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Abstract. The programming language Haskell plays a unique, privileged role in

Information-Flow Control (IFC) research: it is able to enforce information secu-

rity via libraries. Many state-of-the-art libraries (e.g., LIO, HLIO, and MAC) al-

low computations to manipulate data with different security labels by introducing

the notion of labeled values, which protect values with explicit labels by means

of an abstract data type. While computations have an underlying algebraic struc-

ture in such libraries (i.e. monads), there is no research on structures for labeled

values and their impact on the programming model. In this paper, we add the func-

tor structure to labeled values, which allows programmers to conveniently and

securely perform computations without side-effects on such values, and an ap-

plicative operator, which extends this feature to work on multiple labeled values

combined by a multi-parameter function. This functionality simplifies code, as it

does not force programmers to spawn threads to manipulate sensitive data with

side-effect free operations. Additionally, we present a relabel primitive which se-

curely modifies the label of labeled values. This operation also helps to simplify

code when aggregating data with heterogeneous labels, as it does not require

spawning threads to do so. We provide mechanized proofs of the soundness our

contributions for the security library MAC, although we remark that our ideas

apply to LIO and HLIO as well.

1 Introduction

Nowadays, many applications (apps) manipulate users’ private data. Such apps could

have been written by anyone and users who wish to benefit from their functionality are

forced to grant them access to their data—something that most users will do without

a second thought [21]. Once apps collect users’ information, there are no guarantees

about how they handle it, thus leaving room for data theft and data breach by malicious

apps. The key to guaranteeing security without sacrificing functionality is not granting

or denying access to sensitive data, but rather ensuring that information only flows into

appropriate places.

Information-flow control (IFC) [32] is a promising programming language-based

approach to enforcing security. IFC scrutinizes how data of different sensitivity levels

(e.g., public or private) flows within a program, and raises alarms when there is an

unsafe flow of information. Most IFC tools require the design of new languages, com-

pilers, interpreters, or modifications to the runtime, e.g., [4, 24, 26, 29]. In this scenario,



the functional programming language Haskell plays a unique privileged role: it is able

to enforce security via libraries [18] by using an embedded domain-specific language.

Instructions
17◦C

Current label L

H -sink

L-sink

Fig. 1: Public computation

Many of the state-of-the-art Haskell

security libraries, namely LIO [37],

HLIO [6], and MAC [31], bring ideas

from Mandatory Access Control [3] into

a language-based setting. Every computa-

tion in such libraries has a current label

which is used to (i) approximate the sen-

sitivity level of all the data in scope and (ii) restrict subsequent side-effects which might

compromise security. From now on, we simply use the term libraries when referring to

LIO, HLIO, and MAC.

Instructions
17◦C

pwd

Current label L

H -sink

L-sink

H

Fig. 2: Labeled values

IFC uses labels to model the sensitiv-

ity of data, which are then organized in a

security lattice [7] specifying the allowed

flows of information, i.e., ℓ1 ⊑ ℓ2
means that data with label ℓ1 can flow

into entities labeled with ℓ2. Although

these libraries are parameterized on the

security lattice, for simplicity we focus on the classic two-point lattice with labels H

and L to respectively denote secret (high) and public (low) data, and where H 6⊑ L is

the only disallowed flow. Figure 1 shows a graphical representation of a public compu-

tation in these libraries, i.e. a computation with current label L. The computation can

read or write data in scope, which is considered public (e.g., average temperature of

17◦C in the Swedish summer), and it can write to public (L-) or secret (H -) sinks. By

contrast, a secret computation, i.e. a computation with current label H , can also read

and write data in its scope, which is considered sensitive, but in order to prevent infor-

mation leaks it can only write to sensitive/secret sinks. Structuring computations in this

manner ensures that sensitive data does not flow into public entities, a policy known as

noninterference [10]. While secure, programming in this model can be overly restrictive

for users who want to manipulate differently-labeled values.

To address this shortcoming, libraries introduce the notion of a labeled value as an

abstract data type which protects values with explicit labels, in addition to the current la-

bel. Figure 2 shows a public computation with access to both public and sensitive pieces

of information, such as a password (pwd). Public computations can freely manipulate

sensitive labeled values provided that they are treated as black boxes, i.e. they can be

stored, retrieved, and passed around as long as its content is not inspected. Libraries

LIO and HLIO even allow public computations to inspect the contents of sensitive la-

beled values, raising the current label to H to keep track of the fact that a secret is in

scope—this variant is known as a floating-label system.

Reading sensitive data usually amounts to “tainting” the entire context or ensuring

the context is as sensitive as the data being observed. As a result, the system is suscep-

tible to an issue known as label creep: reading too many secrets may cause the current

label to be so high in the lattice that the computation can no longer perform any useful

side effects. To address this problem, libraries provide a primitive which enables public



computations to spawn sub-computations that access sensitive labeled values without

tainting the parent. In a sequential setting, such sub-computations are implemented by

special function calls. In the presence of concurrency, however, they must be executed

in a different thread to avoid compromising security through internal timing and termi-

nation covert channels [36].

