
Fault-Tolerant Non-interference
Extended Version

Filippo Del Tedesco, Alejandro Russo, and David Sands

Chalmers University of Technology, Sweden

Abstract. This paper is about ensuring security in unreliable systems. We study
systems which are subject to transient faults – soft errors that cause stored values
to be corrupted. The classic problem of fault tolerance is to modify a system so
that it works despite a limited number of faults. We introduce a novel variant
of this problem. Instead of demanding that the system works despite faults, we
simply require that it remains secure: wrong answers may be given but secrets
will not be revealed. We develop a software-based technique to achieve this fault-
tolerant non-interference property. The method is defined on a simple assembly
language, and guarantees security for any assembly program provided as input.
The security property is defined on top of a formal model that encompasses both
the fault-prone machine and the faulty environment. A precise characterization of
the class of programs for which the method guarantees transparency is provided.

1 Introduction and Overview
Transient faults occur in hardware for example when a high-energy particle strikes a
transistor, resulting in a spontaneous bit-flip. Such events have been acknowledged as
the source of major crashes in server systems [6]. The trend towards lower threshold
voltages and tighter noise margins means that susceptibility to transient faults is in-
creasing.

From a security perspective, transient faults (henceforth we will say simply faults)
are a known attack vector. For instance, in [7, 3, 20] a single bit flip, regardless of how
is triggered, can compromise the value of a secret key in both public key and authenti-
cation systems. In [17] it is shown how a fault (induced by holding a light-bulb near the
processor!) triggers a single bit flip in a malicious but well-typed Java applet, causing
it (with high probability) to do something which is otherwise impossible for well-typed
bytecode: to take over the virtual machine.

Much previous work on fault tolerance has studied the preservation of functional be-
havior or mitigation of faults. For the most part techniques employ wholesale hardware
replication, or at least some special-purpose hardware. For the predominantly-software-
based techniques, with the exception of [24], most works do not give precise, formal
guarantees.

In this work, rather than attempting to preserve full functional behavior in the pres-
ence of faults, we consider the novel problem of guaranteeing security: faults may cause
a program to go wrong, but even if it goes wrong it should not leak sensitive data, no
matter if the code is crafted with malicious intent (cf. [17]). The particular security char-
acterization we study is non-interference, a well-established end-to-end information-

2 Del Tedesco, Russo, Sands

flow security property which says that public outputs of a program (the low security
channel) do not reveal anything about its secrets (the high security inputs).

Our approach has two distinguishing features. Firstly, it does not rely on special pur-
pose hardware features (in contrast to [24]), and secondly, it makes its assumptions pre-
cise and provides formal guarantees. This latter point distinguishes our approach from
software-based techniques used in the large majority of works in fault tolerance which
are usually evaluated empirically, often using simulated errors. It should be noted, of
course, that our goal is simply to preserve non-interference, and not to detect errors or
recover from them.

In the remainder of this section we give an overview of the approach taken in this
work to achieve what we called fault-tolerant non-interference, and summarize the main
results.

The Target System and the Faulty Environment Transient faults are a feature of
hardware, so it makes sense to have an explicit hardware representation. In this paper
we consider a single core machine that executes a small set of RISC-like instructions.
The machine has registers and two separate memories for code and for data (§ 2.1). We
assume the code memory is read-only (ROM), therefore fault-free. This is a standard as-
sumption since memory with error correcting codes is both efficient and commonplace.
On the other hand we assume that both registers and data memory are not fault-free.
This means, in particular, that even the program-counter and hence the control flow can
be affected by faults, an assumption in line with most CPU implementations. This is the
feature of the system (and systems in general) which makes the problem particularly
challenging.

Since we aim for precise guarantees, we assume there is no operating system be-
tween programs and the underlying hardware. This choice simplifies the implementa-
tion of our method and the security argument. In fact, since the execution of the operat-
ing system would be subject to faults, none of its abstractions could be used in a reliable
way, and the code would introduce further vulnerabilities.

We assume that the fault environment can simultaneously induce multiple bit-flips
in any register or any part of the data memory.

Enforcing Non-interference in the Presence of Transient Faults Our method en-
forces security via program transformation. Security is defined in terms of two secrecy
levels, low for public and high for confidential data; low input data may influence the
high outputs, but high inputs should not affect the low outputs of the system.

Our transformation combines Secure Multi-Execution (SME) [15] 1 with a tech-
nique known from Software-based Fault Isolation (SFI) [31] to guarantee that the secu-
rity property enforced by SME is not compromised by faults.

Consider the system consisting of high and low inputs and outputs represented in
Figure 1. The SME version of this system is given in Figure 2. SME deploys two iso-
lated copies of the system, one with responsibility for computing the low outputs, and
one with the responsibility of computing the high ones. In our instantiation of this idea,
the “system” will be the program to be secured.

1 Related ideas have appeared elsewhere [27, 9, 12, 5]

Fault-Tolerant Non-interference 3

SYSTEM	

LOW	
 IN	

LOW	
 OUT	

HIGH	
 IN	

HIGH	
 OUT	

Fig. 1. Original System

SYSTEM	
 	

LOW	
 COPY	

LOW	
 IN	

LOW	
 OUT	

SYSTEM	
 	

HIGH	
 COPY	

HIGH	
 IN	

HIGH	
 OUT	

DUMMY	
 HIGH	

Fig. 2. Secure Multi-Execution

A natural approach to implementing SME is to use fair concurrency to compute
independently each copy of the system. In our case, the approach has necessarily to
be more straightforward, since software and hardware supports for concurrency are
missing. For this reason, SME is implemented by executing the high copy sequentially
after the low one. This mandatory choice makes SME vulnerable to leakage in the
presence of faults (§ 2.2-2.3). In particular:r during execution of the low copy, a fault in the value of a pointer stored in a register

could cause the high data to be loaded instead of low;r during the execution of the high copy, a fault in the program counter can cause the
control-flow to transfer to the low copy, but in a state where the registers might
contain arbitrary high data.

In both of these scenarios, the low copy of the code gains access to the high data. The
attacker’s ability to take advantage of this may depend on the structure of the code, or
the attacker’s ability to recognize a leaked secret independently of the code. Neverthe-
less, to construct a general security mechanism based on SME, we must protect against
the situations enumerated above.

A typical assumption in the analysis of fault tolerance mechanisms is the occurrence
of a single fault. Similarly, we strengthen SME so that it can cope with at most some
small fixed number of faults (§ 3.3). The key to preserving the strong isolation provided
by SME, in the presence of up to F faults, is tor (§3.1) separate the address space of the high and low variants of the code, and

the data memory addresses over which they operate so that the addresses of the
respective parts have a hamming distance2 greater than Fr (§3.2) add address masking code, in the style of SFI, around load and jump instruc-
tions to mask the address value so that it is forced within in a safe range.

As for the original SME, our method guarantees isolation between low and high
components in a language-independent manner, since systems are treated as black boxes;
moreover, such isolation remains unaltered even if F faults occur during the execution.
Our method guarantees transparency as well: if the original system had no information
leaks between high inputs and low outputs, and no faults occur in the execution, then
the modified system will produce the same values on the low and high channels as the
original system (since the dummy high input will have no influence on the computa-
tion).

2 The number of positions for which corresponding bits of two equally sized binary words differ.

4 Del Tedesco, Russo, Sands

Results For security, we formalize the semantics of the machine (§ 4.1) and precisely
specify our assumptions about which faults can occur (§ 4.2). From this we formulate
a suitable notion of non-interference (§ 4.3), where we tackle the problem that faults,
when modeled as nondeterminism, can mask information flows.

Surprisingly, security is established with no semantic assumptions about the code
itself. In order to guarantee transparency we need “reasonable” semantic invariants (§ 5)
on memory utilization and control flow modifications performed by the source program.

2 Transient Fault Based Attacks on SME
This section illustrates the syntax of assembly programs and the inadequacy of a naive
SME implementation in the presence of faults.

2.1 Syntax

Data manipulated by assembly programs are in the set Val , which is defined as the
disjoint union of W∪Ptr ∪Lab ∪DReg . The set W corresponds to numeric constants,
defined as machine words of n bits. Pointers to data memory, from the set Ptr def

=
{ptr v | v ∈ W}, are defined as tagged machine words to keep them separated from
elements in W. We assume an infinite set of labels Lab, representing targets of jump
instructions, and a finite set of general purpose registers DReg .

I ::= [l :]B such that l ∈ Lab

B ::= load r v | store v r | jmp v | jnz v r |
nop | move r v | BinOp r v | out ch r

BinOp ::= add | or

P ::= ε | I :: P

Fig. 3. Assembly programs syntax

Figure 3 shows
the syntax for assem-
bly programs. We
consider that every
instruction I could
be optionally labeled.
Instruction load r v
accesses the data mem-

ory and writes the value pointed by v into register r. The corresponding store v r in-
struction writes the content of r into the data memory address v. Instruction jmp v
causes the control-flow to transfer to the instruction labeled as v. Instruction jnz v r
performs the jump only if the content of register r is nonzero. Instruction move r v
copies the value v into register r. BinOp stands for a family of binary operators that
combine values in r and v and store the result in r. A minimal such family contains an
or instruction and an add instruction. The or instruction performs the logic or opera-
tion between constants in r and v; the add instruction adds the unsigned constant v to
the value contained in register r, which can either be a constant or a memory pointer.
All instructions presented so far are either indirect, when v is in DReg , or direct when
v is in Val \ DReg . Instruction nop performs no computation. Instruction out ch r
outputs the constant contained in r into the channel ch. Output channels are in the set
Out = {low, high}.

Programs are defined as lists of instructions P . We use standard list notation, ε for
empty lists and :: (cons operation) to add one element to the front of the list. We denote
the number of instructions of a program by len(P) and the set of its labels as lab(P).
We require programs to be well-formed, namely to have the first instruction always
labeled (a function fst : P → Lab returns such label) and not having two instruction

Fault-Tolerant Non-interference 5

bodies labeled in the same way. Given two programs P and P ′, we define program
composition P ++ P ′ as list concatenation, provided that lab(P) ∩ lab(P ′) = { }.

2.2 Direct Control Flow and Memory Faults

We describe how faults can induce secret leakages in SME-programs. Consider Figure
4, in which an assembly program and the memory M on which it is executed are pre-
sented. Observe that M contains both a public value pub and a secret sec. The program
P is intuitively secure. The first move instruction writes the memory pointer pubp to
register r1. Then the public value pub is loaded in r2, and secp overwrites pubp in r1.
Finally, pub is output on the low channel via the last out instruction.

