
Building Secure Web Applications: From Theory to Practice

Building Secure Web Applications:
From Theory to Practice

Abstract
Web pages are the front door to almost any online service. Despite their success, we constantly see vulnerabilities
being exposed in web sites. The reason for that are commonly programming errors leading to serious security
breaches—this is not surprising given the complexity of web applications (web apps). The status quo security
practices consists on mainly add-hoc solutions. In this course, we present a disciplined manner to avoid such
programming errors.
Information-Flow Control (IFC) and Mandatory Access Control (MAC) emerge as promising technologies to
harden web apps. To avoid information leaks (data corruption), IFC and MAC systems restrict programmers from
building web sites which irresponsibly distribute (modi�es) sensitive (trustworthy) data . The course introduces
security problems behind web apps, the foundations for IFC and MAC as well as their applicability to online
systems. The material presented is based on recent research results.

Course resources
Web page: http://www.cse.chalmers.se/~russo/eci2015/

Twitter: @russoECI2015

Lecturer
Alejandro Russo is an associate professor at the Chalmers University of Technology in Göte-
borg, Sweden (where he did his PhD). Previously, he has been a research assistant at the
Stevens Institute of Technology (2015, USA), visiting assistant professor at University of Buenos
Aires (2011, Argentina), and twice visiting associate professor at Stanford University (2013,
2014-2015, USA). He is an expert in programming languages analysis for security. He special-
izes in information-�ow control (IFC), where the protection of con�dentiality and integrity of
data is of ultimate importance. His work ranges from theoretical foundations to the concrete
implementation of systems.

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 1/102

http://www.cse.chalmers.se/~russo/eci2015/

Building Secure Web Applications 7/8/2015

ECI 2015 1

Building Secure Web Applications

Alejandro Russo

russo@chalmers.se

ECI 2015, UBA, Buenos Aires, Argentina

2015 News!

Web Application

Connectivity

Web Application

Vulnerabilities

Others

Sprinkled security checks

discourse/app/services/user_blocker.rb

discourse/app/views/topics/show.rss.erb

discourse/app/controllers/posts_controller.rb

Web Application

Trusted

Ad-hoc checks

77% Top 10000 Quantcast sites

59% Top Million Quantcast sites

Reusability of code

Building Secure Web Applications: From Theory to Practice

Introduction to Web Security

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 2/102

Building Secure Web Applications 7/8/2015

ECI 2015 2

Course goal: building secure web applications

Connectivity

Ad-hoc checks

Reusability of code

Connectivity

Disciplined checks

Reusability of code

Information-flow Control

Web Application

Security
Monitor

Security
Monitor

Security
checks

It restricts how data

gets propagatedLabeled data

Web Application

Trusted

Security
Monitor

Security
Monitor

Security
Monitor

Third-party
components

Trusted Trusted

Course: what does it involved?

• A mix of Operating Systems (OS) and Programming
Languages (PL) techniques

• Theory and practice

• Based on recent research results

Course: learning outcomes

• Characterize and understand security problems in
web applications

• Describe security policies

• Identify the expected behavior of secure web
applications

• Some experience in formalizing security
guarantees

• First-hand experience with security tools

Course: organization

•Web page:
http://www.cse.chalmers.se/~russo/eci2015/

• Twitter: @russoECI2015

• Lecture: 5 (3hs each, 20-25 minutes break)

• Exercises

• Exam? To pass the course, you need to correctly resolve

and handle all the exercises

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 3/102

Building Secure Web Applications 7/8/2015

ECI 2015 3

Summary

• Common practices for security in web applications
• Sprinkled checks

• Course goals
• Secure construction of web applications

• Principled approached (reduction of the TCB)

• Course learning outcomes, content, and organization

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 4/102

7/8/2015

1

Security in Web Browsers

Alejandro Russo

russo@chalmers.se

ECI 2015, UBA, Buenos Aires, Argentina

Introduction

•Web browser is a complicated piece of software

• HTML

• JavaScript

HTML (static view of the world)
[Tutorial W3C]

• It stands for Hyper Text Markup Language

<tagname attribute="value">
content

</tagname>

Google

Separation content

(webpage) from

rendering (browser)

• There are several tags (headers, lists, links, etc.)

HTML sets a rigid structure for web pages

Demo

Files: WebsiteA/html.html

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 5/102

7/8/2015

2

JavaScript (dynamic behavior)
[ECMA Script]

<script>
code

</script>

• It is the VM of the web!
• Standardized by European Computer Manufacturers

Association

• JavaScript (JS) can dynamically modify the web
page and react to user events (e.g., mouse clicks
or moves)

JavaScript Features

• Object oriented

• Dynamically typed

• Standard operator
precedence

• First order functions
(closures)

• Dynamic code
evaluation
(dynamic binding)

• Implicit coercions
(hide errors)

• Semicolon
insertion (function
concatenation)

Demo

Files: WebsiteA/js.html

More about JavaScript
[W3C JavaScript tutorial]

Privacy concerns while surfing the web

page.com
XHR (e.g., HTTP)

evil.com

The Same Origin Policy (SOP)

XHR

Same Origin Policy

alice.com bob.com

• Origin = Domain + Protocol + Port

• Restrict how information gets distributed by XHR requests

• SOP does not restrict sending requests, but rather observing

the response SOP can be abused to reveal sensitive

data to other origins. Do you see how?

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 6/102

7/8/2015

3

Same Origin Policy – Running Example

alice.com

bob.com

<html>

<body>

<h1 id="hi">
Alice says: Hello world!
</h1>

</body>

</html>

<html>

<body>

<h1 id="hi">
Bob says: Hello world!
</h1>

</body>

</html>

index.htlm

index.htlm Demo

Files: WebsiteA/index.html and WebsiteB/index.html

Same Origin Policy – Same Origin request

alice.com

<html>
<body>

 Trying to get greetings from myself! </br>
<script>
var xmlhttp = new XMLHttpRequest();
var url = "http://alice.com:8080/index.html";

xmlhttp.onreadystatechange = function() {
if (xmlhttp.readyState == 4 && xmlhttp.status == 200) {

// Show the received greeting
…

}
}

xmlhttp.open("GET", url, true);
xmlhttp.send();
</script>
</body>
</html>

Same origin

Request

index.html

Same Origin Policy – Same Origin request

alice.com

<html>
<body>

 Trying to get greetings from myself! </br>
<script>
var xmlhttp = new XMLHttpRequest();
var url = "http://alice.com:8080/index.html";

xmlhttp.onreadystatechange = function() {
if (xmlhttp.readyState == 4 && xmlhttp.status == 200) {

// Show the greeting received
...

}
}

xmlhttp.open("GET", url, true);
xmlhttp.send();
</script>
</body>
</html>

Same origin

Request

index.html

Demo

Files: WebsiteA/requestA.html and WebsiteA/index.html

Same Origin Policy – Cross-Origin request

alice.com

<html>
<body>

 Trying to get greetings from Bob! </br>

<script>
var xmlhttp = new XMLHttpRequest();
var url = "http://bob.com:9090/index.html";

xmlhttp.onreadystatechange = function() {
if (xmlhttp.readyState == 4 && xmlhttp.status == 200) {

// Show the received greeting
…

}
}

xmlhttp.open("GET", url, true);
xmlhttp.send();
</script>
</body>
</html>

Cross-origin

bob.com

index.html

It cannot read the response!

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 7/102

7/8/2015

4

Same Origin Policy – Cross-Origin request

alice.com

<html>
<body>

 Trying to get greetings from Bob! </br>

<script>
var xmlhttp = new XMLHttpRequest();
var url = "http://bob.com:9090/index.html";

xmlhttp.onreadystatechange = function() {
if (xmlhttp.readyState == 4 && xmlhttp.status == 200) {

// Show the received greeting
…

}
}

xmlhttp.open("GET", url, true);
xmlhttp.send();
</script>
</body>
</html>

Cross-origin

bob.com

index.html

It cannot read the response!

It sends the request!

Demo

Files: WebsiteA/requestB.html and WebsiteB/index.html

Circumventing SOP

• SOP only governs who can read XHR responses

•Web sites often load resources from other origins
• Images, JavaScript code, etc.

• They are not subject to SOP!

• Two-way communication

Any origin!

Info for the server

Loading images (cross-origin communication)

alice.com

<html>
<body>
<h1 id="hi">
Alice gets a picture of Bob!
</h1>

</body>
</html>

Cross-origin

bob.com

bob.gif

Server gets

information with

inlined parameters

Client gets

information from the

server as an image

Loading images (cross-origin communication)

alice.com

<html>
<body>
<h1 id="hi">
Alice gets a picture of Bob!
</h1>

</body>
</html>

Cross-origin

bob.com

bob.gif

Server gets

information with

inlined parameters

Client gets

information from the

server as an image

This brings some security concerns Demo

File: WebsiteA/imageBob.html

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 8/102

7/8/2015

5

Loading other cross-origin resources

<script src="http://.../somecode.js"> </script>

Any origin!

• Two-way communication (as for images)

• This brings even more security concerns
• Fetched code runs with the same privilege as the

webpage where it gets embedded!

Demo

File: WebsiteA/jsBob.html

Cross-origin resources in practice

Embedded scripts from

third-party components

Why do we need embedded scripts?

They require access to

the page’s content to

properly work!

Style reasons

a) Scripts have access to all the

data in the scope of the page

where they are embedded!

b) They can perform cross-origin

communication (e.g., images)

c) Then, sensitive data might get

compromise!

A possible attack

Convince a benign web page to use

my malicious script (very unlikely)

Malicious

Script

Cross-site scripting (XSS)
[Johari, Sharma 2012 (survey)]

Malicious
Script

a) Script gets injected into the server

b) The payload gets deployed when

an honest user visits the site

c) The script uses cross-origin

communication (e.g., images) to send

sensitive data to the attacher’s server

SOP fails to prevent

the attack!

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 9/102

7/8/2015

6

Is it a real threat?
[OWASP Top Ten Project]

• A3 – 2013 Top ten for vulnerabilities

• A2 – 2010 Top ten for vulnerabilities

2015!2015!

Preventing XSS

Malicious

Script

• Do not embed scripts when possible

• Use iFrames (isolated HTML context)
displayed on the same web page
• Advertisement

• Post-message communication between
iFrames

• It limits functionality
• Some scripts need to be embedded to work!

A simple example

<html>
<body>

<h1 id="hi">
Alice says: Hello world!
</h1>

<iframe src="https://platform.twitter.com/widgets/tweet_button.html"
style="border: 0; width:130px; height:20px;"></iframe>

</body>
</html>

Isolation: no access to

neither the content of

 nor <h1>!

Demo

File: WebsiteA/tweet.html

Mitigating XSS: Content Security Policy (CSP)
[Using CSP, Mozilla]

•White-list origins for content
• Identifies sources for images, media, scripts, fonts, frames, and

objects (e.g., applets)

• Set on the HTTP header
• Web server

Content-Security-Policy: default-src 'self' *.facebook.com *.google.com

CSP Limitations

• It demands some administrative effort

Keep white-list updated

Need to know all the origins where

embedded scripts fetch resources from

Browser extension might change the page

behavior and introduce CSP violations

It is enough for one origin to get

compromised to jeopardize security• Any other problem?

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 10/102

7/8/2015

7

CSP Limitations

• CSP is a form of discretionary access control

It limits or grants

access to information

Access control

a) Decisions about granting access need to be carefully taken

b) Trust the program

It does not talk about what happens

with the data after granting access

What about XHR requests?
[Cross-origin request, Mozilla]

• SOP
• Sometimes, too restrictive

• Cross-origin request (CORs)
• Establish in the HTTP headers of the response

• Web server can determines which origins can
observe a response

alice.com

XHR

XHR

bob.com

Access-Control-Allow-Origin: http://bob.com

CORs limitations

• CORs is a form of discretionary access control
• Same fundamental limitations as CSP

Reflection on confidentiality

It is not about who has

access to the information

(DAC)

It is about how the

information is handled

Summary

• Introduction to HTML and JavaScript

• Same-origin policy

• Cross-origin communication
• XSS attacks

• Controlling cross-origin communications
• CSP and CORs

• Confidentiality is not about access control, but
how you use the data

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 11/102

7/8/2015

1

Disjunction Category Labels

Alejandro Russo

russo@chalmers.se

ECI 2015, UBA, Buenos Aires, Argentina

Scenario

• Labels: restricts how data gets
handle by the system

• The computing platform
enforces that labels are
respected
• “Share this picture only with my

friends”

• In this lecture, we see a
formalism to express labels

Security monitor

Security levels
[Bell and LaPadula, 1973]

• Data gets labeled
• Security level

Public

Secret

Top Secret

Disjunction Category Labels
[Stefan, Russo, Mazières, and Mitchell, 2011]

• DC-Labels: a label format to express restrictions on
the confidentiality and integrity of data.

• It allows to reflect the concern of multiple parties

Principal Category

Egalitarian

Syntax

Principal

Category

What does it mean?

• Confidentiality

• Integrity

Interpretations for Disjunction Categories

Either Alice or Bob

can read the data

Alice or Bob (or both)

are responsible for the

data

Building Secure Web Applications: From Theory to Practice

Security Policies

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 12/102

7/8/2015

2

Conjunction of Disjunction Categories

• Data can be associated with several categories
• It represents data with different restrictions (perhaps

imposed by different parties in the system)

What does it mean?

• Confidentiality

• Integrity

Interpretations for Conjunctions of
Disjunction Categories

The data must be read

simultaneously by Alice or Bob,

and Charlie.

Alice or Bob, and

Charlie are responsible

for the data

• Confidentiality

• Integrity

Conjunctions of Disjunction Categories

The more conjunctions, The

more secret the data

becomes

The more conjunctions, The

more trustworthy the data

becomes

Formalization

• A DC-label consists of two
conjunctive normal forms (CNF) of principals,
where and denote secrecy and integrity
demands, respectively.

• declares who can read the data

• declares who is responsible for the data

?

Flows of information

• Data can flow from one entity to another if all
categories are respected

• Confidentiality (let’s ignore integrity)

YES

NO

NO

YES

Flows of information

• Data can flow from one entity to another if all
categories are respected

• Integrity (let’s ignore confidentiality)

YES

NO

NO

YES

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 13/102

7/8/2015

3

Allowed flows of information

• Given two DC-Labels and , if then
respects the confidentiality and integrity

demands imposed by

• The partial order relation is known as “can-
flow-to” and captures the allowed flows of
information within the system

Formal definition for “can-flow-to”

• Quantifications are given over disjunction categories

• Integrity is conceived as the dual for confidentiality

Formal definition for “can-flow-to”

equivalent to

Security Lattice

• DC-Labels form a lattice

16

Bottom: the most public

and trustworthy data

Top: the most secret

and untrustworthy data

Decentralized label format

• DC-label is a decentralized label format

Public

Secret

Top Secret

No central authority which

decides the security levels

Dynamic Principals

• In several implementations of DC-Labels,
principals are generated at run-time

• After all, it is difficult to predict, for instance,
the users involved in a system

• The top element confidentiality?

• Bottom element in integrity?

It is unknown the set of

all possible principals

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 14/102

7/8/2015

4

Top and bottom elements Lattice operations

• DC-labels form a lattice

•Why is that important?
Aggregated data

What is the least restrictive label which

respects the labels from the sources?

Join and meet operations

• Conjunction and disjunction of DC-labels’ components

might introduce redundant categories.

• Apply a Conjunctive Normal Form (CNF) reduction

Lattice operations (Example)

Declassification

• Most of the systems require to intentionally release

some information

• An act known as declassification

• In a mutual distrust environment, declassification is

required to achieve collaboration

One scenario for declassification

Number of supporters to

attend a match against CABJ

Stadium information

Permission granted

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 15/102

7/8/2015

5

One scenario for declassification

Number of supporters to

attend a match against CABJ

Stadium information

Permission granted

AAAJ cannot read the

permission!

Do you see why?

Declassification

• The order relationship is too strong!

• Sometimes, it is desirable that principals are capable to

relax the restrictions that they imposed in labels

• Privileges allow to relax (in a controlled manner) the

security lattice order relationship

• There exists different kind of privileges and they can be

assigned to different principals

Privileges for declassification

• A privilege is a CNF of principals (the same format
as the components in DC-Labels)

• It induces a weaker relationship

It can removes P form

the secrecy

Declassification

• The allowed flows of information are dictated by

or , where is the privilege hold by the party

handling the data.

Permission

granted
Exercise privilege CABJ!

Endorsement

• It is the dual for declassification

• It allows to increase the trustworthiness of data

• It induces a weaker relationship

It can add P to the

integrity part

Exercising privileges

• It induces a weaker relationship

It can remove P to the

secrecy part and it

can add P to the

integrity part

•When exercising privileges, it is desirable to relax on
both dimensions: secrecy and integrity

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 16/102

7/8/2015

6

Remarks

• DC-Labels: a decentralized label format to express
secrecy and integrity requirements from different
parties
• Disjunction Categories

• Join and meet operations are computed precisely

• Declassification and endorsement are obtained by
exercising privileges

• A theory for labels used in information-flow control
research

Summary

• Labels for mutually distrusted scenarios

• Interpretation of labels for confidentiality and integrity

• Formal definitions for the `can-flow-to` relationship,

join, and meet

• Privileges for declassification and endorsement

• Weakening of the `can-flow-to` relationship

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 17/102

7/8/2015

1

Security Labels For The Web

Alejandro Russo

russo@chalmers.se

ECI 2015, UBA, Buenos Aires, Argentina

Information-flow Control (Revisited)

Web Application

Security

Monitor

Security

Monitor

It restricts how data

gets propagatedLabeled data

Security policy?

Malicious

Script

• Cross-origin communication is dangerous
• Cross-site scripting (XSS)

• Forbidding cross-origin communication
with labels
• Rather than SOP, CORS, and CSP

Security lattice for the web

A security lattice for the web
[Magazinius et al, 2010]

Malicious

Script

• Every origin is a incomparable point in the lattice

• Data gets labeled with the origin where it comes from

The malicious script, Google,

and Facebook cannot share

data

Malicious

Script

It is safe to have embedded

scripts in the web page

DC-labels for the web

Malicious

Script

Principal

Interpretation for the web (confidentiality)

Malicious

Script

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 18/102

7/8/2015

2

Interpretation for the web (confidentiality)

Malicious

Script

• Integrity tracks providence of data and who vouches for
the data (as in DC-labels)

Testing DC-labels for the web in COWL
[COWL]

• COWL is a modification of Mozilla Firefox and Google
Chrome to control how information flows in web pages

Security

Monitor

Labeled data

COWL

It runs in or

Labels interface

interface Label :
Label Label(String)
Label and(String or Label)
Label or(String or Label)
bool subsumes (Label, [Privilege])

WebIDL format

Manipulated explicitly

in JavaScript

<script>
var fb = new Label("http://www.facebook.com") ;
var gl = new Label("http://www.google.com") ;
var fbANDgl = fb.and(gl) ;
</script>

Demo

Files: WebsiteA/labels.html

Privileges in COWL

interface Privilege :
Privilege FreshPrivilege()
Privilege combine(Privilege)
Privilege and(Privilege)
readonly attribute Label asLabel

interface Label :
Label Label(String)
Label and(String or Label)
Label or(String or Label)
bool subsumes (Label, [Privilege])

Minting user-defined

privileges

• Every origin in COWL has an
implicit privilege associated with it
• See COWL lecture!

Relaxing the can-flow-to

relationship

Demo

Files: WebsiteA/privs.html

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 19/102

7/8/2015

3

Summary

• A security lattice for the web

• Origins as labels

• DC-labels in COWL

• API

• User-defined privileges in COWL

• API

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 20/102

Disjunction Category Labels

Deian Stefan1, Alejandro Russo2, David Mazières1, and John C. Mitchell1

1 Stanford University
2 Chalmers University of Technology

Abstract. We present disjunction category (DC) labels, a new label for-
mat for enforcing information flow in the presence of mutually distrusting
parties. DC labels can be ordered to form a lattice, based on proposi-
tional logic implication and conjunctive normal form. We introduce and
prove soundness of decentralized privileges that are used in declassifying
data, in addition to providing a notion of privilege-hierarchy. Our model
is simpler than previous decentralized information flow control (DIFC)
systems and does not rely on a centralized principal hierarchy. Addition-
ally, DC labels can be used to enforce information flow both statically
and dynamically. To demonstrate their use, we describe two Haskell im-
plementations, a library used to perform dynamic label checks, compat-
ible with existing DIFC systems, and a prototype library that enforces
information flow statically, by leveraging the Haskell type checker.

Keywords: Security, labels, decentralized information flow control, logic

1 Introduction

Information flow control (IFC) is a general method that allows components of
a system to be passed sensitive information and restricts its use in each com-
ponent. Information flow control can be used to achieve confidentiality, by pre-
venting unwanted information leakage, and integrity, by preventing unreliable
information from flowing into critical operations. Modern IFC systems typically
label data and track labels, while allowing users exercising appropriate privileges
to explicitly downgrade information themselves. While the IFC system cannot
guarantee that downgrading preserves the desired information flow properties,
it is possible to identify all the downgrading operations and limit code audit to
these portions of the code. Overall, information flow systems make it possible to
build applications that enforce end-to-end security policies even in the presence
of untrusted code.

We present disjunction category (DC) labels: a new label format for enforcing
information flow in systems with mutually distrusting parties. By formulating
DC labels using propositional logic, we make it straightforward to verify con-
ventional lattice conditions and other useful properties. We introduce and prove
soundness of decentralized privileges that are used in declassifying data, and
provide a notion of privilege-hierarchy. Compared to Myers and Liskov’s decen-
tralized label model (DLM) [21], for example, our model is simpler and does not

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 21/102

rely on a centralized principal hierarchy. Additionally, DC labels can be used
to enforce information flow both statically and dynamically, as shown in our
Haskell implementations.

A DC label, written 〈S, I〉, consists of two Boolean formulas over principals,
the first specifying secrecy requirements and the second specifying integrity re-
quirements. Information flow is restricted according to implication of these for-
mulas in a way that preserves secrecy and integrity. Specifically, secrecy of in-
formation labeled 〈S, I〉 is preserved by requiring that a receiving channel have
a stronger secrecy requirement S′ that implies S, while integrity requires the
receiver to have a weaker integrity requirement I ′ that is implied by I. These
two requirements are combined to form a can-flow-to relation, which provides a
partial order on the set of DC labels that also has the lattice operations meet
and join.

Our decentralized privileges can be delegated in a way that we prove preserves
confidentiality and integrity properties, resulting in a privilege hierarchy. Unlike
[21], this is accomplished without a notion of “can act for” or a central principal
hierarchy. Although our model can be extended to support revocation using
approaches associated with public key infrastructures, we present a potentially
more appealing selective revocation approach that is similar to those used in
capability-based systems.

We illustrate the expressiveness of DC labels by showing how to express
several common design patterns. These patterns are based in part on security
patterns used in capability-based systems. Confinement is achieved by labeling
data so that it cannot be read and exfiltrated to the network by arbitrary princi-
pals. A more subtle pattern that relies on the notion of clearance is used to show
how a process can be restricted from even accessing overly-sensitive information
(e.g., private keys); this pattern is especially useful when covert channels are
a concern. We also describe privilege separation and user authentication pat-
terns. As described more fully later in the paper, privilege separation may be
achieved using delegation to subdivide the privileges of a program and compart-
mentalize a program into components running with fewer privileges. The user
authentication pattern shows how to leverage a login client that users trust with
their username and password (since the user supplies them as input), without
unnecessarily creating other risks.

We describe two Haskell implementations: a library used to perform dynamic
label checks, compatible with existing DIFC systems, and a prototype library
that enforces information flow statically by leveraging Haskell’s type checker.

The remainder of the paper is structured as follows. In Section 2, we introduce
DC labels and present some of their properties. Section 3 presents semantics and
soundness proofs for our DC label system. Design patterns are presented and
explained in Section 5, with the implementations presented in Section 6. We
summarize related work in Section 7 and conclude in Section 8.

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 22/102

Fig. 1: A tax preparation system with mutually distrusting parties.

2 DC Label Model

In a DIFC system, every piece of data is labeled, or “tagged.” Labels provide
a means for tracking, and, more importantly, controlling the propagation of
information according to a security policy, such as non-interference [10].

DC labels can be used to express a conjunction of restrictions on informa-
tion flow that represents the interests of multiple stake-holders. As a result, DC
labels are especially suitable for systems in which participating parties do not
fully trust each other. Fig. 1 presents an example, originally given in [21], that
illustrates such a system. Here, user Bob firstly inputs his tax information into
the Spreadsheet program, which he fully trusts. The data is then exported to
another program, called WebTax, for final analysis. Though conceptually sim-
ple, several challenges arise since Bob does not trust WebTax with his data.
Without inspecting WebTax, Bob cannot be sure that his privacy policies are
respected and his tax information is not exfiltrated to the network. Analogously,
the WebTax author, called Preparer, does not entrust Bob with the source code.
Furthermore, the tax preparation program relies on a proprietary database and
Preparer wishes to assert that even if the program contains bugs, the proprietary
database information cannot be leaked to the public network. It is clear that even
for such a simple example the end-to-end guarantees are difficult to satisfy with
more-traditional access control mechanisms. Using IFC, however, these security
policies can be expressed naturally and with minimal trust. Specifically, the
parties only need to trust the system IFC-enforcement mechanism; programs,
including WebTax, can be executed with no implicit trust. We now specify DC
labels and show their use in enforcing the policies of this example.

As previously mentioned, a DC label consists of two Boolean formulas over
principals. We make a few restrictions on the labels’ format in order to obtain
a unique representation for each label and an efficient and decidable can-flow-to
relationship.

Definition 1 (DC Labels). A DC label, written 〈S, I〉, is a pair of Boolean
formulas over principals such that:

– Both S and I are minimal formulas in conjunctive normal form (CNF), with
terms and clauses sorted to give each formula a unique representation, and

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 23/102

– Neither S nor I contains any negated terms.

In a DC label, S protects secrecy by specifying the principals that are allowed
(or whose consent is needed) to observe the data. Dually, I protects integrity
by specifying principals who created and may currently modify the data. For
example, in the system of Fig. 1, Bob and Preparer respectively label their data
〈{Bob} , {Bob}〉 and 〈{Preparer} , {Preparer}〉, specifying that they created the
data and they are the only observers.

Data may flow between differently labeled entities, but only in such a way
as to accumulate additional secrecy restrictions or be stripped in integrity ones,
not vice versa. Specifically there is a partial order, written ⊑ (“can-flow-to”),
that specifies when data can flow between labeled entities. We define ⊑ based
on logical implication (=⇒) as follows:

Definition 2 (can-flow-to relation). Given any two DC labels L1 = 〈S1, I1〉
and L2 = 〈S2, I2〉, the can-flow-to relation is defined as:

S2 =⇒ S1 I1 =⇒ I2

〈S1, I1〉 ⊑ 〈S2, I2〉

In other words, data labeled 〈S1, I1〉 can flow into an entity labeled 〈S2, I2〉
as long as the secrecy of the data, and integrity of the entity are preserved.
Intuitively, the ⊑ relation imposes the restriction that any set of principals who
can observe data afterwards must also have been able to observe it earlier. For
instance, it is permissible to have S2 = {Bob∧Preparer} and S1 = Bob, because
S2 =⇒ S1, and Bob’s consent is still required to observe data with the new
label. Dually, integrity of the entity is preserved by requiring that the source
label impose more restrictions than that of the destination.

In our model, public entities (e.g., network interface in Fig. 1) have the
default, or empty label, 〈True,True〉, written Lpub. Although specified by the
label 〈S, I〉, it is intuitive that data labeled as such can be written to a public
network with label Lpub, only with the permission of a set of principals satisfying
the Boolean formula S. Conversely, data read from the network can be labeled
〈S, I〉 only with the permission of a set of principals satisfying I.

In an IFC system, label checks using the can-flow-to relation are performed
at every point of possible information flow. Thus, if the WebTax program of
Fig. 1 attempts to write Bob or Preparer’s data to the network interface, ei-
ther by error or malfeasance, both label checks 〈{Bob} , {Bob}〉 ⊑ Lpub and
〈{Preparer} , {Preparer}〉 ⊑ Lpub will fail. However, the system must also label
the intermediate results of a WebTax computation (on Bob and Preparer’s joint
data) such that they can only be observed and written to the network if both
principals consent.

The latter labeling requirement is recurring and directly addressed by a core
property of many IFC systems: the label lattice property [4]. Specifically, for any
two labels L1, L2 the lattice property states that there is a well defined, least
upper bound (join), written L1 ⊔ L2, and greatest lower bound (meet), written

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 24/102

L1 ⊓L2, such that Li ⊑ L1 ⊔L2 and L1 ⊓L2 ⊑ Li for Li and i = 1, 2. We define
the join and meet for DC labels as follows.