Practical programs need to manipulate sensitive labeled values by transforming

them. It is quite common for these operations to be naturally free of I/O or other

side effects, e.g., arithmetical or algebraic operations, especially in applications like

image processing, cryptography, or data aggregation for statistical purposes. Writing

such functions, known as pure functions, is the bread and butter of functional program-

ming style, and is known to improve programmer productivity, encourage code reuse,

and reduce the likelihood of bugs [14]. Nevertheless, the programming model involving

sub-computations that manipulate secrets forces an imperative style, whereby compu-

tations must be structured into separate compartments that must communicate explic-

itly. While side-effecting instructions have an underlying structure (called monad [22]),

research literature has neglected studying structures for labeled values and their con-

sequences for the programming model. To empower programmers with the simpler,

functional style, we propose additional operations that allow pure functions to securely

manipulate labeled values, specifically by means of a structure similar to applicative

functors [20]. In particular, this structure is useful in concurrent settings where it is

no longer necessary to spawn threads to manipulate sensitive data, thus making the

code less imperative (i.e., side-effect free). Interestingly, the evaluation strategy of the

host language (i.e. call-by-value or call-by-name) affects the validity of our security

guarantees. Specifically, call-by-name turns out to naturally enforce progress-sensitive

non-interference in a concurrent setting.

Additionally, practical programs often aggregate information from heterogeneous

sources. For that, programs needs to upgrade labeled values to an upper bound of the

labels being involved before data can be combined. In previous incarnations of the

libraries, such relabelings require to spawn threads just for that purpose. As before, the

reason for that is libraries decoupling every computation which manipulate sensitive

data—even those for simply relabeling—so that the internal timing and termination

covert channels imposed no threats. In this light, we introduce a primitive to securely

relabel labeled values, which can be applied irrespective of the computation’s current

label and does not require spawning threads.

We provide a mechanized security proof for the security library MAC and claim

our results also apply to LIO and HLIO. MAC has fewer lines of code and lever-

ages types to enforce confidentiality, thus making it ideal to model its semantics in a

dependently-typed language like Agda. The contributions of this paper are: (i) we in-

troduce a functor structure equipped with an applicative operator that enables users to

conveniently manipulate and combine labeled values using pure functions, encouraging

a more functional (side-effect free) programming style; (ii) we introduce a relabeling

primitive that securely modifies the label of labeled values, bypassing the need to spawn

threads when aggregating heterogeneous data; (iii) we identify and discuss the impact

of the evaluation strategy of the host language on the security of the applicative opera-

tors in MAC with respect to the internal timing and termination covert channels; (iv) we



implement a prototype of our ideas in the MAC library3; and (v) we formalize MAC

with secure applicative operators as a λ-calculus, providing a mechanized proof in Agda

of progress-insensitive (PINI) and progress-sensitive noninterference (PSNI) [1] for the

sequential and (respectively) concurrent setting.

This paper is organized as follows. Section 2 describes the core aspects of MAC.

Section 3 and 4 present functors, applicative, and relabeling operations. Section 5 gives

formal guarantees. Section 6 gives related work and Section 7 concludes.

2 Background

-- Abstract data types

data Labeled ℓ a
data MAC ℓ a

-- Monadic structure for computations

instance Monad (MAC ℓ)

-- Core operations

label :: ℓL ⊑ ℓH ⇒
a → MAC ℓL (Labeled ℓH a)

unlabel :: ℓL ⊑ ℓH ⇒
Labeled ℓL a → MAC ℓH a

-- Only for sequential programs

joinMAC :: ℓL ⊑ ℓH ⇒
MAC ℓH a → MAC ℓL (Labeled ℓH a)

-- Only for concurrent programs

forkMAC :: ℓL ⊑ ℓH ⇒
MAC ℓH ()→ MAC ℓL ()

Fig. 3: Simplified API for MAC

In MAC, each label is repre-

sented as an abstract data type.

Figure 3 shows the core part

of MAC’s API. Abstract data

type Labeled ℓ a classifies data

of type a with a security la-

bel ℓ. For instance, creditCard ::
Labeled H Int is a sensi-

tive integer, while weather ::
Labeled L String is a pub-

lic string. (Symbol :: is used

to describe the type of terms

in Haskell.) Abstract data type

MAC ℓ a denotes a (possi-

bly) side-effectful secure com-

putation which handles informa-

tion at sensitivity level ℓ and

yields a value of type a as a

result. A MAC ℓ a computa-

tion enjoys a monadic structure,

i.e. it is built using the fundamental operations return :: a → MAC ℓ a and

(>>=) ::MAC ℓ a → (a → MAC ℓ b) → MAC ℓ b (read as “bind”). The operation

return x produces a computation that returns the value denoted by x and produces no

side-effects. The function (>>=) is used to sequence computations and their correspond-

ing side-effects. Specifically, m >>= f takes a computation m and function f which will

be applied to the result produced by running m and yields the resulting computation.

We sometimes use Haskell’s do-notation to write such monadic computations. For ex-

ample, the program m >>= λx → return (x + 1), which adds 1 to the value produced

by m, can be written as shown in Figure 4.

do x ← m

return (x + 1)

Fig. 4: do-notation

Secure flows of information Generally speaking, side-

effects in a MAC ℓ a computation can be seen as ac-

tions which either read or write data. Such actions, how-

ever, need to be conceived in a manner that respects the

3 https://hackage.haskell.org/package/mac

 https://hackage.haskell.org/package/mac


sensitivity of the computations’ results as well as the sensitivity of sources and sinks

of information modeled as labeled values. The functions label and unlabel allow

MAC ℓ a computations to securely interact with labeled values. To help readers, we

indicate the relationship between type variables in their subindexes, i.e. we use ℓL and

ℓH to attest that ℓL ⊑ ℓH. If a MAC ℓL computation writes data into a sink, the com-

putation should have at most the sensitivity of the sink itself. This restriction, known as

no write-down [3], respects the sensitivity of the data sink, e.g., the sink never receives

data more sensitive than its label. In the case of function label , it creates a fresh labeled

value, which from the security point of view can be seen as allocating a fresh location

in memory and immediately writing a value into it—thus, it applies the no write-down

principle. In the type signature of label , what appears on the left-hand side of the symbol