P

move r1 (ptr pubp)

load r2 r1

move r1 (ptr secp)

nop

out low r2

M

secp 7→ sec

pubp 7→ pub

Fig. 4. Secure program

Since program P is secure, its SME ver-
sion, written sme(P), is also secure [15]. Fig-
ure 5 shows the code of sme(P) and the
corresponding memory. The transformed pro-
gram consists of the two copies of program
P , named Plow and Phigh , responsible for
computing public and secret values, respec-
tively. The memory is divided into the seg-
ments µlow and µhigh in such a way that the
code in Plow only refers to µlow and the code in Phigh only to µhigh . The segment µlow

contains the dummy value zero (sec′p 7→ 0) instead of the secret value sec, while in-
structions for public outputs are replaced by nop in Phigh . Clearly, sme(P) preserves
confidentiality.

We proceed to describe how a single bit flip is enough to jeopardize the security
guarantees of sme(P). In a machine execution, it could be possible for secp and pub′p
to be located at the memory addresses 000 and 100, respectively. It is then possible for
pub′p to be converted to secp by a single bit flip. As a consequence, the secret value sec
could be loaded into r2 by the second instruction in Plow , which in turn would send it
on a low channel.

sme(P)

Plow



move r1 (ptr pub
′
p)

load r2 r1

move r1 (ptr sec
′
p)

nop

out low r2

Phigh



move r1 (ptr pubp)

load r2 r1

move r1 (ptr secp)

nop

nop

sme(M)

secp 7→ sec
}
µhigh

pubp 7→ pub

sec′p 7→ 0
}
µlow

pub′p 7→ pub

Fig. 5. sme(P) and sme(M)

Bit flips in the program
counter are problematic as well.
Suppose the execution goes
through Plow and completes
the first nop in Phigh without
faults. At this point, the pro-
gram counter contains the value
9 (1001 in binary), i.e., it points
to the last instruction of Phigh ,
and the register r1 contains the
pointer secp. However, just be-
fore the last instruction of Phigh

is executed, a bit flip in the
first bit of the program counter
can move the execution back to

0001, i.e., the second instruction of Plow . Since this occurs while r1 contains secp, it is
possible for Plow to have access to sec, and leak it on the low channel.

6 Del Tedesco, Russo, Sands

The scenarios described above suggest that in order to guarantee security in a faulty
context, SME has to separate Plow , Phigh , µlow , and µhigh in a way that tolerates bit
flips in memory pointers or in the program counter, as discussed in Section 3.1.

2.3 Indirect Control Flow and Memory Faults

Faults can induce arbitrary computations within Plow and Phigh . Although we do not
attempt to preserve functional correctness in the presence of faults, performing arbitrary
computations in a SME scenario has important security implications.

move r1 •
move r1 (ptr pubp)

nop

load r2 r1
Fig. 6. low code

Consider the fragment of low code in Figure 6. Alterations
in the program counter could bypass the initialization of r1 to
ptr pubp and use an arbitrary value • as memory pointer. Hence,
regardless how µlow and µhigh are spread out in memory, it
would be still possible for a pointer in Plow to refer to values
in µhigh . This situation can clearly jeopardize the security guar-
antees of SME. Observe that arbitrary computations on Phigh ’s
memory pointers do not present any security risks. After all, it is secure for Phigh to
access µlow . However, perturbations in Phigh ’s control flow impose other danger.

When Phigh is executed, faults in the program counter could induce arbitrary values
to be used as jump targets. When this is the case, the control flow can be moved from
Phigh back to Plow , regardless how Plow and Phigh are located in memory. Since secret
data is often loaded into registers by Phigh , this type of jumps presents a security risk.
Observe that there is no risk for arbitrary computations to trigger jumps from Plow to
Phigh .

In Section 3.2 we propose to use instrumentations for instructions load, jmp, and
jnz so that leaks can be prevented even in the presence of arbitrary computations.

3 Fault-Tolerant Secure Multi-Execution
We present a version of SME capable of preserving confidentiality of high inputs even
in a faulty environment. Our technique relies on spreading out code (Plow and Phigh)
and memory (µlow and µhigh) as well as instrumenting instructions related to memory
access and jumps.

3.1 Fault-Tolerant Layout for Code and Memory

Fault tolerance always involves some kind of redundancy. In our case we will use the
first F + 1 bits of every n-bit address exclusively for keeping the hamming distance
between Plow and Phigh , and between µlow and µhigh , to at least F + 1.

Let distance(u, v) be the hamming distance between two words u and v. We will
say that two words are F -separate whenever their hamming distance is greater than F .

We will work with programs for which both their size, and their run-time memory
footprint, is roughly in the range [0, 2n−(F+1) − 1] (the exact range may be slightly
smaller than this and can be calculated after some additional instructions have been
inserted into the code according to the transformation described in the next subsection).
The remaining bits of the address spaces (code and data memory) are reserved for our
fault tolerance mechanism.

Let mask denote the word with F + 1 leading 1s followed by n− (F + 1) zeros.

Fault-Tolerant Non-interference 7

iloadSec

load r′ v 7→ move rsp mask

or rsp v

load r′ rsp

Fig. 7. Securing load

ijmpSec

jmp v 7→ move rsp mask

or rsp v

jmp rsp

Fig. 8. Securing jmp

ijnzSec

jnz v r′ 7→ move rsp mask

or rsp v

jnz rsp r
′

Fig. 9. Securing jnz

The idea is that any address in the range [b, t] (where b < t < 2n−(F+1)) is F -
separate from any address in the range [b+mask , t+mask].

If µhigh occupies the memory addresses in the interval [0, t] then we ensure that
µlow uses the range [mask , t + mask]. This clearly gives F -separation between µlow

and µhigh and thus avoids leaks due to faults in pointers handled by Plow (see Section
2.2).

For achieving a similar separation between Phigh from Plow we add some code
padding between the two copies of P such that the first instruction of Phigh is at the
ROM address mask . This guarantees F -separation between the addresses of instruc-
tions in Plow and Phigh and thereby avoids leak due to direct faults in the program
counter while executing Phigh (see Section 2.2).

3.2 Control Flow Integrity

Faults can break the control-flow integrity of the program, causing it, for example, to
jump to an arbitrary address. The two problematic instances of this problem are when
(i) Plow loads from an address in µhigh , and (ii) when the destination of a jump in
Phigh points to Plow . We mitigate these cases using a technique which turns out to be
very similar to the sandboxing approach in software-based fault isolation [31]: we mask
the addresses so that they are always within a safe range. This is achieved in case (i) by
transforming load instructions, and in case (ii) by transforming jmp and jnz instructions,
as shown in Figures 7 to 9.

Note that for this to work we need one spare general purpose register rsp – i.e., one
which is not used by the original program P .

3.3 Formal Definition of Fault-Tolerant SME

Figure 10 summarizes the process of generating our fault-tolerant version of SME as a
program transformation. SME reworks an assembly program P into two secure variants
Plow and Phigh . This requires modifications to the internal behavior of program P . The
transformation consists of several steps. To obtain Phigh from P , we first replace the
instructions to write data into public channels by nops. This is done by the function
olow , which generates an intermediate result P ′high . Function jnzSec◦ jmpSec (the sym-
bol ◦ denotes function composition) instruments jmp and jnz instructions by applying
functions in Figures 8 and 9 to the entire program.

Obtaining Plow is a bit more involved. It requires offsetting every pointer appear-
ing in P by mask so that Plow refers to µlow (function offsetmask). Additionally, the
transformation renames instruction labels to avoid name clashes with Phigh (function
labP), as well as suppressing instructions performing outputs in high channels (function
ohigh).

The instrumentation of load is done by function loadSec (based on the auxiliary
function in Figure 7), thus finally obtaining Plow . Once Plow and Phigh are obtained,

8 Del Tedesco, Russo, Sands

in order for F -separation to hold between them, the transformation adds some padding
code, named PAD . All instructions in PAD are jumps to the first instruction of Phigh ,
and the length of PAD guarantees the first instruction of Phigh is located at the address
mask (recall Section 3.1).

P

P ′highP ′low

Plow PAD Phigh

smeft(P) =
Plow ++ PAD ++ Phigh

ohigh ◦ labP ◦ offsetmask olow

loadSec jnzSec ◦ jmpSec

++

++

Fig. 10. Fault-tolerant SME code transformation (smeft)

Initial memory con-
figuration Consider
the initial memory M
for P in Figure 11.
We assume that the
program uses the mem-
ory interval µ =
[0, t], where the first
s words in M are
secrets (labeled highin),
the subsequent words
are public values (low in)
and the rest is unini-
tialized (in white). We
require s to be within
the range [0, 2n−(F+1)−1] to ensure the separation between µhigh and µlow is possible
(Section 3.1).

M smeft!M"#

0

s

0

s

mask

s+mask

highin

t t

t+mask

lowin

default

lowin

lowin

highin

Fig. 11. Initial memory M and
transformed version smeft(M)

We also require that M only contains values from
W. The security of the method does not depend on
this assumption, but for the transformation to preserve
the non-faulty behavior of secure runs of the program
we will need such requirement on input. We return
to this issue in Section 5. Under these assumptions,
the initial memory for smeft(P), which we denote
by smeft(M), corresponds to the right side of Fig-
ure 11. Notice that µhigh , the portion of the memory
to be used by Phigh , is the same as µ, whereas Plow

will use µlow which is located in the memory inter-
val [mask , t + mask]. In µlow the words represent-
ing the secret are initialized to a default value (marked
“default” in the figure). For the sake of simplicity,
we do not require smeft(P) to take care of memory
rearrangement itself – we assume the preparation of
smeft(M) is external to SME. We assume initial reg-
isters to be all uninitialized for P , therefore they will
be uninitialized for smeft(P) as well.

Optimizing smeft It might appear redundant to modify memory pointers in Plow and
instrument direct load instructions according to Figure 7 (and similarly for control flow
labels in Phigh and functions in Figures 8 and 9). For many sensible programs this is
indeed the case, such as the safe programs characterised in § 5.

Fault-Tolerant Non-interference 9

Redefining mask Recall that in Section 3.1 we define mask as the mask used to obtain
F-separation of memory and code. When it comes to the code, we assume that the size
of Plow is the same as Phigh . However, this assumption is no longer true for Plow and
Phigh produced by smeft due to the instrumentations of load, jmp and jnz instructions.
This is not a major problem. It is enough to pad with nops Plow or Phigh to match their
sizes. For simplicity, we omit this step in our schematic description.