Definition 3 (Join and meet for DC labels). The join and meet of any two
DC labels L1 = 〈S1, I1〉 and L2 = 〈S2, I2〉 are respectively defined as:

L1 ⊔ L2 = 〈S1 ∧ S2, I1 ∨ I2〉
L1 ⊓ L2 = 〈S1 ∨ S2, I1 ∧ I2〉

where each component of the resulting labels is reduced to CNF.

Intuitively, the secrecy component of the join protects the secrecy of L1 and
L2 by specifying that both set of principals, those appearing in S1 and those
in S2, must consent for data labeled S1 ∧ S2 to be observed. Conversely, the
integrity component of the join, I1 ∨ I2, specifies that either principals of I1 or
I2 could have created and modify the data. Dual properties hold for the meet
L1⊓L2, a label computation necessary when labeling an object that is written to
multiple entities. We note that although we use I1 ∨ I2 informally, by definition,
a DC label component must be in CNF. Reducing logic formulas, such as I1∨I2,
to CNF is standard [23], and we do not discuss it further.

Revisiting the example of Fig. 1, we highlight that the intermediate results
generated by the WebTax program from both Bob and Preparer’s data are la-
beled by the join 〈{Bob} , {Bob}〉⊔〈{Preparer} , {Preparer}〉 which is reduced to
〈{Bob ∧ Preparer} , {Bob ∨ Preparer}〉. The secrecy component of the label con-
firms our intuition that the intermediate results are composed of both party’s
data and thus the consent of both Bob and Preparer is needed to observe it. In
parallel, the integrity component agrees with the intuition that the intermediate
results could have been created from Bob or Preparer’s data.

2.1 Declassification and endorsement

We model both declassification and endorsement as principals explicitly decid-
ing to exercise privileges. When code exercises privileges, it means code acting
on behalf of a combination of principals is requesting an action that might vi-
olate the can-flow-to relation. For instance, if the secrecy component of a label
is {Bob ∧ Preparer}, then by definition code must act on behalf of both Bob
and the Preparer to transmit the data over a public network. However, what
if the Preparer unilaterally wishes to change the secrecy label on data from
{Bob ∧ Preparer} to {Bob} (as to release the results to Bob)? Intuitively, such
a partial declassification should be allowed, because the data still cannot be
transmitted over the network without Bob’s consent. Hence, if the data is even-
tually made public, both Bob and the Preparer will have consented, even if not
simultaneously.

We formalize such partial declassification by defining a more permissive pre-
order, ⊑P (“can-flow-to given privileges P”). L1 ⊑P L2 means that when exer-
cising privileges P , it is permissible for data to flow from an entity labeled L1

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 25/102

to one labeled L2. L1 ⊑ L2 trivially implies L1 ⊑P L2 for any privileges P , but
for non-empty P , there exist labels for which L1 ⊑P L2 even though L1 6⊑ L2.

We represent privileges P as a conjunction of principals for whom code is act-
ing. (Actually, P can be a more general Boolean formula like label components,
but the most straight-forward use is as a simple conjunction of principals.) We
define ⊑P as follows:

Definition 4 (can-flow-to given privileges relation). Given a Boolean for-
mula P representing privileges and any two DC labels L1 = 〈S1, I1〉 and L2 =
〈S2, I2〉, the can-flow-to given privileges P relation is defined as:

P ∧ S2 =⇒ S1 P ∧ I1 =⇒ I2

〈S1, I1〉 ⊑P 〈S2, I2〉

Recall that without exercising additional privileges, data labeled 〈S, I〉 can be
written to a public network, labeled Lpub, only with the permission of a set
of principals satisfying the Boolean formula S, while data read from a public
network can be labeled 〈S, I〉 only with the permission of a set of principals
satisfying I. Considering additional privileges, it is easy to see that 〈S, I〉 ⊑P

Lpub iff P =⇒ S and, conversely, Lpub ⊑P 〈S, I〉 iff P =⇒ I. In other words,
code exercising privileges P can declassify and write data to the public network
if P implies the secrecy label of that data, and can similarly incorporate and
endorse data from the public network if P implies the integrity label.

In our WebTax example, the Spreadsheet program runs on behalf of Bob and
exercises the {Bob} privilege to endorse data sent to WebTax. Conversely, the
WebTax program is executed with the {Preparer} privilege which it exercises
when declassifying results from {Bob∧Preparer} to {Bob}; as expected, to allow
Bob to observe the results, this declassification step is crucial.

It is a property of our system that exporting data through multiple exercises
of privilege cannot reduce the overall privilege required to export data. For
instance, if 〈S, I〉 ⊑P1 〈S′, I ′〉 ⊑P2 Lpub, it must be that P1 ∧ P2 =⇒ S, since
P2 =⇒ S′ and P1 ∧S′ =⇒ S. A similar, and dual, property holds for multiple
endorsements.

The mechanisms provided by ⊑P corresponds to the who dimension of de-
classification [25], i.e., whoever has the privileges P can use the relationship ⊑P

to release (endorse) information. With minimal encoding, it is also possible to
address the what and when dimension using ⊑P . Specifically, the what dimension
can be addressed by carefully designing the data type in such a way that there
is an explicit distinction on what part of the data is allowed to be released. The
when dimension, on the other hand, consists on designing the trusted modules in
such a way that certain privileges can only be exercised when some, well-defined,
events occurs.

In our model, privileges can be delegated. Specifically, a process may delegate
privileges to another process according to the following definition:

Definition 5 (Can-delegate relation). A process with privilege P can dele-
gate any privilege P ′, such that P =⇒ P ′.

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 26/102

In other words, it is possible to delegate a privilege P ′ that is at most as strong
as the parent privilege P . In Section 5, we give a concrete example of using
delegation to implement a privilege separation.

2.2 Ownership and categories

Our definition of DC label components as conjunctions of clauses, each imposing
an information flow restriction, is similar to the DStar [31] label format which
uses a set of categories, each of which is used to impose a flow restriction. Though
the name category may be used interchangeably with clause, our categories differ
from those of DStar (or even DLM) in that they are disjunctions of principals—
hence the name, disjunction category labels.

The principals composing a category are said to own the category—every
owner is trusted to uphold or bypass the restriction imposed by the category.
For instance, the category [Bob ∨ Alice] is owned by both Alice and Bob. We
can thus interpret the secrecy component {[Bob ∨ Alice] ∧ Preparer} to specify
that data can be observed by the Preparer in collaboration with either Bob or
Alice. Though implicit in our definition of a DC label, this joint ownership of a
category allows for expressing quite complex policies. For example, to file joint
taxes with Alice, Bob can simply labels the tax data 〈{[Bob ∨ Alice]} , {Bob}〉,
and now the WebTax results can be observed by both him and Alice. Expressing
such policies in other systems, such as DLM or DStar, can only be done through
external means (e.g., by creating a new principal AliceBob and encoding its
relationship to Alice and Bob in a centralized principal hierarchy).

In the previous section we represent privileges P as a conjunction of principals
for whom code is acting. Analogous to a principal owning a category, we say that
a process (or computation) owns a principal if it acting or running on its behalf.
(More generally, the code is said to own all the categories that compose P .)

3 Soundness

In this section, we show that the can-flow-to relation (⊑) and the relation (⊑P)
for can-flow-to given privileges P satisfy various properties. We first show that
⊑, given in Definition 2, is partial order.

Lemma 1 (DC labels form a partially ordered set). The binary relation
⊑ over the set of all DC labels is a partial order.

Proof. Reflexivity and transitivity follow directly from the Reflexivity and tran-
sitivity of (=⇒). By Definition 1, the components of a label, and thus the label,
have a unique representation. Directly, the antisymmetry property holds.

Recall from Section 2 that for any two labels L1 and L2 there exists a join
L1 ⊔ L2 and meet L1 ⊓ L2. The join must be the least upper bound of L1 and
L2, with L1 ⊑ L1 ⊔ L2, and L2 ⊑ L1 ⊔ L2; conversely, the meet must be the
greatest lower bound of L1 and L2, with L1 ⊓ L2 ⊑ L1 and L1 ⊓ L2 ⊑ L2. We
prove these properties and show that DC labels form a lattice.

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 27/102

Proposition 1 (DC labels form a bounded lattice). DC labels with the
partial order relation ⊑, join ⊔, and meet ⊓ form a bounded lattice with minimum
element ⊥ = 〈True,False〉 and maximum element ⊤ = 〈False,True〉.

Proof. The lattice property follows from Lemma 1, the definition of DC labels,
and the definition of the join and meet as given in Definition 3.

It is worth noting that the DC label lattice is actually product lattice, i.e.,
a lattice where components are elements of a secrecy and (a dual) integrity
lattice [29].

In Section 2.1 we detailed declassification and endorsement of data in terms
of exercising privileges. Both actions constitute bypassing restrictions of ⊑ by
using a more permissive relation ⊑P . Here, we show that this privilege-exercising
relation, as given in Definition 4, is a pre-order and that privilege delegation
respects its restrictions.

Proposition 2 (The ⊑P relation is a pre-order). The binary relation ⊑P

over the set of all DC labels is a pre-order.

Proof. Reflexivity and transitivity follow directly from the reflexivity and transi-
tivity of (=⇒). Unlike ⊑, however, ⊑P is not necessarily antisymmetric (show-
ing this, for a non-empty P , is trivial).

Informally, exercising privilege P may allow a principal to ignore the distinc-
tion between certain pairs of clauses, hence ⊑P is generally not a partial order.
Moreover, the intuition that ⊑P , for any non-empty P , is always more permissive
than ⊑ follows as a special case of the following proposition.

Proposition 3 (Privileges substitution). Given privileges P and P ′, if P =⇒
P ′ then P can always be substituted in for P ′. Specifically, for all labels L1 and
L2, if P =⇒ P ′ and L1 ⊑P ′ L2 then L1 ⊑P L2.

Proof. First, we note that if P =⇒ P ′, then for anyX,X ′, such thatX∧P ′ =⇒
X ′, the proposition X ∧P =⇒ X ∧P ′ =⇒ X ′ holds trivially. By Definition 4,
L1 ⊑P ′ L2 is equivalent to: S2 ∧P ′ =⇒ S1 and I1 ∧P ′ =⇒ I2. However, from
P =⇒ P ′, we have S2∧P =⇒ S2∧P ′ =⇒ S1, and I1∧P =⇒ I1∧P ′ =⇒ I2.
Correspondingly, we have L1 ⊑P L2.

Informally, if a piece of code exercises privileges P ′ to read or endorse a piece of
data, it can do so with P as well. In other words, ⊑P is at least at as permissive
as ⊑P ′ . Letting P ′ = True, it directly follows that for any non-empty P , i.e., for
P 6= True, the relation ⊑P is more permissive than ⊑. Moreover, negating the
statement of the proposition (if L1 6⊑P L2 then L1 6⊑P ′ L2) establishes that if
exercising a privilege P does not allow for the flow of information from L1 to L2,
then exercising a privilege delegated from P will also fail to allow the flow. This
property is especially useful in guaranteeing soundness of privilege separation.

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 28/102

4 Model Extensions

The base DC label model, as described in Section 2, can be used to implement
complex DIFC systems, despite its simplicity. Furthermore, the model can easily
be further extended to support features of existing security (IFC and capability)
systems, as we detail below.

4.1 Principal hierarchy

As previously mentioned, DLM [21] has a notion of a principal hierarchy defined
by a reflexive and transitive relation, called acts for. Specifically, a principal p
can act for another principal p′, written p � p′, if p is at least as powerful as p′:
p can read, write, declassify, and endorse all objects that p′ can; the principal
hierarchy tracks such relationships.

To incorporate this feature, we modify our model by encoding the principal
hierarchy as a set of axioms Γ . Specifically, if p � p′, then (p =⇒ p′) ∈
Γ . Consequently, Γ is used as a hypothesis in every proposition. For example,
without the principal hierarchy ∅ ⊢ p1 =⇒ [p2∨p3] does not hold, but if p1 � p2
then (p1 =⇒ p2), Γ ⊢ p1 =⇒ [p2 ∨ p3] does hold. We, however, note that our
notion of privileges and label component clauses (disjunction categories) can be
used to capture such policies, that are expressible in DLM only through the use
of the principal hierarchy. Compared to DLM, DC labels can be used to express
very flexible policies (e.g., joint ownership) even when Γ = ∅.

4.2 Using DC labels in a distributed setting

For scalability, extending a system to a distributed setting is crucial. Addressing
this issue, Zeldovich et al. [31], provide a distributed DIFC system, called DStar.
DStar is a framework (and protocol) that extends OS-level DIFC systems to a
distributed setting. Core to DStar is the notion of an exporter daemon, which,
among other things, maps DStar network labels to OS local labels such as DC
labels, and conversely. DC labels (and privileges) are a generalization of DStar
labels (and privileges)—the core difference being the ability of DC labels to rep-
resent joint ownership of a category with disjunctions, a property expressible in
DStar only with privileges. Hence, DC labels can directly be used when extend-
ing a system to a distributed setting. More interestingly, however, we can extend
DStar, while remaining backwards compatible (since every DStar label can be
expressed using a DC label), to use disjunction categories and thus, effectively,
use DC labels as network labels—this extension is part of our future work.

4.3 Delegation and pseudo-principals

As detailed in Section 2.1, our decentralized privileges can be delegated and thus
create a privilege hierarchy. Specifically, a process with a set of privileges may
delegate a category it owns (in the form of a single-category privilege), which
can then be further granted or delegated to another process.

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 29/102

In scenarios involving delegated privileges, we introduce the notion of a
pseudo-principal. Pseudo-principals allows one to express providence on data,
which is particularly useful in identifying the contributions of different compu-
tations to a task. A pseudo-principal is simply a principal (distinguished by the
prefix #) that cannot be owned by any piece of code and can only be created
when a privilege is delegated. Specifically, a process that owns principal p may
delegate a single-category privilege {[p ∨#c]} to a piece of code c. The disjunc-
tion is used to indicate that the piece of code c is responsible for performing a
task been delegated by the code owing p, which also does not trust c with the
privilege p. Observe that the singleton {#c} cannot appear in any privilege, and
as a result, if some data is given to p with the integrity restriction [p∨#c], then
the piece of code c must have been the originator. In a system with multiple
components, using pseudo-principals, one can enforce a pipeline of operations,
as shown by the implementation of a mail delivery agent in Section 6.

We note that pseudo-principals are treated as ordinary principals in label
operations. Moreover, in our implementation, the distinction is minimal: prin-
cipals are strings that cannot contain the character ‘#’, while pseudo-principals
are strings that always have the prefix ‘#’.

4.4 Privilege revocation

In dynamic systems, security policies change throughout the lifetime of the sys-
tem. It is common for new users to be added and removed, as is for privileges
to be granted and revoked [2]. Although our model can be extended to sup-
port revocation similar to that of public key infrastructures [11], we describe a
selective revocation approach, common to capability-based systems [24].

To allow for the flexibility of selective revocation, it is necessary to keep track
of a delegation chain with every category in a delegated privilege. For example,
if processes A and C respectively delegate the single-principal privileges {a} and
{c} to process B, B’s privilege will be encoded as {({A→ B}, a), ({C → B}, c)}.
Similarly, if B delegates {[a ∨ c]} to D, the latter’s privilege set will be {({A→
B → D,C → B → D}, [a∨ c])}. Now, to selectively revoke a category, a process
updates a system-wide revocation set Ψ with a pair consisting of the chain prefix
and a privilege (it delegated) to be revoked. For example, A can revoke B’s
ownership of {a} by adding ({A → B}, a) to Ψ . Consequently, when B or D
perform a label comparison involving privileges, i.e., use ⊑P , the revocation set
Ψ is consulted: since A → B is a prefix in both cases, and a =⇒ a and
a =⇒ [a ∨ c], neither B nor D can exercise their delegated privileges. More
generally, ownership of single-category privilege {c} with chain x is revoked if
there is a pair (y, ψ) ∈ Ψ such that the chain y is a prefix of a chain in x
and ψ =⇒ c. We finally note that, although this description of revocation
relies on a centralized revocation set Ψ , selective revocation, in practice, can be
implemented without a centralized set, using patterns such as Redell’s “caretaker
pattern” [24, 18] with wrapper, or membrane, objects transitively applying the
revocation [19, 18].

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 30/102

5 Security Labeling Patterns

When building practical IFC systems, there are critical design decisions involv-
ing: (1) assigning labels to entities (data, channels, etc.), and (2) delegating
privileges to executing code. In this section, we present patterns that can be
used as a basis for these design decisions, illustrated using simplified examples
of practical system applications.

5.1 Confinement and access control

A very common security policy is confinement : a program is allowed to compute
on sensitive data but cannot export it [16, 26]. The tax-preparation example of
Section 2 is a an examples of a system that enforces confinement.

In general, we may wish to confine a computation and guarantee that it does
not release (by declassification) user A’s sensitive data to the public network or
any other channel. Using the network as an illustrative example, and assuming
A’s sensitive data is labeled LA, confinement may be achieved by executing the
computation with privileges P chosen such that LA 6⊑P Lpub. A complication is
that most existing IFC systems (though not all, see, e.g., [6, 14]) are susceptible
to covert channel attacks that circumvent the restrictions based on labels and
privileges. For example, a computation with no privileges might read sensitive
data and leak information by, e.g., not terminating or affecting timing behavior.
To address confinement in the presence of covert channels, we use the notion of
clearance [5], previously introduced and formalized in [30, 30, 28] in the context
of IFC.

Clearance imposes an upper bound on the sensitivity of the data that the
computation can read. To prevent a computation from accessing (reading or
writing) data labeled LA, we set the computation’s clearance to some LC such
that LA 6⊑ LC . With this restriction, the computation may read data labeled
LD only if LD ⊑ LC . Observe that in a similar manner, clearance can be used
to enforce other forms of discretionary access control.

5.2 Privilege separation

Fig. 2: Simple MDA.

Using delegation, a computation may be com-
partmentalized into sub-computations, with the
privileges of the computation subdivided so
that each sub-computation runs with least privi-
lege. Consider, for example, a privilege-separated
mail delivery agent (MDA) that performs spam
filtering.

As with many real systems, the example
MDA of Fig. 2 is composed of different, and pos-
sibly untrustworthy, modules. In this example,
the components are a network receiver, R, and a
spam filter, S. Instead of combining the compo-
nents into a monolithic MDA, the MDA author
can segregate the untrustworthy components and execute then with the principle

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 31/102

of least privilege. This avoids information leaks and corruption due to negligence
or malfeasance on the component authors’ part. Specifically, the receiver R is
executed with the delegated privilege {[A ∨#R]}, and the spam filter S is ex-
ecuted with the privilege {[A ∨#S]}. As a consequence, R and S cannot read
A’s sensitive information and leak it to the network, corrupt A’s mailbox, nor
forge data on A’s behalf.

Additionally, the MDA can enforce the policy that a mail message always
passes through both receiver R and spam filter S. To this end, the MDA includes
a small, trusted forwarder F , running with the privilege {A}, which endorses
messages on behalf of A and writes them to the mailbox only after checking that
they have been endorsed by both R and S. In a similar manner, this example can
be further extended to verify that the provenance of a message is the network
interface, or that the message took a specific path (e.g., R then S, but not S
then R), among other.

5.3 User authentication

Fig. 3: User authentication.

Another common requirement of security sys-
tems is user authentication. We consider
password-based login as an example, where
a successful authentication corresponds to
granting the authenticated user the set of
privileges associated with their credentials.
Furthermore, we consider authentication in
the context of (typed) language-level DIFC
systems; an influential OS-level approach has
been considered in [30]. Shown in Fig. 3 is an
example system which consists of a login client
L, and an authentication service AU .

To authenticate user U , the login client
invokes the user authentication service AU ,
which runs with the {U} privilege. Concep-
tually, when invoked with U ’s correct creden-
tials, AU grants (by delegating) the caller the
{U} privilege. However, in actuality, the login
client and authentication service are in mutual
distrust: L does not trust AU with U ’s pass-
word, for AU might be malicious and simply
wish to learn the password, while AU does not
trust L to grant it the {U} privilege without
first verifying credentials. Consequently, the
authentication requires several steps.

We note that due to the mutual distrust, the user’s stored salt s and password
hash h = H(p‖s) is labeled with both, the user and login client’s, principals,
i.e., h and s have label 〈{U ∧ L} , {U ∧ L}〉. Solely, labeling them 〈{U} , {U}〉
would allow AU to carry out an off-line attack to recover p. The authentication
procedure is as follows.

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 32/102

1. The user’s input password p′ to the login client is labeled 〈{L} , {L}〉, and
along with a closure CL is passed to the authentication serviceAU . As further
detailed below, closures are used in this example as a manner to exercise
privileges under particular conditions and operations.

2. AU reads U ’s stored salt s and password hash h. It then computes the hash
h′ = H(p′‖s) and compares h′ with h. The label of this result is simply the
join of h and h′: 〈{U ∧ L} , {L}〉. Since AU performed the computation, it
endorses the result by adding U to its integrity component; for clarity, we
name this result v, as show in Fig 3.

- Remark: At this point, neither L nor AU are able to read and fully declassify
the secret password-check result v. Moreover, without eliminating the mutual
distrust, neither L nor S can declassify v directly. Consider, for example,
if AU is malicious and had, instead, performed a comparison of H(p′‖s)
and H(p′′‖s), for some guessed password p′′. If L were to declassify the
result, AU would learn that p = p′′, assuming the user typed in the correct
password, i.e., p = p′. Hence, we rely on purely functional (and statically-
typed) closures to carry out the declassification indirectly.

3. When invoking AU , L passed a declassification closure CL, which has the
{L} privilege locally bound. Now, AU invokes CL with v and its own declas-
sification closure CAU .

4. CL declassifies v (DL in Fig. 3) to 〈{U} , {U ∧ L}〉, and then invokes CAU

with the new, partially-declassified result.
5. The CAU closure has the {U} privilege bound and upon being invoked, sim-

ply verifies the result and its integrity (VU in Fig. 3). If the password is correct
v is true and then CAU returns the privilege {U} labeled with 〈{L},True〉;
otherwise it returns the empty privilege set. It is important that the in-
tegrity of v be verified, for a malicious L could provide a closure that forges
password-check results, an attempt to wrongfully gain privileges.

6. The privilege returned from invoking CAU is endorsed by CL (EL in Fig. 3),
only if its secrecy component is L. This asserts that upon returning the
privilege from CL, AU cannot check if the privilege is empty or not, and
thus infer the comparison result.

7. It only remains for AU to forward the labeled privilege back to L.

We finally note that the authentication service is expected to keep state that
tracks the number of attempts made by a login client, as each result leaks a bit
of information; to limit the number of unsuccessful attempts requires the use of
a (minimal) code that is trusted by both L and AU , as shown in [30].

6 Implementing DC labels

We present two Haskell implementations of DC labels3. The first, dclabel, is a
library that provides a simple embedded domain specific language for construct-
ing and working with dynamic labels and privileges. Principals in the dclabel

3 Available at http://www.scs.stanford.edu/~deian/dclabels

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 33/102

library are represented by strings, while label components are lists of clauses
(categories), which, in turn, are lists of principals. We use lists as sets for sim-
plicity and because Haskell supports list comprehension; this allowed for a very
simple translation from the formal definitions of this paper to (under 180 lines of)
Haskell code. We additionally implemented the instances necessary to use DC la-
bels with the label-polymorphic dynamic DIFC library, LIO [28]. Given the sim-
plicity of the implementation, we believe that porting it to other libraries, such
as [17, 13], can be accomplished with minimal effort. Finally, we note that our
implementation was thoroughly tested using the QuickCheck4 library, however
formal verification of the implementation using Zeno [27], a Haskell automated
proof system, was unsuccessful. This is primarily due to Zeno’s infancy and lack
of support for analyzing Haskell list comprehension. A future direction includes
implementing DC labels in Isabelle or Coq from which a provably-correct Haskell
implementation can be extracted.

Although we have primarily focused on dynamic IFC, in cases where covert
channels, runtime overhead, or failures are not tolerable, DC labels can also be
used to enforce IFC statically. To this end, we implement dclabel-static, a
prototype IFC system that demonstrates the feasibility of statically enforcing
DIFC using secrecy-only DC labels, without modifying the Haskell language or
the GHC compiler. Since DC labels are expressed using propositional logic, a
programming language that has support for sum, product, and function types
can be used, without modification, to enforce information flow control according
to the Curry-Howard correspondence [12, 9]. According to the correspondence,
disjunction, conjunction and implication respectively correspond to sum, prod-
uct, and function types. Hence, for a secrecy-only DC label, to prove L1 ⊑ L2,
i.e., L2 =⇒ L1, we need only construct a function that has type L2 → L1:
successfully type-checking a program directly corresponds to verifying that the
code does not violate IFC.

The library exports various type classes and combinators that facilitates the
enforcement of static IFC. For example, we provide type constructors to cre-
ate labels from principals—a principal in this system is a type for which an
instance of the Principal type class is defined. To label values, we associate
labels with types. Specifically, a labeled type is a wrapper for a product type,
whose first component is a label, and whose second component, the value, can-
not be projected without declassification. The library further provides a function,
relabel, which, given a labeled value (e.g., (L1, 3)), a new label L2, and a proof
of L1 ⊑ L2 (a lambda term of type L2 → L1), returns the relabeled value (e.g.,
(L2, 3)). Since providing such proofs is often tedious, we supply a tool called
dcAutoProve, that automatically inserts proofs of can-flow-to relations for ex-
pressions named auto, with an explicit type signature. Our automated theorem
prover is based a variant of Gentzen’s LJ sequent calculus [7].

4 http://hackage.haskell.org/package/QuickCheck

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 34/102

7 Related work

DC labels closely resemble DLM labels [21] and their use in Jif [22]. Like DC
labels, DLM labels express both secrecy and integrity policies. Core to a DLM
label are components that specify an owner (who can declassify the data) and a
set of readers (or writers). Compared to our disjunction categories, DLM does
not allow for joint ownership of a component—they rely on a centralized principal
hierarchy to express partial ownership. However, policies (natural to DLM) which
allow for multiple readers, but a single owner, in our model, require a labeling
pattern that relies on the notion of clearance, as discussed in Section 5 and
used in existing DIFC systems [30, 31, 28]. Additionally, unlike to DLM labels as
formalized in [20], DC labels form a bounded lattice with a join and meet that
respectively correspond to the least upper bound and greatest lower bound; the
meet for DLM labels is not always the greatest lower bound.

The language Paralocks [3] uses Horn clauses to encode fine-grained IFC
policies following the notion of locks: certain flows are allowed when correspond-
ing locks are open. Constraining our model to the case where a privilege set is
solely a conjunction of principals, Paralocks be easily used to encode our model.
However, it remain an open problem to determine if disjunctive privileges can
be expressed in their notion of state.

The Asbestos [8] and HiStar [30] operating systems enforce DIFC using As-
bestos labels. Asbestos labels use the notion of categories to specify information
flow restrictions in a similar manner to our clauses/categories. Unlike DC labels,
however, Asbestos labels do not rely on the notion of principals. We can map a
subset of DC labels to Asbestos labels by mapping secrecy and integrity cate-
gories to Asbestos levels 3 and 0, respectively. Similarly ownership of a category
maps to level ⋆. This mapping is limited to categories with no disjunction, which
are equivalent to DStar labels [31], as discussed in Section 4. Mapping disjunc-
tion categories can be accomplished by using the system’s notion of privileges.
Conversely, both Asbestos and DStar labels are subsumed by our model. More-
over, compared to these systems we give precise semantics, prove soundness of
the label format, and show its use in enforcing DIFC statically.

Capability-based systems such as KeyKOS [1], and E [19] are often used
to restrict access to data. Among other purposes, capabilities can be used to
enforce discretionary access control (DAC), and though they can enforce MAC
using patterns such as membranes, the capability model is complimentary. For
instance, our notion of privilege is a capability, while a delegated privilege loosely
corresponds to an attenuated capability. This notion of privileges as capabilities
is like that of Flume [15]. However, whereas they consider two types of privilege
(essentially one for secrecy and another for integrity), our notion of privilege
directly corresponds to ownership and conferring the right to exercise it in any
way. Moreover, delegated privileges and the notion of disjunction provides an
equal abstraction.

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 35/102

8 Conclusion

Decentralized information flow control can be used to build applications that
enforce end-to-end security policies using untrusted code. DIFC systems rely on
labels to track and enforce information flow. We present disjunction category la-
bels, a new label format useful in enforcing information flow control in systems
with mutually distrusting parties. In this paper, we give precise semantics for
DC labels and prove various security properties they satisfy. Furthermore, we
introduce and prove soundness of decentralized privileges that are used in declas-
sifying and endorsing data. Compared to Myers and Liskov’s DLM, our model is
simpler and does not rely on a centralized principal hierarchy, our privilege hier-
archy is distributed. We highlight the expressiveness of DC labels by providing
several common design and labeling patterns. Specifically, we show how to em-
ploy DC labels to express confinement, access control, privilege separation, and
authentication. Finally, further illustrating flexibility of the model, we describe
two Haskell implementations: a library used to perform dynamic label checks,
compatible with existing DIFC systems, and a prototype library that enforces
information flow statically by leveraging Haskell’s module and type system.