⇒ are type constraints. They represent properties that must be statically fulfilled about

the types appearing on the right-hand side of⇒. Type constraint ℓL ⊑ ℓH ensures that

when calling label x (for some x in scope), the computation creates a labeled value only

if ℓL, i.e. the current label of the computation, is no more confidential than ℓH, i.e. the

sensitivity of the created labeled value. In contrast, a computation MAC ℓH a is only

allowed to read labeled values at most as sensitive as ℓH—observe the type constraint

ℓL ⊑ ℓH in the type signature of unlabel . This restriction, known as no read-up [3],

protects the confidentiality degree of the result produced by MAC ℓH a, i.e. the result

might only involve data ℓL which is, at most, as sensitive as ℓH.

impl :: Labeled H Bool →
MAC H (Labeled L Bool )

impl secret = do

bool ← unlabel secret

-- H 6⊑ L

if bool then label True

else label False

Fig. 5: Implicit flows are ill-typed.

The interaction between the current la-

bel of a computation and the no write-down

restriction makes implicit flow ill-typed, as

shown in Figure 5. In order to branch on sen-

sitive data, a program needs first to unlabel

it, thus requiring the computation to be of

type MAC H a (for some type a). From that

point, the computation cannot write to public

data regardless of the taken branch. As MAC

provides additional primitives responsible for

producing useful side-effects like exception

handling, network communication, references, and synchronization primitives—we re-

fer the interested reader to [31] for further details.

Handling data with different sensitivity Programs handling data with heterogeneous

labels necessarily involve nested MAC ℓ a computations in its return type. For instance,

consider a piece of code m with type MAC L (String,MAC H Int) which handles

both public and secret information. Note that the type indicates that it returns a public

string and a sensitive computation MAC H Int . While somehow manageable for a

two-point lattice, it becomes intractable for general cases. In a sequential setting, MAC

presents the primitive joinMAC to safely integrate more sensitive computations into less

sensitive ones—see Figure 3. Operationally, function joinMAC runs the computation of

type MAC ℓH a and wraps the result into a labeled expression to protect its sensitivity.

As we will show in Section 5, Haskell programs written using the monadic API, label ,

unlabel , and joinMAC satisfy PINI, where leaks due to non-termination of programs are

ignored. This design decision is similar to that taken by mainstream IFC compilers (e.g.,



[11, 25, 34]), where the most effective manner to exploit termination takes exponential

time in the size (of bits) of the secret [1].

-- Publish a number in a blog

publish :: Int → MAC L ()

-- Attack

leak :: Int → Labeled H Secret → MAC L ()
leak n secret = do

joinMAC (do bits ← unlabel secret

when (bits !! n) loop
return True)

publish n

Fig. 6: Termination leak

Concurrency The mere possi-

bility to run (conceptually) si-

multaneous MAC ℓ compu-

tations provides attackers with

new tools to bypass security

checks. In particular, the pres-

ence of threads introduce the

internal timing covert channel,

a channel that gets exploited

when, depending on secrets, the

timing behavior of threads affect

the order of events performed on

public-shared resources [35]. Furthermore, concurrency magnifies the bandwidth of the

termination covert channel to be linear in the size (of bits) of secrets [36]. Since the

same countermeasure closes both covert channels, we focus on the latter. What consti-

tutes a termination leak is the fact that a non-terminating MAC ℓH-computation can

suppress the execution of subsequently MAC ℓL-events. To illustrate this point, we

present the attack in Figure 6. We assume that there exists a function publish which

sends an integer to a public blog. Observe how function leak may suppress subsequent

public events with infinite loops. If a thread runs leak 0 secret , the code publishes 0
only if the first bit of secret is 0; otherwise it loops (see function loop) and it does not

produce any public effect. Similarly, a thread running leak 1 secret will leak the second

bit of secret , while a thread running leak 2 secret will leak the third bit of it and so on.

To securely support concurrency, MAC forces programmers to decouple computations

which depend on sensitive data from those performing public side-effects. As a result,

non-terminating loops based on secrets cannot affect the outcome of public events. To

achieve this behavior, MAC replaces joinMAC by forkMAC as defined in Figure 3. It is

secure to spawn sensitive computations (MAC ℓH) from non-sensitive ones (MAC ℓL)

because that decision depends on data at level ℓL.

Example 1. To show how to program using MAC, we present a simple scenario where

Alice writes an API that helps users prepare and file their taxes. Alice models a tax

declaration as values of type TaxDecl , which is obtained based on users’ personal

information—modeled as values of type Data. She releases the first version of the API:

-- API

declareTaxes ::Data → IO ()
declareTaxes user = send (fillTaxes user)

-- Internal operations (not exported)

fillTaxes ::Data → TaxDecl

send :: TaxDecl → IO ()

We remark that, although we focus on this API for simplicity, Alice is using the

concurrent version of MAC. Function declareTaxes does two things: it fills out the



tax forms (function fillTaxes) and sends them to the corresponding government agency

(function send ). Due to the use of send , function declareTaxes returns a computation

in the IO -monad—a special data type which permits arbitrary I/O effects in Haskell.

Function send generates a valid PDF for tax declarations and sends it to the corre-

sponding authorities. However, there is nothing stopping this function from leaking tax

information to unauthorized entities over the network. Alice’s customers notice this

problem and are concerned about how their sensitive data gets handled by the API.