4 Security Guarantees Provided by smeft

In this section we state the security property bestowed by smeft on transformed pro-
grams. To do this we define a formal semantics for the RISC machine; extend it to model
faults; define non-interference for faulty runs; state the security theorem: any program
transformed by smeft corresponds to a machine program which is non-interfering for
runs with no more than F faults. All details are discussed in the Appendix section.

4.1 Semantics

DLoad
P (pc) = loadd r w

〈P,Reg ,M〉 τ−→ 〈P,Reg+[r 7→M(w)],M〉

DAdd
P (pc) = addd r w Reg (r) + w = w′

〈P,Reg ,M〉 τ−→ 〈P,Reg+[r 7→ w′],M〉

DJnz-A
P (pc) = jnzd w r Reg (r) 6= 0

〈P,Reg ,M〉 τ−→ 〈P,Reg[pc 7→ w],M〉

Out
P (pc) = out ch r

〈P,Reg ,M〉 ch!Reg(r)−→ 〈P,Reg+,M〉

Fig. 12. Concrete Semantics (selected rules)

To give a precise semantics to
faults we need to work at the
level of concrete programs, i.e.,
machine code, which are lists
of concrete instructions. Com-
pared to assembly instructions
from Figure 3, concrete instruc-
tions are not labeled, and their
arguments are register names or
machine words. This formaliza-
tion of machine code is suffi-
ciently concrete to describe the
class of faults we wish to model.
In particular, a concrete encoding
of the register names is not made
explicit because we do not consider faults in the code memory, and because registers
are not addressable indirectly. We sometimes write P (i) to denote the ith concrete in-
struction in the instruction list P .

Most assembly instructions have two explicit versions in the concrete domain: a
direct version, such as loadd r w which loads the value contained at memory address w
into the register r, and an indirect version, such as loadi r r

′ which fetches the memory
address of the data to be loaded from register r′. There are two exceptions to this: the
nop instruction, which does not require any parameter, and the out instruction, which
has no direct formulation. Observe that, similarly to register names, channel names are
not encoded.

Assembly programs are converted to concrete ones by the function loader. The
function converts abstract values Val into machine words. In particular this amounts
to stripping the pointer tag away from the pointers, and resolving code labels to ROM
addresses. The function loader is also responsible for mapping all abstract instructions
into their direct or indirect versions. The details are presented in Appendix 8.4.

10 Del Tedesco, Russo, Sands

Configurations of the concrete machine are given by a triple 〈P,Reg ,M〉, where P
is the concrete program, Reg ∈ DReg ∪ {pc} → W is the (Concrete) Register Bank
and M ∈W→W is the (Concrete) Data Memory.

The fault-free semantics of concrete programs is given as a labeled transition sys-
tem. The labels on transitions indicate the observable output of each clocked machine
step, and are either τ , a label marking just the passage of time, or an output label,
indicating a word output on a specific channel. All labels are in Act = {low !w|w ∈
W}∪{high!w|w ∈W}∪{τ}. A representative selection of reduction rules for the con-
crete machine are presented in Figure 12. We use Reg+ as a shorthand for Reg [pc 7→
Reg (pc) + 1] and we abbreviate P (Reg (pc)) as P (pc). Modelling instructions as con-
secutive words implies that it is impossible to jump to an address which is not aligned
with the beginning of an instruction; this assumption corresponds to the implementation
of simpler RISC architectures such as ARM versions 1 and 2.

4.2 Modeling Faults

Our aim will be to describe the overall behavior of a fault-prone system as simply as we
can, while still permitting reasoning about non-interference. The core idea is to model
the transitions of the system in the presence of faults with a labeled transition system
obtained by interleaving the machine transitions with a nondeterministic flipping of
zero or more bits. As described previously, the fault-prone bits of the machine are any
of the register bits, and any bits in the data memory.

We need some notation to talk about bit flips. Recall machine words are n bits long.
Let us define the set of locations at which a fault may occur as:

Loc
def
= {(r, i) | r ∈ DReg ∪ {pc}, i ∈ {1, . . . , n}} ∪ {(k, i) | k ∈W, i ∈ {1, . . . , n}}

For a machine configuration C and location l ∈ Loc we will write C[l] to denote the
value of the bit specified by l in C; for any b ∈ {0, 1} we write C[l 7→ b] to denote the
configuration obtained from C by updating the location l to b.

Let L range over the (possibly empty) subsets of locations. We express bit flips
in the values of a given subset L of locations by using the function flip defined as
flip(C,L) = C[l 7→ ¬ C[l], l ∈ L], which flips every bit of locations L in the machine
configuration C.

flip(C,L)
a−→ C ′ L ⊆ Loc

C
a
C ′

We can now define faulty systems with labeled tran-
sitions (a , a ∈ Act) with the transition rule to the right.
It can be seen from the rule that our fault model assumes
that the transitions of the system are instantaneous (a common assumption, but a poten-
tial source of inaccuracy – a point we return to in the conclusions). The fact that faults
can occur between transitions is modeled by allowing any fault to occur before any
transition of the system is taken. The number of faults occurring in a given transition is
|L|, and is not constrained in this rule, but will be constrained at the level of runs.

4.3 Fault-Tolerant Non-interference

This section formalizes the confidentiality guarantees of our approach in the presence
of faults.

Since the faulty system is nondeterministic, one might consider a simple possibilis-
tic notion of non-interference — secret values should not influence the set of possible

Fault-Tolerant Non-interference 11

public outputs of the faulty system. This notion is not adequate because unfortunately
errors might occur anywhere, in particular on public values, therefore any program is
capable to produce any possible output!

This is an instance of a known weakness of possibilistic non-interference [18, 22].
A standard fix is to adopt a probabilistic notion of non-interference – the probability
distribution of public outputs is unaffected by the secrets in the presence of errors – as-
suming an attacker can perform probability measures. In this paper, however, we adopt
a different approach: we permit the attacker to observe exactly when and where faults
occur in a given run, along with output events in the low channel and the passage of
time. This model leads to a security definition which seems stronger than the proba-
bilistic one, but in fact we have shown [14] that the two notions are equivalent for the
computational model considered here.

We start concretising the attacker’s view of a system by defining function low ∈
Act → {low!w|w ∈ W} ∪ {τ}. More precisely, low(a) returns a if a = low !w, and
returns τ otherwise. Now we can define the semantics of the faulty system from the
attacker’s perspective as a labeled transition system given by the following transition
rules:

Step
flip(C,L)

a−→ C ′

C
L,low(a)

C ′
Stuck-1

flip(C,L) 6→

C
L,τ

flip(C,L)

Stuck-2
C 6→

C
L,τ

C

The attacker observations imply that termination of the system is not directly ob-
servable and that once a system reaches a stuck configuration, faults have no further
effect.

We can now state our security condition. We say a machine configuration is initial
if (i) Reg(pc) = 0, (ii) Reg(rsp) = 2n − 1 (so it never points to low code/high data),
and (iii) secrets are stored in the first s words of the memory (Figure 11).

We say two initial configurationsC andC ′ are low equivalent, written asC =low C ′

if they differ, at most, on the first s words of the heap.
We say that a sequence σ = L0, a0, . . . Ln−1, an−1 is a low run of a system stateC0

whenever there exist states C1, . . . , Cn such that Ci
Li,ai

Ci+1 for all i ∈ {0, . . . , n−
1}. The number of faults exhibited by σ is Σn−1

i=0 |Li|.

Definition 1 (F -Fault-Tolerant Non-interference). An initial configuration C is F -
fault-tolerant non-interfering if for all initial configurations C ′ such that C =low C ′,
the set of low runs exhibiting no more than F faults are the same for C and C ′.

We say that an assembly program P is F -fault-tolerant non-interfering if all initial
configurations relative to P , namely 〈loader(P),Reg ,M〉 are F -fault-tolerant non-
interfering.

Theorem 1 (Non-interference induced by smeft). If smeft(P) = P ′ then P ′ is F -
Fault-tolerant non-interfering.

The theorem is proved by showing that (i) all memory accesses in Plow are per-
formed towards addresses that are F -separate from µhigh and (ii) once the computation
reaches Phigh it cannot be moved back to Plow .

12 Del Tedesco, Russo, Sands

Both properties depends on the layout of code and data memory, together with on
the invariant property on rsp . In particular we can show that in the absence of faults, the
value contained in rsp is in the range [mask, 2n − 1], whereas in the presence of faults
the content of rsp is never in the range [0, 2n−(F+1) − 1]. For a detailed proof refer to
[13].

Definition 1 is both termination and (logical) timing sensitive: we require that any
two runs of the system (that exhibit at most F faults) correspond to the same sequence
of observable events, regardless of secret data. Not only output values must be the same,
but the instant in which they occur must coincide as well. Hence, Theorem 1 guarantees
that our transformation technique can secure all programs whose timing and termination
behavior can induce leaks.

5 Transparency Guarantees Provided by smeft

We have shown that the transformed programs meet the goal of non-interference in the
presence of faults. We have done so with no semantic assumptions about the code itself.
The only syntactic assumptions are on the size of the code, which is required to be small
enough to accommodate the transformation in the ROM, on the amount of secret data
in the initial memory, and on the registers utilization – we require at least one spare
register.

Does the transformation smeft preserve the behavior of programs? The answer, in
general, is no. Firstly, programs which are intrinsically insecure exhibit a different be-
havior under standard SME. This alteration in the semantics is done in order to enforce
confidentiality. It could be said that “software faults”, i.e., instructions leaking secret
data, are being mitigated by SME. However, even when the original program is secure,
our transformation modifies the size and layout of the original program and the absolute
location of data in memory. In general machine code programs can be sensitive to such
transformation, and behave in an arbitrarily different way.

For this reason, transparency guarantees can be given only for programs which are
“sensible” and secure for fault-free runs. We consider a program “sensible” when it
is safe and bounded. A program is safe when, roughly speaking, it is not sensitive to
the absolute addresses of its instructions in the ROM, or the absolute addresses of the
memory that it accesses. A program is bounded when there is a known upper bound on
the region of memory that it will address.

For any “sensible” program, the following theorem holds:

Theorem 2 (Transparency). (informal statement) Let P be a non-interfering, “sensi-
ble” assembly program. If the low copy Plow always terminates, then the SME trans-
formed program smeft(P) yields the same sequence of values on each of the respective
output channels as P for any fault-free run.