Acknowledgments This work was supported by DARPA CRASH and PROCEED,

Google, the Swedish research agency VR, the NSF, and the AFOSR. D. Stefan is

supported by the DoD through the NDEG Fellowship Program.

References

1. A. C. Bomberger, A. P. Frantz, W. S. Frantz, A. C. Hardy, N. Hardy, C. R. Landau,
and J. S. Shapiro. The KeyKOS nanokernel architecture. In Proc. of the USENIX
Workshop on Micro-Kernels and Other Kernel Architectures, April 1992.

2. D. Boneh, X. Ding, G. Tsudik, and C. Wong. A method for fast revocation of public
key certificates and security capabilities. In Proceedings of the 10th conference on
USENIX Security Symposium-Volume 10, pages 22–22. USENIX Association, 2001.

3. N. Broberg and D. Sands. Paralocks: role-based information flow control and
beyond. In SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’10, pages 431–444, 2010.

4. D. E. Denning. A lattice model of secure information flow. Communications of the
ACM, 19(5):236–243, May 1976.

5. Department of Defense. Trusted Computer System Evaluation Criteria (Orange
Book), DoD 5200.28-STD edition, December 1985.

6. D. Devriese and F. Piessens. Noninterference through secure multi-execution. In
2010 IEEE Symposium on Security and Privacy, pages 109–124. IEEE, 2010.

7. R. Dyckhoff. Contraction-free sequent calculi for intuitionistic logic. Journal of
Symbolic Logic, pages 795–807, 1992.

8. P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey, D. Ziegler, E. Kohler,
D. Mazières, F. Kaashoek, and R. Morris. Labels and event processes in the
Asbestos operating system. In Proc. of the 20th ACM Symposium on Operating
Systems Principles, pages 17–30, Brighton, UK, October 2005. ACM.

9. J. Gallier. Constructive logics part i: A tutorial on proof systems and typed λ-
calculi. Theoretical computer science, 110(2):249–339, 1993.

10. J. Goguen and J. Meseguer. Security policies and security models. In I. C. S. Press,
editor, Proc of IEEE Symp. on Security and Privacy, pages 11–20, April 1982.

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 36/102

11. C. Gunter and T. Jim. Generalized certificate revocation. In Proceedings of the 27th
ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 316–329. ACM, 2000.

12. W. Howard. The formulae-as-types notion of construction. To HB Curry: essays
on combinatory logic, lambda calculus and formalism, pages 479–490, 1980.

13. M. Jaskelioff and A. Russo. Secure multi-execution in Haskell. In Proc. Andrei
Ershov International Conference on Perspectives of System Informatics, LNCS.
Springer Verlag, June 2011.

14. V. Kashyap, B. Wiedermann, and B. Hardekopf. Timing-and termination-sensitive
secure information flow: Exploring a new approach. In Security and Privacy (SP),
2011 IEEE Symposium on, pages 413–428. IEEE, 2011.

15. M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek, E. Kohler, and R. Mor-
ris. Information flow control for standard OS abstractions. In Proc. of the 21st
Symp. on Operating Systems Principles, October 2007.

16. B. W. Lampson. A note on the confinement problem. Communications of the
ACM, 16(10):613–615, 1973.

17. P. Li and S. Zdancewic. Arrows for secure information flow. Theoretical Computer
Science, 411(19):1974–1994, 2010.

18. M. Miller and J. Shapiro. Paradigm regained: Abstraction mechanisms for access
control. Advances in Computing Science–ASIAN 2003, pages 224–242, 2003.

19. M. S. Miller. Robust Composition: Towards a Unified Approach to Access Con-
trol and Concurrency Control. PhD thesis, Johns Hopkins University, Baltimore,
Maryland, USA, May 2006.

20. A. Myers and B. Liskov. Complete, safe information flow with decentralized labels.
In IEEE Security and Privacy, 1998., pages 186–197. IEEE, 1998.

21. A. C. Myers and B. Liskov. A decentralized model for information flow control. In
Proc. of the 16th ACM Symp. on Operating Systems Principles, 1997.

22. A. C. Myers and B. Liskov. Protecting privacy using the decentralized label model.
ACM Trans. on Computer Systems, 9(4):410–442, October 2000.

23. C. Papadimitriou. Complexity Theory. Addison Wesley, 1993.
24. D. Redell and R. Fabry. Selective revocation of capabilities. In Proceedings of the

International Workshop on Protection in Operating Systems, pages 192–209, 1974.
25. A. Sabelfeld and D. Sands. Dimensions and principles of declassification. In Proc.

IEEE Computer Security Foundations Workshop, pages 255–269, June 2005.
26. J. H. Saltzer and M. D. Schroeder. The protection of information in computer

systems. Proc. of the IEEE, 63(9):1278–1308, September 1975.
27. W. Sonnex, S. Drossopoulou, and S. Eisenbach. Zeno: A tool for the automatic ver-

ification of algebraic properties of functional programs. Technical report, Imperial
College London, Feb. 2011.

28. D. Stefan, A. Russo, J. C. Mitchell, and D. Mazières. Flexible dynamic information
flow control in Haskell. In Haskell Symposium, pages 95–106. ACM SIGPLAN,
September 2011.

29. S. Zdancewic and A. C. Myers. Robust declassification. In Proc. IEEE Computer
Security Foundations Workshop, pages 15–23, June 2001.

30. N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières. Making information
flow explicit in HiStar. In Proc. of the 7th Symp. on Operating Systems Design
and Implementation, pages 263–278, Seattle, WA, November 2006.

31. N. Zeldovich, S. Boyd-Wickizer, and D. Mazières. Securing distributed systems
with information flow control. In Proc. of the 6th Symp. on Networked Systems
Design and Implementation, pages 293–308, San Francisco, CA, April 2008.

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 37/102

7/8/2015

1

Mandatory Access Control

Alejandro Russo

russo@chalmers.se

ECI 2015, UBA, Buenos Aires, Argentina

Introduction
[Bell and LaPadula 73]

• Protect military secret in Operating Systems

Process. Why that

granularity?

IPC

Labels denoting

the sensitivity of

the information

being handle
When is it secure

to communicate?

Modern OS manifestation of MAC

[HiStar 2006]

[Asbestos 2005] [Flume 2007]

[seL4 2013]

Security checks

Write

Read

No write down!

No read up!

Principles
[Russo 2015]

• The no write-down and no read-up are enough to
implement systems which respect privacy

• It is a matter now of identifying read and write
effects

• Quiz:
fwrite (buffer , sizeof(char), sizeof(buffer), pFile);

Labeled resource

size_t fwrite (const void * ptr, size_t size, size_t count, FILE * stream);

It reads!

Integrity as the dual of confidentiality
[Biba 77]

• Confidentiality notion: secret data cannot
influence (affect) public data

• Integrity notion: tainted data cannot influence
(corrupt) trustworthy data

We focus on confidentiality

Building Secure Web Applications: From Theory to Practice

Web Browser Security

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 38/102

7/8/2015

2

Floating-label systems

Read

No read up!

Too restrictive

Read

The label of the process

accommodates according to

the data being observed

Label creep

Read

The label of the process can

become “too high, too soon” so

it cannot perform any write!

• Solution?

Mitigating label creep

• Problem

Read

Secret

Write

Write

PublicSecretPublic

Mitigating label creep

• Mitigation: divide your applications into different processes

Write

Read

Secret
Write

Public

Secret

Public

Mitigating label creep: shortcomings

1) Applications get divided due to security reason

2) Interprocess communication is expensive

3) Creating many dynamic proceeses is expensive

• Could we at least improve 2) and 3)?

MAC by programming languages
[Stefan et al. 2011] [Russo 2015]

•MAC systems can be implemented using programming
languages techniques
• LIO and MAC Haskell libraries

•Labeled computational tasks can be at the
granularity of PL-abstractions
• Lightweight threads (LIO), Functions, iFrames (COWL)

• Instead of splitting your app in several processes, you
might need to split it in several threads, functions, etc.

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 39/102

7/8/2015

3

Covert channels
[Lampson 73]

• A common critisisms that raises on MAC systems is the
presence of covert channels

• Features of the systems that were not originally
designed to transmit information, but they can do so!

Termination Time Energy consumption

Attitude against covert channels

• In real systems, there would be always covert channels
(and meny of them!)

• Attacker observatoinal power
• Attacker requires physical access

• Attacker requires access to a precise watch

• Attacker observers abnormal termination

• Bandwidth
• It must be addressed a covert channels with high bandwidth

and under the attacker observational power!

• Termination can leak secrets at a high bandwidth
in concurrent systems [Stefan et al. 2012]

• Location tracking by power consumption analysis
[Michalevsky et al., 2015]

• Remotely breaking OpenSSL
[Brumley and Boneh, 2003]

• Cache-attacks
• Breaking AES [Osvik et al. 2005]

• Leaking secrets from programs [Stefan et al. 2013]

It is a practical problem! Summary

• Introduction to MAC systems
• No read up, no write down principles

• Principled security checks based on read and write
side-effects in operations

• Integrity as a dual

• Floating-label systems

• Label creep problem
• Mitigation
• PL approaches

• Covert channels

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 40/102

7/8/2015

1

COWL (Firefox)

Alejandro Russo

russo@chalmers.se

ECI 2015, UBA, Buenos Aires, Argentina

Introduction
[COWL 2014]

• The most distinctive feature of COWL?

[BFlow 2009]
[DCS 2013]

• In a nutshell: (yet another) MAC for the browser

It is conceived to work in a scenario of mutual distrust

• Others: one origin trusted, and one untrusted
• What about if the untrusted origin wants to include another content from other origin?

COWL

Browsing context

DC-label, where

principals are origins

Internal Firefox Mechanism to

isolate iframes, tabs, etc.

Restricting cross-origin communication

• COWL controls intra- and extra-cross origin
communciation based on security labels (i.e., origins)

Extra-browserIntra-browser

Managing the browsing context label

COWL.enable();

COWL.privacyLabel
COWL.trustLabel

COWL.privileges

To inspect the labels,

just call .toString()

Own by the browsing context

Upgrading the (privacy) label

COWL.privacyLabel.and(COWL.privileges.asLabel);

• COWL is not a floating-label system

•Web pages need to explicitly program raising the

browsing context label
Why?

Building Secure Web Applications: From Theory to Practice

COWL

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 41/102

7/8/2015

2

Downgrading the (privacy) label

• COWL allows to lower the brosing context label in

a controlled manner (by exercising privileges)

// Label() - Privilege(Label(Role(http://alice.com:8080)))

COWL.privacyLabel = COWL.privacyLabel.and(COWL.privacyLabel.asLabel);

// Label(Role(http://alice.com:8080))

COWL.privacyLabel = new Label ();

// Label()

COWL.privacyLabel = new Label (“http://bob.com:9090”);

// Label(Role(http://bob.com:9090))

COWL.privacyLabel = new Label ();

// This fails!

Intra-browser (cross-origin) communication

• postMessage between iFrames

• Fragmented Identifier (http://web.com/x.html#id)
• Child iframe changes the #id of the parent (demo)

• COWL disallows it

• Check file WebSiteA/fragment-id.html

• Height and width of windows (layout)
• Covert channel

• Can you imagine how to write an attack?

Extra-browser (cross-origin) communication

Extra-browser

SOP, CSP, and CORs

Label()

•When the label is public, it behaves as before enabling
COWL

Extra-browser (cross-origin) communication

Extra-browser

SOP, CSP, and CORs

Label(Role(http://bob.com:9090))

•When the label contains one origin, XHR and CSP is redefined
to restrict requests and fetch resources from that origin

Extra-browser (cross-origin) communication

Extra-browser

SOP, CSP, and CORs

•When the label contains more than one origins or a user-
minted origin, no network communication is possible

Sending postMessages

• postMessage between iFrames

<iframe id="Bob" src="http://bob.com:9090/iframeBob.html">
</iframe>
…
<script>
…
iframeWin.postMessage(msg.value,

"http://bob.com:9090/iframeBob.html");
…
</script>

iFrame

It sends to Bob’s iFrame a message and it indicates

the origin acting as a sink for that message (it

needs to match that of the iFrame)

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 42/102

7/8/2015

3

Demo

Files: WebsiteA/iframeAlice.html

COWL postMessage communication

postMessage

Labeled blob (immutable data, i.e., no references)

It must hold to create a labeled blob (write effect?)

Safe intra-browser communication (part I)

• Sending a postMessage is asynchronous
• Read, write, or both effects? Write effect

If it does not hold, the

message gets lost

Safe intra-browser communication (part II)

• To read the message, the sink
needs to get tainted with the label
of the labeled blob

COWL.privacyLabel = COWL.privacyLabel.and(lblob.data.privacy);

// Now we can read content

var message = lblob.data.blob ;

Demo

Files: WebsiteA/iframeAlice2.html

Privileges manipulation

• Privileges are just as any other value

• However, they cannot be sent to another iFrame, etc.

// Now we can read content

var privs = COWL.privileges() ;

// Privs. placed in a labeled msg to be sent across iframes

var lblob = new LabeledBlob(privs, “http://destiny.com”) ;

• Once a privilege is given away, there is no turning back

• Privileges need to be carefully handled!
• In the future, COWL will introduce a grant function for this

purpose

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 43/102

7/8/2015

4

Labeled workers
[Web workers, W3C]

•Web workers are JavaScript threads

• Importantly, they do not have access to
• The document, window, and parent objects

• COWL supports labeled workers
• Benning workers (as invisible iFrames)

• Malicious workers (not implemented yet)

• Ideal for calling untrusted subroutines

Demo

Files: WebsiteA/alicepass.html

Common programming pattern

LWorker’s code

postMessage

var worker = new LWorker(“http://some.code/file.js”) ;

// How main page reacts to the worker

worker.onmessage = function function(data) {

…

} ;

// Sending messages to the worker

worker.postMessage(msg) ;

Common programming pattern

LWorker’s code

postMessage

// Worker reacts to messages from the main page

onmessage = function (data) {

…

} ;

// Sending messages to the parent

postMessage(msg) ;

Demo

Files: WebsiteA/alicepass_worker.html

Labeled workers implementation
[http://cowl.ws/cowl.js]

• At the moment, COWL implements labeled
workers as “invisible” iframes

• Pros: easy to implement
• You can even check the source code

• Cons: it is heavyweight
• LWorkers would be natively supported in a near

future

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 44/102

7/8/2015

5

User-minted privileges

• COWL grants origin privileges to browsing
contexts

• User can mint their own privileges

var userP = new FreshPrivilege() ;

// Privilege(Label(Role(moz-nullprincipal:{5335dd93-14fc-4435-aef7-

c90515944572})))

• How can they be used?
• To enforce browser confinement in browsing contexts

Confinement by user-minted privileges

<iframe>…</iframe>

Parent holds the privilege userP

COWL.privacyLabel = userP.asLabel

• If the privacy label includes a label derived from a
user-defined privilege, COWL drops network
communication

• The child can only report back to the parent

Labeled creep and XHR responses

• To read a XHR response, a context needs to raise
its current label

• This might lead to the problem of label creep
• Imagine web pages which send several XHR requests

to fetch different resources

Label()

(no privileges) bob.com

charlie.com

XHRLabel(bob.com)

(no privileges)

Labeled XHR

•Web pages send requests and the result is encapsulated
into a labeled blob

• Browsing context needs to get tainted when it needs to
read the response, not to receive it

• COWL will provide labeled XHR in a near future
• You can program it around, ideas?

Summary

• Browsing contexts associated with labels
• Local confinement policy

• Labeled message blobs
• Enforced confinement in cross-origin iFrames

• Based on labels, COWL controls
• XHR requests
• Fetching cross-origin resources (img, JavaScripts, etc.)

• Labeled workers
• Untrusted JS subroutines

• User-minted privileges
• Browser confinement

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 45/102

Protecting Users by Confining JavaScript with COWL
Deian Stefan∗

Stanford
Edward Z. Yang

Stanford
Petr Marchenko

Google
Alejandro Russo†

Chalmers
Dave Herman

Mozilla

Brad Karp
UCL

David Mazières
Stanford

ABSTRACT
Modern web applications are conglomerations of
JavaScript written by multiple authors: application devel-
opers routinely incorporate code from third-party libraries,
and mashup applications synthesize data and code hosted
at different sites. In current browsers, a web application’s
developer and user must trust third-party code in libraries
not to leak the user’s sensitive information from within
applications. Even worse, in the status quo, the only way
to implement some mashups is for the user to give her lo-
gin credentials for one site to the operator of another site.
Fundamentally, today’s browser security model trades pri-
vacy for flexibility because it lacks a sufficient mechanism
for confining untrusted code. We present COWL, a robust
JavaScript confinement system for modern web browsers.
COWL introduces label-based mandatory access control
to browsing contexts in a way that is fully backward-
compatible with legacy web content. We use a series of
case-study applications to motivate COWL’s design and
demonstrate how COWL allows both the inclusion of un-
trusted scripts in applications and the building of mashups
that combine sensitive information from multiple mutu-
ally distrusting origins, all while protecting users’ privacy.
Measurements of two COWL implementations, one in
Firefox and one in Chromium, demonstrate a virtually
imperceptible increase in page-load latency.

1 INTRODUCTION
Web applications have proliferated because it is so easy
for developers to reuse components of existing ones. Such
reuse is ubiquitous. jQuery, a widely used JavaScript li-
brary, is included in and used by over 77% of the Quant-
cast top-10,000 web sites, and 59% of the Quantcast top-
million web sites [3]. While component reuse in the ven-
erable desktop software model typically involves libraries,
the reusable components in web applications are not lim-
ited to just JavaScript library code—they further include
network-accessible content and services.

The resulting model is one in which web developers
cobble together multiple JavaScript libraries, web-based
content, and web-based services written and operated by
various parties (who in turn may integrate more of these re-
sources) and build the required application-specific func-
tionality atop them. Unfortunately, some of the many
∗Work partly conducted while at Mozilla.
†Work partly conducted while at Stanford.

contributors to the tangle of JavaScript comprising an
application may not have the user’s best interest at heart.
The wealth of sensitive data processed in today’s web
applications (e.g., email, bank statements, health records,
passwords, etc.) is an attractive target. Miscreants may
stealthily craft malicious JavaScript that, when incorpo-
rated into an application by an unwitting developer, vio-
lates the user’s privacy by leaking sensitive information.

Two goals for web applications emerge from the prior
discussion: flexibility for the application developer (i.e.,
enabling the building of applications with rich functional-
ity, composable from potentially disparate pieces hosted
by different sites); and privacy for the user (i.e., to en-
sure that the user’s sensitive data cannot be leaked from
applications to unauthorized parties). These two goals
are hardly new: Wang et al. articulated similar ones, and
proposed new browser primitives to improve isolation
within mashups, including discretionary access control
(DAC) for inter-frame communication [41]. Indeed, to-
day’s browsers incorporate similar mechanisms in the
guises of HTML5’s iframe sandbox and postMessage
API [47]. And the Same-Origin Policy (SOP, reviewed in
Section 2.1) prevents JavaScript hosted by one principal
from reading content hosted by another.

Unfortunately, in the status-quo web browser security
architecture, one must often sacrifice privacy to achieve
flexibility, and vice-versa. The central reason that flex-
ibility and privacy are at odds in the status quo is that
the mechanisms today’s browsers rely on for providing
privacy—the SOP, Content Security Policy (CSP) [42],
and Cross-Origin Resource Sharing (CORS) [45]—are
all forms of discretionary access control. DAC has the
brittle character of either denying or granting untrusted
code (e.g., a library written by a third party) access to
data. In the former case, the untrusted JavaScript might
need the sensitive data to implement the desired appli-
cation functionality—hence, denying access prioritizes
privacy over flexibility. In the latter, DAC exercises no
control over what the untrusted code does with the sen-
sitive data—and thus prioritizes flexibility over privacy.
DAC is an essential tool in the privacy arsenal, but does
not fit cases where one runs untrusted code on sensitive
input, which are the norm for web applications, given
their multi-contributor nature.

In practice, web developers turn their backs on privacy
in favor of flexibility because the browser doesn’t offer

1

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 46/102

primitives that let them opt for both. For example, a de-
veloper may want to include untrusted JavaScript from
another origin in his application. All-or-nothing DAC
leads the developer to include the untrusted library with
a script tag, which effectively bypasses the SOP, in-
terpolating untrusted code into the enclosing page and
granting it unfettered access to the enclosing page’s ori-
gin’s content.1 And when a developer of a mashup that
integrates content from other origins finds that the SOP
forbids his application from retrieving data from them, he
designs his mashup to require that the user provide the
mashup her login credentials for the sites at the two other
origins [2]—the epitome of “functionality over privacy.”

In this paper, we present COWL (Confinement with
Origin Web Labels), a mandatory access control (MAC)
system that confines untrusted JavaScript in web browsers.
COWL allows untrusted code to compute over sensitive
data and display results to the user, but prohibits the un-
trusted code from exfiltrating sensitive data (e.g., by send-
ing it to an untrusted remote origin). It thus allows web
developers to opt for both flexibility and privacy.

We consider four motivating example web applica-
tions—a password strength-checker, an application that
imports the (untrusted) jQuery library, an encrypted cloud-
based document editor, and a third-party mashup, none
of which can be implemented in a way that preserves
the user’s privacy in the status-quo web security archi-
tecture. These examples drive the design requirements
for COWL, particularly MAC with symmetric and hierar-
chical confinement that supports delegation. Symmetric
confinement allows mutually distrusting principals each
to pass sensitive data to the other, and confine the other’s
use of the passed sensitive data. Hierarchical confinement
allows any developer to confine code she does not trust,
and confinement to be nested to arbitrary depths. And
delegation allows a developer explicitly to confer the priv-
ileges of one execution context on a separate execution
context. No prior browser security architecture offers this
combination of properties.

We demonstrate COWL’s applicability by implement-
ing secure versions of the four motivating applications
with it. Our contributions include:
I We characterize the shared needs of four case-study

web applications (Section 2.2) for which today’s
browser security architecture cannot provide privacy.

I We describe the design of the COWL label-based
MAC system for web browsers (Section 3), which
meets the requirements of the four case-study web
applications.

I We describe designs of the four case-study web appli-
cations atop COWL (Section 4).

I We describe implementations of COWL (Section 5)
for the Firefox and Chromium open-source browsers;

1Indeed, jQuery requires such access to the enclosing page’s content!

DOM$ a.com$

DOMAPI

a.com$
XHR$

DOM$
b.com$

DOMAPI

b.com$
XHR$

postMessage$
JavaScript$ JavaScript$

Figure 1: Simplified browser architecture.

our evaluation (Section 6) illustrates that COWL incurs
minimal performance overhead over the respective
baseline browsers.

2 BACKGROUND, EXAMPLES, & GOALS
A single top-level web page often incorporates multiple
scripts written by different authors.2 Ideally, the browser
should protect the user’s sensitive data from unauthorized
disclosure, yet afford page developers the greatest pos-
sible flexibility to construct featureful applications that
reuse functionality implemented in scripts provided by
(potentially untrusted) third parties. To make concrete the
diversity of potential trust relationships between scripts’
authors and the many ways page developers structure
amalgamations of scripts, we describe several example
web applications, none of which can be implemented with
strong privacy for the user in today’s web browsers. These
examples illustrate key requirements for the design of a
flexible browser confinement mechanism. Before describ-
ing these examples, however, we offer a brief refresher on
status-quo browser privacy polices.

2.1 Browser Privacy Policies
Browsing contexts Figure 1 depicts the basic building
blocks of the current web security architecture. A brows-
ing context (e.g., a page or frame) encapsulates pre-
sentable content and a JavaScript execution environment
(heap and code) that interacts with content through the
Document Object Model (DOM) [47]. Browsing contexts
may be nested (e.g., by using iframes). They also may
read and write persistent storage (e.g., cookies), issue
network requests (either implicitly in page content that
references a URL retrieved over the network, or explicitly
in JavaScript, using the XMLHttpRequest (XHR) con-
structor), and communicate with other contexts (IPC-style
via postMessage, or, in certain cases, by sharing DOM
objects). Some contexts such as Web Workers [44] run
JavaScript but do not instantiate a DOM. We use the terms
context and compartment interchangeably to refer to both
browsing contexts and workers, except when the more
precise meaning is relevant.
Origins and the Same-Origin Policy Since different au-
thors may contribute components within a page, today’s

2Throughout we use “web page” and “web application” interchange-
ably, and “JavaScript code” and “script” interchangeably.

2

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 47/102

status quo browsers impose a security policy on interac-
tions among components. Policies are expressed in terms
of origins. An origin is a source of authority encoded by
the protocol (e.g., https), domain name (e.g., fb.com),
and port (e.g., 443) of a resource URL. For brevity, we
elide the protocol and port from URLs throughout.

The same-origin policy specifies that an origin’s re-
sources should be readable only by content from the same
origin [7, 38, 52]. Browsers ensure that code executing in
an a.com context can only inspect the DOM and cook-
ies of another context if they share the same origin, i.e.,
a.com. Similarly, such code can only inspect the response
to a network request (performed with XHR) if the remote
host’s origin is a.com.

The SOP does not, however, prevent code from disclos-
ing data to foreign origins. For example, code executing
in an a.com context can trivially disclose data to b.com

by using XHR to perform a network request; the SOP
prevents the code from inspecting responses to such cross-
origin XHR requests, but does not impose any restrictions
on sending such requests. Similarly, code can exfiltrate
data by encoding it in the path of a URL whose origin is
b.com, and setting the src property of an img element
to this URL.
Content Security Policy (CSP) Modern browsers allow
the developer to protect a user’s privacy by specifying a
CSP that limits the communication of a page—i.e., that
disallows certain communication ordinarily permitted by
the SOP. Developers may set individual CSP directives to
restrict the origins to which a context may issue requests
of specific types (for images or scripts, XHR destinations,
etc.) [42]. However, CSP policies suffer from two limita-
tions. They are static: they cannot change during a page’s
lifetime (e.g., a page may not drop the privilege to com-
municate with untrusted origins before reading potentially
sensitive data). And they are inaccessible: JavaScript code
cannot inspect the CSP of its enclosing context or some
other context, e.g., when determining whether to share
sensitive data with that other context.
postMessage and Cross-Origin Resource Sharing
(CORS) As illustrated in Figure 1, the HTML5
postMessage API [43] enables cross-origin communi-
cation in IPC-like fashion within the browser. To prevent
unintended leaks [8], a sender always specifies the origin
of the intended recipient; only a context with that origin
may read the message.

CORS [45] goes a step further and allows controlled
cross-origin communication between a browsing context
of one origin and a remote server with a different origin.
Under CORS, a server may include a header on returned
content that explicitly whitelists other origin(s) allowed
to read the response.

Note that both postMessage’s target origin and CORS
are purely discretionary in nature: they allow static selec-

tion of which cross-origin communication is allowed and
which denied, but enforce no confinement on a receiving
compartment of differing origin. Thus, in the status-quo
web security architecture, a privacy-conscious developer
should only send sensitive data to a compartment of dif-
fering origin if she completely trusts that origin.

2.2 Motivating Examples
Having reviewed the building blocks of security policies
in status-quo web browsers, we now turn to examples of
web applications for which strong privacy is not achiev-
able today. These examples illuminate key design require-
ments for the COWL confinement system.
Password Strength Checker Given users’ propensity
for choosing poor (i.e., easily guessable) passwords, many
web sites today incorporate functionality to check the
strength of a password selected by a user and offer the
user feedback (e.g., “too weak; choose another,” “strong,”
etc.). Suppose a developer at Facebook (origin fb.com)
wishes to re-use password-checking functionality pro-
vided in a JavaScript library by a third party, say, from
origin sketchy.ru. If the developer at fb.com simply
includes the third party’s code in a script tag referenc-
ing a resource at sketchy.ru, then the referenced script
will have unfettered access to both the user’s password
(provided by the Facebook page, which the library must
see to do its job) and to write to the network via XHR.
This simple state of affairs is emblematic of the ease with
which naı̈ve web developers can introduce leaks of sensi-
tive data in applications.

A more skilled web developer could today host the
checker script on her own server and have that server
specify a CSP policy for the page. Unfortunately, a CSP
policy that disallows scripts within the page from ini-
tiating XHRs to any other origins is too inflexible, in
that it precludes useful operations by the checker script,
e.g., retrieving an updated set of regular expressions de-
scribing weak passwords from a remote server (essen-
tially, “updating” the checker’s functionality). Doing so
requires communicating with a remote origin. Yet a CSP
policy that permits such communication, even with the
top-level page’s same origin, is too permissive: a mali-
cious script could potentially carry out a self-exfiltration
attack and write the password to a public part of the
trusted server [11, 50].