Alice then decides to adapt the API to use MAC. For simplicity, we assume that

MAC also includes a secure operation to send data over the network:

sendMAC :: ℓL ⊑ ℓH ⇒ Labeled ℓH URL→ Labeled ℓH a → MAC ℓL ()
This primitive sends a labeled value of type a to the URL given as an argument, e.g., via

HTTP-request or other network protocol. Using MAC’s concurrent API and primitive

sendMAC, Alice rewrites her API to adhere to the following interface.

declareTaxes :: Labeled H URL→ Labeled H Data → MAC L ()
declareTaxes url user = forkMAC (do info ← unlabel user

tax ← label (fillTaxes info)
sendMAC url tax

-- Internal operations

fillTaxes ::Data → TaxDecl

Observe that Alice’s API needs to spawn a secure computation of type MAC H ()
in order to unlabel and access user’s data (user). Once user’s data is accessible, a pure

function gets applied to it (fillTaxes info), the result is relabeled (tax ) again and a

side-effectful action takes place (sendMAC). In the next section we extend MAC’s API

so that it is possible to manipulate labeled values with pure functions, like fillTaxes ,

and perform side-effectful actions, like sendMAC, without the need to spawn threads.

3 Functors for Labeled Values

fmap :: (a → b)→ Labeled ℓ a → Labeled ℓ b

Fig. 7: Functor structure for labeled values

In this section, we show how la-

beled values can be manipulated

using functors.

Intuitively, a functor is a

container-like data structure which provides a method called fmap that applies (maps)

a function over its content, while preserving its structure. Lists are the most canonical

example of a functor data-structure. In this case, fmap corresponds to the function map,

which applies a function to each element of a list, e.g. fmap (+1) [1, 2, 3] ≡ [2, 3, 4].
A functor structure for labeled values allows to manipulate sensitive data without

the need to explicitly extract it—see Figure 7. For instance, fmap (+1) d , where

d :: Labeled H Int stores the number 42, produces the number 43 as a sensitive la-

beled value. Observe that sensitive data gets manipulated without the need to use label

and unlabel , thus avoiding their overhead (no security checks are performed). Despite

what intuition might suggest, it is possible to securely apply fmap in any MAC ℓ-
computation to any labeled value irrespectively of its security level. A secure imple-

mentation of fmap then allows manipulation of data without forking threads in a con-



current setting—thus, introducing flexibility when data is processed by pure (side-effect

free) functions. However, obtaining a secure implementation of fmap requires a careful

analysis of its security implications.

Sequential Concurrent

call-by-value PINI ✗

call-by-name PINI PSNI

Fig. 9: Security guarantees

Interestingly, the evaluation strategy of

the programming language and the sequential

or concurrent setting determine different secu-

rity guarantees in the presence of fmap. Fig-

ure 9 shows our findings. In a sequential set-

ting with call-by-value semantics, fmap can

be exploited to create a termination covert

channel in a similar manner as it is done with joinMAC. To illustrate this point, we

rephrase the attack in Figure 6 to use fmap rather than joinMAC—see Figure 8. Under a

call-by-value evaluation strategy, function loopOn passed to fmap is eagerly applied to

the secret, which might introduce a loop depending on the value of the n-th bit of the

secret—a termination leak. Under a call-by-name evaluation strategy, however, function

loopOn does not get immediately evaluated since result is not needed for computing

publish n . Therefore, publish n gets executed independently of the value of the secret,

i.e. no termination leaks are introduced. Instead, loopOn gets evaluated when “unlabel-

ing” result and inspecting its value in a computation of type MAC H a (for some

a), which is secure to do so. Although functors can be used to exploit non-termination

of programs, they impose no new risks for sequential programs (MAC already ignores

termination leaks in such setting).

magnify :: Labeled H Secret → MAC L ()
magnify secret =
for [0 . . 99]

(λn → forkMAC (leak n secret))

Fig. 10: Attack magnification

Unfortunately, a call-by-value

concurrent semantics magnifies the

bandwidth of the attack in Figure

8 to the point where confidentiality

can be systematically and efficiently

broken—see Figure 10. Assuming a

secret of 100-bits, the magnification

consists on leaking the whole secret by spawning a sufficient number of threads—

each of them leaking a different bit. Since leak cannot exploit the termination chan-

nel under a call-by-name evaluation strategy, the magnification attack becomes vac-

uous under such semantics. More precisely, the attack can only trigger the execu-

tion of leak by first unlabeling result , an operation impossible to perform in a pub-

lic computation—recall there is no joinMAC primitive for concurrent programs. As the

table suggests, call-by-name gives the strongest security guarantees when extending

MAC with functors. We remark that it is possible to close this termination channel

under a call-by-value semantics by defining Labeled with an explicit suspension, e.g.

data Labeled ℓ a = Labeled (() → a), and corresponding forcing operation, so that

fmap behaves lazily as desired.

leak :: Int → Labeled H Secret → MAC L ()
leak n secret = let result = fmap loopOn secret in publish n

where loopOn = λbits → if (bits !! n) then loop else bits

Fig. 8: Termination leak under call-by-value evaluation



Example 2. Alice’s realizes that she could spare her API from forking threads by ex-

ploiting the functorial structure of labeled values.

declareTaxes :: Labeled H URL→ Labeled H Data → MAC L ()
declareTaxes url user = sendMAC url (fmap fillTaxes user)

-- Internal operations

fillTaxes ::Data → TaxDecl

The construct fmap applies the function fillTaxes without requiring use of unlabel ,

while keeping the result securely encapsulated in a labeled value. Observe how the code

is much less imperative, since there is no need to fork a thread to unlabel sensitive data

just to apply a pure function to it.

H

L TP

Fig. 11: Lattice.