A detailed account of Theorem 2 (and its proof) is provided in Appendix 8.6.
In this work the characterization of safe and bounded programs is obtained via an

abstract machine for the language. The abstract machine characterises those programs
which never exhibit certain “bad” behaviours. This is in the same spirit as e.g. Leroy’s
compiler correctness proof [21]. We expect that any program correctly compiled from a
strongly-typed high level language, and which has a statically known memory footprint,

Fault-Tolerant Non-interference 13

will be a safe and bounded program. To give these guarantees formally one could use
a verified compiler, or it could be achieved by compiling to a typed version of our
assembly language (see, for example, [23]) which ensures that the produced code is safe
and bounded. However, these endeavours lie outside the scope of the present paper.

Notice that for Theorem 2 to hold we require the low copy of the source program
to terminate on all input. This means that, in general, transparency does not hold for
programs that are nonterminating by construction (e.g. server applications). However,
this does not compromise security: Theorem 1 holds for this class of programs as well.

6 Related Work

Language Based Dependability The use of application-layer techniques for achieving
fault tolerance have been widely studied. De Florio and Blondia survey the field [16]
and classify the various ways in which fault tolerance can be added, and what kind of
faults are supported. Notably, none of the techniques surveyed at that time either deal
with tolerance with respect to security properties, or with techniques that give precise
semantic guarantees.

More recently, Project Zap [1] has applied language based techniques to transient
faults modeling and analysis with the goal of providing formally verifiable dependabil-
ity methods. The closest to our work in the Zap series is the work on fault-tolerant
typed assembly language of Perry et al [24]. We use an abstract machine to characterize
the class of programs for which our method is applicable. Our characterization is more
liberal than a typical typed assembly language, but a typed assembly language could
nevertheless be used as a sound method to prove that a program is safe and bounded.
Both in that work and in ours, transient faults have a semantic interpretation as nonde-
terministic transitions that can happen at anytime and anywhere in the faulty hardware.
Since we do not aim at functional correctness preservation, we can be more liberal in
the class of faults we admit (more than one bit flipped at a time) and in the hardware
components the concrete machine operates on. In [25] the attention is solely focused
on detecting control flow modifications induced by transient faults. The method, unlike
[24], is purely software based. However, detectability is possible only for programs that
obey a strict control-flow discipline, and under the assumption that at most a single
bit flip occurs. Once again, our ability to cope with a bigger class of control flow errors
comes from the fact that we aim for a weaker property; arbitrary control flow alterations
inside Plow or Phigh executions do not pose security threats.

Fault Isolation Techniques As mentioned previously, the techniques we use to mask
addresses to prevent dangerous loads and jumps can be found in the software-based
techniques for fault isolation (SFI) introduced by Wahbe et al [31] for sandboxing un-
trusted code. A similar address-masking technique is used in [10] for mitigating the
effects of transient faults. Also, principles from SFI are also implemented in [2], where
the authors define a method to prevent an active attacker from corrupting the control
flow integrity of a program.

It should be noted, however, that the “faults” targeted by SFI are those caused by
buggy/malicious code or data. The SFI techniques, in isolation, are able to protect from
the effects of some but not all of the transient faults studied here.

14 Del Tedesco, Russo, Sands

What we said for software based methods also hold for sandboxing techniques using
special operating system or hardware features – they are not designed for and do not
protect against all transient faults, and may increase the attack surface (via increased
code or by relying on special purpose registers).

Fault Tolerance vs Non-Interference As we have shown in our result, fault tolerance
and non-interference present interesting connections, and we believe that our combi-
nation is a novel one. However other connections between the two concepts have been
noted in a number of other works.

The Strong Security notion introduced by Sabelfeld and Sands in [29] for multi-
threaded programs is shown to be strong enough to guarantee an unrestricted form of
fault-tolerant non-interference in [14], providing a more restrictive class of transient
faults are considered (faults cannot corrupt the control flow integrity). In a similar way,
programs that are secure according to the definition in [28], an extension of [29] to
distributed systems, can be shown to retain security regardless of faults occurring in
network communications. It is not surprising that both cases cannot cope against faults
in the control flow since, as we have shown in Section 2, control flow alterations intro-
duce completely unexpected information flows.

Another interesting aspects of the comparison between fault tolerance and non-
interference was observed by Weber [33]. In this work the author explores a non-
interference-like characterisation of fault tolerance in terms of program semantics. A
more general view on the connection between enforcement mechanisms for informa-
tion flow properties and dependability goals is proposed by Rushby [26]. Overall the
techniques used in the present work can be understood in terms of the general parti-
tioning mechanisms described by Rushby. In particular what Rushby calls spatial par-
titioning corresponds to our separation of memory addresses (albeit within the same
physical memory); temporal partitioning characterises what we achieve by ensuring
that low events happen before high events, since this ensures that the timing of high
events cannot influence low events.

Security Preservation in the Presence of Transient Faults Our method guarantees
that security of programs, expressed in terms of F -Fault-Tolerant Non-interference,
is preserved even when a limited number of bit flips occur. Other forms of security
preservation in faulty environments have been studied, particularly in cryptography.

In [4] authors illustrate several transient-fault based attacks on RSA and Discrete
Logarithms cryptographic schemes, together with software countermeasures. Such pro-
tection mechanisms involve either some form of replication (they basically require to
repeat the computation twice and check the result for fault detection) or a more intensive
usage of randomness in the intermediate stages of cryptographic operations to increase
the unpredictability of the result.

In [11] authors show how the parameters of an elliptic curve cryptosystem can be
compromised by transient faults, and illustrate how a comparison mechanism is suffi-
cient to prevent the attack from being successful. In particular the method compares the
working copies of said parameters (located in a faulty hardware component) to their
original counterparts (stored in fault-free hardware) in several stages of the computa-
tion. Canetti et al [8] discuss security in the presence of transient faults for crypto-
graphic protocol implementations where they focus on how random number generation

Fault-Tolerant Non-interference 15

is used in the code. Harrison et al consider [19] a “confinement problem in the pres-
ence of faults”, but their work concerns faults in the sense of abnormal termination of
software, and the proper confinement thereof.

7 Conclusion and Further Work
We have presented a technique to make programs secure despite a small number of
faults, and characterized when the method preserves the behavior of programs. The
problem we study is itself novel, and relative to the faults we model, it is notable that
our technique does not demand special hardware, and is capable of tolerating multi-bit
errors.

Perhaps the main weakness of the present work is the fault model itself. While we
model faults in all the main state elements of the machine, we do not model faults in
lower-level structures, such as pipelines or in the combinatorial circuits. This short-
coming seems to be shared with much work on fault tolerance (although we do, at least,
model faults in the program counter) – in particular works which focus on fault injection
e.g. [30]. One might speculate that many faults occurring at the lower level of abstrac-
tion are adequately modeled by flipping a few bits in a register, but there seems to be
little work to verify this. One of them, by Wang et al [32], suggests that lower-level
faults are notably rare.

A precise account about the efficiency of our approach is left for further work.
An approximate estimation of the overhead can be determined by considering that the
system is basically run twice, and all the load and jump instructions are expanded in
macros of three instructions each.

Acknowledgment Many thanks to Johan Karlsson, Ioannis Sourdis, Georgi Gaydad-
jiev, Arshad Jhumka and the anonymous referees for useful comments and observations.
This work was partially financed by grants from the Swedish research agencies VR and
SSF, and the European Commission EC FP7-ICT-STREP WebSand project.

References
1. The zap project. http://sip.cs.princeton.edu/projects/zap/, accessed:

2013/02/20
2. Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-flow integrity. In: Proceedings

of the 12th ACM Conference on Computer and Communications Security. pp. 340–353.
CCS ’05, ACM, New York, NY, USA (2005), http://doi.acm.org/10.1145/
1102120.1102165

3. Aumller, C., Bier, P., Fischer, W., Hofreiter, P., Seifert, J.P.: Fault attacks on rsa with crt:
Concrete results and practical countermeasures. In: Kaliski, B., Koc, C., Paar, C. (eds.) CHES
2002, LNCS, vol. 2523, pp. 260–275. Springer Berlin Heidelberg (2003)

4. Bao, F., Deng, R., Han, Y., Jeng, A., Narasimhalu, A., Ngair, T.: Breaking public key cryp-
tosystems on tamper resistant devices in the presence of transient faults. In: Christianson,
B., Crispo, B., Lomas, M., Roe, M. (eds.) Security Protocols, Lecture Notes in Computer
Science, vol. 1361, pp. 115–124. Springer Berlin Heidelberg (1998)

5. Barthe, G., Crespo, J.M., Devriese, D., Piessens, F., Rivas, E.: Secure multi-execution
through static program transformation. In: Formal Techniques for Distributed Systems
(FMOODS/FORTE 2012) (June 2012)

6. Baumann, R.: Radiation-induced soft errors in advanced semiconductor technologies. Device
and Materials Reliability, IEEE Transactions on 5(3), 305–316 (2005)

16 Del Tedesco, Russo, Sands

7. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of eliminating errors in crypto-
graphic computations. Journal of Cryptology 14, 101–119 (2001)

8. Canetti, R., Herzberg, A.: Maintaining security in the presence of transient faults. In: Pro-
ceedings of the 14th Annual International Cryptology Conference on Advances in Cryptol-
ogy. CRYPTO ’94, Springer-Verlag, London, UK (1994)

9. Capizzi, R., Longo, A., Venkatakrishnan, V.N., Sistla, A.P.: Preventing information leaks
through shadow executions. In: Proceedings of the 2008 Annual Computer Security Appli-
cations Conference. ACSAC ’08, IEEE Computer Society (2008)

10. Chang, J., Reis, G., August, D.: Automatic instruction-level software-only recovery. In: DSN
2006. pp. 83 –92 (june 2006)

11. Ciet, M., Joye, M.: Elliptic curve cryptosystems in the presence of permanent and transient
faults. Des. Codes Cryptography 36(1), 33–43 (Jul 2005)

12. Cristiá, M., Mata, P.: Runtime enforcement of noninterference by duplicating processes and
their memories. In: WSEGI 2009, Argentina. 38 JAIIO (2009)

13. Del Tedesco, F., Russo, A., Sands, D.: Fault tolerant non-interference (extended version)
(2013), http://www.cse.chalmers.se/˜tedesco/papers/essos14.pdf