This trade-off between flexibility and privacy, while in-
herent to CSP, need not be fundamental to the web model.
The key insight is that it is entirely safe and useful for an
untrusted script to communicate with remote origins be-
fore it reads sensitive data. We note, then, the requirement
of a confinement mechanism that allows code in a com-
partment to communicate with the network until it has
been exposed to sensitive data. MAC-based confinement
meets this requirement.

3

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 48/102

sketchy.ru$

public$ $$$@.com$

[“password”]$@.com$

[“weak”]$@.com$

2$2$

2$1$

2$3$

2$4$
checker$

public$

DOM$

@.com�$

Figure 2: Third-party password checker architecture under
COWL.

Figure 2 shows how such a design might look. In this
and subsequent examples, rectangular frames denote com-
partments, arrows denote communication (either between
a compartment and the network, or IPC-style between
compartments), and events during execution are num-
bered sequentially in time. As we have proposed previ-
ously [49], compartments may be labeled (Section 3.1)
with the origins to whose sensitive data they have been
exposed. A compartment that has not yet observed sen-
sitive data is denoted public; however, when it wishes
to incorporate sensitive data, the compartment raises its
label (at the cost of being more restricted in where it can
write). We illustrate the raising of a label with a “flash”
connoting the sensitivity of data being integrated. A com-
partment’s privilege (Section 3.3), which specifies the
origins for which a script executing in that compartment
is trusted, is indicated by a crown. Here, a top-level page
at fb.com encapsulates a password-checker script from a
third-party origin in a new compartment. The label of the
new compartment is initially public. First, in step (1),
the checker script is free to download updated regular ex-
pressions from an arbitrary remote origin. In step (2), the
top-level page sends the user’s password to the checker
script’s worker using postMessage; the password is la-
beled fb.com to indicate that the data is sensitive to this
origin (Section 3.2). In step (3) the checker raises its la-
bel to reflect that the context is about to be exposed to
sensitive data from fb.com and inspects the password.
When the label is raised, COWL atomically denies the
context further access to the network in step (3).3 How-
ever, the checker script is free to compute the result, which
it then returns via postMessage to the top-level page in
step (4); the result carries the label fb.com to reflect that
the sender may be sending data derived from sensitive
data owned by fb.com. Since the top-level page has the
fb.com privilege, it can simply read the data (without
raising its label).

3 For clarity, we use fb.com as the label on the data. This label still
allows the checker to send XHR requests to fb.com; to ensure that the
checker cannot communicate with any origin, COWL provides fresh
origins (see Section 3.3).

Encrypted Document Editor Today’s web applications,
such as in-browser document editors backed by cloud-
based storage (e.g., Google Docs), typically require
the user to trust the app developer/cloud-based storage
provider (often the same principal under the SOP) with
the data in her documents. That is, the provider’s server
observes the user’s data in cleartext. Suppose an organi-
zation wished to use an in-browser document editor but
did not want to reveal its users’ document data to the
editor provider’s server. How might the provider offer a
privacy-preserving editor app that would satisfy the needs
of such a privacy-conscious organization? One promising
approach might be for the “customer” privacy-sensitive
organization to implement a trusted document encryption
service hosted at its own origin, distinct from that which
hosts the editor app. The editor app could allow the user
to specify a JavaScript “plugin” library she trusts to per-
form cryptography correctly. In this design, one origin
serves the JavaScript code for the editor app (say, gdocs
.com) and a different origin serves the JavaScript code for
the cryptography library (say, eff.org). Note that these
two origins may be mutually distrusting. gdocs.com’s
script must pass the document’s cleartext to a script from
eff.org for encryption, but would like to confine the
execution of the encryption script so that it cannot exfil-
trate the document to any origin other than gdocs.com.
Similarly, eff.org’s cryptography library may not trust
gdocs.com with the cleartext document—it would like
to confine gdocs.com’s editor to prevent exfiltration of
the cleartext document to gdocs.com (or to any other
origin). This simple use case highlights the need for sym-
metric confinement: when two mutually distrusting scripts
from different origins communicate, each must be able to
confine the other’s further use of data it provides.

Third-Party Mashup Some of the most useful web ap-
plications are mashups; these applications integrate and
compute over data hosted by multiple origins. For exam-
ple, consider an application that reconciles a user’s Ama-
zon purchases (the data for which are hosted by amazon

.com) against a user’s bank statement (the data for which
are hosted by chase.com). The user may well deem both
these categories of data sensitive and will furthermore
not want data from Amazon to be exposed to her bank
or vice-versa, nor to any other remote party. Today, if
one of the two providers implements the mashup, its ap-
plication code must bypass the SOP to allow sharing of
data across origin boundaries, e.g., by communicating be-
tween iframes with postMessage or setting a permissive
CORS policy. This approach forfeits privacy: one origin
sends sensitive data to the other, after which the receiving
origin may exfiltrate that sensitive data at will. Alterna-
tively, a third-party developer may wish to implement
and offer this mashup application. Users of such a third-
party mashup give up their privacy, usually by simply

4

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 49/102

handing off credentials, as again today’s browser enforces
no policy that confines the sensitive data the mashup’s
code observes within the browser. To enable third-party
mashups that do not sacrifice the user’s privacy, we note
again the need for an untrusted script to be able to issue
requests to multiple remote origins (e.g., amazon.com
and chase.com), but to lose the privilege to commu-
nicate over the network once it has read the responses
from those origins. Here, too, MAC-based confinement
addresses the shortcomings of DAC.
Untrusted Third-Party Library Web application devel-
opers today make extensive use of third-party libraries like
jQuery. Simply importing a library into a page provides
no isolation whatsoever between the untrusted third-party
code and any sensitive data within the page. Developers
of applications that process sensitive data want the conve-
nience of reusing popular libraries. But such reuse risks
exfiltration of sensitive data by these untrusted libraries.
Note that because jQuery requires access to the content
of the entire page that uses it, we cannot isolate jQuery
in a separate compartment from the parent’s, as we did
for the password-checker example. Instead, we observe
that jQuery demands a design that is a mirror image of
that for confining the password checker: we place the
trusted code for a page in a separate compartment and
deem the rest of the page (including the untrusted jQuery
code) as untrusted. The trusted code can then communi-
cate with remote origins and inject sensitive data into the
untrusted page, but the untrusted page (including jQuery)
cannot communicate with remote origins (and thus can-
not exfiltrate sensitive data within the untrusted page).
This refactoring highlights the need for a confinement
system that supports delegation and dropping privilege:
a page should be able to create a compartment, confer
its privileges to communicate with remote origins on that
compartment, and then give these privileges up.

We note further that any library author may wish to
reuse functionality from another untrusted library. Accord-
ingly, to allow the broadest reuse of code, the browser
should support hierarchical confinement—the primitives
for confining untrusted code should allow not only a sin-
gle level of confinement (one trusted context confining
one untrusted context), but arbitrarily many levels of con-
finement (one trusted context confining an untrusted one,
that in turn confines a further untrusted one, etc.).

2.3 Design Goals
We have briefly introduced four motivating web applica-
tions that achieve rich functionality by combining code
from one or more untrusted parties. The privacy chal-
lenges that arise in such applications are unfortunately
unaddressed by status-quo browser security policies, such
as the SOP. These applications clearly illustrate the need
for robust yet flexible confinement for untrusted code in

browsers. To summarize, these applications would appear
to be well served by a system that:
I Applies mandatory access control (MAC);
I Is symmetric, i.e., it permits two principals to mutually

distrust one another, and each prevent the other from
exfiltrating its data;

I Is hierarchical, i.e., it permits principal A to confine
code from principal B that processes A’s data, while
principal B can independently confine code from prin-
cipal C that processes B’s data, etc.

I Supports delegation and dropping privilege, i.e., it
permits a script running in a compartment with the
privilege to communicate with some set of origins to
confer those privileges on another compartment, then
relinquish those privileges itself.

In the next section, we describe COWL, a new confine-
ment system that satisfies these design goals.

3 THE COWL CONFINEMENT SYSTEM
The COWL confinement system extends the browser se-
curity model while leaving the browser fully compatible
with today’s “legacy” web applications.4 Under COWL,
the browser treats a page exactly like a legacy browser
does unless the page executes a COWL API operation,
at which point the browser records that page as running
in confinement mode, and all further operations by that
page are subject to confinement by COWL. COWL aug-
ments today’s web browser with three primitives, all of
which appear in the simple password-checker application
example in Figure 2.

Labeled browsing contexts enforce MAC-based con-
finement of JavaScript at the granularity of a context (e.g.,
a worker or iframe). The rectangular frames in Figure 2
are labeled contexts. As contexts may be nested, labeled
browsing contexts allow hierarchical confinement, whose
importance for supporting nesting of untrusted libraries
we discussed in Section 2.2.

When one browsing context sends sensitive informa-
tion to another, a sending context can use labeled commu-
nication to confine the potentially untrusted code receiv-
ing the information. This enables symmetric confinement,
whose importance in building applications that compose
mutually distrusting scripts we articulated in Section 2.2.
In Figure 2, the arrows between compartments indicate
labeled communication, where a subscript on the commu-
nicated data denotes the data’s label.

COWL may grant a labeled browsing context one or
more privileges, each with respect to an origin, and each
of which reflects trust that the scripts executing within

4In prior work, we described how confinement can subsume today’s
browser security primitives, and advocated replacing them entirely with
a clean-slate, confinement-based model [49]. In this paper, we instead
prioritize incremental deployability, which requires coexistence along-
side the status quo model.

5

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 50/102

that context will not violate the secrecy and integrity of
that origin’s data, e.g., because the browser retrieved
them from that origin. A privilege authorizes scripts
within a context to execute certain operations, such as
declassification and delegation, whose abuse would per-
mit the release of sensitive information to unauthorized
parties. In COWL, we express privilege in terms of ori-
gins. The crown icon in the left compartment in Figure 2
denotes that this compartment may execute privileged op-
erations on data labeled with the origin fb.com—more
succinctly, that the compartment holds the privilege for
fb.com. The compartment uses that privilege to remain
unconfined by declassifying the checker response labeled
fb.com.

We now describe these three constructs in greater detail.

3.1 Labeled Browsing Contexts
A COWL application consists of multiple labeled contexts.
Labeled contexts extend today’s browser contexts, used to
isolate iframes, pages, etc., with MAC labels. A context’s
label specifies the security policy for all data within the
context, which COWL enforces by restricting the flow of
information to and from other contexts and servers.

As we have proposed previously [33, 49], a label is a
pair of boolean formulas over origins: a secrecy formula
specifying which origins may read a context’s data, and
an integrity formula specifying which origins may write
it. For example, only Amazon or Chase may read data la-
beled 〈amazon.com ∨ chase.com, amazon.com〉, and
only Amazon may modify it.5 Amazon could assign
this label to its order history page to allow a Chase-
hosted mashup to read the user’s purchases. On the other
hand, after a third-party mashup hosted by mint.com

(as described in Section 2.2) reads both the user’s Chase
bank statement data and Amazon purchase data, the la-
bel on data produced by the third-party mashup will be
〈amazon.com ∧ chase.com, mint.com〉. This secrecy
label component specifies that the data may be sensitive
to both parties, and without both their consent (see Sec-
tion 3.3), it should only be read by the user; the integrity
label component, on the other hand, permits only code
hosted by Mint to modify the resulting data.

COWL enforces label policies in a MAC fashion by
only allowing a context to communicate with other con-
texts or servers whose labels are at least as restricting.
(A server’s “label” is simply its origin.) Intuitively, when
a context wishes to send a message, the target must not
allow additional origins to read the data (preserving se-
crecy). Dually, the source context must not be writable
by origins not otherwise trusted by the target. That is, the
source must be at least as trustworthy as the target. We say
that such a target label “subsumes” the source label. For

5∨ and ∧ denote disjunction and conjunction. A comma separates
the secrecy and integrity formulas.

example, a context labeled 〈amazon.com, mint.com〉
can send messages to one labeled 〈amazon.com ∧
chase.com, mint.com〉, since the latter is trusted to
preserve the privacy of amazon.com (and chase.com).
However, communication in the reverse direction is not
possible since it may violate the privacy of chase.com.
In the rest of this paper, we limit our discussion to secrecy
and only comment on integrity where relevant; we refer
the interested reader to [33] for a full description of the
label model.

A context can freely raise its label, i.e., change its label
to any label that is more restricting, in order to receive a
message from an otherwise prohibited context. Of course,
in raising its label to read more sensitive data from an-
other context, the context also becomes more restricted
in where it can write. For example, a Mint context la-
beled 〈amazon.com〉 can raise its label to 〈amazon.com
∧ chase.com〉 to read bank statements, but only at the
cost of giving up its ability to communicate with Ama-
zon (or, for that matter, any other) servers. When creating
a new context, code can impose an upper bound on the
context’s label to ensure that untrusted code cannot raise
its label and read data above this clearance. This notion
of clearance is well established [14, 17, 34, 35, 51]; we
discuss its relevance to covert channels in Section 7.

As noted, COWL allows a labeled context to create ad-
ditional labeled contexts, much as today’s browsing con-
texts can create sub-compartments in the form of iframes,
workers, etc. This functionality is crucial for compart-
mentalizing a system hierarchically, where the developer
places code of different degrees of trustworthiness in sep-
arate contexts. For example, in the password checker ex-
ample in Section 2.2, we create a child context in which
we execute the untrusted checker script. Importantly, how-
ever, code should not be able to leak information by laun-
dering data through a newly created context. Hence, a
newly created context implicitly inherits the current label
of its parent. Alternatively, when creating a child, the par-
ent may specify an initial current label for the child that
is more restrictive than the parent’s, to confine the child
further. Top-level contexts (i.e., pages) are assigned a de-
fault label of public, to ensure compatibility with pages
written for the legacy SOP. Such browsing contexts can
be restricted by setting a COWL-label HTTP response
header, which dictates the minimal document label the
browser must enforce on the associated content.

COWL applications can create two types of context.
First, an application can create standard (but labeled) con-
texts in the form of pages, iframes, workers, etc. Indeed, it
may do so because a COWL application is merely a regu-
lar web application that additionally uses the COWL API.
It thus is confined by MAC, in addition to today’s web
security policies. Note that to enforce MAC, COWL must
mediate all pre-existing communication channels—even

6

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 51/102

subtle and implicit channels, such as content loading—
according to contexts’ labels. We describe how COWL
does so in Section 5.

Second, a COWL application can create labeled con-
texts in the form of lightweight labeled workers (LWork-
ers). Like normal workers [44], the API exposed to
LWorkers is minimal; it consists only of constructs for
communicating with the parent, the XHR constructor, and
the COWL API. Unlike normal workers, which execute in
separate threads, an LWorker executes in the same thread
as its parent, sharing its event loop. This sharing has the
added benefit of allowing the parent to give the child (la-
beled) access to its DOM, any access to which is treated as
both a read and a write, i.e., bidirectional communication.
Our third-party library example uses such a DOM worker
to isolate the trusted application code, which requires ac-
cess to the DOM, from the untrusted jQuery library. In
general, LWorkers—especially when given DOM access—
simplify the isolation and confinement of scripts (e.g., the
password strength checker) that would otherwise run in a
shared context, as when loaded with script tags.

3.2 Labeled Communication
Since COWL enforces a label check whenever a context
sends a message, the design described thus far is already
symmetric: a source context can confine a target con-
text by raising its label (or a child context’s label) and
thereafter send the desired message. To read this mes-
sage, the target context must confine itself by raising its
label accordingly. These semantics can make interactions
between contexts cumbersome, however. For example,
a sending context may wish to communicate with mul-
tiple contexts, and need to confine those target contexts
with different labels, or even confine the same target con-
text with different labels for different messages. And a
receiving context may need unfettered communication
with one or more origins for a time before confining itself
by raising its label to receive a message. In the password-
checker example application, the untrusted checker script
at the right of Figure 2 exhibits exactly this latter behav-
ior: it needs to communicate with untrusted remote ori-
gin sketchy.ru before reading the password labeled
fb.com.
Labeled Blob Messages (Intra-Browser) To simplify
communication with confinement, we introduce the la-
beled Blob, which binds together the payload of an in-
dividual inter-context message with the label protecting
it. The payload takes the form of a serialized immutable
object of type Blob [47]. Encapsulating the label with the
message avoids the cumbersome label raises heretofore
necessary in both sending and receiving contexts before
a message may even be sent or received. Instead, COWL
allows the developer sending a message from a context
to specify the label to be attached to a labeled Blob; any

label as or more restrictive than the sending context’s cur-
rent label may be specified (modulo its clearance). While
the receiving context may receive a labeled Blob with no
immediate effect on the origins with which it can com-
municate, it may only inspect the label, not the payload.6

Only after raising its label as needed may the receiving
context read the payload.

Labeled Blobs simplify building applications that in-
corporate distrust among contexts. Not only can a sender
impose confinement on a receiver simply by labeling a
message; a receiver can delay inspecting a sensitive mes-
sage until it has completed communication with untrusted
origins (as does the checker script in Figure 2). They also
ease the implementation of integrity in applications, as
they allow a context that is not trusted to modify content
in some other context to serve as a passive conduit for a
message from a third context that is so trusted.
Labeled XHR Messages (Browser–Server) Thus far
we have focused on confinement as it arises when two
browser contexts communicate. Confinement is of use
in browser-server communication, too. As noted in Sec-
tion 3.1, COWL only allows a context to communicate
with a server (whether with XHR, retrieving an image,
or otherwise) when the server’s origin subsumes the con-
text’s label. Upon receiving a request, a COWL-aware
web server may also wish to know the current label of the
context that initiated it. For this reason, COWL attaches
the current label to every request the browser sends to a
server.7 As also noted in Section 3.1, a COWL-aware web
server may elect to label a response it sends the client
by including a COWL-label header on it. In such cases,
the COWL-aware browser will only allow the receiving
context to read the XHR response if its current label sub-
sumes that on the response.

Here, again, a context that receives labeled data—in
this case from a server—may wish to defer raising its
label until it has completed communication with other
remote origins. To give a context this freedom, COWL
supports labeled XHR communication. When a script in-
vokes COWL’s labeled XHR constructor, COWL delivers
the response to the initiating script as a labeled Blob.
Just as with labeled Blob intra-browser IPC, the script
is then free to delay raising its label to read the payload
of the response—and delay being confined—until after
it has completed its other remote communication. For
example, in the third-party mashup example, Mint only
confines itself once it has received all necessary (labeled)
responses from both Amazon and Chase. At this point
it processes the data and displays results to the user, but
it can no longer send requests since doing so may leak

6The label itself cannot leak information—COWL still ensures that
the target context’s label is at least as restricting as that of the source.

7COWL also attaches the current privilege; see Section 3.3.

7

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 52/102

information.8

3.3 Privileges
While confinement handily enforces secrecy, there are
occasions when an application must eschew confinement
in order to achieve its goals, and yet can uphold secrecy
while doing so. For example, a context may be confined
with respect to some origin (say, a.com) as a result of
having received data from that origin, but may need to
send an encrypted version of that data to a third-party ori-
gin. Doing so does not disclose sensitive data, but COWL
would normally prohibit such an operation. In such sit-
uations, how can a context declassify data, and thus be
permitted to send to an arbitrary recipient, or avoid the
recipient’s being confined?

COWL’s privilege primitive enables safe declassifica-
tion. A context may hold one or more privileges, each
with respect to some origin. Possession of a privilege for
an origin by a context denotes trust that the scripts that
execute within that context will not compromise the se-
crecy of data from that origin. Where might such trust
come from (and hence how are privileges granted)? Under
the SOP, when a browser retrieves a page from a.com,
any script within the context for the page is trusted not
to violate the secrecy of a.com’s data, as these scripts
are deemed to be executing on behalf of a.com. COWL
makes the analogous assumption by granting the privilege
for a.com to the context that retrieves a page from a.com:
scripts executing in that context are similarly deemed to
be executing on behalf of a.com, and thus are trusted
not to leak a.com’s data to unauthorized parties—even
though they can declassify data. Only the COWL run-
time can create a new privilege for a valid remote origin
upon retrieval of a page from that origin; a script cannot
synthesize a privilege for a valid remote origin.

To illustrate the role of privileges in declassification,
consider the encrypted Google Docs example application.
In the implementation of this application atop COWL,
code executing on behalf of eff.org (i.e., in a compart-
ment holding the eff.org privilege) with a current label
〈eff.org ∧ gdoc.com〉 is permitted to send messages
to a context labeled 〈gdoc.com〉. Without the eff.org
privilege, this flow would not be allowed, as it may leak
the EFF’s information to Google.

Similarly, code can declassify information when unla-
beling messages. Consider now the password checker ex-
ample application. The left context in Figure 2 leverages
its fb.com privilege to declassify the password strength
result, which is labeled with its origin, to avoid (uneces-
sarily) raising its label to fb.com.

COWL generally exercises privileges implicitly: if a
8To continuously process data in “streaming” fashion, one may

partition the application into contexts that poll Amazon and Chase’s
servers for new data and pass labeled responses to the confined context
that processes the payloads of the responses.

context holds a privilege, code executing in that context
will, with the exception of sending a message, always
attempt to use it.9 COWL, however, lets code control the
use of privileges by allowing code to get and set the under-
lying context’s privileges. Code can drop privileges by set-
ting its context’s privileges to null. Dropping privileges
is of practical use in confining closely coupled untrusted
libraries like jQuery. Setting privileges, on the other hand,
increases the trust placed in a context by authorizing it
act on behalf of origins. This is especially useful since
COWL allows one context to delegate its privileges (or
a subset of them) to another; this functionality is also
instrumental in confining untrusted libraries like jQuery.
Finally, COWL also allows a context to create privileges
for fresh origins, i.e., unique origins that do not have a
real protocol (and thus do not map to real servers). These
fresh origins are primarily used to completely confine a
context: the sender can label messages with such an ori-
gin, which upon inspection will raise the receiver’s label
to this “fake” origin, thereby ensuring that it cannot com-
municate except with the parent (which holds the fresh
origin’s privilege).

4 APPLICATIONS
In Section 2.2, we characterized four applications and
explained why the status-quo web architecture cannot
accommodate them satisfactorily. We then described the
COWL system’s new browser primitives. We now close
the loop by demonstrating how to build the aforemen-
tioned applications with the COWL primitives.
Encrypted Document Editor The key feature needed
by an encrypted document editor is symmetric confine-
ment, where two mutually distrusting scripts can each
confine the other’s use of data they send one another.
Asymmetrically conferring COWL privileges on the dis-
trusting components is the key to realizing this applica-
tion.

Figure 3 depicts the architecture for an encrypted docu-
ment editor. The editor has three components: a compo-
nent which has the user’s Google Docs credentials and
communicates with the server (gdoc.com), the editor
proper (also gdoc.com), and the component that per-
forms encryption (eff.org). COWL provides privacy as
follows: if eff.org is honest, then COWL ensures that
the cleartext of the user’s document is not leaked to any
origin. If only gdoc.com is honest, then gdoc.com may
be able to recover cleartext (e.g., the encryptor may have
used the null “cipher”), but the encryptor should not be
able to exfiltrate the cleartext to anyone else.

How does execution of the encrypted document edi-
tor proceed? Initially, gdoc.com downloads (1) the en-

9 While the alternative approach of explicit exercise of privileges
(e.g., when registering an onmessage handler) may be safer [23, 34,
51], we find it a poor fit with existing asynchronous web APIs.

8

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 53/102

eff.org$

public$ gdoc.com$

[EKEY(doc)]$gdoc.com$
2$3$

2$2$

2$4$

gdoc.com$

2$1$ EKEY(doc)$

KEY$

gdoc.com$��eff.org$

[doc]$gdoc.com�eff.org$ 2$5$

editor$

public$

DOM$ DOM$

DOM$

gdoc.com�$ eff.org�$

gdoc.com�$

crypto$

Figure 3: Encrypted document editor architecture.

2$3$

2$2$

amazon.com$
2$1$

chase.com$

amazon.com$

2$1$

public$

DOM$

mint.com�$
chase.com$

Figure 4: Third-party mashup under COWL.

crypted document from Google’s servers. As the docu-
ment is encrypted, it opens an iframe to eff.org, with
initial label public so it can communicate with the
eff.org server and download the private key (2) which
will be used to decrypt the document. Next, it sends
the encrypted document as a labeled Blob, with the la-
bel 〈gdoc.com〉 (3); the iframe unlabels the Blob and
raises its label (4) so it can decrypt the document. Finally,
the iframe passes the decrypted document (labeled as
〈gdoc.com ∧ eff.org〉) to the iframe (5) implementing
the editor proper.

To save the document, these steps proceed in reverse:
the editor sends a decrypted document to the encryptor (5),
which encrypts it with the private key. Next, the critical
step occurs: the encryptor exercises its privileges to send
a labeled blob of the encrypted document which is only
labeled 〈gdoc.com〉 (3). Since the encryptor is the only
compartment with the eff.org privilege, all documents
must pass through it for encryption before being sent
elsewhere; conversely, it itself cannot exfiltrate any data,
as it is confined by gdoc.com in its label.

We have implemented a password manager atop COWL
that lets users safely store passwords on third-party web-
accessible storage. We elide its detailed design in the
interest of brevity, and note only that it operates similarly
to the encrypted document editor.
Third-Party Mashup Labeled XHR as composed with
CORS is central to COWL’s support for third-party
mashups. Today’s CORS policies are DAC-only, such
that a server must either allow another origin to read its

jquery.com$

2$1$

2$3$

2$4$
DOM$

public$

app#TCB#

public$

a.com�$
unq0�$

a.com�$
unq0�$

unq0$

2$2$

Figure 5: Privilege separation and library confinement.

data and fully trust that origin not to disclose the data, or
deny the other origin access to the data altogether. Under
COWL, however, a server could CORS-whitelist a foreign
origin to permit that origin to read its data, and by set-
ting a label on its response, be safe in the knowledge that
COWL would appropriately confine the foreign origin’s
scripts in the browser.

Figure 4 depicts an application that reconciles a user’s
Amazon purchases and bank statement. Here, Chase and
Amazon respectively expose authenticated read-only APIs
for bank statements and purchase histories that whitelist
known applications’ origins, such as mint.com, but set
MAC labels on responses.10 As discussed in Section 7,
with MAC in place, COWL allows users to otherwise
augment CORS by whitelisting foreign origins on a per-
origin basis. The mashup makes requests to both web
sites using labeled XHR (1) to receive the bank statement
and purchase history as labeled Blobs. Once all of the in-
formation is received, the mashup unlabels the responses
and raises its context’s label accordingly (2–3); doing so
restricts communication to the web at large.

Note that in contrast to when solely using CORS, by
setting MAC labels on responses, Chase and Amazon
need not trust Mint to write bug-free code—COWL con-
fines the Mint code to ensure that it cannot arbitrarily
leak sensitive data. As we discuss in Section 7, however,
a malicious Mint application could potentially leak data
through covert channels. We emphasize that COWL nev-
ertheless offers a significant improvement over the status
quo, in which, e.g., users give their login credentials to
Mint, and thus not only trust Mint to keep their bank
statements confidential, but also not to steal their funds!
Untrusted Third-Party Library COWL can confine
tightly coupled untrusted third-party libraries like jQuery
by delegating privileges to a trusted context and subse-
quently dropping them from the main page. In doing so,
COWL completely confines the main page, and ensures
that it can only communicate with the trusted and uncon-
fined context. Here, the main page may start out with
sensitive data in context, or alternatively, receive it from
the trusted compartment.

10On authentication: note that when the browser sends any XHR
(labeled or not) from a foreign origin to origin chase.com, it still
includes any cookies cached for chase.com in the request.

9

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 54/102

interface Label :
Label Label(String)
Label and(String or Label)
Label or(String or Label)
bool subsumes(Label [,Privilege])

interface Privilege :
Privilege FreshPrivilege()
Privilege combine(Privilege)
readonly attribute Label asLabel

(a) Labels and privileges.

interface LabeledBlob :
readonly attribute Label label
readonly attribute Blob blob

(b) Labeled Blobs.

interface COWL :
static void enable()
static attribute Label label
static attribute Label clearance
static attribute Privilege privilege

interface LWorker :
LWorker LWorker(String, Label

[, Privilege, object])
postMessage(object)
attribute EventHandler onmessage

(c) Labeled compartments.
Figure 6: COWL programming interface in simplified WebIDL.

Figure 5 shows how to use COWL to confine the un-
trusted jQuery library referenced by a web page. The goal
is to establish a separate DOM worker with the a.com

privilege, while the main browsing context runs jQuery in
confined fashion—without privileges or the ability to talk
to the network. Initially the main browsing context holds
the a.com privilege. The page generates a fresh origin
unq0 and spawns a DOM worker (1), delegating it both
privileges. The main context then drops its privileges and
raises its label to 〈unq0〉 (2). Finally, the trusted worker
downloads jQuery (3) and injects the script content into
the main context’s DOM (4). When the library is loaded,
the main context becomes untrusted, but also fully con-
fined. As the trusted DOM worker holds both privileges,
it can freely modify the DOM of the main context, as well
as communicate with the wider web. One may view this
DOM worker as a firewall between the page proper (with
the untrusted library) and the rest of the world.