While functors help to make the code more functional, there

are still other programming patterns which draw developers to

fork threads due to security reasons rather than the need for multi-

threading. Specifically, when aggregating data from sources with in-

comparable labels, computations are forced to spawn a thread with

a sufficiently high label. To illustrate this point, we present the following example.

Example 3. Alice knows that there is a third-party API which provides financial plan-

ning and she would gladly incorporate its functionality into her API. However, Alice

wants to keep the third-party code isolated from hers, while still providing functionality

to the user. To do so, she incorporates a new label into the system, namely TP and

modifies the lattice as shown in Figure 11. The lattice reflects the mistrust that Alice

has over the third-party code by making L and TP incomparable elements.

Alice’s API is extended with the third-party code as follows.

declareTaxes :: Labeled H URL→ Labeled H Data → MAC L ()
reportPlan :: Labeled H URL→ Labeled H Data → MAC L ()

-- Internal operations

fillTaxes ::Data → TaxDecl

financialPlan :: Labeled TP (Data → FinancePlan)

Function reportPlan needs to fork a thread in order to unlabel the third-party code

(financialPlan ).

reportPlan :: Labeled H URL→ Labeled H Data → MAC L ()
reportPlan url user = do

forkMAC (do user ← unlabel user

financialPlan ′ ← unlabel financialPlan

plan ← label (financialPlan ′ user)
sendMAC url plan)

In the next section, we show how to avoid forking threads for this kind of scenarios.

4 Applicative Operator and Relabeling



relabel :: ℓL ⊑ ℓH ⇒
Labeled ℓL a → Labeled ℓH a

(〈∗〉) :: Labeled ℓ (a → b)→
Labeled ℓ a → Labeled ℓ b

Fig. 12: Extended API for labeled values

To aggregate sensitivity-heterogeneous

data without forking, we further extend

the API with the primitives shown in

Figure 12. Primitive relabel copies, and

possibly upgrades, a labeled value. This

primitive is useful to “lift” data to an up-

per bound of all the data involved in a computation prior to combining them. Operator

(〈∗〉) supports function application within a labeled value, i.e. it allows to feed func-

tions wrapped in a labeled value (Labeled ℓ (a → b) with arguments also wrapped

(Labeled ℓ a), where aggregated results get wrapped as well (Labeled ℓ b). We demon-

strate the utility of relabel and (〈∗〉) by rewriting Example 3.

Example 4. Alice easily modifies reportPlan as follows:

reportPlan url user = do

let financialPlan ′ = relabel financialPlan

in sendMAC url (financialPlan ′ 〈∗〉 user)

The third-party function (financialPlan ) is relabeled to H , which is justified since

TP ⊑ H , and then applied to the user data (financialPlan ′ 〈∗〉 user ) using the

applicative (functor) operator. Note that the result is still labeled with H .

Discussion In function programming, operator (〈∗〉) is part of the applicative func-

tors [20] interface, which in combinations with fmap, is used to map functions over

functors. Note that if labeled values fully enjoyed the applicative functor structure,

our API would include also the primitive pure :: a → Labeled ℓ a. This primitive

brings arbitrary values into labeled values, which might break the security principles

enforced by MAC. Instead of pure, MAC centralizes the creation of labeled values in

the primitive label . Observe that, by using pure , a programmer could write a computa-

tion m :: MAC H (Labeled L a) where the created labeled information is sensitive

rather than public. We argue that this situation ignores the no-write down principle,

which might bring confusion among developers. More importantly, freely creating la-

beled values is not compatible with the security notion of cleareance, where secure

computations have an upper bound on the kind of sensitive data the they can observe

and generate. This notion becomes useful to address certain covert channels [40] as well

as poison-pill attacks [13]. While MAC does not yet currently support cleareance, we

state this research direction as future work.

5 Security guarantees

This section presents the core part of our formalization of MAC as a simply typed

call-by-name λ-calculus extended with booleans, unit values, and monadic operations.

Note that our mechanized proofs, available online4, cover the full calculus which also

includes references, synchronization variables, and exceptions. Given the number of

4 https://bitbucket.org/MarcoVassena/mac-agda

https://bitbucket.org/MarcoVassena/mac-agda


Label: ℓ
Types: τ ::= Bool | () | τ1 → τ2 | MAC ℓ τ | Id τ | Res ℓ τ
Values: v ::= True | False | () | λx .t | Id t | MAC t | Res t

Terms: t ::= v | t1 t2 | if t1 then t2 else t3 | return t | t1 ≫= t2
| relabel t | label t | unlabel t | join t | 〈∗〉
| fork t | 〈∗〉• | relabel• | •

Fig. 13: Formal syntax for types, values, and terms.

(HOLE)

• •

(LABELED〈∗〉)

(Res t1) 〈∗〉 (Res t2) Res (t1 〈∗〉 t2)

(ID 〈∗〉)

Id (λx .t1) 〈∗〉 Id t2  Id ([x / t2 ] t1)
(RELABEL)

relabel (Res t) Res t

(UNLABEL)

unlabel (Res (Id t)) return t

Fig. 14: Semantics for non-standard constructs.

advanced features in the calculus we remark that a proof assistant has proved to be an

invaluable tool to verify the correctness of our proofs. Figure 13 shows the formal syn-

tax. Meta variables τ , v and t denote types, values, and terms, respectively. Most of

these syntactic categories are self-explanatory with the exception of a few cases that

we proceed to clarify. We note that, even though labels are actual types in MAC, we

use a separate syntactic category ℓ for clarity in this calculus. Furthermore, we assume

that labels form a lattice (L ,⊑). Constructors MAC and Res represent a secure com-

putation and a labeled resource, respectively. The latter is an established technique to

lift arbitrary resources such as references and synchronization variables into MAC [31].