14. Del Tedesco, F., Russo, A., Sands, D.: A theory of fault tolerance noninterference (prelimi-
nary) (2013)

15. Devriese, D., Piessens, F.: Noninterference through secure multi-execution. In: Proc. of the
2010 IEEE Symposium on Security and Privacy. SP ’10, IEEE Computer Society (2010)

16. Florio, V.D., Blondia, C.: A survey of linguistic structures for application-level fault toler-
ance. ACM Comput. Surv. 40(2) (2008)

17. Govindavajhala, S., Appel, A.W.: Using memory errors to attack a virtual machine. SP ’03,
IEEE Computer Society, Washington, DC, USA (2003)

18. Gray, J.W., I.: Probabilistic interference. In: Research in Security and Privacy, 1990. Pro-
ceedings., 1990 IEEE Computer Society Symposium on. pp. 170–179 (1990)

19. Harrison, W.L., Procter, A., Allwein, G.: The confinement problem in the presence of faults.
In: Proceedings of the 14th international conference on Formal Engineering Methods: formal
methods and software engineering. ICFEM’12, Springer-Verlag, Berlin, Heidelberg (2012)

20. Kim, C., Quisquater, J.J.: Fault attacks for crt based rsa: New attacks, new results, and new
countermeasures. In: Sauveron, D., Markantonakis, K., Bilas, A., Quisquater, J.J. (eds.) In-
formation Security Theory and Practices. Smart Cards, Mobile and Ubiquitous Computing
Systems, LNCS, vol. 4462, pp. 215–228. Springer Berlin Heidelberg (2007)

21. Leroy, X.: A formally verified compiler back-end. J. Autom. Reason. 43(4), 363–446 (Dec
2009), http://dx.doi.org/10.1007/s10817-009-9155-4

22. McLean, J.: Security models and information flow. In: In Proc. IEEE Symposium on Security
and Privacy. pp. 180–187. IEEE Computer Society Press (1990)

23. Morrisett, G., Walker, D., Crary, K., Glew, N.: From system f to typed assembly language.
ACM Trans. Program. Lang. Syst. 21(3), 527–568 (May 1999)

24. Perry, F., Mackey, L., Reis, G.A., Ligatti, J., August, D.I., Walker, D.: Fault-tolerant typed
assembly language. In: Proceedings of the ACM SIGPLAN conference on Programming
language design and implementation. pp. 42–53. ACM, New York, NY, USA (2007)

25. Perry, F., Walker, D.: Reasoning about control flow in the presence of transient faults. In:
Alpuente, M., Vidal, G. (eds.) Static Analysis, Lecture Notes in Computer Science, vol.
5079, pp. 332–346. Springer Berlin Heidelberg (2008)

26. Rushby, J.: Partitioning for safety and security: Requirements, mechanisms, and assurance.
NASA Contractor Report CR-1999-209347, NASA Langley Research Center (Jun 1999),
also to be issued by the FAA

27. Russo, A., Hughes, J., Naumann, D., Sabelfeld, A.: Closing internal timing channels by
transformation. In: Proc. of Asian Computing Science Conference. LNCS, Springer (2006)

Fault-Tolerant Non-interference 17

28. Sabelfeld, A., Mantel, H.: Static confidentiality enforcement for distributed programs. In:
Hermenegildo, M., Puebla, G. (eds.) Static Analysis, Lecture Notes in Computer Science,
vol. 2477, pp. 376–394. Springer Berlin Heidelberg (2002)

29. Sabelfeld, A., Sands, D.: Probabilistic noninterference for multi-threaded programs. In: Pro-
ceedings of the 13th IEEE workshop on Computer Security Foundations. pp. 200–. CSFW
’00, IEEE Computer Society, Washington, DC, USA (2000)

30. Skarin, D., Barbosa, R., Karlsson, J.: Goofi-2: A tool for experimental dependability as-
sessment. In: Proceedings of the 2010 IEEE/IFIP International Conference on Dependable
Systems and Networks (2010)

31. Wahbe, R., Lucco, S., Anderson, T.E., Graham, S.L.: Efficient software-based fault isolation.
In: Proceedings of the fourteenth ACM symposium on Operating systems principles. pp.
203–216. SOSP ’93, ACM, New York, NY, USA (1993), http://doi.acm.org/10.
1145/168619.168635

32. Wang, N.J., Quek, J., Rafacz, T.M., Patel, S.J.: Characterizing the effects of transient faults
on a high-performance processor pipeline. In: International Conference on Dependable Sys-
tems and Networks (DSN 2004) (2004)

33. Weber, D.G.: Formal specification of fault-tolerance and its relation to computer security.
In: Proceedings of the 5th international workshop on Software specification and design. pp.
273–277. IWSSD ’89, ACM, New York, NY, USA (1989)

8 Appendix
8.1 Assembly programs: Syntax and Semantics
In Figure 13 the complete syntax for assembly programs is presented.

v ::= W ∪ Ptr ∪ Lab ∪DReg

I ::= [l :]B such that l ∈ Lab

B ::= load r v | store v r | jmp v | jnz v r |
nop | move r v | BinOp r v | out ch r

BinOp ::= add | or

ch ::= low | high
P ::= ε | I :: P

Fig. 13. Assembly programs syntax

In Figure 14 the complete semantics for assembly programs is presented. Configurations of
the abstract machine are given by a triple 〈P,Reg ,M〉, where:r P is an assembly program.r Reg ∈ DReg ∪ {pc}⇀ Val \DReg is the (Abstract) Register Bank.rM ∈W⇀ Val \DReg is the (Abstract) Heap.

The set of initial configurations AbsIConf = {〈P,Reg ,M〉} is such that ∀r ∈ DReg Reg(r)
is undefined, Reg(pc) = 0 and ∀w ∈W such that w ∈ dom(M) M(w) ∈W.

We use a number of conventions: P (pc) is a shorthand for the instruction P (Reg (pc)),
minus label. The notation Reg+ is a shorthand for Reg [pc 7→ Reg (pc)+1]. The function resP ∈
Lab ⇀ W returns the position at which label l occurs in P : resP (l) = i iif P (i) = l : B. The
functionˆ∈ Val → Val \DReg resolves the indirect address mechanism as follows:

v̂ =

{
Reg (v) if v ∈ DReg ,
v otherwise.

18 Del Tedesco, Russo, Sands

Load
P (pc) = load r v v̂ = ptr k b ≤ k ≤ t
〈P,Reg ,M〉 τ−→ 〈P,Reg+[r 7→M(k)],M〉

Store
P (pc) = store v r v̂ = ptr k b ≤ k ≤ t
〈P,Reg ,M〉 τ−→ 〈P,Reg+,M [k 7→ Reg(r)]〉

Jmp
P (pc) = jmp v v̂ = l ∈ Lab

〈P,Reg ,M〉 τ→ 〈P,Reg [pc 7→ resP (l)],M〉

Jnz-A
P (pc) = jnz v r Reg (r) ∈W\{0} v̂ = l ∈ Lab

〈P,Reg ,M〉 τ→ 〈P,Reg [pc 7→ resP (l)],M〉

Jnz-B
P (pc) = jnz v r Reg (r) = 0 v̂ = l ∈ Lab

〈P,Reg ,M〉 τ→ 〈P,Reg+,M〉

Nop
P (pc) = nop

〈P,Reg ,M〉 τ→ 〈P,Reg+,M〉

Move
P (pc) = move r v

〈P,Reg ,M〉 τ−→ 〈P,Reg+[r 7→ v̂],M〉

Add
P (pc) = add r v Reg (r)⊕ v̂ = v′

〈P,Reg ,M〉 τ→ 〈P,Reg+[r 7→ v′],M〉

Or
P (pc) = or r v Reg(r) = w ∈W v̂ = w′ ∈W w′′ = w or w′

〈P,Reg ,M〉 τ→ 〈P,Reg+[r 7→ w′′],M〉

Out
P (pc) = out ch r Reg(r) = w ∈W

〈P,Reg ,M〉 ch!w→ 〈P,Reg+,M〉
Fig. 14. Assembly program semantics

The sum ⊕ is implemented as follows:

v1 ⊕ v2 =

{
v1 + v2 mod 2n if v1, v2 ∈W, where n is the size of machine words
ptr(w + v2) if v1 = ptrw, v2 ∈W and w + v2 ∈W.

We define �, the multistep version of→, as follows. Consider an abstract machine configu-
ration A = 〈P,Reg ,M〉, then:r A ε

� A, where ε is the empty sequence;r A r′.a
� A′ if A

r′

� A′′
a→ A′, where r′.a is the concatenation of the action sequence r′ with

the action a.

We say r ∈ Act? is a run of A when A
r
� A′, for a certain machine configuration A′.

8.2 Fault-tolerant SME: smeft

The following auxiliary functions support the definition of the various operators that compose
smeft .

The function extend ∈ (Val ⇀ Val) → (Val → Val) lift a partial function over Val to a
total one:

extend(f)(v) =

{
f(v) if v ∈ dom(f)

v otherwise.

Fault-Tolerant Non-interference 19

The function lift ∈ (Val → Val) → (I → I) lift a total function over Val to a function
over instructions:

lift(f)([l :]B) =

{
[f(l) :]load f(r) f(v) if B = load r v

... ...

The function pmap ∈ (I → I) → P → P applies an instruction transformation to all
instructions of a program. In details, we define pmap as follows:

pmap(it)(P) =

{
ε if P = ε

it(I) :: pmap(it)(P ′) if P = I :: P ′.

The function epmap ∈ (I → P) → P → P behaves almost like pmap, except the first
parameter is a function from instructions to programs:

epmap(it)(P) =

{
ε if P = ε

it(I) ++ epmap(it)(P ′) if P = I :: P ′.

Output suppression: och Consider the auxiliary function fch ∈ I → I that converts an
output instruction on the channel ch to a nop instruction, and behaves as the identity in any other
case:

fch([l :]B) =

{
[l :]nop if B = out ch r

[l :]B otherwise.

Then the function och ∈ P → P is defined as och = pmap(fch).

Relabeling: labP Any function f ∈ Lab → Lab is a relabeling if it is injective. The function
labP ∈ P → P is defined as labP = pmap(lift(extend(f))) for a relabeling f such that
f(lab(P)) ∩ lab(P) = {}.
Heap relocation: offsetw Consider the auxiliary function fw ∈ Ptr ⇀ Ptr , a pointer relo-
cation function such that fw(ptrw′) = ptr(w′ + w) if w + w′ ∈W.