5 IMPLEMENTATION

We implemented COWL in Firefox 31.0a1 and Chromium
31.0.1612.0. Because COWL operates at a context granu-
larity, it admits an implementation as a new DOM-level
API for the Gecko and Blink layout engines, without any
changes to the browsers’ JavaScript engines. Figure 6
shows the core parts of this API. We focus on the Fire-

Channel Mechanism

postMessage Cross-compartment wrappers11

DOM window properties Cross-compartment wrappers
Content loading CSP
XHR CSP + DOM interposition
Browser storage SOP + CSP (sandbox)
Other (e.g., iframe height) DOM interposition

Table 1: Confining code from exfiltrating data using existing
browser mechanisms.

fox implementation and only describe the Chromium one
where the two diverge non-trivially.

5.1 Labeled Browsing Contexts
Gecko’s existing isolation model relies on JavaScript com-
partments, i.e., disjoint JavaScript heaps, both for effi-
cient garbage collection and security isolation [40]. To
achieve isolation, Gecko performs all cross-compartment
communication (e.g., postMessage between iframes)
through wrappers that implement the object-capability
membrane pattern [21, 22]; membranes enable sound rea-
soning about “border crossing” between compartments.
Wrappers ensure that an object in one compartment can
never directly reference another object in a different com-
partment. Wrappers also include a security policy, which
enforces all inter-compartment access control checks spec-
ified by the SOP. Security decisions are made with respect
to a compartment’s security principal, which contains the
origin and CSP of the compartment.

Since COWL’s security model is very similar to this
existing model, we can leverage these wrappers to intro-
duce COWL’s new security policies. We associate a label,
clearance, and privilege with each compartment along-
side the security principal. Wrappers consider all of these
properties together when making security decisions.
Intra-Browser Confinement As shown in Table 1, we
rely on wrappers to confine cross-compartment communi-
cation. Once confinement mode is enabled, we “recom-
pute” all cross-compartment wrappers to use our MAC
wrapper policy and thereby ensure that all subsequent
cross-compartment access is mediated not only by the
SOP, but also by confinement. For postMessage, our
policy ensures that the receiver’s label subsumes that of
the sender (taking the receiver’s privileges into consider-
ation); otherwise the message is silently dropped. For a
cross-compartment DOM property access, we addition-
ally check that the sender’s label subsumes that of the
receiver—i.e., that the labels of the compartments are
equivalent after considering the sender’s privileges (in
addition to the same-origin check performed by the SOP).

Blink’s execution contexts (the dual to Gecko’s com-
partments) do not rely on wrappers to enforce cross-
context access control. Instead, Blink implements the

11 Since the Chromium architecture does not have cross-compartment
wrappers, we modify the DOM binding code to insert label checks.

10

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 55/102

SOP security checks in the DOM binding code for a lim-
ited subset of DOM elements that may allow cross-origin
access. Since COWL policies are more fine-grained, we
modified the binding code to extend the security checks to
all DOM objects and also perform label checks when con-
finement mode is enabled. Unfortunately, without wrap-
pers, shared references cannot efficiently be revoked (i.e.,
without walking the heap). Hence, before enabling con-
finement mode, a page can create a same-origin iframe
with which it shares references, and the iframe can there-
after leak any data from the parent even if the latter’s
label is raised. To prevent this eventuality, our current
Chromium API allows senders to disallow unlabeling
Blobs if the target created any children before entering
confinement mode.

Our implementations of LWorkers, whose API appears
in Figure 6c, reuse labeled contexts straightforwardly.
In fact, the LWorker constructor simply creates a new
compartment with a fresh origin that contains a fresh
JavaScript global object to which we attach the XHR con-
structor, COWL API, and primitives for communicating
with the parent (e.g., postMessage). Since LWorkers
may have access to their parents’ DOM, however, our
wrappers distinguish them from other contexts to bypass
SOP checks and only restrict DOM access according to
MAC. This implementation is very similar to the content
scripts used by Chrome and Firefox extensions [10, 26].
Browser-Server Confinement As shown in Table 1, we
confine external communication (including XHR, content
loading, and navigation) using CSP. While CSP alone is
insufficient for providing flexible confinement,12 it suf-
ficiently addresses our external communication concern
by precisely controlling from where a page loads content,
performs XHR requests to, etc. To this end, we set a cus-
tom CSP policy whenever the compartment label changes,
e.g., with COWL.label. For instance, if the effective com-
partment label is Label("https://bank.ch").and

("https://amazon.com"), all the underlying CSP di-
rectives are set to ’none’ (e.g., default-src ’none’),
disallowing all network communication. We also disable
navigation with the ’sandbox’ directive [46–48].
Browser Storage Confinement As shown in Table 1,
we use the sandbox directive to restrict access to storage
(e.g., cookies and HTML5 local storage [47]), as have
other systems [5]. We leave the implementation of labeled
storage as future work.

6 EVALUATION
Performance largely determines acceptance of new
browser features in practice. We evaluate the performance

12 There are two primary reasons. First, JavaScript code cannot
(yet) modify a page’s CSP. And, second, CSP does not (yet) pro-
vide a directive for restricting in-browser communication, e.g., with
postMessage.

Firefox Chromium

va
ni

lla

un
la

be
le

d

la
be

le
d

va
ni

lla

un
la

be
le

d

la
be

le
d

New iframe 14.4 14.5 14.4 50.6 48.7 51.8
New worker 15.9 15.4 0.9† 18.9 18.9 3.3†

Iframe comm. 0.11 0.11 0.12 0.04 0.04 0.04
XHR comm 3.5 3.6 3.7 7.0 7.4 7.2
Worker comm. 0.20 0.24 0.03‡ 0.07 0.07 0.03‡

Table 2: Micro-benchmarks, in milliseconds.

of COWL by measuring the cost of our new primitives
as well as their impact on legacy web sites that do not
use COWL’s features. Our experiments consist of micro-
benchmarks of API functions and end-to-end benchmarks
of our example applications. We conducted all measure-
ments on a 4-core i7-2620M machine with 16GB of RAM
running GNU/Linux 3.13. The browser retrieved appli-
cations from the Node.js web server over the loopback
interface. We note that these measurements are harsh for
COWL, in that they omit network latency and the com-
plex intra-context computation and DOM rendering of
real-world applications, all of which would mask COWL’s
overhead further. Our key findings include:
I COWL’s latency impact on legacy sites is negligible.
I Confining code with LWorkers is inexpensive, espe-

cially when compared to iframes/Workers. Indeed,
the performance of our end-to-end confined password
checker is only 5 ms slower than that of an inlined
script version.

I COWL’s incurs low overhead when enforcing confine-
ment on mashups. The greatest overhead observed is
16% (for the encrypted document editor). Again, the
absolute slowdown of 16 ms is imperceptible by users.

6.1 Micro-Benchmarks
Context Creation Table 2 shows micro-benchmarks for
the stock browsers (vanilla), the COWL browsers with
confinement mode turned off (unlabeled), and with con-
finement mode enabled (labeled). COWL adds negligi-
ble latency to compartment creation; indeed, except for
LWorkers (†), the differences in creation times are of the
order of measurement variability. We omit measurements
of labeled “normal” Workers since they do not differ from
those of unlabeled Workers. We attribute COWL’s iframe-
creation speedup in Chromium to measurement variability.
We note that the cost of creating LWorkers is considerably
less than that for “normal” Workers, which run in separate
OS threads (†).
Communication The iframe, worker, and XHR com-
munication measurements evaluate the round-trip laten-
cies across iframes, workers, and the network. For the
XHR benchmark, we report the cost of using the labeled
XHR constructor averaged over 10,000 requests. Our

11

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 56/102

Chromium implementation uses an LWorker to wrap the
unmodified XHR constructor, so the cost of labeled XHR
incorporates an additional cross-context call. As with cre-
ation, communicating with LWorkers (‡) is considerably
faster than with “normal” Workers. This speedup arises
because a lightweight LWorker shares an OS thread and
event loop with their parent.
Labels We measured the cost of setting/getting the cur-
rent label and the average cost of a label check in Firefox.
For a randomly generated label with a handful of origins,
these operations take on the order of one microsecond.
The primary cost is recomputing cross-compartment wrap-
pers and the underlying CSP policy, which ends up costing
up to 13ms (e.g., when the label is raised from public to a
third-party origin). For many real applications, we expect
raising the current label to be a rare occurrence. Moreover,
there is much room for optimization (e.g., porting COWL
to the newest CSP implementation, which sets policies
15× faster [19]).
DOM We also executed the Dromaeo benchmark
suite [29], which evaluates the performance of core func-
tionality such as querying, traversing, and manipulating
the DOM, in Firefox and Chromium. We found the per-
formance of the vanilla and unlabeled browsers to be on
par: the greatest slowdown was under 4%.

6.2 End-to-End Benchmarks
To focus on measuring COWL’s overhead, we compare
our apps against similarly compartmentalized but non-
secure apps—i.e., apps that perform no security checks.
Password-Strength Checker We measure the average
duration of creating a new LWorker, fetching an 8 KB
checker script based on [24], and checking a password
sixteen characters in length. The checker takes an average
of 18 ms (averaged over ten runs) on Firefox (labeled), 4
ms less than using a Worker on vanilla Firefox. Similarly,
the checker running on labeled Chromium is 5 ms faster
than the vanilla counterpart (measured at 54 ms). In both
cases COWL achieves a speedup because its LWorkers
are cheaper than normal Workers. However, these mea-
surements are roughly 5 ms slower than simply loading
the checker using an unsafe script tag.
Encrypted Document Editor We measure the end-to-
end time taken to load the application and encrypt a 4
KB document using the SJCL AES-128 library [32]. The
total run time includes the time taken to load the docu-
ment editor page, which in turn loads the encryption-layer
iframe, which further loads the editor proper. On Firefox
(labeled) the workload completes in 116 ms; on vanilla
Firefox, a simplified and unconfined version completes
in 100ms. On Chromium, the performance measurements
were comparable; the completion time was within 1ms
of 244ms. The most expensive operation in the COWL-
enabled Firefox app is raising the current label, since it

requires changing the underlying document origin and
recomputing the cross-compartment wrappers and CSP.
Third-Party Mashup We implemented a very simple
third-party mashup application that makes a labeled XHR
request to two unaffiliated origins, each of which pro-
duces a response containing a 27-byte JSON object with
a numerical property, and sums the responses together.
The corresponding vanilla app is identical, but uses the
normal XHR object. In both cases we use CORS to per-
mit cross-origin access. The Firefox (labeled) workload
completes in 41 ms, which is 6 ms slower than the vanilla
version. As in the document editor the slowdown derives
from raising the current label, though in this case only
for a single iframe. On Chromium (labeled) the workload
completes in 55 ms, 2 ms slower than the vanilla one;
the main slowdown here derives from our implementing
labeled XHR with a wrapping LWorker.
Untrusted Third-Party Library We measured the load
time of a banking application that incorporates jQuery and
a library that traverses the DOM to replace phone num-
bers with links. The latter library uses XHR in attempt to
leak the page’s content. We compartmentalize the main
page into a public outer component and a sensitive iframe
containing the bank statement. In both compartments, we
place the bank’s trusted code (which loads the libraries) in
a trusted labeled DOM worker with access to the page’s
DOM. We treat the rest of the code as untrusted. As our
current Chromium implementation does not yet support
DOM access for LWorkers, we only report measurements
for Firefox. The measured latency on Firefox (labeled) is
165 ms, a 5 ms slowdown when compared to the uncon-
fined version running on vanilla Firefox. Again, COWL
prevents sensitive content from being exfiltrated and in-
curs negligible slowdown.

7 DISCUSSION AND LIMITATIONS
We now discuss the implications of certain facets of
COWL’s design, and limitations of the system.
User-Configured Confinement Recall that in the status-
quo web security architecture, to allow cross-origin shar-
ing, a server must grant individual foreign origins access
to its data with CORS in an all-or-nothing, DAC fash-
ion. COWL improves this state of affairs by allowing a
COWL-aware server to more finely restrict how its shared
data is disseminated—i.e., when the server grants a for-
eign origin access to its data, it can confine the foreign
origin’s script(s) by setting a label on responses it sends
the client.

Unfortunately, absent a permissive CORS header that
whitelists the origins of applications that a user wishes
to use, the SOP prohibits foreign origins from reading
responses from the server, even in a COWL-enabled
browser. Since a server’s operator may not be aware of
all applications its users may wish to use, the result is

12

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 57/102

usually the same status-quo unpalatable choice between
functionality and privacy—e.g., give one’s bank login
credentials to Mint, or one cannot use the Mint appli-
cation. For this reason, our COWL implementation lets
browser users augment CORS by configuring for an origin
(e.g., chase.com) any foreign origins (e.g., mint.com,
benjamins.biz) they wish to additionally whitelist. In
turn, COWL will confine these client-whitelisted origins
(e.g., mint.com) by labeling every response from the
configured origin (chase.com). COWL obeys the server-
supplied label when available and server whitelisting is
not provided. Otherwise, COWL conservatively labels the
response with a fresh origin (as described in Section 3.3).
The latter ensures that once the response has been in-
spected, the code cannot communicate with any server,
including at the same origin, since such requests carry
the risks of self-exfiltration [11] and cross-site request
forgery [39].
Covert Channels In an ideal confinement system, it
would always be safe to let untrusted code compute on
sensitive data. Unfortunately, real-world systems such
as browsers typically exhibit covert channels that mali-
cious code may exploit to exfiltrate sensitive data. Since
COWL extends existing browsers, we do not protect
against covert channel attacks. Indeed, malicious code
can leverage covert channels already present in today’s
browsers to leak sensitive information. For instance, a
malicious script within a confined context may be able to
modulate sensitive data by varying rendering durations. A
less confined context may then in turn exfiltrate the data
to a remote host [20]. It is important to note, however,
that COWL does not introduce new covert channels—
our implementations re-purpose existing (software-based)
browser isolation mechanisms (V8 contexts and Spider-
Monkey compartments) to enforce MAC policies. More-
over, these MAC policies are generally more restricting
than existing browser policies: they prevent unauthorized
data exfiltration through overt channels and, in effect,
force malicious code to resort to using covert channels.

The only fashion in which COWL relaxes status-quo
browser policies is by allowing users to override CORS to
permit cross-origin (labeled) sharing. Does this function-
ality introduce new risks? Whitelisting is user controlled
(e.g., the user must explicitly allow mint.com to read
amazon.com and chase.com data), and code reading
cross-origin data is subject to MAC (e.g., mint.com can-
not arbitrarily exfiltrate the amazon.com or chase.com
data after reading it). In contrast, today’s mashups like
mint.com ask users for their passwords. COWL is
strictly an improvement: under COWL, when a user de-
cides to trust a mashup integrator such as mint.com, she
only trusts the app to not leak her data through covert chan-
nels. Nevertheless, users can make poor security choices.
Whitelisting malicious origins would be no exception;

we recognize this as a limitation of COWL that must be
communicated to the end-user.

A trustworthy developer can leverage COWL’s support
for clearance when compartmentalizing his application to
ensure that only code that actually relies on cross-origin
data has access to it. Clearance is a label that serves as an
upper bound on a context’s current label. Since COWL en-
sures that the current label is adjusted according to the sen-
sitivity of the data being read, code cannot read (and thus
leak) data labeled above the clearance. Thus, Mint can
assign a “low” clearance to untrusted third-party libraries,
e.g., to keep chase.com’s data confidential. These li-
braries will then not be able to leak such data through
covert channels, even if they are malicious.
Expressivity of Label Model COWL uses DC la-
bels [33] to enforce confinement according to an infor-
mation flow control discipline. Although this approach
captures a wide set of confinement policies, it is not ex-
pressive enough to handle policies with a circular flow of
information [6] or some policies expressible in more pow-
erful logics (e.g., first order logic, as used by Nexus [30]).
DC labels are, however, as expressive as other popular
label models [25], including Myers and Liskov’s Decen-
tralized Label Model [27]. Our experience implementing
security policies with them thus far suggests they are
expressive enough to support featureful web applications.

We adopted DC labels largely because their fit with
web origins pays practical dividends. First, as developers
already typically express policies by whitelisting origins,
we believe they will find DC labels intuitive to use. Sec-
ond, because both DC labels and today’s web policies
are defined in terms of origins, the implementation of
COWL can straightforwardly reuse the implementation
of existing security mechanisms, such as CSP.

8 RELATED WORK
Existing browser confinement systems based on informa-
tion flow control can be classified either as fine-grained or
coarse-grained. The former associate IFC policies with
individual objects, while the latter associate policies with
entire browsing contexts. We compare COWL to previ-
ously proposed systems in both categories, then contrast
the two categories’ overall characteristics.
Coarse-grained IFC COWL shares many features with
existing coarse-grained systems. BFlow [50], for example,
allows web sites to enforce confinement policies stricter
than the SOP via protection zones—groups of iframes
sharing a common label. However, BFlow cannot me-
diate between mutually distrustful principals—e.g., the
encrypted document editor is not directly implementable
with BFlow. This is because only asymmetric confinement
is supported—a sub-frame cannot impose any restrictions
on its parent. For the same reasons, BFlow cannot support
applications that require security policies more flexible

13

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 58/102

than the SOP, such as our third-party mashup example.
These differences reflect different goals for the two sys-
tems. BFlow’s authors set out to confine untrusted third-
party scripts, while we also seek to support applications
that incorporate code from mutually distrusting parties.

More recently, Akhawe et al. propose the data-confined
sandbox (DCS) system [5], which allows pages to inter-
cept and monitor the network, storage, and cross-origin
channels of data:URI iframes. The limitation to data:
URI iframes means DCS cannot confine the common case
of a service provided in an iframe [31]. Like BFlow, DCS
does not offer symmetric confinement, and does not incor-
porate functionality to let developers build applications
like third-party mashups.
Fine-grained IFC Per-object-granularity IFC makes it
easier to confine untrusted libraries that are closely cou-
pled with trusted code on a page (e.g., jQuery) and avoid
the problem of over-tainting, where a single context accu-
mulates taint as it inspects more data.

JSFlow [15] is one such fine-grained JavaScript IFC
system, which enforces policies by executing JavaScript
in an interpreter written in JavaScript. This approach in-
curs a two order of magnitude slowdown. JSFlow’s au-
thors suggest that this cost makes JSFlow a better fit for
use as a development tool than as an “always-on” privacy
system for users’ browsers. Additionally, JSFlow does not
support applications that rely on policies more flexible
than the SOP, such as our third-party mashup example.

The FlowFox fine-grained IFC system [12] enforces
policies with secure-multi execution (SME) [13]. SME
ensures that no leaks from a sensitive context can leak into
a less sensitive context by executing a program multiple
times. Unlike JSFlow and COWL, SME is not amenable
to scenarios where declassification plays a key role (e.g.,
the encrypted editor or the password manager). FlowFox’s
labeling of user interactions and metadata (history, screen
size, etc.) do allow it to mitigate history sniffing and
behavior tracking; COWL does not address these attacks.

While fine-grained IFC systems may be more con-
venient for developers, they impose new language se-
mantics for developers to learn, require invasive modi-
fications to the JavaScript engine, and incur greater per-
formance overhead. In contrast, because COWL repur-
poses familiar isolation constructs and does not require
JavaScript engine modifications, it is relatively straight-
forward to add to legacy browsers. It also only adds over-
head to cross-compartment operations, rather than to all
JavaScript execution. The typically short lifetime of a
browsing context helps avoid excessive accumulation of
taint. We conjecture that coarse-grained and fine-grained
IFC are equally expressive, provided one may use arbi-
trarily many compartments—a cost in programmer con-
venience. Finally, coarse- and fine-grained mechanisms
are not mutually exclusive. For instance, to confine legacy

(non-compartmentalized) JavaScript code, one could de-
ploy JSFlow within a COWL context.

Sandboxing The literature on sandboxing and secure
subsets of JavaScript is rich, and includes Caja [1],
BrowserShield [28], WebJail [37], TreeHouse [18],
JSand [4], SafeScript [36], Defensive JavaScript [9], and
Embassies [16]). While our design has been inspired by
some of these systems (e.g., TreeHouse), the usual goals
of these systems are to mediate security-critical opera-
tions, restrict access to the DOM, and restrict communica-
tion APIs. In contrast to the mandatory nature of confine-
ment, however, these systems impose most restrictions in
discretionary fashion, and are thus not suitable for build-
ing some of the applications we consider (in particular,
the encrypted editor). Nevertheless, we believe that access
control and language subsets are crucial complements to
confinement for building robustly secure applications.

9 CONCLUSION

Web applications routinely pull together JavaScript con-
tributed by parties untrusted by the user, as well as by
mutually distrusting parties. The lack of confinement for
untrusted code in the status-quo browser security archi-
tecture puts users’ privacy at risk. In this paper, we have
presented COWL, a label-based MAC system for web
browsers that preserves users’ privacy in the common
case where untrusted code computes over sensitive data.
COWL affords developers flexibility in synthesizing web
applications out of untrusted code and services while pre-
serving users’ privacy. Our positive experience building
four web applications atop COWL for which privacy had
previously been unattainable in status-quo web browsers
suggests that COWL holds promise as a practical plat-
form for preserving privacy in today’s pastiche-like web
applications. And our measurements of COWL’s perfor-
mance overhead in the Firefox and Chromium browsers
suggest that COWL’s privacy benefits come at negligible
end-to-end cost in performance.

ACKNOWLEDGEMENTS

We thank Bobby Holley, Blake Kaplan, Ian Melven, Garret
Robinson, Brian Smith, and Boris Zbarsky for helpful discus-
sions of the design and implementation of COWL. We thank Ste-
fan Heule and John Mitchell for useful comments on formal as-
pects of the design. And we thank our shepherd Mihai Budiu and
the anonymous reviewers for their helpful comments. This work
was funded by DARPA CRASH under contract #N66001-10-2-
4088, by the EPSRC under grant EP/K032542/1, the Swedish
research agencies VR and STINT, the Barbro Osher Pro Suecia
foundation, and by multiple gifts from Google (to Stanford and
UCL). Deian Stefan and Edward Z. Yang are supported through
the NDSEG Fellowship Program.

14

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 59/102

REFERENCES
[1] Google Caja. A source-to-source translator for secur-

ing JavaScript-based web content. http://code.
google.com/p/google-caja/, 2013.

[2] Mint. http://www.mint.com/, 2013.

[3] jQuery Usage Statistics: Websites using
jQuery. http://trends.builtwith.
com/javascript/jQuery, 2014.

[4] P. Agten, S. Van Acker, Y. Brondsema, P. H. Phung,
L. Desmet, and F. Piessens. JSand: complete client-
side sandboxing of third-party JavaScript without
browser modifications. In ACSAC, 2012.

[5] D. Akhawe, F. Li, W. He, P. Saxena, and D. Song.
Data-confined HTML5 applications. In ESORICS,
2013.

[6] L. Badger, D. F. Sterne, D. L. Sherman, K. M.
Walker, and S. A. Haghighat. Practical domain and
type enforcement for UNIX. In Security and Pri-
vacy, 1995.

[7] A. Barth. The web origin concept. Technical re-
port, IETF, 2011. URL https://tools.ietf.
org/html/rfc6454.

[8] A. Barth, C. Jackson, and J. Mitchell. Securing
frame communication in browsers. Communications
of the ACM, 52(6):83–91, 2009.

[9] K. Bhargavan, A. Delignat-Lavaud, and S. Maffeis.
Language-based defenses against untrusted browser
origins. In USENIX Security, 2013.

[10] N. Carlini, A. P. Felt, and D. Wagner. An evaluation
of the Google Chrome extension security architec-
ture. In USENIX Security, 2012.

[11] E. Y. Chen, S. Gorbaty, A. Singhal, and C. Jackson.
Self-exfiltration: The dangers of browser-enforced
information flow control. In Web 2.0 Security and
Privacy, 2012.

[12] W. De Groef, D. Devriese, N. Nikiforakis, and
F. Piessens. FlowFox: a web browser with flexi-
ble and precise information flow control. In CCS,
2012.

[13] D. Devriese and F. Piessens. Noninterference
through Secure Multi-Execution. In Security and
Privacy, 2010.

[14] P. Efstathopoulos, M. Krohn, S. VanDeBogart,
C. Frey, D. Ziegler, E. Kohler, D. Mazières,
F. Kaashoek, and R. Morris. Labels and event pro-
cesses in the Asbestos operating system. In OSDI,
2005.

[15] D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld.
JSFlow: tracking information flow in JavaScript and
its APIs. In SAC, 2014.

[16] J. Howell, B. Parno, and J. R. Douceur. Embassies:
Radically refactoring the Web. In NSDI, 2013.

[17] C. Hriţcu, M. Greenberg, B. Karel, B. C. Pierce, and
G. Morrisett. All your ifcexception are belong to us.
In Security and Privacy, 2013.

[18] L. Ingram and M. Walfish. Treehouse: JavaScript
sandboxes to help web developers help themselves.
In USENIX ATC, 2012.

[19] C. Kerschbaumer. Faster Content Security Policy
(CSP). https://blog.mozilla.org/
security/2014/09/10/faster-csp/,
2014.

[20] R. Kotcher, Y. Pei, P. Jumde, and C. Jackson. Cross-
origin pixel stealing: timing attacks using CSS filters.
In CCS, 2013.

[21] M. S. Miller. Robust composition: towards a unified
approach to access control and concurrency control.
PhD thesis, Johns Hopkins University, 2006.

[22] M. S. Miller and J. S. Shapiro. Paradigm regained:
Abstraction mechanisms for access control. In
ASIAN, 2003.

[23] M. S. Miller, K.-P. Yee, and J. Shapiro. Capability
myths demolished. Technical Report SRL2003-02,
Johns Hopkins University Systems Research Labo-
ratory, 2003. http://zesty.ca/capmyths/
usenix.pdf.

[24] S. Moitozo. http://www.geekwisdom.com/
js/passwordmeter.js, 2006.

[25] B. Montagu, B. C. Pierce, and R. Pollack. A theory
of information-flow labels. In CSF, June 2013.

[26] Mozilla. Add-on builder and SDK.
https://addons.mozilla.org/en-US/
developers/docs/sdk/, 2013.

[27] A. C. Myers and B. Liskov. Protecting privacy using
the decentralized label model. TOSEM, 9(4), 2000.

[28] C. Reis, J. Dunagan, H. J. Wang, O. Dubrovsky, and
S. Esmeir. Browsershield: Vulnerability-driven fil-
tering of dynamic HTML. TWEB, 1(3), Sept. 2007.

[29] J. Reisg. Dromaeo: JavaScript performance testing.
http://dromaeo.com/, 2014.

15

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 60/102

[30] E. G. Sirer, W. de Bruijn, P. Reynolds, A. Shieh,
K. Walsh, D. Williams, and F. B. Schneider. Logical
attestation: an authorization architecture for trust-
worthy computing. In SOSP, 2011.

[31] S. Son and V. Shmatikov. The postman always
rings twice: Attacking and defending postMessage
in HTML5 websites. In NDSS, 2013.

[32] E. Stark, M. Hamburg, and D. Boneh. Symmetric
cryptography in JavaScript. In ACSAC, 2009.

[33] D. Stefan, A. Russo, D. Mazières, and J. C. Mitchell.
Disjunction category labels. In NordSec, 2011.

[34] D. Stefan, A. Russo, J. C. Mitchell, and D. Mazières.
Flexible dynamic information flow control in
Haskell. In Haskell Symposium, 2011.

[35] D. Stefan, A. Russo, P. Buiras, A. Levy, J. C.
Mitchell, and D. Mazières. Addressing covert termi-
nation and timing channels in concurrent informa-
tion flow systems. In ICFP, 2012.

[36] M. Ter Louw, P. H. Phung, R. Krishnamurti, and
V. N. Venkatakrishnan. SafeScript: JavaScript trans-
formation for policy enforcement. In Secure IT
Systems, 2013.

[37] S. Van Acker, P. De Ryck, L. Desmet, F. Piessens,
and W. Joosen. WebJail: least-privilege integration
of third-party components in web mashups. In AC-
SAC, 2011.

[38] A. Van Kesteren. Cross-Origin Resource Sharing.
http://www.w3.org/TR/cors/, 2012.

[39] B. Vibber. CSRF token-stealing attack (user.tokens).
https://bugzilla.wikimedia.org/
show_bug.cgi?id=34907, 2014.

[40] G. Wagner, A. Gal, C. Wimmer, B. Eich, and
M. Franz. Compartmental memory management
in a modern web browser. SIGPLAN Notices, 46
(11), 2011.

[41] H. J. Wang, X. Fan, J. Howell, and C. Jackson. Pro-
tection and communication abstractions for web
browsers in MashupOS. ACM SIGOPS Operating
Systems Review, 41(6), 2007.

[42] WC3. Content Security Policy 1.0. http://www.
w3.org/TR/CSP/, 2012.