MAC and Res are MAC’s internals constructors, therefore they are not available to

users of the library and are not part of the surface syntax. Data type Id τ denotes an

expression of type τ and Res (Id t) represents a labeled expression t , which we abbre-

viate as Labeled t . Similarly we write Labeled ℓ τ for the type Res ℓ (Id τ). Node

〈∗〉 corresponds to the applicative (functor) operator and is overloaded for Labeled ℓ t
and Id τ . Every applicative functor is also a functor [20], hence fmap f x is simply

defined as (Labeled f ) 〈∗〉 x . The special syntax nodes •, 〈∗〉•, and relabel• represent

erased terms and are used by our proof technique to examine the security guarantees of

the calculus.

Types The typing judgment Γ ⊢ t :τ denotes that term t has type τ assuming the typing

environment Γ . All the typing rules are standard and thus omitted, except for • which

can assume any type, i.e. Γ ⊢ • : τ .

Semantics The small-step semantics of the calculus is represented by the relation t1  

t2, which denotes that t1 reduces to t2 in one step. Most of the the rules are standard

and hence omitted; the rules for interesting constructs are shown in Figure 14. Term •
merely reduces to itself according to rule [HOLE]. Rule [LABELED〈∗〉] describes the



semantics of operator 〈∗〉, which applies a labeled function to a labeled value. Terms t1
and t2 are wrapped in Id so they cannot be combined by plain function application. As

rule [ID〈∗〉] shows, Id is also an applicative operator and therefore 〈∗〉 is used instead.

Observe that symbol 〈∗〉 is overloaded, where the type of its argument determines which

rule to apply, i.e. either [LABELED〈∗〉] or [ID〈∗〉]. Rule [ID〈∗〉] requires a function to

be in weak-head normal form ((λx .t1) t2) where beta reduction occurs right away. (As

usual, we write [t1 / x ] t2 for the capture-avoiding substitution of every occurrence of

x with t1 in t2). This manner to write the rule is unusual since it would be expected that

Id f 〈∗〉 Id t  Id (f t). Nevertheless, the eagerness of 〈∗〉 in its first argument is

needed for technical reasons in order to guarantee non-interference. Rule [RELABEL]

upgrades the label of a labeled value. Since relabeling occurs at the level of types, the

reduction rules simply create another labeled term. Finally rule [UNLABEL] extracts the

labeled value and returns it in a computation at the appropriate security level. We omit

the two context rules that first reduce the labeled value to weak-head normal form and

then the expression itself.

5.1 Sequential calculus

t t ′

ετℓA(t) ετℓA(t
′)

ετ
ℓA

ετ
ℓA

Fig. 15: Commutative diagram

In this section, we prove progress-insensitive non-

interference for our calculus. Similar to other

work [19, 30, 37], we employ the term erasure

proof technique. To that end, we introduce an era-

sure function which rewrites sensitive informa-

tion, i.e. data above the security level of the at-

tacker, to term •. Since security levels are at the

type-level, the erasure function is type-driven. We

write ετℓA(t) for the erasure of term t with type τ of data above the security of the at-

tacker ℓA. We omit the type superscript when it is either irrelevant or clear from the

context. Figure 15 highlights the intuition behind the used proof technique: showing

that the drawn diagram commutes. More precisely, we show that erasing sensitive data

from a term t and then taking a step (lower part of the diagram) is the same as firstly

taking a step (upper part of the diagram) and then erasing sensitive data. If term t leaks

data which sensitivity label is above ℓA, then erasing all sensitive data and taking a

step might not be the same as taking a step and then erasing secret values—the leaked

sensitive data in t ′ might remain in ετℓA(t
′).

Figure 16 shows the definition of the erasure functions for the interesting cases.

Before explaining them, we remark that ground values (e.g., True) are unaffected by

the erasure function and that, for most of the terms, the function is homomorphically

applied, e.g., ε
()
ℓ (if t1 then t2 else t3) = if εBool

ℓ (t1) then ε
()
ℓ (t2) else ε

()
ℓ (t3). La-

beled resources are erased according to the label found in their type (Res ℓ τ ). If the

attacker can observe the term (ℓ ⊑ ℓA), the erasure function is homomorphically

applied; otherwise, it is replaced with •. In principle, one might be tempted to apply

the erasure function homomorphically for 〈∗〉 and relabel , but such approach unfor-

tunately breaks the commutativity of Figure 15. To illustrate this point, consider the

term (Res f ) 〈∗〉 (Res x ) of type Labeled H Int , which reduces to Res (f 〈∗〉 x )
according to rule [LABELED〈∗〉]. By applying the erasure function homomorphically,



εℓA(•) = • εRes ℓ τ

ℓA
(Res t) =

{

Res εℓA(t), if ℓ ⊑ ℓA

Res •, otherwise

εLabeled ℓ τ

ℓA
(t1 〈∗〉 t2) =

{

εℓA(t1) 〈∗〉 εℓA(t2) if ℓ ⊑ ℓA

εℓA(t1) 〈∗〉• εℓA(t2) otherwise

εLabeled ℓ τ

ℓA
(t1 〈∗〉• t2) = εℓA(t1) 〈∗〉• εℓA(t2)

εLabeled ℓ τ

ℓA
(relabel t) =

{

relabel εℓA(t) if ℓ ⊑ ℓA

relabel• εℓA(t) otherwise

εLabeled ℓ τ

ℓA
(relabel• t) = relabel• εℓA(t) εMAC ℓ τ

ℓA
(t) = •, if ℓ 6⊑ ℓA

Fig. 16: Erasure function.