Then the function offsetw ∈ P ⇀ P is defined as offsetw = pmap(lift(extend(fw)))

Securing memory accesses and control flow modifications The instructions in Figures 7
to 9 are lifted to program transformers as follows:r loadSec ∈ P → P is defined as loadSec = epmap(iloadSec);r jmpSec ∈ P → P is defined as jmpSec = epmap(ijmpSec);r jnzSec ∈ P → P is defined as jnzSec = epmap(ijnzSec).

Definition of smeft The fault-tolerant SME transformation considered in this work is formally
defined as follows:

smeft(P) = Plow ++ PAD ++ Phigh where
Plow = (loadSec ◦ ohigh ◦ labP ◦ offsetmask)(P)
Phigh = (jnzSec ◦ jmpSec ◦ olow)(P)
PAD = [I1, . . . , Ik] where Ij = jmp fst(Phigh) and k is such that ressmeft (P)(fst(Phigh)) =
mask

8.3 Machine programs: Syntax and Semantics
In Figure 15 the complete syntax for machine programs is presented.

In Figure 16 the complete semantics for machine programs is presented. As for the semantics
of assembly programs, we assume P (pc) is a shorthand for the instruction P (Reg (pc)), whereas
the notation Reg+ is a shorthand for Reg [pc 7→ Reg (pc) + 1].

20 Del Tedesco, Russo, Sands

v ::= W ∪DReg

I ::= loadα r vc | storeα vc r | jmpα vc | jnzα vc r |
nop | moveα r vc | BinOpα r vc | out ch r

BinOp ::= addα | orα

α ::= i | d
ch ::= low | high

P ::= ε | I :: P

Fig. 15. Machine programs syntax

D-Load
P (pc) = loadd r w

〈P,Reg ,M〉 τ−→ 〈P,Reg+[r 7→M(w)],M〉
I-Load

P (pc) = loadi r r
′

〈P,Reg ,M〉 τ−→ 〈P,Reg+[r 7→M(Reg(r′))],M〉

D-Store
P (pc) = stored w r

〈P,Reg ,M〉 τ−→ 〈P,Reg+,M [w 7→ Reg(r)]〉
I-Store

P (pc) = storei r
′ r

〈P,Reg ,M〉 τ−→ 〈P,Reg+,M [Reg(r′) 7→ Reg(r)]〉

D-Jmp
P (pc) = jmpd w

〈P,Reg ,M〉 τ→ 〈P,Reg [pc 7→ w],M〉
I-Jmp

P (pc) = jmpi r

〈P,Reg ,M〉 τ→ 〈P,Reg [pc 7→ Reg(r)],M〉

D-Jnz-A
P (pc) = jnzd w r Reg (r) 6= 0

〈P,Reg ,M〉 τ→ 〈P,Reg [pc 7→ w],M〉
I-Jnz-A

P (pc) = jnzi r
′ r Reg (r) 6= 0

〈P,Reg ,M〉 τ→ 〈P,Reg [pc 7→ Reg(r′)],M〉

D-Jnz-B
P (pc) = jnzd w r Reg (r) = 0

〈P,Reg ,M〉 τ→ 〈P,Reg+,M〉
I-Jnz-B

P (pc) = jnzi r
′ r Reg (r) = 0

〈P,Reg ,M〉 τ→ 〈P,Reg+,M〉

Nop
P (pc) = nop

〈P,Reg ,M〉 τ→ 〈P,Reg+,M〉

D-Move
P (pc) = moved r w

〈P,Reg ,M〉 τ−→ 〈P,Reg+[r 7→ w],M〉
I-Move

P (pc) = movei r r
′

〈P,Reg ,M〉 τ−→ 〈P,Reg+[r 7→ Reg(r′)],M〉

D-Add
P (pc) = addd r w

〈P,Reg ,M〉 τ→ 〈P,Reg+[r 7→ Reg(r) + w],M〉
I-Add

P (pc) = addi r r
′

〈P,Reg ,M〉 τ→ 〈P,Reg+[r 7→ Reg(r) + Reg(r′)],M〉

D-Or
P (pc) = ord r w

〈P,Reg ,M〉 τ→ 〈P,Reg+[r 7→ Reg(r) or w],M〉
D-Or

P (pc) = ori r r
′

〈P,Reg ,M〉 τ→ 〈P,Reg+[r 7→ Reg(r) or Reg(r′)],M〉

Out
P (pc) = out ch r Reg(r) = w ∈W

〈P,Reg ,M〉 ch!w→ 〈P,Reg+,M〉

Fig. 16. Machine program semantics

The set of initial configurations ConcIConf = {〈P,Reg ,M〉} is such that ∀r ∈ DReg
Reg(r) = 2n − 1 and Reg(pc) = 0.

When it is necessary, we use the subscript c to prevent ambiguity between abstract and con-
crete items.

8.4 From assembly to machine programs

This section provides the translation between assembly and machine programs.

Fault-Tolerant Non-interference 21

We begin by defining γP ∈ V al → W, a function that maps abstract values into concrete
ones.

γP (v) =


v if v ∈W
w if v = ptrw ∈ Ptr
r if v = r

resP (l) if v = l ∈ Lab
The mapping between abstract and concrete instructions is defined in two steps: we first stripe

instruction labels off with the function strip ∈ I → B, defined as follows.{
strip(l : B) = B

strip(B) = B

Then we process the output of strip with the function concretizeP ∈ B → Ic, described
in Figure 17. Essentially, the function concretizeP checks whether an abstract opcode has to
be mapped to a direct or an indirect concrete opcode, and apply the value transformer γP to
instruction’s arguments.

concretizeP (load r v) =

{
loadi r r

′ if v = r′ ∈ DReg

loadd r γP (v) otherwise

concretizeP (jnz v r) =

{
jnzi r

′ r if v = r′ ∈ DReg

jnzd γP (v) r otherwise

concretizeP (add r v) =

{
addi r r

′ if v = r′ ∈ DReg

addd r γP (v) otherwise

concretizeP (out ch r) = out ch r

Fig. 17. Mapping abstract, label free instructions to concrete instructions

The full-fledged program transformation is therefore obtained by applying the composition
concretizeP ◦strip to all abstract instructions of a program P . In details, assuming to have a func-
tion absToConcMap ∈ (I → Ic)→ P → Pc, the transformation of an abstract program P into
its concrete version Pc is defined as loader(P) = absToConcMap(concretizeP ◦ strip)(P) +
+ FILL. The last part FILL is a list of j instructions jmpd 2n−1, for a suitable j, that guarantees
the entire code memory is filled.

In order to state the relation between the abstract and the concrete machine we need to for-
mally define a correspondence between abstract and concrete registers and heaps. Two register
banks correspond, written as Reg ∼ Regc if ∀r ∈ dom(Reg) Regc(r) = γP ◦Reg(r). Similarly,
two heaps correspond, written as M ∼Mc if ∀w ∈ dom(M), Mc(w) = γP ◦M(w).

The following result establishes the relation between the abstract and the concrete machine.

Lemma 1 (Concrete simulates Abstract). Let 〈P,Reg ,M〉 be a configuration of the abstract
machine. Consider the corresponding concrete configuration 〈loader(P),Regc,Mc〉 such that
Reg ∼ Regc and M ∼Mc.

If 〈P,Reg ,M〉 l→ 〈P,Reg ′,M ′〉, then 〈loader(P),Regc,Mc〉
lc→ 〈loader(P),Reg ′c,M

′
c〉

such that Reg ′ ∼ Reg ′c, M
′ ∼M ′c and lc = l.

22 Del Tedesco, Russo, Sands

Proof. The result is proved by case analysis on the instruction triggered in the execution step of
the abstract machine.

Case 1 (load). Assume 〈P,Reg ,M〉 is such that the instruction [l :]load r ptr k is triggered.
This implies M(k) = v and Reg ′ differs from Reg only on the program counter (Reg ′(pc) =
Reg(pc) + 1) and on the register r (Reg ′(r) = v). Since Reg ∼ Regc, the instruction selected
from loader(P) is loadd r k. SinceM ∼Mc,Mc(k) = γP (v), therefore Reg ′c(pc) = Reg ′(pc),
Reg ′c(r) = γ ◦ Reg ′(r) and both l and lc are τ .

Case 2 (jmp). Assume 〈P,Reg ,M〉 is such that the instruction [l :]jmp t is triggered. This
implies Reg ′ differs from Reg only on the program counter, in particular Reg ′(pc) = resP (t).
Since Reg ∼ Regc, the instruction selected from loader(P) is jmpd k, where k = resP (t).
Therefore Reg ′c(pc) = γP ◦ Reg ′(pc) and both l and lc are τ .

8.5 Security
In this section we prove the main security result presented as Theorem 1 from Section 4.3.

The proof of the theorem is based on the following properties:r when Plow is executed, µhigh is never accessed;r once the program counter hits a code location in Phigh , it never rolls back to a location in
Plow .

Define:r the multistep version of as ;r the number of bit flips for a low run σ = L0, a0, . . . Ln, an as (σ) = Σn
i=0|Li|;r the interval [0, 2n−(F+1) − 1] as I .

As a first step toward the security theorem, we now state and prove the invariant property that
holds on the spare register rsp during any run of the concrete machine.

Lemma 2 (rsp lower bound). Let P be an assembly program and P ′ = smeft(P) its Fault-
tolerant SME version. Consider an initial configuration C ∈ ConcIConf for loader(P ′). Let σ
be a low run such that C σ

C′ = 〈loader(P ′),Reg ′,M ′〉 and (σ) = f ≤ F . Then ∀v ∈ I ,
distance(v,Reg ′(rsp)) > F − f .

Proof. The lemma can be proved by induction over the length of σ:r Case |σ| = 0. In this case no transitions of C are considered, C′ = C and f = 0. Hence,
∀v ∈ I distance(v,Reg ′(rsp)) > F holds because Reg ′(rsp) = 2n− 1, and by definition
∀v ∈ I distance(v, 2n − 1) ≥ F + 1 > F .r Case |σ| > 0. AssumeC σ′

C′′ such that (σ′) = f ′ ≤ F and ∀v ∈ I , distance(v,Reg ′′(rsp)) >

F−f ′. Consider a stepC′′
(a,L)

C′ such that |L| = err ≤ F−f ′. Observe σ = σ′.(a, L)
and (σ) = f ′ + err ≤ F . There are three cases to consider:

1. the transition between C′′ and C′ triggers the execution of an instruction which does
not modify the content of rsp . Since ∀v ∈ I distance(v,Reg ′′(rsp)) > F − f ′ by
hypothesis, the lower bound can be further decreased at most by err, therefore ∀v ∈ I
distance(v,Reg ′(rsp)) > F − f ′ − err = F − (f ′ + err).