[43] WC3. HTML5 web messaging. http://www.
w3.org/TR/webmessaging/, 2012.

[44] WC3. Web Workers. http://www.w3.org/
TR/workers/, 2012.

[45] WC3. Cross-Origin Resource Sharing. http://
www.w3.org/TR/cors/, 2013.

[46] WC3. Content Security Policy
1.1. https://dvcs.w3.org/hg/
content-security-policy/raw-file/
tip/csp-specification.dev.html,
2013.

[47] WC3. HTML5. http://www.w3.org/TR/
html5/, 2013.

[48] WHATWG. HTML living standard. http://
developers.whatwg.org/, 2013.

[49] E. Yang, D. Stefan, J. Mitchell, D. Mazières,
P. Marchenko, and B. Karp. Toward principled
browser security. In HotOS, 2013.

[50] A. Yip, N. Narula, M. Krohn, and R. Morris. Privacy-
preserving browser-side scripting with BFlow. In
EuroSys, 2009.

[51] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and
D. Mazières. Making information flow explicit in
HiStar. In OSDI, 2006.

[52] M. Zelwski. Browser security handbook,
part 2. HTtp://code.google.com/p/
browsersec/wiki/Part2, 2011.

16

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 61/102

7/8/2015

1

The Principle of Least Privilege

Alejandro Russo

russo@chalmers.se

ECI 2015, UBA, Buenos Aires, Argentina

Introduction
[Saltzer 1973]

“Every program and every privileged user of the system

should operate using the least amount of privilege necessary

to complete the job.”

What happens in practice?

“The principle of most privilege”

Security implications

Attack

The more privileged code

there is, the more code you

need to trust

The stronger the privilege, the more vulnerable

the system becomes if compromised

Some concrete examples

“The Shadow Suite solves the problem by relocating the passwords to another file (usually
/etc/shadow). The /etc/shadow file is set so that it cannot be read by just anyone. Only root

will be able to read and write to the /etc/shadow file. Some programs (like xlock) don't need to

be able to change passwords, they only need to be able to verify them. These programs can either
be run suid root or you can set up a group shadow that is allowed read only access to the

/etc/shadow file.”

GNU/Linux shadow password suite

Enforcing the principle of least privilege
[Saltzer and Schroeder 1975]

Linux kernel

(high privileged code)

User-level process

(low privileged code)

System calls

System call

Interposition

accept/deny

Building Secure Web Applications: From Theory to Practice

Web Server Security

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 62/102

7/8/2015

2

Problems with system call interpositon
[Garfinkel 03]

•Mimicking kernel’s state
• Take a decision before “passing” the syscall to the kernel

• Time to check, time to use
• Concurrency

System call
Interposition

System call
Interposition

Don’t mimic, ask

the kernel!

No races which

affect decisions

What about practice?

• System call interposition around for decades
• Not yet widely deployed

System call
Interposition

Policy specified using

application-specific abstractions

Policy specified using

OS-level abstractions

More generally...

• (Complete) mediation

Mediation

It can be enforced at different

abstraction levels (e.g., OS, PL, etc.)

Privileged code

Unprivileged code

• It is needed some kind of isolation of the unprivileged code
• It cannot freely access resources from the privileged code!

Bridging the gap

Mediation

Policy enforced based on

application-specific abstractions

• Programming languages (policies in terms of application-
level abstractions) and OS/PL techniques for isolation

Policy specified using

application-specific abstractions

Examples

Article Isolation Mediation

Polymer [Bauer et al. 05]

(Java)

Instrumented Java libraries Hooks into class loader for

instrument unprivileged code

on the fly

OKWS [Khron et al. 04]

(Web servers)

chroot jail and requests run in different

processes

IPC to databases

Passe [Blankstein and

Freedman 2014]

(Web servers, Python and

PhP)

Linux App Armor (MAC system) Database proxy

Summary

• Principle of least privilege vs. principle of most privilege
(in practice)

•Mediation between privileged and unprivileged code
• Pitfalls: (i) mimic some state relevant for security (ii) time to

use, time to check

• Adoption barrier: policies conceived and enforced at
different level of abstractions
• System call interposition: application- vs. OS-abstractions
• Programming languages and OS techniques can mitigate this

problem

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 63/102

7/9/2015

1

ESpectro (Node.js)

Alejandro Russo

russo@chalmers.se

ECI 2015, UBA, Buenos Aires, Argentina

Introduction
[Node.js]

• Node.js: JavaScript platform to write server-side JavaScript
servers
• V8 JavaScript engine from Google

• Community supported

• Rich ecosystem of libraries and applications
• npm package manager

• Developers surely need to learn JavaScript anyways
• Integrates well with client-side framworks (React)

ESpectro
[GitStar]

• Complete mediation for Node.js core libraries

Mediation

Core libraries

(JavaScript)

Untrusted code

(JavaScript)

Implemented in

(JavaScript)

• It enables virtualization
• Not just deny/accept monitor like system call interposition

• It can redefine the semantics of core libraries (e.g. filesystem)

Authors

• Startup in San Francisco (4 people)

• CTO: Deian Stefan (LIO, Hails, COWL)

• ESpectro is work in progress
• Exclusive preview in this course!

Node.js Architecture

JavaScript (sequential code)

Async event driven programming style

Your code runs sequentially but the runtime system doesn’t!

Return early!

Abuse callbacks!

Split heavy

computations!

A HTTP static file server

• User request files via URLs
• localhost:5000/some_directory/file.txt

var http = require('http');
var server = http.createServer(handler);
server.listen(port);
console.log('Server listening on port '+port);

Importing a module At every request, this function is called

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 64/102

7/9/2015

2

A HTTP static file server

var fs = require('fs');
var qstr = require('querystring');
var port = 5000;

var handler = function (req, res) {
var filename = __dirname + qstr.unescape(req.url)
console.log('Requesting file:'+filename);
fs.readFile(filename, function(error, content) {

if (error)
{ res.end('Error reading the file!\n', 'utf-8'); }

else { res.end(content,'utf-8'); }
});

};

File system primitives

Encode/decode URLs

Call when receiving a HTTP request

Call after reading the file

Demo

Files: Node.js/server.js

A HTTP static file server

var fs = require('fs');
var qstr = require('querystring');
var port = 5000;

var handler = function (req, res) {
var filename = __dirname + qstr.unescape(req.url)
console.log('Requesting file:'+filename);
fs.readFile(filename, function(error, content) {

if (error)
{ res.end('Error reading the file!\n', 'utf-8'); }

else { res.end(content,'utf-8'); }
});

};

Is it secure?

What about ../?

V8 contexts in Node.js

Context (V8)

Array

Math

fs

http

Side-effects free modules

Side-effectful modules (I/O)

Global Object

App code Written in EcmaScript

ESpectro: achieving isolation

Context (V8)

Array

Math

fs

http

Global Object

main code

Context (V8)

Array

Math

Global Object

untrusted code

It has no privileges

for I/O!

Spawn

ESpectro: the principle of least privilege?

•Most untrusted code requires some access
to I/O to be useful

• Calls to side-effectual operations need to
be monitored

•Wrap primitives in side-effectful modules
• Problems?

• Untrusted code can find a way to bypass the
wrappers
• Specially, in languages like JavaScript [Phung et

al. 09][Magazinius et al. 10]

Context (V8)

Array

Math

fs

http

Global Object

untrusted code

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 65/102

7/9/2015

3

The ESpectro way

Context (V8)

Array

Math

fs

http

Global Object

untrusted code

Context (V8)

Array

Math

Global Object

monitor

http

fs

Untrusted code cannot

bypass the monitor

Demo

Files: Node.js/es_server.js

Mediation as a discipline technique

•Mediation has a tremendous expressive power
• (Some form of) Sandboxing

• Transparent encryption

• Automatic sanitization

• Mandatory Access Control

• If interested to try ESpectro beyond this course,
contact GitStar!

Summary

• Programming model Node.js

• A vulnerable static file server

• ESpectro as a mediation layer for Node.js
• (lightweight) Sandboxing to repair the static file server

• ESpectro preview!

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 66/102

7/9/2015

1

IFC-Inside

Alejandro Russo

russo@chalmers.se

ECI 2015, UBA, Buenos Aires, Argentina

Motivation

• Provide non-interference guarantees for ”real-
world” languages
• Propose a full formal semantics

• Cope with (advance) features and
their avility to transmit information

• Mayor task!

JSFlow (ECMA Script) [Hedin et al. 2014]

IFC-Inside
[Heule et al. 2015]

•We take an alternative road

• There exists many programming
languages which support sandboxes
• HTML (iFrames)

• JavaScript (workers)

• C / C++

• Sanboxes provide isolation from the
host

•We can leverage on sandboxes to provide
IFC!

Coarse-grained IFC

Running code

Monitored inter-

tasks

communication Monitored external

communication

It is not necessary to track any language

feature for intra-communication (e.g.,

references, objects, etc.)

Formalization overview

• Two semantics
• For programs running inside the sandboxes
• For sandboxes and their cross-boundary

communication and

Semantics

Building Secure Web Applications: From Theory to Practice

Formal Aspects

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 67/102

7/9/2015

2

• It is used to express re-writing rules (i.e., evaluation)

• Formally, evaluation contexts is simply an expression
with a hole

Evaluation contexts
[Felleisen, Heib 91]

The rest!

Expression to

reduce Part to

rewrite

Part

rewritten

Example

Order of reduction?

Target language

• Environment (e.g., mapping variables to values)

• Expressions

• Evaluation context Reductions

Notation

Mapping of messages for each task:

Information-flow control language

• Environment (e.g., mapping variables to values)

• Expressions

• Evaluation context

Reductions

Information-flow control language

Task which sent the message

In case of no message

Destination task and label of

the message

Sending and receiving messages

“No-write down”

“No-read up”

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 68/102

7/9/2015

3

Sending and receiving messages

No messages that can be

read

We follow a non-blocking

semantics inspired by JavaScript

Retrofitting IFC to the target language

Combining semantics
[Matthews, Findler 2007]

Values and expressions from

the target language can be

used in the IFC-language

Values and expressions from

the IFC-language can be used

in the target language

Evaluation contexts

Need to be reduced in the

target language

Lifting reduction rules

What if it is of the form ? In case refers to the environment

Lifting reduction rules II

Target “outside”, IFC ”inside”

IFC “outside”, target “inside”? Homework!

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 69/102

7/9/2015

4

Tasks

Configuration: tasks (each one with its on

environment for the target language

Scheduler for tasks (it always runs

the first tasks in the configuration Soundness

Non-interference
[Goguen, Meseguer 1982]

Configuration

Two configurations with the

same public information

Run until completion

Final configurations have the

same public information

Termination-Insensitive Non-Interference

Termination-Insensitive Non-interference
[Askarov et al. 2008]

• TINI ignores leaks due to termination

• In a sequential setting, such leaks do not
represent a danger for the confidentiality of
“long” secrets

• In presence of outputs, attackers can leak (or
guess) secrets only by brute force attacks

•Most of the IFC tools for sequential settings
ignore such leaks (Jif, JSFlow, FlowCAML, etc.)

Termination-Sensitive Non-interference
[Stefan et al. 2012]

• In presence of concurrency, termination leaks
are dangerous!

• High bandwidth

• A termination leak can be exploited in every
thread

Non-interference II

Two configurations with the

same public information

Configurations have the same

public information

Termination-Sensitive Non-Interference
There exists a configuration which “matches”

the public content of the other one

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 70/102

7/9/2015

5

Term erasure

How do we capture the idea of

“same public information” Erasure function: it removes all

the secret information from the

configuration

Erasure of configurations

Erasure of environment Apply erasure to each task

Low-equivalence

Two configurations are low-equivalent if they

contain the same public information after

erasure of sensitive data

Proof overview

• TINI and TSNI can be proved by showing the following:

Formulation almost the same as

Termination-Sensitive Non-Interference

One step!

• See proof in the extended version of the paper

Formal results for COWL and Espectro?

COWL

Compartment (Firefox)

Cross-origin communication

ESpectro

V8 context

Wrappers for core libraries

Our formalism fits these scenarios,

but the dots are to be connected!

Summary

• Evaluation contexts

• Target language

• IFC language
• Security checks

• Combination of target and IFC language

• Definitions for TINI (TSNI) non-interference

• Proof technique (term erasure)

• Proof overview for TSNI

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 71/102

IFC Inside: Retrofitting Languages with

Dynamic Information Flow Control

Stefan Heule1, Deian Stefan1, Edward Z. Yang1, John C. Mitchell1, and
Alejandro Russo2⋆⋆

1 Stanford University
2 Chalmers University

Abstract. Many important security problems in JavaScript, such as
browser extension security, untrusted JavaScript libraries and safe inte-
gration of mutually distrustful websites (mash-ups), may be effectively
addressed using an efficient implementation of information flow control
(IFC). Unfortunately existing fine-grained approaches to JavaScript IFC
require modifications to the language semantics and its engine, a non-goal
for browser applications. In this work, we take the ideas of coarse-grained
dynamic IFC and provide the theoretical foundation for a language-based
approach that can be applied to any programming language for which ex-
ternal effects can be controlled. We then apply this formalism to server-
and client-side JavaScript, show how it generalizes to the C programming
language, and connect it to the Haskell LIO system. Our methodology
offers design principles for the construction of information flow control
systems when isolation can easily be achieved, as well as compositional
proofs for optimized concrete implementations of these systems, by re-
lating them to their isolated variants.

1 Introduction
Modern web content is rendered using a potentially large number of different
components with differing provenance. Disparate and untrusting components
may arise from browser extensions (whose JavaScript code runs alongside web-
site code), web applications (with possibly untrusted third-party libraries), and
mashups (which combine code and data from websites that may not even be
aware of each other’s existence.) While just-in-time combination of untrusting
components offers great flexibility, it also poses complex security challenges. In
particular, maintaining data privacy in the face of malicious extensions, libraries,
and mashup components has been difficult.

Information flow control (IFC) is a promising technique that provides secu-
rity by tracking the flow of sensitive data through a system. Untrusted code
is confined so that it cannot exfiltrate data, except as per an information flow
policy. Significant research has been devoted to adding various forms of IFC to
different kinds of programming languages and systems. In the context of the
web, however, there is a strong motivation to preserve JavaScript’s semantics

⋆⋆ Work partially done while at Stanford.

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 72/102

and avoid JavaScript-engine modifications, while retrofitting it with dynamic
information flow control.

The Operating Systems community has tackled this challenge (e.g., in [45])
by taking a coarse-grained approach to IFC: dividing an application into coarse
computational units, each with a single label dictating its security policy, and
only monitoring communication between them. This coarse-grained approach
provides a number of advantages when compared to the fine-grained approaches
typically employed by language-based systems. First, adding IFC does not re-
quire intrusive changes to an existing programming language, thereby also al-
lowing the reuse of existing programs. Second, it has a small runtime overhead
because checks need only be performed at isolation boundaries instead of (al-
most) every program instruction (e.g., [19]). Finally, associating a single security
label with the entire computational unit simplifies understanding and reasoning
about the security guarantees of the system, without reasoning about most of
the technical details of the semantics of the underlying programming language.

In this paper, we present a framework which brings coarse-grained IFC ideas
into a language-based setting: an information flow control system should be
thought of as multiple instances of completely isolated language runtimes or
tasks, with information flow control applied to inter-task communication. We
describe a formal system in which an IFC system can be designed once and then
applied to any programming language which has control over external effects
(e.g., JavaScript or C with access to hardware privilege separation). We formal-
ize this system using an approach by Matthews and Findler [25] for combining
operational semantics and prove non-interference guarantees that are indepen-
dent of the choice of a specific target language.

There are a number of points that distinguish this setting from previous
coarse-grained IFC systems. First, even though the underlying semantic model
involves communicating tasks, these tasks can be coordinated together in ways
that simulate features of traditional languages. In fact, simulating features in
this way is a useful design tool for discovering what variants of the features are
permissible and which are not. Second, although completely separate tasks are
semantically easy to reason about, real-world implementations often blur the
lines between tasks in the name of efficiency. Characterizing what optimizations
are permissible is subtle, since removing transitions from the operational seman-
tics of a language can break non-interference. We partially address this issue by
characterizing isomorphisms between the operational semantics of our abstract
language and a concrete implementation, showing that if this relationship holds,
then non-interference in the abstract specification carries over to the concrete
implementation.

Our contributions can be summarized as follows:
– We give formal semantics for a core coarse-grained dynamic information flow

control language free of non-IFC constructs. We then show how a large class
of target languages can be combined with this IFC language and prove that
the result provides non-interference. (Sections 2 and 3)

– We provide a proof technique to show the non-interference of a concrete
semantics for a potentially optimized IFC language by means of an isomor-

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 73/102

phism and show a class of restrictions on the IFC language that preserves
non-interference. (Section 4)

– We have implemented an IFC system based on these semantics for Node.js,
and we connect our formalism to another implementation based on this work
for client-side JavaScript [37]. Furthermore, we outline an implementation
for the C programming language and describe improvements to the Haskell
LIO system that resulted from this framework. (Section 5)

In the extended version of this paper we give all the relevant proofs and
extend our IFC language with additional features [20].

2 Retrofitting Languages with IFC
Before moving on to the formal treatment of our system, we give a brief primer
of information flow control and describe some example programs in our system,
emphasizing the parallel between their implementation in a multi-task setting,
and the traditional, “monolithic” programming language feature they simulate.

Information flow control systems operate by associating data with labels, and
specifying whether or not data tagged with one label l1 can flow to another la-
bel l2 (written as l1 ⊑ l2). These labels encode the desired security policy (for
example, confidential information should not flow to a public channel), while
the work of specifying the semantics of an information flow language involves
demonstrating that impermissible flows cannot happen, a property called non-
interference [17]. In our coarse-grained floating-label approach, labels are associ-
ated with tasks. The task label—we refer to the label of the currently executing
task as the current label—serves to protect everything in the task’s scope; all
data in a task shares this common label.

As an example, here is a program which spawns a new isolated task, and
then sends it a mutable reference:

let i = TI⌊sandbox (blockingRecv x , in IT⌈ ! TI⌊x⌋⌉)⌋
in TI⌊send IT⌈i⌉ l IT⌈ref true⌉⌋

For now, ignore the tags TI⌊ · ⌋ and IT⌈ · ⌉: roughly, this code creates a new
sandboxed task with identifier i which waits (blockingRecv, binding x with
the received message) for a message, and then sends the task a mutable reference
(ref true) which it labels l. If this operation actually shared the mutable cell
between the two tasks, it could be used to violate information flow control if the
tasks had differing labels. At this point, the designer of an IFC system might
add label checks to mutable references, to check the labels of the reader and
writer. While this solves the leak, for languages like JavaScript, where references
are prevalently used, this also dooms the performance of the system.

Our design principles suggest a different resolution: when these constructs
are treated as isolated tasks, each of which have their own heaps, it is obviously
the case that there is no sharing; in fact, the sandboxed task receives a dangling
pointer. Even if there is only one heap, if we enforce that references not be
shared, the two systems are morally equivalent. (We elaborate on this formally

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 74/102

in Section 4.) Finally, this semantics strongly suggests that one should restrict the
types of data which may be passed between tasks (for example, in JavaScript,
one might only allow JSON objects to be passed between tasks, rather than
general object structures).

Existing language-based, coarse-grained IFC systems [21, 35] allow a sub-
computation to temporarily raise the floating-label; after the sub-computation
is done, the floating-label is restored to its original label. When this occurs, the
enforcement mechanism must ensure that information does not leak to the (less
confidential) program continuation. The presence of exceptions adds yet more
intricacies. For instance, exceptions should not automatically propagate from a
sub-computation directly into the program continuation, and, if such exceptions
are allowed to be inspected, the floating-label at the point of the exception-
raise must be tracked alongside the exception value [18, 21, 35]. In contrast, our
system provides the same flexibility and guarantees with no extra checks: tasks
are used to execute sub-computations, but the mere definition of isolated tasks
guarantees that (a) tasks only transfer data to the program continuation by using
inter-task communication means, and (b) exceptions do cross tasks boundaries
automatically.

2.1 Preliminaries

Our goal now is to describe how to take a target language with a formal
operational semantics and combine it with an information flow control language.
For example, taking ECMAScript as the target language and combining it with
our IFC language should produce the formal semantics for the core part of
COWL [37]. In this presentation, we use a simple, untyped lambda calculus
with mutable references and fixpoint in place of ECMAScript to demonstrate
some the key properties of the system (and, because the embedding does not
care about the target language features); we discuss the proper embedding in
more detail in Section 5.

Notation We have typeset nonterminals of the target language using bold font
while the nonterminals of the IFC language have been typeset with italic font.
Readers are encouraged to view a color copy of this paper, where target language
nonterminals are colored red and IFC language nonterminals are colored blue.

2.2 Target Language: Mini-ES

In Fig. 1, we give a simple, untyped lambda calculus with mutable references and
fixpoint, prepared for combination with an information flow control language.
The presentation is mostly standard, and utilizes Felleisen-Hieb reduction se-
mantics [16] to define the operational semantics of the system. One peculiarity
is that our language defines an evaluation context E, but, the evaluation rules
have been expressed in terms of a different evaluation context EΣ; Here, we follow
the approach of Matthews and Findler [25] in order to simplify combining se-
mantics of multiple languages. To derive the usual operational semantics for this
language, the evaluation context merely needs to be defined as EΣ [e] , Σ,E [e].
However, when we combine this language with an IFC language, we reinterpret
the meaning of this evaluation context.

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 75/102

v ::= λx.e | true | false | a
e ::= v | x | e e | if e then e else e | ref e | !e | e := e | fix e
E ::= [·]T | E e | v E | if E then e else e | ref E | !E | E := e | v :=E | fix E

e1; e2 , (λx.e2) e1 where x 6∈ FV (e2)

let x = e1 in e2 , (λx.e2) e1

T-app

EΣ [(λx .e) v] → EΣ [{v / x } e]

T-ifTrue

EΣ [if true then e1 else e2] → EΣ [e1]

Fig. 1: λES: simple untyped lambda calculus extended with booleans, mutable refer-
ences and general recursion. For space reasons we only show two representative reduc-
tion rules; full rules can be found in the extended version of this paper.

In general, we require that a target language be expressed in terms of some
global machine state Σ, some evaluation context E, some expressions e, some set
of values v and a deterministic reduction relation on full configurationsΣ×E×e.

2.3 IFC Language

As mentioned previously, most modern, dynamic information flow control lan-
guages encode policy by associating a label with data. Our embedding is agnostic
to the choice of labeling scheme; we only require the labels to form a lattice [12]
with the partial order ⊑, join ⊔, and meet ⊓. In this paper, we simply represent
labels with the metavariable l, but do not discuss them in more detail. To enforce
labels, the IFC monitor inspects the current label before performing a read or
a write to decide whether the operation is permitted. A task can only write to
entities that are at least as sensitive. Similarly, it can only read from entities
that are less sensitive. However, as in other floating-label systems, this current
label can be raised to allow the task to read from more sensitive entities at the
cost of giving up the ability to write to others.

In Fig. 2, we give the syntax and single-task evaluation rules for a minimal
information flow control language. Ordinarily, information flow control languages
are defined by directly stating a base language plus information flow control oper-
ators. In contrast, our language is purposely minimal: it does not have sequencing
operations, control flow, or other constructs. However, it contains support for
the following core information flow control features:

– First-class labels, with label values l as well as operations for computing on
labels (⊑ , ⊔ and ⊓).

– Operations for inspecting (getLabel) and modifying (setLabel) the current
label of the task (a task can only increase its label).

– Operations for non-blocking inter-task communication (send and recv),
which interact with the global store of per-task message queues Σ.

– A sandboxing operation used to spawn new isolated tasks. In concurrent set-
tings sandbox corresponds to a fork-like primitive, whereas in a sequential
setting, it more closely resembles computations which might temporarely
raise the current floating-label [21, 33].

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 76/102

These operations are all defined with respect to an evaluation context E i,l
Σ

that represents the context of the current task. The evaluation context has three
important pieces of state: the global message queues Σ, the current label l and
the task ID i .

We note that first-class labels, tasks (albeit named differently), and opera-
tions for inspecting the current label are essentially universal to all floating-label
systems. However, our choice of communication primitives is motivated by those
present in browsers, namely postMessage [41]. Of course, other choices, such as
blocking communication or labeled channels, are possible.

These asynchronous communication primitives are worth further discussion.
When a task is sending a message using send, it also labels that message with
a label l′ (which must be at or above the task’s current label l). Messages can
only be received by a task if its current label is at least as high as the label of
the message. Specifically, receiving a message using recv x 1, x2 in e1 else e2
binds the message and the sender’s task identifier to local variables x 1 and x 2,
respectively, and then executes e1. Otherwise, if there are no messages, that task
continues its execution with e2. We denote the filtering of the message queue
by Θ � l, which is defined as follows. If Θ is the empty list nil, the function is
simply the identity function, i.e., nil � l = nil, and otherwise:

((l′, i , e), Θ) � l =

{
(l′, i , e), (Θ � l) if l′ ⊑ l
Θ � l otherwise

This ensures that tasks cannot receive messages that are more sensitive than
their current label would allow.

2.4 The Embedding

Fig. 3 provides all of the rules responsible for actually carrying out the embedding
of the IFC language within the target language. The most important feature of
this embedding is that every task maintains its own copy of the target language
global state and evaluation context, thus enforcing isolation between various
tasks. In more detail:

– We extend the values, expressions and evaluation contexts of both languages
to allow for terms in one language to be embedded in the other, as in [25]. In
the target language, an IFC expression appears as TI⌊e⌋ (“Target-outside,
IFC-inside”); in the IFC language, a target language expression appears as
IT⌈e⌉ (“IFC-outside, target-inside”).

– We reinterpret E to be evaluation contexts on task lists, providing definitions
for EΣ and E i,l

Σ . These rules only operate on the first task in the task list,
which by convention is the only task executing.

– We reinterpret →, an operation on a single task, in terms of →֒, operation
on task lists. The correspondence is simple: a task executes a step and then
is rescheduled in the task list according to schedule policy α. Fig. 4 defines
two concrete schedulers.

– Finally, we define some rules for scheduling, handling sandboxing tasks (which
interact with the state of the target language), and intermediating between
the borders of the two languages.

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 77/102

v ::= i | l | true | false | 〈〉 ⊗ ::= ⊑ | ⊔ | ⊓
e ::= v | x | e ⊗ e | getLabel | setLabel e | taskId | sandbox e

| send e e e | recv x , x in e else e
E ::= [·]I | E ⊗ e | v ⊗ E | setLabel E | send E e e | send v E e | send v v E
θ ::= (l, i e) Θ ::= nil | θ,Θ Σ ::= ∅ | Σ [i 7→ Θ]

I-getTaskId

E i,l
Σ [taskId] → E i,l

Σ [i]

I-getLabel

E i,l
Σ [getLabel] → E i,l

Σ [l]

I-labelOp
Jl1 ⊗ l2K = v

E i,l
Σ [l1 ⊗ l2] → E i,l

Σ [v]

I-send
l ⊑ l′ Σ(i ′) = Θ Σ′ = Σ

[
i ′ 7→ (l′, i , v), Θ

]

E i,l
Σ

[
send i ′ l′ v

]
→ E i,l

Σ′ [〈〉]

I-recv
(Σ(i) � l) = θ1, ..., θk , (l

′, i ′, v) Σ′ = Σ [i 7→ (θ1, ..., θk)]

E i,l
Σ [recv x1, x2 in e1 else e2] → E i,l

Σ′
[
{v / x 1, i

′ / x 2} e1

]

I-noRecv
Σ(i) � l = nil Σ′ = Σ [i 7→ nil]

E i,l
Σ [recv x1, x2 in e1 else e2] → E i,l

Σ′ [e2]

I-setLabel
l ⊑ l′

E i,l
Σ

[
setLabel l′

]
→ E i,l′

Σ [〈〉]

Fig. 2: IFC language with all single-task operations.

v ::= · · · | IT⌈v⌉
e ::= · · · | IT⌈e⌉
E ::= · · · | IT⌈E⌉

v ::= · · · | TI⌊v⌋
e ::= · · · | TI⌊e⌋
E ::= · · · | TI⌊E⌋

EΣ [e] , Σ; 〈Σ, E[e]T〉il , . . .
E i,l
Σ [e] , Σ; 〈Σ, E[e]I〉il , . . .

E [e] → Σ; t , . . . , E [e]
α→֒ Σ;αstep(t , . . .)

I-sandbox
Σ′ = Σ

[
i ′ 7→ nil

]

Σ′ = κ (Σ) t1 = 〈Σ, E[i ′]〉il tnew = 〈Σ′, e〉i′l fresh(i ′)

Σ; 〈Σ, E[sandbox e]I〉il , . . .
α→֒ Σ′;αsandbox(t1, . . . , tnew)

I-done

Σ; 〈Σ, v〉il , . . .
α→֒ Σ;αdone(〈Σ, v〉il , . . .)