(LABELED〈∗〉•)

(Res t1) 〈∗〉• (Res t2) Res •
(RELABEL•)

relabel• (Res t) Res •

Fig. 17: Reduction rules for 〈∗〉• and relabel•.

we get εL(Res f ) 〈∗〉 εL(Res x ), that is (Res •) 〈∗〉 (Res •) which reduces

to Res (• 〈∗〉 •) 6≡ Res •. Operator relabel raises a similar problem. Consider

for example the term relabel (Labeled 42) :: Labeled H Int , where Labeled 42 ::
Labeled L Int . If the erasure function were applied homomorphically, i.e. consider

relabel εLabeled L Int
L

(Labeled 42), it means that sensitive data produced by relabel re-

mains after erasure—thus, breaking commutativity. Instead, we perform erasure in two-

steps—a novel technique if compared with previous papers (e.g., [37]). Rather than

being a pure syntactic procedure, erasure is also performed by additional evaluation

rules, triggered by special constructs introduced by the erasure function. Specifically,

the erasure function replaces 〈∗〉 with 〈∗〉• and erasure is then performed by means

of rule [LABELED〈∗〉•]—see Figure 17. Following the same scheme, the erasure func-

tion replaces relabel with relabel• and rule [RELABEL•] performs the erasure. 〈∗〉•
and relabel• and their semantics rules are introduced due to mere technical reasons (as

explained above) and they do not impact the performance of MAC since they are not

part of its implementation. Finally, terms of type MAC ℓ τ are replaced by • when the

computation is more sensitive than the attacker level (ℓ 6⊑ ℓA); otherwise, the erasure

function is homomorphically applied.

Progress-insensitive non-interference The non-interference proof relies on two fun-

damental properties of our calclulus: determinism and distributivity.

Proposition 1 (Sequential determinancy and distributivity)

– If t1  t2 and t1  t3 then t2 = t3.



– If t1  t2 then εℓA(t1) εℓA(t2).

In Proposition 1, we show the auxiliary property that erasure distributes over sub-

stitution, i.e. εℓA([x / t1 ] t2) = [x / εℓA(t1)] εℓA(t2). Note, however, that the era-

sure function does not always distribute over function application, i.e. ετℓA(t1 t2) 6≡
εℓA(t1) εℓA(t2) when τ = MAC h τ ′ and h 6⊑ ℓA. It is precisely for this reason

that rule [ID〈∗〉] performs substitution rather than function application. Before stating

non-interference, we formally define ℓA-equivalence.

Definition 1. (ℓA-equivalence) Two terms are indistinguishable from an attacker at se-

curity level ℓA, written x ≈ℓA y , if and only if εℓA(x ) = εℓA(y).

Using Proposition 1, we show that our semantics preserves ℓA-equivalence.

Proposition 2 (ℓA-equivalence preservation) If t1 ≈ℓA t2, t1  t ′1, and t2  t ′2, then

t ′1 ≈ℓA t ′2.

We finally prove progress-insensitive non-interference for the sequential calculus. We

employ big-step semantics, denoted by t ⇓ v , which reduces term t to value v in a

finite number of steps.

Theorem 1 (PINI) If t1 ≈ℓA t2, t1 ⇓ v ′

1, and t2 ⇓ v ′

2, then v ′

1 ≈ℓA v ′

2.

5.2 Concurrent calculus

Scheduler state: s
Thread pool : Φ ::= (ℓ : Label)→ (Pool ℓ)
Pool ℓ: ts ::= [ ] | t : ts | •
Configuration: c ::= 〈s, Φ〉

Fig. 18: Syntax for concurrent calclulus.

Figure 18 extends the calculus from

Section 5 with concurrency. It intro-

duces global configurations of the

form 〈s, Φ〉 composed by an abstract

scheduler state s and a thread pool Φ.

Threads are secure computations of

type MAC ℓ () which get organized

in isolated thread pools according to their security label. A pool ts in the category

Pool ℓ contains exclusively threads at security level ℓ. We use the standard list interface

[ ], t : ts, and ts[n] for the empty list, the insertion of a term into an existing list, and

accessing the nth-element, respectively. We write Φ[ℓ][n] = t to retrieve the nth-thread

in the ℓ-thread pool—it is a syntax sugar for Φ(ℓ) = ts and ts[n] = t . The notation

Φ[ℓ][n] := t denotes the thread pool obtained by performing the update Φ(ℓ)[n 7→ t ].
Reading from an erased thread pool results in an erased thread, i.e. •[n] = • and updat-

ing it has no effect, i.e. •[n 7→ t ] = •.

Φ[ℓ][n] = t1 t1  e t2 s1
(ℓ,n,e)
−−−−→ s2

〈s1, Φ〉 →֒(ℓ,n) 〈s2, Φ[ℓ][n] := t2〉

Fig. 19: Scheme rule for concurrent semantics.

Semantics The relation →֒(ℓ,n)

represents an evaluation step for

global configurations, where the

thread identified by (ℓ, n) gets

scheduled. Figure 19 shows the

scheme rule for →֒(ℓ,n). The

scheduled thread is retrieved from the configuration (Φ[ℓ][n] = t1) and executed



(t1  e t2). We decorate the sequential semantics with events e, which provides

to the scheduler information about the effects produced by the scheduled instruction,

for example • • •. Events inform the scheduler about the evolution of the global con-

figuration, so that it can realize concrete scheduling policies. The relation s1
(ℓ,n,e)
−−−−→ s2

represents a transition in the scheduler, that depending on the initial state s1, decides to

run thread identified by (ℓ, n) and updates its state according to the event e. Lastly, the

thread pool is updated with the final state of the thread (Φ[ℓ][n] := t2).

