

}

function p2_1 (H,L) {
var n1 = cajita.getPub(L, ’in_rate ’);
cajita.setPub(H, ’real_rate ’, n1);

}

function p0_1 (H,L) {
var n2 = cajita.getPub(H, ’real_rate ’) / 12.0;
cajita.setPub(H, ’monthly_rate ’, n2);

}

function p0_2(H,L) {
var n3 = cajita.getPub(H, ’in_principal ’)

* (cajita.getPub(H, ’monthly_rate ’)
+ cajita.getPub(H, ’monthly_rate ’)
/ (Math.pow(

1 + cajita.getPub(H, ’monthly_rate ’),
cajita.getPub(L, ’in_months ’)) - 1)

);
cajita.setPub(H, ’out_per_month ’, n3);

}

function p0_3(H,L) {
var n4 = cajita.getPub(L, ’in_months ’);
cajita.setPub(L, ’stats_months ’, n4);

}

function p0_4(H,L) {
var n5 = cajita.getPub(L, ’in_rate ’);
cajita.setPub(L, ’stats_rate ’, n5);

}

// Run e.g. in Node.js
var rv = main ();
console.log(

"Pmt per month: " + rv.H.out_per_month
+ " (rate " + 100*rv.H.real_rate + "%)");

console.log(
"Statistics: " + rv.L.stats_months

+ " months at " + 100*rv.L.stats_rate + "%");

Figure 10. Fully (i.e. non-optimized) rewritten program from Section 5. Compare with Figure 8.