I-noStep

Σ; t , . . . 6 α→֒
Σ; t , . . .

α→֒ Σ;αnoStep(t , . . .)

I-border

E i,l
Σ

[
IT⌈TI⌊e⌋⌉

]
→ E i,l

Σ [e]

T-border

EΣ

[
TI⌊IT⌈e⌉⌋

]
→ EΣ [e]

Fig. 3: The embedding LIFC(α, λ), where λ= (Σ,E, e,v,→)

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 78/102

RRstep(t1, t2, . . .) = t2, . . . , t1
RRdone(t1, t2, . . .) = t2, . . .
RRnoStep(t1, t2, . . .) = t2, . . .
RRsandbox(t1, t2, . . .) = t2, . . . , t1

Seqstep(t1, t2, . . .) = t1, t2, . . .
SeqnoStep(t1, t2, . . .) = t1, t2, . . .
Seqdone(t) = t
Seqdone(t1, t2, . . .) = t2, . . .
Seqsandbox(t1, t2, . . . , tn) = tn , t1, t2, . . .

Fig. 4: Scheduling policies (concurrent round robin on the left, sequential on the right).

The I-sandbox rule is used to create a new isolated task that executes
separately from the existing tasks (and can be communicated with via send
and recv). When the new task is created, there is the question of what the
target language state of the new task should be. Our rule is stated generically
in terms of a function κ. Conservatively, κ may be simply thought of as the
identity function, in which case the semantics of sandbox are such that the
state of the target language is cloned when sandboxing occurs. However, this is
not necessary: it is also valid for κ to remove entries from the state. In Section 4,
we give a more detailed discussion of the implications of the choice of κ, but all
our security claims will hold regardless of the choice of κ.

The rule I-noStep says something about configurations for which it is not

possible to take a transition. The notation c 6 α→֒ in the premise is meant to be
understood as follows: If the configuration c cannot take a step by any rule other
than I-noStep, then I-noStep applies and the stuck task gets removed.

Rules I-done and I-noStep define the behavior of the system when the
current thread has reduced to a value, or gotten stuck, respectively. While these
definitions simply rely on the underlying scheduling policy α to modify the task
list, as we describe in Sections 3 and 6, these rules (notably, I-noStep) are
crucial to proving our security guarantees. For instance, it is unsafe for the whole
system to get stuck if a particular task gets stuck, since a sensitive thread may
then leverage this to leak information through the termination channel. Instead,
as our example round-robin (RR) scheduler shows, such tasks should simply
be removed from the task list. Many language runtime or Operating System
schedulers implement such schedulers. Moreover, techniques such as instruction-
based scheduling [10, 36] can be further applied close the gap between specified
semantics and implementation.

As in [25], rules T-border and I-border define the syntactic boundaries
between the IFC and target languages. Intuitively, the boundaries respectively
correspond to an upcall into and downcall from the IFC runtime. As an ex-
ample, taking λES as the target language, we can now define a blocking receive
(inefficiently) in terms of the asynchronous recv as series of cross-language calls:

blockingRecv x1, x2 in e , IT⌈fix (λk .TI⌊recv x 1, x2 in e else IT⌈k⌉⌋)⌉
For any target language λ and scheduling policy α, this embedding defines

an IFC language, which we will refer to as LIFC(α, λ).

3 Security Guarantees
We are interested in proving non-interference about many programming lan-
guages. This requires an appropriate definition of this notion that is language

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 79/102

agnostic, so in this section, we present a few general definitions for what an in-
formation flow control language is and what non-interference properties it may
have. In particular, we show that LIFC(α, λ), with an appropriate scheduler α,
satisfies non-interference [17], without making any reference to properties of λ.
We state the appropriate theorems here, and provide the formal proofs in the
extended version of this paper.

3.1 Erasure Function

When defining the security guarantees of an information flow control, we must
characterize what the secret inputs of a program are. Like other work [24, 30, 33,
34], we specify and prove non-interference using term erasure. Intuitively, term
erasure allows us to show that an attacker does not learn any sensitive informa-
tion from a program if the program behaves identically (from the attackers point
of view) to a program with all sensitive data “erased”. To interpret a language
under information flow control, we define a function εl that performs erasures
by mapping configurations to erased configurations, usually by rewriting (parts
of) configurations that are more sensitive than l to a new syntactic construct •.
We define an information flow control language as follows:

Definition 1 (Information flow control language). An information flow
control language L is a tuple (∆, →֒, εl), where ∆ is the type of machine con-
figurations (members of which are usually denoted by the metavariable c), →֒
is a reduction relation between machine configurations and εl :∆ → ε(∆) is an
erasure function parametrized on labels from machine configurations to erased
machine configurations ε(∆). Sometimes, we use V to refer to set of terminal
configurations in ∆, i.e., configurations where no further transitions are possible.

Our language LIFC(α, λ) fulfills this definition as (∆,
α→֒, εl), where ∆ = Σ×

List(t). The set of terminal conditions V is Σ× tV , where tV ⊂ t is the type for
tasks whose expressions have been reduced to values.3 The erased configuration
ε(∆) extends ∆ with configurations containing •, and Fig. 5 gives the precise
definition for our erasure function εl. Essentially, a task and its corresponding
message queue is completely erased from the task list if its label does not flow
to the attacker observation level l. Otherwise, we apply the erasure function
homomorphically and remove any messages from the task’s message queue that
are more sensitive than l.

The definition of an erasure function is quite important: it captures the at-
tacker model, stating what can and cannot be observed by the attacker. In our
case, we assume that the attacker cannot observe sensitive tasks or messages, or
even the number of such entities. While such assumptions are standard [8, 34],
our definitions allow for stronger attackers that may be able to inspect resource
usage.4

3 Here, we abuse notation by describing types for configuration parts using the same
metavariables as the “instance” of the type, e.g., t for the type of task.

4 We believe that we can extend LIFC(α, λ) to such models using the resource limits
techniques of [42]. We leave this extension to future work.

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 80/102

εl(Σ; ts) = εl(Σ); filter (λt .t = •) (map εl ts)

εl(〈Σ, e〉il′) =
{
• l′ 6⊑ l

〈εl(Σ), εl(e)〉il′ otherwise

εl(Σ [i 7→ Θ]) =

{
εl(Σ) l′ 6⊑ l, where l′ is the label of thread i

εl(Σ) [i 7→ εl(Θ)] otherwise

εl(Θ) = Θ � l εl(∅) = ∅
Fig. 5: Erasure function for tasks, queue maps, message queues, and configurations.
In all other cases, including target-language constructs, εl is applied homomorphically.
Note that εl(e) is always equal to e (and similar for Σ) in this simple setting. However,
when the IFC language is extended with more constructs as shown in Section 6, then
this will no longer be the case.

3.2 Non-Interference

Given an information flow control language, we can now define non-interference.
Intuitively, we want to make statements about the attacker’s observational power
at some security level l. This is done by defining an equivalence relation called
l-equivalence on configurations: an attacker should not be able to distinguish
two configurations that are l-equivalent. Since our erasure function captures
what an attacker can or cannot observe, we simply define this equivalence as the
syntactic-equivalence of erased configurations [34].

Definition 2 (l-equivalence). In a language (∆, →֒, εl), two machine config-
urations c, c′ ∈ ∆ are considered l-equivalent, written as c ≈l c

′, if εl(c) = εl(c
′).

We can now state that a language satisfies non-interference if an attacker at
level l cannot distinguish the runs of any two l-equivalent configurations. This
particular property is called termination sensitive non-interference (TSNI). Be-
sides the obvious requirement to not leak secret information to public channels,
this definition also requires the termination of public tasks to be independent of
secret tasks. Formally, we define TSNI as follows:

Definition 3 (Termination Sensitive Non-Interference (TSNI)). A lan-
guage (∆, →֒, εl) satisfies termination sensitive non-interference if for any label
l, and configurations c1, c

′
1, c2 ∈ ∆, if

c1 ≈l c2 and c1 →֒∗ c′1 (1)

then there exists a configuration c′2 ∈ ∆ such that

c′1 ≈l c
′
2 and c2 →֒∗ c′2 . (2)

In other words, if we take two l-equivalent configurations, then for every inter-
mediate step taken by the first configuration, there is a corresponding number
of steps that the second configuration can take to result in a configuration that
is l-equivalent to the first resultant configuration. By symmetry, this applies to
all intermediate steps from the second configuration as well.

Our language satisfies TSNI under the round-robin scheduler RR of Fig. 4.

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 81/102

Theorem 1 (Concurrent IFC language is TSNI). For any target language
λ, LIFC(RR, λ) satisfies TSNI.

In general, however, non-interference will not hold for an arbitrary scheduler
α. For example, LIFC(α, λ) with a scheduler that inspects a sensitive task’s
current state when deciding which task to schedule next will in general break
non-interference [4, 29].

However, even non-adversarial schedulers are not always safe. Consider, for
example, the sequential scheduling policy Seq given in Fig. 4. It is easy to show
that LIFC(Seq, λ) does not satisfy TSNI: consider a target language similar to
λES with an additional expression terminal ⇑ that denotes a divergent compu-
tation, i.e., ⇑ always reduces to ⇑ and a simple label lattice {pub, sec} such
that pub ⊑ sec, but sec 6⊑ pub. Consider the following two configurations in this
language:

c1 = Σ; 〈Σ1,
IT⌈ if false then ⇑ else true⌉〉1sec, 〈Σ2, e〉2pub

c2 = Σ; 〈Σ1,
IT⌈ if true then ⇑ else true⌉〉1sec, 〈Σ2, e〉2pub

These two configurations are pub-equivalent, but c1 will reduce (in two steps) to
c′1 = Σ; 〈Σ1,

IT⌈true⌉〉2pub, whereas c2 will not make any progress. Suppose that

e is a computation that writes to a pub channel,5 then the sec task’s decision to
diverge or not is directly leaked to a public entity.

To accommodate for sequential languages, or cases where a weaker guarantee
is sufficient, we consider an alternative non-interference property called termi-
nation insensitive non-interference (TINI). This property can also be upheld by
sequential languages at the cost of leaking through (non)-termination [3].

Definition 4 (Termination insensitive non-interference (TINI)). A lan-
guage (∆,V, →֒, εl) is termination insensitive non-interfering if for any label l,
and configurations c1, c2 ∈ ∆ and c′1, c

′
2 ∈ V , it holds that

(c1 ≈l c2 ∧ c1 →֒∗ c′1 ∧ c2 →֒∗ c′2) =⇒ c′1 ≈l c
′
2

TINI states that if we take two l-equivalent configurations, and both config-
urations reduce to final configurations (i.e., configurations for which there are no
possible further transitions), then the end configurations are also l-equivalent.
We highlight that this statement is much weaker than TSNI: it only states that
terminating programs do not leak sensitive data, but makes no statement about
non-terminating programs.

As shown by compilers [26, 31], interpreters [19], and libraries [30, 33], TINI
is useful for sequential settings. In our case, we show that our IFC language with
the sequential scheduling policy Seq satisfies TINI.

Theorem 2 (Sequential IFC language is TINI). For any target language
λ, LIFC(Seq, λ) satisfies TINI.

5 Though we do not model labeled channels, extending the calculus with such a
feature is straightforward, see Section 6.

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 82/102

4 Isomorphisms and Restrictions
The operational semantics we have defined in the previous section satisfy non-
interference by design. We achieve this general statement that works for a large
class of languages by having different tasks executing completely isolated from
each other, such that every task has its own state. In some cases, this strong
separation is desirable, or even necessary. Languages like C provide direct access
to memory locations without mechanisms in the language to achieve a separa-
tion of the heap. On the other hand, for other languages, this strong isolation
of tasks can be undesirable, e.g., for performance reasons. For instance, for the
language λES, our presentation so far requires a separate heap per task, which is
not very practical. Instead, we would like to more tightly couple the integration
of the target and IFC languages by reusing existing infrastructure. In the run-
ning example, a concrete implementation might use a single global heap. More
precisely, instead of using a configuration of the form Σ; 〈Σ1, e1〉i1l1 , 〈Σ2, e2〉i2l2 . . .

we would like a single global heap as in Σ;Σ; 〈e1〉i1l1 , 〈e2〉
i2
l2
, . . .

If the operational rules are adapted näıvely to this new setting, then non-
interference can be violated: as we mentioned earlier, shared mutable cells could
be used to leak sensitive information. What we would like is a way of char-
acterizing safe modifications to the semantics which preserve non-interference.
The intention of our single heap implementation is to permit efficient execution
while conceptually maintaining isolation between tasks (by not allowing sharing
of references between them). This intuition of having a different (potentially
more efficient) concrete semantics that behaves like the abstract semantics can
be formalized by the following definition:

Definition 5 (Isomorphism of information flow control languages). A
language (∆, →֒, εl) is isomorphic to a language (∆′, →֒′, ε′l) if there exist total
functions f :∆ → ∆′ and f −1 :∆′ → ∆ such that f ◦f −1 = id∆ and f −1◦f = id∆′ .
Furthermore, f and f −1 are functorial (e.g., if x′ R′ y′ then f(x′) R f(y′)) over
both l-equivalences and →֒.

If we weaken this restriction such that f −1 does not have to be functorial over
→֒, we call the language (∆, →֒, εl) weakly isomorphic to (∆′, →֒′, ε′l).

Providing an isomorphism between the two languages allows us to preserve
(termination sensitive or insensitive) non-interference as the following two theo-
rems state.

Theorem 3 (Isomorphism preserves TSNI). If L is isomorphic to L′ and
L′ satisfies TSNI, then L satisfies TSNI.

Proof. Shown by transporting configurations and reduction derivations from
L to L′, applying TSNI, and then transporting the resulting configuration, l-
equivalence and multi-step derivation back. ⊓⊔

Only weak isomorphism is necessary for TINI. Intuitively, this is because it is
not necessary to back-translate reduction sequences in L′ to L; by the definition
of TINI, we have both reduction sequences in L by assumption.

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 83/102

Theorem 4 (Weak isomorphism preserves TINI). If a language L is weakly
isomorphic to a language L′, and L′ satisfies TINI, then L satisfies TINI.

Proof. Shown by transporting configurations and reduction derivations from L
to L′, applying TINI and transporting the resulting equivalence back using func-
toriality of f −1 over l-equivalences. ⊓⊔

Unfortunately, an isomorphism is often too strong of a requirement. To obtain
an isomorphism with our single heap semantics, we need to mimic the behavior
of several heaps with a single actual heap. The interesting cases are when we
sandbox an expression and when messages are sent and received. The rule for
sandboxing is parametrized by the strategy κ (see Section 2), which defines what
heap the new task should execute with. We have considered two choices:

– When we sandbox into an empty heap, existing addresses in the sandboxed
expression are no longer valid and the task will get stuck (and then removed
by I-noStep). Thus, we must rewrite the sandboxed expression so that
all addresses point to fresh addresses guaranteed to not occur in the heap.
Similarly, sending a memory address should be rewritten.

– When we clone the heap, we have to copy everything reachable from the
sandboxed expression and replace all addresses correspondingly. Even worse,
the behavior of sending a memory address now depends on whether that
address existed at the time the receiving task was sandboxed; if it did, then
the address should be rewritten to the existing one.

Isomorphism demands we implement this convoluted behavior, despite our
initial motivation of a more efficient implementation.

4.1 Restricting the IFC Language

A better solution is to forbid sandboxed expressions as well as messages sent to
other tasks to contain memory addresses in the first place. In a statically typed
language, the type system could prevent this from happening. In dynamically
typed languages such as λES, we might restrict the transition for sandbox and
send to only allow expressions without memory addresses.

While this sounds plausible, it is worth noting that we are modifying the
IFC language semantics, which raises the question of whether non-interference
is preserved. This question can be subtle: it is easy to remove a transition from
a language and invalidate TSNI. Intuitively if the restriction depends on secret
data, then a public thread can observe if some other task terminates or not, and
from that obtain information about the secret data that was used to restrict the
transition. With this in mind, we require semantic rules to get restricted only
based on information observable by the task triggering them. This ensures that
non-interference is preserved, as the restriction does not depend on confiden-
tial information. Below, we give the formal definition of this condition for the
abstract IFC language LIFC(α, λ).

Definition 6 (Restricted IFC language). For a family of predicates P (one
for every reduction rule), we call LP

IFC(α, λ) a restricted IFC language if its

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 84/102

definition is equivalent to the abstract language LIFC(α, λ), with the following
exception: the reduction rules are restricted by adding a predicate P ∈ P to
the premise of all rules other than I-noStep. Furthermore, the predicate P can
depend only on the erased configuration εl(c), where l is the label of the first task
in the task list and c is the full configuration.

By the following theorem, the restricted IFC language with an appropriate
scheduling policy is non-interfering.

Theorem 5. For any target language λ and family of predicates P, the re-
stricted IFC language LP

IFC(RR, λ) is TSNI. Furthermore, the IFC language
LP
IFC(Seq, λ) is TINI.

In the extended version of this paper we give an example how this formalism
can be used to show non-intereference of an implementation of IFC with a single
heap.

5 Real World Languages
Our approach can be used to retrofit any language for which we can achieve
isolation with information flow control. Unfortunately, controlling the external
effects of a real-world language, as to achieve isolation, is language-specific and
varies from one language to another.6 Indeed, even for a single language (e.g.,
JavaScript), how one achieves isolation may vary according to the language run-
time or embedding (e.g., server and browser).

In this section, we describe several implementations and their approaches to
isolation. In particular, we describe two JavaScript IFC implementations building
on the theoretical foundations of this work. Then, we consider how our formalism
could be applied to the C programming language and connect it to a previous
IFC system for Haskell.

5.1 JavaScript

JavaScript, as specified by ECMAScript [14], does not have any built-in func-
tionality for I/O. For this language, which we denote by λJS, the IFC system
LIFC(RR, λJS) can be implemented by exposing IFC primitives to JavaScript
as part of the runtime, and running multiple instances of the JavaScript virtual
machine in separate OS-level threads. Unfortunately, this becomes very costly
when a system, such as a server-side web application, relies on many tasks.

Luckily, this issue is not unique to our work—browser layout engines also
rely on isolating code executing in separate iframes (e.g., according to the same-
origin policy). Since creating an OS thread for each iframe is expensive, both the
V8 and SpiderMonkey JavaScript engines provide means for running JavaScript
code in isolation within a single OS thread, on disjoint sub-heaps. In V8, this
unit of isolation is called a context ; in SpiderMonkey, it is called a compartment.
(We will use these terms interchangeably.) Each context is associated with a
global object, which, by default, implements the JavaScript standard library

6 Though we apply our framework to several real-world languages, it is conceivable
that there are languages for which isolation cannot be easily achieved.

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 85/102

TCB

main task-1 task-n

send n sec ...

recv x, i in ...

1

2

LIFC(SEQ, JS)

Σ0 JS+ Σ0 JS+Σnode JS+

Fig. 6: This example shows how our trusted monitor (left) is used to mediate com-
munication between two tasks for which IFC is enforced (right).

(e.g., Object, Array, etc.). Naturally, we adopt contexts to implement our notion
of tasks.

When JavaScript is embedded in browser layout engines, or in server-side
platforms such as Node.js, additional APIs such as the Document Object Model
(DOM) or the file system get exposed as part of the runtime system. These
features are exposed by extending the global object, just like the standard li-
brary. For this reason, it is easy to modify these systems to forbid external
effects when implementing an IFC system, ensuring that important effects can
be reintroduced in a safe manner.

Server-side IFC for Node.js: We have implemented LIFC(Seq, λJS) for Node.js
in the form of a library, without modifying Node.js or the V8 JavaScript engine.
Our implementation7 provides a library for creating new tasks, i.e., contexts
whose global object only contains the standard JavaScript library and our IFC
primitives (e.g., send and sandbox). When mapped to our formal treatment,
sandbox is defined with κ(Σ) = Σ0, whereΣ0 is the global object corresponding
to the standard JavaScript library and our IFC primitives. These IFC operations
are mediated by the trusted library code (executing as the main Node.js context),
which tracks the state (current label, messages, etc.) of each task. An example
for send/recv is shown in Fig. 6. Our system conservatively restricts the kinds
of messages that can be exchanged, via send (and sandbox), to string values.
In our formalization, this amounts to restricting the IFC language rule for send
in the following way:

JS-send
l ⊑ l′ Σ (i ′) = Θ Σ′ = Σ [i ′ 7→ (l′, i , v), Θ]

e = IT⌈e⌉ EΣ [typeOf(e) === "string"] → EΣ [true]

Σ; 〈Σ, E[send i ′ l′ v]I〉il , . . . →֒ Σ′;αstep(〈Σ, E[〈〉]I〉il , . . .)

Of course, we provide a convenience library which marshals JSON objects to/from
strings. We remark that this is not unlike existing message-passing JavaScript
APIs, e.g., postMessage, which impose similar restrictions as to avoid sharing
references between concurrent code.

While the described system implements LIFC(Seq, λJS), applications typi-
cally require access to libraries (e.g., the file system library fs) that have external
effects. Exposing the Node.js APIs directly to sandboxed tasks is unsafe. Instead,

7 Available at http://github.com/deian/espectro.

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 86/102

we implement libraries (like a labeled version of fs) as message exchanges be-
tween the sandboxed tasks (e.g., task-1 in Fig. 6) and the main Node.js task that
implements the IFC monitor. While this is safer than simply wrapping unsafe
objects, which can potentially be exploited to access objects outside the context
(e.g., as seen with ADSafe [38]), adding features such as the fs requires the code
in the main task to ensures that labels are properly propagated and enforced.
Unfortunately, while imposing such a proof burden is undesirable, this also has
to be expected: different language environments expose different libraries for
handling external I/O, and the correct treatment of external effects is appli-
cation specific. We do not extend our formalism to account for the particular
interface to the file system, HTTP client, etc., as this is specific to the Node.js
implementation and does not generalize to other systems.

Client-side IFC: This work provides the formal basis for the core part of the
COWL client-side JavaScript IFC system [37]. Like our Node.js implementa-
tion, COWL takes a coarse-grained approach to providing IFC for JavaScript
programs. However, COWL’s IFC monitor is implemented in the browser layout
engine instead (though still leaving the JavaScript engine unmodified).

Furthermore, COWL repurposes existing contexts (e.g., iframes and pages)
as IFC tasks, only imposing additional constraints on how they communicate.
As with Node.js, at its core, the global object of a COWL task should only
contain the standard JavaScript libraries and postMessage, whose semantics
are modeled by our JS-send rule. However, existing contexts have objects such
as the DOM, which require COWL to restrict a task’s external effects. To this
end, COWL mediates any communication (even via the DOM) at the context
boundary.

Simply disallowing all the external effects is overly-restricting for real-world
applications (e.g., pages typically load images, perform network requests, etc.). In
this light, COWL allows safe network communication by associating an implicit
label with remote hosts (a host’s label corresponds to its origin). In turn, when
a task performs a request, COWL’s IFC monitor ensures that the task label
can flow to the remote origin label. While the external effects of COWL can be
formally modeled, we do not model them in our formalism, since, like for the
Node.js case, they are specific to this system.

5.2 Haskell

Our work borrows ideas from the LIO Haskell coarse-grained IFC system [33, 34].
LIO relies on Haskell’s type system and monadic encoding of effects to achieve
isolation and define the IFC sub-language. Specifically, LIO provides the LIO

monad as a way of restricting (almost all) side-effects. In the context of our
framework, LIO can be understood as follows: the pure subset of Haskell is
the target language, while the monadic subset of Haskell, operating in the LIO

monad, is the IFC language.
Unlike our proposal, LIO originally associated labels with exceptions, in a

similar style to fine-grained systems [21, 35]. In addition to being overly complex,
the interaction of exceptions with clearance (which sets an upper bound on the
floating label, see the extended version of this paper) was incorrect: the clearance

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 87/102

was restored to the clearance at point of the catch. Furthermore, pure exceptions
(e.g., divide by zero) always percolated to trusted code, effectively allowing for
denial of service attacks. The insights gained when viewing coarse-grained IFC
as presented in this paper led to a much cleaner, simpler treatment of exceptions,
which has now been adopted by LIO.

5.3 C

C programs are able to execute arbitrary (machine) code, access arbitrary mem-
ory, and perform arbitrary system calls. Thus, the confinement of C programs
must be imposed by the underlying OS and hardware. For instance, our notion
of isolation can be achieved using Dune’s hardware protection mechanisms [5],
similar to Wedge [5, 7], but using an information flow control policy. Using page
tables, a (trusted) IFC runtime could ensure that each task, implemented as a
lightweight process, can only access the memory it allocates—tasks do not have
access to any shared memory. In addition, ring protection could be used to in-
tercept system calls performed by a task and only permit those corresponding
to our IFC language (such as getLabel or send). Dune’s hardware protection
mechanism would allow us to provide a concrete implementation that is efficient
and relatively simple to reason about, but other sandboxing mechanisms could
be used in place of Dune.

In this setting, the combined language of Section 2 can be interpreted in the
following way: calling from the target language to the IFC language corresponds
to invoking a system call. Creating a new task with the sandbox system call
corresponds to forking a process. Using page tables, we can ensure that there
will be no shared memory (effectively defining κ(Σ) = Σ0, where Σ0 is the set of
pages necessary to bootstrap a lightweight process). Similarly, control over page
tables and protection bits allows us to define a send system call that copies
pages to our (trusted) runtime queue; and, correspondingly, a recv that copies
the pages from the runtime queue to the (untrusted) receiver. Since C is not
memory safe, conditions on these system calls are meaningless. We leave the
implementation of this IFC system for C as future work.

6 Extensions and Limitations

While the IFC language presented thus far provides the basic information flow
primitives, actual IFC implementations may wish to extend the minimal system
with more specialized constructs. For example, COWL provides a labeled version
of the XMLHttpRequest (XHR) object, which is used to make network requests.
Our system can be extended with constructs such as labeled values, labeled mu-
table references, clearance, and privileges. For space reasons, we provide details
of this, including the soundness proof with the extensions, in the appendix of
the extended version of this paper. Here, we instead discuss a limitation of our
formalism: the lack of external effects.

Specifically, our embedding assumes that the target language does not have
any primitives that can induce external effects. As discussed in Section 5, im-
posing this restriction can be challenging. Yet, external effects are crucial when

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 88/102

implementing more complex real-world applications. For example, code in an
IFC browser must load resources or perform XHR to be useful.

Like labeled references, features with external effects must be modeled in
the IFC language; we must reason about the precise security implications of
features that otherwise inherently leak data. Previous approaches have mod-
eled external effects by internalizing the effects as operations on labeled chan-
nels/references [34]. Alternatively, it is possible to model such effects as messages
to/from certain labeled tasks, an approach taken by our Node.js implementa-
tion. These “special” tasks are trusted with access to the unlabeled primitives
that can be used to perform the external effects; since the interface to these
tasks is already part of the IFC language, the proof only requires showing that
this task does not leak information. Instead of restricting or wrapping unsafe
primitives, COWL allow for controlled network communication at the context
boundary. (By restricting the default XHR object, for example, COWL allows
code to communicate with hosts according to the task’s current label.)

7 Related Work
Our information flow control system is closely related to the coarse-grained in-
formation systems used in operating systems such as Asbestos [15], HiStar [45],
and Flume [23], as well as language-based floating-label IFC systems such as
LIO [33], and Breeze [21], where there is a monotonically increased label as-
sociated with threads of execution. Our treatment of termination-sensitive and
termination-insensitive interference originates from Smith and Volpano [32, 40].

One information flow control technique designed to handle legacy code is
secure multi-execution (SME) [13, 28]. SME runs multiple copies of the program,
one per security level, where the semantics of I/O interactions is altered. Bielova
et al. [6] use a transition system to describe SME, where the details of the
underlying language are hidden. Zanarini et al. [44] propose a novel semantics
for programs based on interaction trees [22], which treats programs as black-
boxes about which nothing is known, except what can be inferred from their
interaction with the environment. Similar to SME, our approach mediates I/O
operations; however, our approach only runs the program once.

One of the primary motivations behind this paper is the application of infor-
mation flow control to JavaScript. Previous systems retrofitted JavaScript with
fine-grained IFC [18, 19]. While fine-grained IFC can result in fewer false alarms
and target legacy code, it comes at the cost of complexity: the system must
accommodate the entirety of JavaScript’s semantics [19]. By contrast, coarse-
grained approaches to security tend to have simpler implications [11, 43].

The constructs in our IFC language, as well as the behavior of inter-task com-
munication, are reminiscent of distributed systems like Erlang [2]. In distributed
systems, isolation is required due to physical constraints; in information flow
control, isolation is required to enforce non-interference. Papagiannis et al. [27]
built an information flow control system on top of Erlang that shares some sim-
ilarities to ours. However, they do not take a floating-label approach (processes
can find out when sending a message failed due to a forbidden information flow),
nor do they provide security proofs.