2. the transition between C′′ and C′ triggers an instruction moved rsp mask . In this case,
no matter the set of locations involved inL, we have ∀v ∈ I distance(v,Reg ′(rsp)) ≥
F + 1 > F − (f ′ + err);

Fault-Tolerant Non-interference 23

3. the transition between C′′ and C′ triggers the execution of ori rsp v. Clearly, no value
for v (regardless of it being w ∈ Constant or the value in r ∈ DReg) can decrease
the number of bits set to 1 in the first F + 1 position of rsp . This implies the largest
distance reduction for this case occurs when all locations in L corresponds to bits set to
1 in the most significant part of rsp , which has already been proved in 1.

Since all the load instructions in Plow access the heap at the address contained in rsp , the
invariant property stated in Lemma 2 shows directly the inaccessibility of µhigh from Plow .

A similar result derived for the program counter demonstrates the unreachability of Plow

from Phigh . The informal idea of the argument is that once any instruction of Phigh is executed,
the program counter cannot roll back to Plow . The result requires the notion of high configuration
to be defined formally. A concrete machine configurationC = 〈P,Reg ,M〉 is high if Reg(pc) ∈
[mask , 2n − 1].

Lemma 3 (pc lower bound). Let P be an assembly program and P ′ = smeft(P) its Fault-
tolerant SME version. Consider an initial configuration C0 for loader(P ′) and let σp be a low

run such that C0

σp
Cn, where Cn is a high configuration and (σp) = fp ≤ F . Define Fp =

F −fp. Consider a low run σ such thatCn
σ
C = 〈loader(P ′),Reg ,M〉 and (σ) = f ≤ Fp.

Then ∀v ∈ I , distance(v,Reg(pc)) > Fp − f = F − (f + fp).

Proof. The lemma can be proved by induction over the length of σ.r |σ| = 0. In this case no transitions from Cn are considered, C = Cn and ∀v ∈ I
distance(v,Regn(pc)) ≥ F + 1 > F − fp. In particular, the first inequality holds be-
cause Cn is a high configuration, and the second holds because 0 ≤ fp ≤ F .r |σ| > 0. AssumeCn

σ′
C′ such that (σ′) = f ′ ≤ Fp and ∀v ∈ I , distance(v,Reg ′(pc)) >

Fp−f ′ = F−(f ′+fp). Consider a stepC′
(a,L)

C such that |L| = err ≤ F−(f ′+fp).
Observe σ = σ′.(a, L) and (σ) = f ′ + err ≤ F . Immediately after the faults are trig-
gered, but before the machine step is performed, the distance between pc and any value in
I is grater than 0. This depends on the assumption on |L| and the hypothesis on Reg ′(pc)
content. This implies after bit flips have occurred, the scheduled instruction does not belong
to I . Under this circumstance, there are two cases to consider:

1. the instruction to be scheduled does not belong to Phigh . Then the scheduled instruction
can either be a jmpd mask instruction (code memory between Plow and Phigh) or a
jmpd 2n − 1 instruction. In both cases ∀v ∈ I distance(v,Reg(pc)) ≥ F + 1, hence
distance(v,Reg(pc)) > F − (fp + f ′ + err).

2. the instruction to be scheduled belongs to Phigh . There are two subcases to consider:
(a) the instruction does not alter the value of the pc directly. Then the pc will be in-

cremented by 1, and the resulting configuration will still be a high configuration.
Hence ∀v ∈ I distance(v,Reg(pc)) ≥ F + 1 > F − (fp + f ′ + err).

(b) the instruction being scheduled is a jmpi rsp or jnzi rsp r
′. For this case the hy-

potheses of Lemma 2 holds, therefore we know that Reg(rsp) is such that ∀v ∈ I
distance(v,Reg(rsp)) ≥ F − (fp + f ′ + err). Since rsp is copied in pc, this
implies ∀v ∈ I distance(v,Reg(pc)) ≥ F − (fp + f ′ + err) as required.

Proof (of Theorem 1). Let P be an assembly program and P ′ = smeft(P) its Fault-tolerant
SME version. Consider an initial configuration C = 〈loader(P ′),Reg ,M〉 for which σ =

L0, a0, . . . Ln, an is low run such that C σ and (σ) = f ≤ F .
We now show C is F -fault-tolerant noninterfering. In order to do so, consider another initial

configuration C′ = 〈loader(P ′),Reg ′,M ′〉 such that C =low C′. We now show C′
σ .

24 Del Tedesco, Russo, Sands

Assume ∃k.0 ≤ k ≤ n such that σ1 = L0, a0, . . . Lk, ak, σ2 = Lk+1, ak+1, . . . , Ln, an,

C
σ1

Ck and Ck is the first high configuration encountered in the execution from C.
The deterministic semantic of the language, together with the confinement result of Lemma

2, ensure C′
σ1

C′k, where C′k is an high configuration.
By Lemma 3 we know σ2 is such that ∀k+ 1 ≤ j ≤ n aj = τ therefore, since C′k is an high

configuration, we know C′k
σ2 holds.

The proof is completed by observing that σ = σ1.σ2.

8.6 Transparency
In this section we show that the transformation implemented by smeft is transparent when applied
to safe and bound secure programs. This property of smeft is derived upon local properties of the
various transformers used to define smeft . For each transformer we are interested in showing that
the modifications it implements are predictable and specific to the purpose of the transformer,
providing the original program is safe and bounded (cf. Section 5). This predictable nature of
transformers is properly characterized with the notion of simulation, a tool that is used throughout
the entire section.

Definition 2 (Weak Abstract Machine f -Simulation). Consider the set A of all possible ab-
stract configurations and two elements A,A′ ∈ A. Let f ∈ Act → Act . A binary relation
R ⊆ A×A is a weak f -simulation relation if for any two configurations A,A′, if (A,A′) ∈ R

then A l→ Ā implies A′
l′

� Ā′ such that l′ = τ?.f(l).τ? and (Ā, Ā′) ∈ R. We say A′ f -
simulates A, written as A �f A′, if a f -simulation R exists such that (A,A′) ∈ R. When f is
the identity function we simply say A′ simulates A, written as A � A′.

Relocatability and Compositionality The semantics of the abstract machine, defined in
Section 8.1, guarantees that a safe and bound program can progress only if its behavior is not
sensitive on how the symbolic values defined in Val are resolved into concrete machine resources.
A simple instance of this property shows that program semantics is insensitive to how control flow
labels are named.

Lemma 4 (Transparent Relabeling). Let A = 〈P,Reg ,M〉 be an abstract machine configu-
ration. Consider the relabeling function defined in Section 8.2, labP = pmap(lift(extend(f))).
Consider the relabeled components of A, namely P ′ = labP (P), Reg ′ = extend(f) ◦ Reg ,
M ′ = extend(f) ◦M such that A′ = 〈P ′,Reg ′,M ′〉. Then A � A′.

Safe and bounds programs enjoy an even stronger property, which is referred here as relo-
catability: for a safe and bound program, its behavior does not depend on either code or memory
layout.

Intuitively, relocatability ensures that if an abstract configuration is modified in either its code
memory layout (code relocatability) or its heap layout (memory relocatability), the behavior re-
mains unchanged. We formalize this intuition by showing that any abstract machine configuration
A which involves a safe and bound program can be relocated to an abstract configurationA′ such
that A � A′.

A code relocation function codw ∈ P ⇀ P shifts instruction positions of the program
P given as input of w + 1 positions, such that the the first instruction of P is aligned with w
(formally we have that if P ′ = codw(P), then resP ′(fst(P)) = w). Code relocation codw is
redefined for registers as codw(Reg) = Reg [pc 7→ Reg(pc) + w].

The following result shows that safe and bound assembly programs preserve their behavior
regardless of code relocation.

Fault-Tolerant Non-interference 25

Lemma 5 (Code Relocatability). Let A = 〈P,Reg ,M〉 be an abstract machine configuration.
Consider Aw = 〈codw(P), codw(Reg),M〉. Then A � Aw.

Consider the heap relocation function offsetw = pmap(lift(extend(fw))) defined in Section
8.2. Heap relocation offsetw is extended to registers by rewriting all heap pointers contained in
any register in DReg , namely offsetw(Reg) = extend(fw) ◦ Reg . Heap relocation offsetw is
also extended to the heap by shifting all words of the heap w positions forward and applying
extend(fw) to heap’s content. This is formally expressed as ∀w′ ∈ W offsetw(M)(w′) =
extend(fw) ◦M(w′ − w) (note the first w words of the heap are left unspecified on purpose,
since safe and bound programs cannot access them after relocation).

The following result shows that safe and bounded assembly programs preserve their behavior
regardless of heap relocation.

Lemma 6 (Heap Relocatability). Let A = 〈P,Reg ,M〉 be an abstract machine configuration.
Consider Aw = 〈offsetw(P), offsetw(Reg), offsetw(M)〉. Then A � Aw.

Code and Heap Relocatability make it possible to reason about the behavior of the program
compositionP ++Q in terms of the behavior ofP andQ in isolation. In order to formalize this re-
sult we define the notion of a terminating run. A run r of a machine configuration 〈P,Reg ,M〉 is
called terminating if 〈P,Reg ,M〉

r
� 〈P,Reg ′,M ′〉 and Reg ′(pc) = resP (fst(P))+len(P)+1

, namely if all instructions in P are executed and there is no further computation to perform.

Lemma 7 (Compositionality of Relocatable and Bounded programs). Let P and Q be two
assembly programs with memory footprint µP = [bP , tP] and µQ = [bQ, tQ] respectively and

assume lab(P) ∩ lab(Q) = {}. Suppose 〈P,Reg ,MP 〉
rP
� and 〈Q,Reg ,MQ〉

rQ
�. Define a

heap M such that ∀w.bQ ≤ w ≤ tQ M(w) = MQ(w) and ∀w.bP + w′ ≤ w ≤ tP + w′

M(w) = offsetw′(MP)(w), for w′ > tQ. Then 〈offsetw′(P) ++ Q,Reg ,M〉
rP
� and, if rP is

a terminating run of 〈P,Reg ,MP 〉 then 〈offsetw′(P) ++ Q,Reg ,M〉
rP .rQ
� .