Progress-sensitive non-interference Our concurrent calculus satisfies progress sen-

sitive non-interference—a security condition often enforced by IFC techniques for π-

calculus [12, 27]. A global configurations is erased by erasing its components, that is

εℓA(〈s, Φ〉) = 〈εℓA(s), εℓA(Φ)〉. The thread pool Φ is erased point-wise, pools are either

completely collapsed if not visible from the attacker, i.e. εPool ℓ
ℓA

(ts) = • if ℓ 6⊑ ℓA,

or the erasure function is homomorphically applied to their content. The erasure of the

scheduler state s is scheduler specific. To obtain a parametric proof of non-interference,

we assume certain properties about the scheduler. Specifically, our proof is valid for de-

terministic schedulers which fulfill progress and non-interference themselves, i.e. sched-

ulers cannot leverage sensitive information in threads to determine what to schedule

next. As for the sequential calculus, we rely on determinancy and distributivity of the

concurrent semantics.

Proposition 3 (Concurrent determinancy and distributivity)

– If c1 →֒(ℓ,n) c2 and c1 →֒(ℓ,n) c3, then c2 = c3.

– If c1 →֒(ℓ,n,e) c2, then it holds that εℓA(c1) →֒(ℓ,n,εℓA (e)) εℓA(c2).

In the non-interference theorem, we write as usual →֒⋆for the reflexive transitive

closure of →֒ and we generalize≈ℓA to denote ℓA-equivalence between configurations.

Theorem 2 (Progress-sensitive non-interference) Given the global configurations c1,

c′1, c2, and assuming a deterministic and non-interfering scheduler that makes progress,

if c1 ≈ℓA c2 and c1 →֒(ℓ,n) c
′

1, then there exists c′2 such that c2 →֒
⋆c′2 and c2 ≈ℓA c′2.

6 Related work

Security Libraries Li and Zdancewic’s seminal work [18] shows how the structure ar-

rows can provide IFC as a library in Haskell. Tsai et al. [39] extend that work to support

concurrency and data with heterogeneous labels. Russo et al. [30] implement the se-

curity library SecLib using a simpler structure than arrows, i.e. monads—rather than

labeled values, this work introduces a monad which statically label side-effect free val-

ues. The security library LIO [36,37] dynamically enforces IFC for both sequential and

concurrent settings. LIO presents operations similar to fmap and 〈∗〉 for labeled values

with differences in the returning type due to LIO’s checks for clearence—this work

provides a foundation to analyze the security implications of such primitives. Mecha-

nized proofs for LIO are given only for its core sequential calculus [37]. Inspired by



SecLib and LIO’s designs, MAC leverages Haskell’s type system to enforce IFC [31]—

this work does not contain formal guarantees and relies on its simplicity to convince the

reader about its correctness. HLIO uses advanced Haskell’s type-system features to pro-

vide a hybrid approach: IFC is statically enforce while allowing the programmers to de-

fer selected security checks to be done at runtime [6]. Our work studies the security im-

plications of extending LIO, MAC, and HLIO with a rich structure for labeled values.

Devriese and Piessens provide a monad transformer to extend imperative-like APIs with

support for IFC in Haskell [8]. Jaskelioff and Russo implements a library which dynam-

ically enforces IFC using secure multi-execution (SME) [15]—a technique that runs

programs multiple times. Rather than running multiple copies of a program, Schmitz et

al. [33] provide a library with faceted values, where values present different behavior

according to the privilege of the observer. Different from the work above, we present

a fully-fledged mechanized proof for our sequential and concurrent calculus which in-

cludes references, synchronization variables, and exceptions.

IFC tools IFC research has produced compilers capable of preserving confidentiality

of data: Jif [25] and Paragon [4] (based on Java), and FlowCaml [34] (based on Caml).

The SPARK language presents a IFC analysis which has been extended to guarantee

progress-sensitive non-inference [28]. JSFlow [11] is one of the state-of-the-art IFC

system for the web (based on JavaScript). These tools preserve confidentiality in a fine-

grained fashion where every piece of data is explicitly label. Specifically, there is no

abstract data type to label data, so our results cannot directly apply to them.

Operating systems research MAC systems [3] assign a label with an entire OS process—

settling a single policy for all the data handled by it. While proposed in the 70s, there

are modern manifestations of this idea (e.g., [17, 23, 40]) applied to diverse scenarios

like the web (e.g., [2, 38]) and mobile devices (e.g., [5, 16]). In principle, it would be

possible to extend such MAC-like systems to include a notion of labeled values with the

functor structure as well as the relabeling primitive proposed by this work. For instance,

COWL [38] presents the notion of labeled blob and labeled XHR which is isomorphic

to the notion of labeled values, thus making possible to apply our results. Furthermore,

because many MAC-like system often ignore termination leaks (e.g., [9, 40]), there is

no need to use call-by-name evaluation to obtain security guarantees.

7 Conclusions

We present an extension of MAC that provides labeled values with an applicative

functor-like structure and a relabeling operation, enabling convenient and expressive

manipulation of labeled values using side effect-free code and saving programmers

from introducing unnecessary sub-computations (e.g., in the form of threads). We

have proved this extension secure both in sequential and concurrent settings, expos-

ing an interesting connection between evaluation strategy and progress-sensitive non-

interference. This work bridges the gap between existing IFC libraries (which focus

on side-effecting code) and the usual Haskell programming model (which favors pure

code), with a view to making IFC in Haskell more practical.
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