Proof. (INFORMAL) Run rP ensures memory relocatability and boundedness for P , therefore
rP is expected from offsetw′(P) as well. If rP is a terminating run of P , the program counter
reaches the first instruction of Q, for which rQ guarantees code relocatability. Moreover, since
rQ does not depend on the initial condition of registers, it is expected after rP has been produced
by offsetw′(P) ++ Q.

Corollary 1 (Extended Compositionality). (INFORMAL) Under the assumptions of Lemma 7,

if 〈offsetw′(P) ++ Q,Reg ,M〉
rP .rQ
� then 〈offsetw′(P) ++ PAD ++ Q,Reg ,M〉

rP .τ.rQ
� ,

where PAD is an (arbitrarily long) list of instruction jmp fst(Q).

Output Selective Transparency An obvious property of the output suppression operator
och is that the behavior of a transformed program is unmodified beside the output actions on the
channel ch. Since they are converted to nops, they produce τs instead of output labels.

Lemma 8 (Output Selective Transparency). Let A = 〈P,Reg ,M〉 be an abstract machine
configuration and P ′ = och(P). Consider the function no ch ∈ Act → Act which behaves
as the identity in all actions except the ones in {ch!w|w ∈ W}, which are mapped to τ . Then
A′ = 〈P ′,Reg ,M〉 no ch-simulates A.

26 Del Tedesco, Russo, Sands

nop slowdown In this section we show that it is possible to inject nop instructions in a safe and
bound program obtaining, as the only effect, a slowdown in its behavior.

Even though the result can be stated for any arbitrary nop injection, we focus on injecting
couples of nops instructions in program locations that will host masking technique instructions.

Let space ∈ P → P a program transformer that behaves as the identity on all instructions
except one, its characteristic function κ(space), which triggers the injection of the pair of nop
instructions. Formally:

space(P) =


ε if P = ε

[[l :]nop, nop, i] ++ space(P ′) if P = ([l :]i) :: P ′ and κ(space) = i

([l :]i) :: space(P ′) if P = ([l :]i) :: P ′ and κ(space) 6= i

It is now possible to show that, for any instance of space, the only effect induced by the
transformer is a variation in the execution speed.

Lemma 9 (space slowdown). Let A = 〈P,Reg ,M〉 be an initial configuration for P and con-
sider P ′ = space(P) together with the initial configuration A′ = 〈P ′,Reg ,M〉. Then A′ simu-
lates A.

For the continuation we are interested in three specific instances of space, namely:r loadSpace, such that κ(loadSpace) = load r v;r jmpSpace, such that κ(jmpSpace) = jmp v;r jnzSpace, such that κ(jnzSpace) = jnz v r.

Security and output preservation In this section we fix a simple security definition upon
which we define transparency. This definition requires an auxiliary tool to be defined, in order to
discuss about run properties.

Definition 3 (ch-output projection). Let r be a run of the abstract configuration A. Define the
ch-output sequence of r π(ch, r) as follows:

π(ch, r) =


ε if r = ε,
(ch!v).π(ch, r′) if r = (ch!v).r′,
π(ch, r′) if r = a.r′ and a 6= ch!v.

The security definition we utilize for stating transparency follows. Recall we assume, for
simplicity, that the memory footprint of the target program is µ = [0, t] and that the first s words
in µ represent the high part of the heap (the secrets to protect), whereas the rest is assumed to be
low .

Definition 4 (Fault-free security). An assembly program P enjoys Fault-free security if for any
two configurations A = 〈P,Reg ,M〉 and A′ = 〈P,Reg ,M ′〉 such that A,A′ ∈ AbsIConf and

M =low M ′, A
r
� implies A′

r′

� and π(low , r) = π(low , r′)

The following result explores the implication of fault-free security. In particular, it is possible
to show the actual value of secrets is irrelevant for a fault-free secure program. This turns out to
be crucial to determine the expected behavior for the low version of the program produced by
smeft .

Fault-Tolerant Non-interference 27

Lemma 10 (Secure programs preserve low outputs). Let P be a safe, bounded and fault-free
secure program, whose memory footprint is µ = [0, t]. Consider the initial configuration A =
〈P,Reg ,M〉. LetM0 be defined asM besides values in the interval 0 ≤ w < s, whereM0(w) =

0. Consider the initial configuration A0 = 〈P,Reg ,M0〉. Then A
r
� implies ∃r0.A0

r0
� and

π(low , r0) = π(low , r0).

Proof of Theorem 2 Rather than addressing directly the transparency property of smeft , we
divide the argument into two parts.

In the first part we define psmeft (partial smeft), an operator that behaves as smeft but does
not introduce the instructions related to the masking technique (see Figures 7 to 9). We then show
that transparency holds for psmeft , under the conditions stated for Theorem 2.

In the second step, we reason about the transparency enjoyed by loader ◦ psmeft . Then we
introduce an operator maskInj that injects the masking instructions in the concrete code and show
that transparency is not affected. Finally we show that there is a syntactic equivalence between
maskInj ◦ loader ◦ psmeft and loader ◦ smeft .

PART1: transparency for psmeft
Define psmeft as psmeft(P) = P alow ++ PAD ++ P ahigh where

P alow = (loadSpace ◦ ohigh ◦ labP ◦ offsetmask)(P)
P ahigh = (jnzSpace ◦ jmpSpace ◦ olow)(P)
PAD = [I1, . . . , Ik] where Ij = jmp fst(P ahigh) and k is such that respsmeft (P)(fst(P

a
high)) =

mask
Similarly to what is discussed in Section 3.3, we extend psmeft to heaps as follows:

psmeft(M)(w) =


M(w) if 0 ≤ w ≤ t
0 if mask ≤ w < mask + s

M(w −mask) if mask + s ≤ w ≤ mask + t

Lemma 11 (Transparency of psmeft). Let P be a safe, bounded and fault-free secure program
whose memory footprint is µ = [0, t]. Consider the initial configuration A = 〈P,Reg ,M〉 such
that A

r
�, where r is a maximal (and potentially infinite) run. Assume 〈P alow ,Reg , psmeft(M)〉

produces a terminating run. Then 〈psmeft(P),Reg , psmeft(M)〉
r′

� such that ∀ch ∈ {low , high}
π(ch, r) = π(ch, r′).

Proof. (sketch)r We discuss properties of P alow first.
Define a heap M0 which is equivalent to M everywhere but ∀w.0 ≤ w < s M0(w) = 0.

Because of Lemma 10 〈P,Reg ,M0〉
r0
� such that π(low , r) = π(low , r0). Moreover:

• 〈P,Reg ,M0〉 � 〈offsetmask (P),Reg , offsetmask (M0)〉 (Lemma 6);
• � 〈labP ◦ offsetmask (P),Reg , offsetmask (M0)〉 (Lemma 4);
• �no high 〈ohigh ◦ labP ◦ offsetmask (P),Reg , offsetmask (M0)〉 (Lemma 8);
• � 〈loadSpace ◦ ohigh ◦ labP ◦ offsetmask (P),Reg , offsetmask (M0)〉 (Lemma 9).

Hence 〈P alow ,Reg , offsetmask (M0)〉
r′′

� such that π(low , r′′) = π(low , r0). Observe ∀w.0 ≤
w ≤ t M0(w) = psmeft(M)(w + mask).r Properties of P ahigh are somewhat easier to state.
• 〈P,Reg ,M〉 �no low 〈olow (P),Reg ,M〉 (Lemma 8);
• � 〈jmpSpace ◦ olow (P),Reg ,M〉 (Lemma 9);
• � 〈jnzSpace ◦ jmpSpace ◦ olow (P),Reg ,M〉 (Lemma 9).r The result follows by applying extended compositionality (Corollary 1).

28 Del Tedesco, Russo, Sands

PART2: transparency for smeft
Before discussing the transparency issue further, we need some basic results.
The next lemma shows that any of the three sequences of instructions in Figures 7 to 9 in

the concrete domain is actually writing in rsp the result of the binary or operation between the
content of rsp and the content of v.

Lemma 12. After any sequence of instructions [moved rsp mask , orα rsp v, in(rsp)], where
in(rsp) is in {loadi r

′ rsp , jmpi rsp , jnzi rsp r
′} and α = d when v ∈ W, otherwise α = i, the

final content of rsp is mask or v̂.

We can also show that instructions in Figures 7 to 9 simply copy the content of r into rsp
when the content of v belongs to the expected range [mask , 2n − 1].

Lemma 13 (Masking transparency). ∀v ∈ [mask , 2n − 1] v or mask = v.

We can now define the transformation to inject the masking instructions in the program cor-
responding to loader ◦ psmeft .

Definition 5 (Masking Injection). Let maskInj : Pc → Pc a (concrete) program transformer
that:r replace any [l :]nop, nop, loadα r

′ v with [l :]moved rsp mask , orα rsp v, loadi r
′ rsp;r replace any [l :]nop, nop, jmpα v with [l :]moved rsp mask , orα rsp v, jmpi rsp;r replace any [l :]nop, nop, jnzα v r

′ with [l :]moved rsp mask , orα rsp v, jnzi rsp r
′.

The transparency result obtained for psmeft can be extended in the concrete domain for
maskInj ◦ loader ◦ psmeft .

Lemma 14 (Transparency of maskInj ◦ loader ◦ psmeft).
LetP be a safe, bounded program. Assume the initial configurationA = 〈psmeft(P),Reg ,M〉

is such that A
r
�. Then 〈maskInj ◦ loader ◦ psmeft(P),Reg ,M〉

r
�.

Proof. It follows directly from properties of P and Lemmas 1, 12 and 13

We can finally show that code produced by maskInj ◦ loader ◦ psmeft coincides with the
code produced by loader ◦ smeft .

Lemma 15 (Syntactically equivalence of maskInj ◦ loader ◦ psmeft and loader ◦ smeft). Let
P an assembly program. Then maskInj ◦ loader ◦ psmeft(P) = loader ◦ smeft(P).

We can now formally state (and prove) the transparency result about smeft .

Theorem 3 (Formalization of Theorem 2). Let P be a safe, bounded and fault-free secure pro-
gram whose memory footprint is µ = [0, t]. Consider the initial configuration A = 〈P,Reg ,M〉
such thatA

r
�, where r is a maximal (and potentially infinite) run. Assume 〈Plow ,Reg , smeft(M)〉

produces a terminating run. Then 〈loader ◦ smeft(P),Reg , smeft(M)〉
r′

� such that ∀ch ∈
{low , high} π(ch, r) = π(ch, r′).

Proof. It follows directly from Lemmas 14 and 15, and by considering smeft(M) = psmeft(M).