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 89/102

There is limited work on general techniques for retrofitting arbitrary lan-
guages with information flow control. However, one time-honored technique is
to define a fundamental calculus for which other languages can be desugared
into. Abadi et al. [1] motivate their core calculus of dependency by showing how
various previous systems can be encoded in it. Tse and Zdancewic [39], in turn,
show how this calculus can be encoded in System F via parametricity. Broberg
and Sands [9] encode several IFC systems into Paralocks. However, this line of
work is primarily focused on static enforcements.

8 Conclusion
In this paper, we argued that when designing a coarse-grained IFC system, it
is better to start with a fully isolated, multi-task system and work one’s way
back to the model of a single language equipped with IFC. We showed how
systems designed this way can be proved non-interferent without needing to rely
on details of the target language, and we provided conditions on how to securely
refine our formal semantics to consider optimizations required in practice. We
connected our semantics to two IFC implementations for JavaScript based on
this formalism, explained how our methodology improved an exiting IFC system
for Haskell, and proposed an IFC system for C using hardware isolation. By
systematically applying ideas from IFC in operating systems to programming
languages for which isolation can be achieved, we hope to have elucidated some
of the core design principles of coarse-grained, dynamic IFC systems.

Acknowledgements We thank the POST 2015 anonymous reviewers, Adriaan Lar-

museau, Sergio Maffeis, and David Mazières for useful comments and suggestions. This

work was funded by DARPA CRASH under contract #N66001-10-2-4088, by the NSF,

by the AFOSR, by multiple gifts from Google, by a gift from Mozilla, and by the

Swedish research agencies VR and the Barbro Oshers Pro Suecia Foundation. Deian

Stefan and Edward Z. Yang were supported by the DoD through the NDSEG.

References
[1] M. Abadi, A. Banerjee, N. Heintze, and J. Riecke. A Core Calculus of Dependency. In POPL,

1999.

[2] J. Armstrong. Making reliable distributed systems in the presence of software errors. 2003.

[3] A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands. Termination-insensitive noninterference leaks
more than just a bit. ESORICS, 2008.

[4] G. Barthe, T. Rezk, A. Russo, and A. Sabelfeld. Security of multithreaded programs by com-
pilation. In ESORICS, 2007.

[5] A. Belay, A. Bittau, A. Mashtizadeh, D. Terei, D. Mazières, and C. Kozyrakis. Dune: Safe
user-level access to privileged CPU features. In OSDI, 2012.

[6] N. Bielova, D. Devriese, F. Massacci, and F. Piessens. Reactive non-interference for a browser
model. In NSS, 2011.

[7] A. Bittau, P. Marchenko, M. Handley, and B. Karp. Wedge: Splitting applications into reduced-
privilege compartments. In NSDI, 2008.

[8] Boudol and Castellani. Noninterference for concurrent programs. In ICALP, 2001.

[9] N. Broberg and D. Sands. Paralocks: Role-based information flow control and beyond. In
POPL, 2010.

[10] P. Buiras, A. Levy, D. Stefan, A. Russo, and D. Mazières. A library for removing cache-based
attacks in concurrent information flow systems. In TGC, 2013.

[11] W. De Groef, D. Devriese, N. Nikiforakis, and F. Piessens. FlowFox: a web browser with flexible
and precise information flow control. In CCS, 2012.

[12] D. E. Denning. A lattice model of secure information flow. Commun. ACM, 19(5), 1976.

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 90/102

[13] D. Devriese and F. Piessens. Noninterference through secure multi-execution. In SP, 2010.

[14] Ecma International. ECMAScript language specification. http://www.ecma.org/, 2014.

[15] P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey, D. Ziegler, E. Kohler, D. Mazières,
F. Kaashoek, and R. Morris. Labels and event processes in the Asbestos operating system. In
SOSP, 2005.

[16] M. Felleisen and R. Hieb. The revised report on the syntactic theories of sequential control and
state. TCS, 103(2), 1992.

[17] J. Goguen and J. Meseguer. Security policies and security Models. In SP, 1982.

[18] D. Hedin and A. Sabelfeld. Information-flow security for a core of javascript. In CSF, 2012.

[19] D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld. JSFlow: Tracking information flow in
JavaScript and its APIs. In SAC, 2014.

[20] S. Heule, D. Stefan, E. Z. Yang, J. C. Mitchell, and A. Russo. Ifc inside: Retrofitting languages
with dynamic information flow control. htp://cowl.ws/ifc-inside.pdf, 2015.

[21] C. Hritcu, M. Greenberg, B. Karel, B. C. Pierce, and G. Morrisett. All your IFCException are
belong to us. In SP, 2013.

[22] B. Jacobs and J. Rutten. A Tutorial on (Co)Algebras and (Co)Induction. EATCS, 62, 1997.

[23] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek, E. Kohler, and R. Morris. Infor-
mation flow control for standard OS abstractions. In SOSP, 2007.

[24] P. Li and S. Zdancewic. Arrows for secure information flow. TCS, 411(19), 2010.

[25] J. Matthews and R. B. Findler. Operational semantics for multi-language programs. In POPL,
2007.

[26] A. C. Myers, L. Zheng, S. Zdancewic, S. Chong, and N. Nystrom. Jif: Java Information Flow.
Software release. Located at http://www.cs.cornell.edu/jif, 2001.

[27] I. Papagiannis, M. Migliavacca, D. M. Eyers, B. Sh, J. Bacon, and P. Pietzuch. Enforcing user
privacy in web applications using Erlang. In W2SP, 2010.

[28] W. Rafnsson and A. Sabelfeld. Secure multi-execution: fine-grained, declassification-aware, and
transparent. In CSF, 2013.

[29] A. Russo and A. Sabelfeld. Securing Interaction between threads and the scheduler. In CSFW,
2006.

[30] A. Russo, K. Claessen, and J. Hughes. A library for light-weight information-flow security in
Haskell. In Haskell, 2008.

[31] V. Simonet. The Flow Caml system. Software release at
http://cristal.inria.fr/~simonet/soft/flowcaml/, 2003.

[32] G. Smith and D. Volpano. Secure information flow in a multi-threaded imperative language.
In POPL, 1998.

[33] D. Stefan, A. Russo, J. C. Mitchell, and D. Mazières. Flexible dynamic information flow control
in Haskell. In Haskell, 2011.

[34] D. Stefan, A. Russo, P. Buiras, A. Levy, J. C. Mitchell, and D. Mazières. Addressing covert
termination and timing channels in concurrent information flow systems. In ICFP, 2012.

[35] D. Stefan, A. Russo, J. C. Mitchell, and D. Mazières. Flexible dynamic information flow control
in the presence of exceptions. Arxiv preprint arXiv:1207.1457, 2012.

[36] D. Stefan, P. Buiras, E. Z. Yang, A. Levy, D. Terei, A. Russo, and D. Mazières. Eliminating
cache-based timing attacks with instruction-based scheduling. In ESORICS, 2013.

[37] D. Stefan, E. Z. Yang, P. Marchenko, A. Russo, D. Herman, B. Karp, and D. Mazières. Pro-
tecting users by confining JavaScript with COWL. In OSDI, 2014.

[38] A. Taly, J. C. Mitchell, M. S. Miller, and J. Nagra. Automated analysis of security-critical
javascript apis. In SP, 2011.

[39] S. Tse and S. Zdancewic. Translating dependency into parametricity. In ICFP, 2004.

[40] D. Volpano and G. Smith. Eliminating covert flows with minimum typings. In CSFW, 1997.

[41] W3C. HTML5 web messaging. http://www.w3.org/TR/webmessaging/, 2012.

[42] E. Z. Yang and D. Mazières. Dynamic space limits for Haskell. In PLDI, 2014.

[43] A. Yip, N. Narula, M. Krohn, and R. Morris. Privacy-preserving browser-side scripting with
BFlow. In EuroSys, 2009.

[44] D. Zanarini, M. Jaskelioff, and A. Russo. Precise enforcement of confidentiality for reactive
systems. In CSF, 2013.

[45] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières. Making information flow explicit
in HiStar. In OSDI, 2006.

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 91/102

7/8/2015

1

Security in Browser Extensions
[HotOS 2015]

Alejandro Russo

russo@chalmers.se

Privacy concerns while surfing the web

page.com
XHR

evil.com

The Same Origin Policy (SOP)

Privacy concerns while surfing the web

page.com

libraries.js

evil.com

The Same Origin Policy (SOP)

Content Security Policy (CSP)

Browsing experience: developers vs. users

page.com

The Same Origin Policy (SOP)

Content Security Policy (CSP)

SOP CSP*

E

x

t

e

n

s

i

o

n

Add-ons in Firefox

“The add-on code is fully trusted by Firefox.

The installation of malicious add-ons can

result in full system compromise.”

[Abusing Exploiting and Pwning with Firefox Add-ons 2013]

Extensions in Chrome
[An Evaluation on the Google Chrome Extension Security Architecture 2012]

Content

Script

Core

Extension

Privilege Separation

Permissions

(Least privilege)

Building Secure Web Applications: From Theory to Practice

Bonus: The Most Dangerous Code in Your
Browser

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 92/102

7/8/2015

2

Permissions for the top-500 extensions

76.6

40.8
39 39

32
30.2

27.4

0

10

20

30

40

50

60

70

80

90

tabs http://*/* contextMenus https://*/* storage webRequest cookies

Chrome extensions security model pitfalls

• Coarse-grained permissions and content-independent

• It makes difficult to implement least privilege

• Users perspective

• Difficult to justify the need for certain permissions

• Desensitized when asking many broad permissions

• Developers perspective

• Ask as many permissions as possible

A new security model for extensions

Content

Script

Core

Extension

[Protecting Users by Confining JavaScript with COWL 2014]

a.com

a.com a.com

a.com

b.com b.com b.com

Google Mail Checker Extension

(mail.google.com)

Confinement is too restrictive

• Identify some programming patterns

• Based on real-world extensions

• Most extensions need to intentionally leak some

information

Explicit sharing
Implicit content

sharing

Encrypted

sharing

Web page

modification

Web page modification

a.com

• Extensions often modify the layout

• Confinement needs to be preserved

• It reads the layout from the page, gets tainted with the

origin of the page, and it cannot write back to it

• The changes are rendered but keeping the original web

page

Hide Images

hide.comhide.com, a.com

Writes into a

shadow-DOMShadow DOM

Explicit sharing

a.com

evernote.com

• Most web pages need to declassify some information

• Sometimes explicitly

• Declassification via user interaction

• The label of the extension does not change

Evernote Web Clipper

Trusted UI

evernote.com

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 93/102

7/8/2015

3

Implicit content sharing

a.com

public label

• Some extensions need to fetch resources from

several origins based on web pages’ content

• Content-specific declassification (e.g., img)

• The label of the extension does not change

origin1.org

[How to Ask Permission HotSec 2012]

Reddit Enhancement Suite

origin2.org

Content-specific prompts

Encrypted sharing

a.com

lastpass.com

• Some web pages allow extensions to handle sensitive

data (e.g., storage and synchronization)

• Encryption and algorithms are in the browser

• The user need to trust it anyways

• Lastpass-like extensions do not get access to the

passwords

lastpass.com

LastPass

Transparent

encryption

Web page modification

Programming secure extensions

Shadow DOM

Explicit sharing
Implicit content

sharing

Encrypted

sharing
Trusted UI Content-specific prompts Transparent

encryption

Evernote Web Clipper

Reddit Enhancement Suite LastPass

Hide Images

Confinement with COWL

The Most Dangerous Code in Your Browser

• Extensions!

• Security: SOP and CSP*

• Overly privileged (study top-500)

• A new security architecture

• Confining JavaScript (COWL)

• Provide support for writing (and migrate existing)

extensions

• Shadow-DOM, trusted UI, content-sensitive prompts,

and transparent encryption.

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 94/102

The Most Dangerous Code in the Browser

Stefan Heule1 Devon Rifkin1 Alejandro Russo∗2 Deian Stefan1

1Stanford University 2Chalmers University of Technology

ABSTRACT

Browser extensions are ubiquitous. Yet, in today’s
browsers, extensions are the most dangerous code to user
privacy. Extensions are third-party code, like web appli-
cations, but run with elevated privileges. Even worse, ex-
isting browser extension systems give users a false sense
of security by considering extensions to be more trust-
worthy than web applications. This is because the user
typically has to explicitly grant the extension a series of
permissions it requests, e.g., to access the current tab or
a particular website. Unfortunately, extensions develop-
ers do not request minimum privileges and users have
become desensitized to install-time warnings. Further-
more, permissions offered by popular browsers are very
broad and vague. For example, over 71% of the top-500
Chrome extensions can trivially leak the user’s data from
any site. In this paper, we argue for new extension system
design, based on mandatory access control, that protects
the user’s privacy from malicious extensions. A system
employing this design can enable a range of common ex-
tensions to be considered safe, i.e., they do not require
user permissions and can be ensured to not leak informa-
tion, while allowing the user to share information when
desired. Importantly, such a design can make permission
requests a rarity and thus more meaningful.

1 INTRODUCTION

The modern web browser is one of the most popular ap-
plication platforms. This is, in part, because building and
deploying web applications is remarkably easy and, in
other part, because using such applications is even eas-
ier: a user simply needs to type in a URL to run so-
phisticated applications, such as document editors, email
clients, or video players. Unlike venerable desktop appli-
cations, these apps run on many different devices without
imposing painstaking installation procedures or forcing
users to be concerned with security—e.g., the weather
app stealing their banking data or locally-stored photos.

As the web evolved to address different application de-
mands, it did so in a somewhat security-concious fash-
ion. In particular, when adding a new feature (e.g., off-
line caching [22]), web browsers have been careful to
ensure that the feature was confined to the browser, i.e.,
it did not unsafely expose underlying OS resources, and
that it could not be used to violate the same-origin pol-
icy (SOP) [5, 29]. The SOP roughly dictates that an app

∗Work conducted while at Stanford University.

from one origin can only read and write content from
the same origin. This ensures that one app cannot inter-
fere with another—it is the reason the weather app cannot
read data from the tab running the banking app.

Unfortunately, the web platform has some natural
limitations. Despite prioritizing “users over [app] au-
thors [27],” a user’s experience on the web is largely
dictated by the app author. For example, the web does
not provide users with a means for removing advertise-
ments served by an app. Similarly, the user cannot di-
rectly share content from one app with another app of
their choosing without the app author offering such a ser-
vice. Of course, it is unrealistic to demand that app au-
thors provide such features since they may be at odds
with the authors’ goals (e.g., to serve ads).

To address the limitations of the web platform, most
modern browsers provide users with extensions. Exten-
sions are typically used to modify and extend web appli-
cation behavior, content, and display (style). For exam-
ple, Adblock Plus [1], one of the most-widely used exten-
sions, modifies apps by blocking network requests and
hiding different page elements to provide ad-free brows-
ing. However, extensions can also be used to implement
completely new functionality. For instance, LastPass [2]
allows users to store and retrieve credentials for arbitrary
apps, in the cloud. And, in some cases, extensions even
modify and extend the browser itself.

Unlike web applications, which are bound by the SOP,
extensions can access the page contents of different-
origin apps, perform arbitrary network communication,
inspect and modify browser history, etc. Misusing such
privileged APIs is a serious security concern. In light
of this, browsers vendors have imposed various restric-
tions. For example, Chrome—which has the most com-
prehensive extension security system—makes it difficult
to install extensions that are not distributed through its of-
ficial Chrome Web Store (CWS), requires users to grant
extensions access to use privileged APIs, and employs
various mechanisms to prevent privilege-escalation at-
tacks [6, 8, 21].

Unfortunately, even Chrome’s extension system has
fundamental shortcomings. For example, Chrome’s at-
tacker model assumes that extensions are not malicious,
but rather that they are benign-but-buggy [6]. As a con-
sequence, Chrome’s security mechanisms were designed
to prevent attacks wherein malicious app pages try to ex-
ploit vulnerable extensions. However, the system does

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 95/102

not provide a way for protecting sensitive app data from
extensions—a malicious extension can easily leak data.
And the premise for placing more trust on extension
code over web app code is unfounded: both are pro-
vided by third-party developers, while the former runs
with elevated privileges. Unlike other privileged code in
the browser (e.g., plugins), these JavaScript-based exten-
sions are made available to users without a code review
process. It is of no surprise that roughly 5% of the users
visiting Google have at least one malicious extension in-
stalled, as showed by a recent study [7, 26].

Unfortunately, in the current extensions system, even
trustworthy but vulnerable extensions can be exploited
by malicious pages to leak sensitive data from cross-
origin apps [20]. While Chrome’s mechanisms limit an
attacker to abusing the privileges held by the vulnera-
ble extension, developer incentives have led many ex-
tensions request broad privileges. Similarly, many users
have become desensitized to the install-time warning ac-
companying these extensions [12]. For example, of the
500 most popular Chrome extensions, over 71% request
the privilege to “read and change all your data on the
websites you visit.” Since these extensions also retain
their privileges throughout lifetime of the extension, this
makes them especially attractive targets to attackers that
wish to steal user-sensitive data.

In today’s browsers, extensions are arguably the most
dangerous code to user privacy. Yet, this need not be the
case. This position paper argues for new extension sys-
tem designs that can address user privacy without giving
up on desired extension functionality.

What might such an extension system look like?
Given that apps handle sensitive data such as banking in-
formation and that extensions are written by potentially
untrusted third-party developers, it is clear that apps need
to be protected from extensions. At the same time, it is
important to keep protecting extensions from apps, as ex-
tensions may run with higher privileges. Mandatory ac-
cess control (MAC)-based confinement [19, 25] naturally
fits this scenario of mutually distrusting parties, where
apps and extensions can be protected from one another.

But, MAC alone is not enough. While MAC-based
confinement can prevent an extension from leaking sen-
sitive app data even after it has access to it, for many
extensions, this is overly restricting. For example, the
Google Dictionary extension [3] needs to read text from
the page and communicate with the network when look-
ing up a word—its functionality relies on the ability to
“leak” data. Hence, the extension system should allow
users to explicitly share app data with extensions, which
may further share the data with a remote server. Simi-
larly, it should provide robust APIs that common exten-
sions can use to operate on sensitive information without
being confined. Together with MAC-based confinement

this can alleviate the need for permissions altogether for
a broad range of safe extensions: many extensions only
read sensitive data and provide useful features to the user,
but never disseminate the data without user intent.

Of course, leveraging user actions to share data is not
possible in all cases; user-approved permission may still
be necessary. However, these permissions should be fine-
grained and content-specific. Since many extensions are
safe and do not rely on special permissions, it would
be possible for the extension system to give users more
meaningful messages and warn them appropriately about
installing dangerous extensions.

In the rest of the paper we give a brief overview of
Chrome’s extension system and its limitations (§2). We
then expand on the design goals of an extensions system
that addresses Chrome’s limitations (§3) and describe a
preliminary system design that satisfies these goals (§4).
Finally, we conclude (§5).

2 CHROME’S EXTENSION MODEL

In this paper, we focus on the Chrome extension model,
whose security system is widely regarded as being more
advanced than those implemented in other browsers [8,
16]. More specifically, we focus on JavaScript-based ex-
tensions; we do not consider plugins, which can addition-
ally execute native code.1 Below we describe the exten-
sion system’s security model, evaluate the use of permis-
sions in this ecosystem, and highlight its key limitations.

2.1 Security Model
The Chrome attacker model assumes that extensions
are trustworthy, but vulnerable to attacks carried out by
apps [6]. Hence, Chrome’s extension security system is
designed to protect extensions from apps. Chrome re-
quires developers to privilege-separate [21] extensions
into a content script and a core extension. Content scripts
interact directly with web pages (e.g., by reading the
page’s cookies or modifying its DOM),2 but do not have
access to any privileged APIs. To perform privileged op-
erations, content scripts use message-passing to commu-
nicate with core extension scripts, which have access to
the privileged APIs needed to perform the actions.

To mitigate the impact of exploits that compromise
vulnerable content scripts, in addition to privilege sep-
aration, Chrome also follows the principle of least privi-
lege [23]. Specifically, Chrome implements a permission
system that can be used to limit the privileges available
to core script extensions. By limiting the privileges of an

1Plugins make up only a small fraction of the space, require a code
review before being put on the CWS, and are widely-accepted to be
dangerous. We do not discuss them further.

2Actually, Chrome employs isolated worlds [6] to separate the
JavaScript heaps of the content script and page. This prevents attacks
where a malicious page redefines functions (e.g., getElementById)
that are commonly used by extensions.

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 96/102

extension, the damages that can be caused from exploits
is also more limited.

To this end, Chrome requires extension authors to stat-
ically declare, in a manifest, what kind of permissions
the extension requires. In turn, the user must approve
these permissions when installing the extension. Since
the compromise of an overly-privileged extension can
cause serious harm (e.g., leaking user’s banking infor-
mation), Chrome encourages developers to only request
minimal privileges. Below, we report the results of our
study evaluating permission usage in Chrome extensions.

2.2 Permission Study
We surveyed the permissions used by the 500 most pop-
ular Chrome extensions [14] by inspecting their mani-
fest files.3 Most extensions are widely deployed: the
most popular extension is used by more than 10 million
users; the 500th extension is used by more than 76,000
users. In Table 1, we list the permissions most often re-
quested. The most widely required permission is tabs,
which among other abilities, allows an extension to re-
trieve URLs as they are navigated to. More concerning
is the prevalence of permissions such as http://*/*,
https://*/* and <all urls>, which allow an ex-
tension to make requests to any origin (over HTTP,
HTTPS, or both, respectively). Upon installing any ex-
tension that requires one of these permissions (or several
other similarly high-privilege permissions), the user is
warned that the extension can “read and change all [their]
data on the websites [they] visit.” These permissions can
easily be used maliciously, for example, to retrieve a sen-
sitive webpage (using the cookies stored in the browser)
and forward its contents to the attacker’s own server. De-
spite this danger, permissions triggering this warning are
widely used. In our study, we found more than 71% of
the top 500 extensions display this “read and change. . . ”
warning at installation-time. For users installing popular
Chrome extensions, the norm is to allow for such high
privilege requests. In fact, the more popular extensions
are more likely to show this warning: 74% of the top
250 extensions display this warning, 82% of the top 100,
and 88% of the top 50. We did not investigate how many
of these extensions actually needed or exercised their re-
quested permissions.

2.3 Pitfalls
Chrome assumes extensions to be benign-but-buggy [6].
Unfortunately, this trust in extensions is amiss, as ex-
tensions are written by potentially untrusted developers.
For example, Kapravelos et al. [18] report on 140 ma-
licious extension in the CWS. While taking malicious
extensions out of the CWS is an appropriate response,
this weak-attacker model has unfortunately led to the de-

3The manifests in this study were fetched on April 20, 2015.

Permission Count

tabs 75.6%
storage 38.4%
http://*/* 37.8%
https://*/* 36.4%
contextMenus 36.0%
webRequest 32.2%
notifications 30.4%

Permission Count

webRequestBlocking 25.6%
cookies 24.6%
unlimitedStorage 20.4%
<all_urls> 19.2%
webNavigation 16.6%
management 14.6%
history 10.4%

Table 1: The 14 most prevalent permissions as required by the
top 500 Chrome extensions. A single extension may request
any number of permissions. A full list explaining what each
permission grants is available in [13].

sign of security mechanisms that do not explicitly pro-
tect web app data. This is particularly disconcerting
because, as our study shows, most extensions can ac-
cess highly sensitive data and communicate with the
network—vulnerabilities in such extensions can be used
to leak user data [9, 20]. A single compromised or mali-
cious extension is enough to put the users privacy at risk.

Chrome provides a permission system that is meant
to implement least privilege. Unfortunately, the expla-
nations accompanying the permissions are broad and
content-independent. Moreover, they do not convey to
the user why such permissions are justified. Permissions
must be accepted at install time, before a user has ac-
quired context from using the extension.4 Because the
vast majority of extensions require many broad permis-
sions, users have grown desensitized and accustomed to
accepting most permission requests.

The other pitfall of the extension system is that it
makes it difficult even for security conscious extension
developers to request minimal privileges. The permis-
sions are coarse grained and Chrome does not provide
a way for requesting finer-grained access. Even worse,
developers are incentivized to ask for more permission
than they actually need. For example, if an extension up-
date requires additional permissions (e.g., because of a
new feature in the extension), Chrome automatically dis-
ables the extension until the user approves the new per-
missions. Since users get irritated by such prompts, de-
velopers often ask for more permissions than necessary
up front thereby eliminating the risk of removal.

3 DESIGN GOALS

In this section, we outline a series of design goals that
a modern browser extension system should strive for in
order to protect user privacy and avoid Chrome’s pitfalls.

1. Handle mutually distrusting code Extensions and
web apps may be written by mutually distrusting parties.
In addition to protecting extensions from untrusted app

4Chrome more recently added optional permissions, which, while
still declared statically, only demand the user’s approval at run-time,
e.g., right before the extension uses the privileged API. Unfortunately
optional permission warnings fall victim to the coarseness of the system
and often ask for far more expansive abilities than required.

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 97/102

code, an extension system should provide mechanisms
for protecting sensitive user (app) data from untrusted ex-
tensions without giving up on functionality. We assume a
relatively strong attacker model where an extension exe-
cutes attacker-provided code in attempt to leak user data
via the extension system APIs. We consider leaks via
covert channels to be out of scope.

2. Leverage user intent An extensions system should
leverage user intent for security decisions. The system
should provide APIs and trusted UIs for making secu-
rity decisions part of the user’s work-flow. For example,
browsers can use user intent to make sharing of app data
with an extension explicit via a sharing-menu API. A
challenge with this goal is designing APIs and UIs that
are not susceptible to confused deputy attacks [17].

3. Provide a meaningful permission system Most
common extensions should not need to request user per-
mission to perform their tasks. In the rare case that
an extension requires to leak sensitive data without ex-
plicit user intent, the permissions available should be
fine-grained and content-specific. Furthermore, the sys-
tem should provide the user with specific-enough infor-
mation necessary to make an educated decision. This
could happen, for instance, by asking for permission at
runtime when the leaked content can be shown and the
user has an idea of what the extension is about to do (in
contrast to install-time permissions).

4. Incentivize safety The incentives of developers
and the security model should align such that most com-
mon extensions are safe, i.e., they run without requir-
ing user approval for permissions. The extension sys-
tem should reward developers that implement these and
other least-privileged extensions and penalize overly-
privileged ones. For example, extensions that require
permissions should require a security audit before being
allowed to be installed. This ensures that APIs that lever-
age user intent for disclosing data are prioritized and that
security warnings remain meaningful.

4 PRELIMINARY DESIGN

In this section we propose a new extension system de-
signed to meet the aforementioned goals. We observe
that, for an extension to be useful, it typically needs to
have access to sensitive data such as the current app’s
URL or different parts of the page. However, if this in-
formation cannot be arbitrarily disseminated (within or
external to the confines of the browser), then the user’s
privacy is not at risk: it is entirely safe for an extension
to read sensitive data as long as it does not write it to an
end-point that is not permitted by the SOP.

This idea of allowing code to compute on sensitive
data, but restrict where it can subsequently write it, is
endemic to MAC-based confinement systems (e.g., HiS-
tar [28] and COWL [25]). In such systems, the sensitivity

of information is tracked throughout the system and the
security mechanism ensures that leaks due to data- and
control-flow cannot occur.

We propose to extend the Chrome architecture to
use a coarse-grained confinement system, similar to
COWL [25]. As in Chrome, to achieve isolation and pro-
tect an extension from an untrusted app, every app and
extension runs in a separate execution context. However,
and unlike Chrome, our proposed extension system addi-
tionally protects app user data from an untrusted exten-
sion by ensuring that whenever the extension accesses
sensitive data, its context gets “tainted” with the app’s
origin—we consider any data in the page to be sensitive.
In turn, the origins with which the extension can sub-
sequently communicate with is restricted by this taint—
e.g., the extension cannot perform arbitrary network re-
quests once it has read sensitive data.

With confinement, extensions that only read sensitive
information can be implemented securely and without
requiring any permissions. For instance, consider the
Chrome extension Google Mail Checker [15], which dis-
plays an icon in the browser with the number of un-
read emails in Gmail. Confinement allows this exten-
sions to connect to Gmail using the users credentials.
Once it does so, however, the execution context is tainted
with mail.google.com and thus cannot communi-
cate with, for instance, evil.com. However, the exten-
sion can safely do its job and show an unread count to the
user. We remark that such a system satisfies our goal of
protecting user data against malicious extensions—even
if malicious, the extension cannot leak the user’s emails.

Of course, not all extensions are this simple, and a
real extension system must provide extension developers
with APIs to carry out common tasks. Below we describe
some of these APIs, and in particular focus on APIs that
make the confinement system more flexible or address
our design goals directly.

Page access Some extensions read and modify page
contents. Our system provides content script extensions
with APIs for reading and writing the DOM of a page,
much like COWL’s labeled DOM workers [25]. Im-
portantly, when accessing the DOM of a page, the con-
tent script is tainted with the origin of the page and its
functionality is subsequently restricted to ensure that the
read information is not leaked. (Of course, an extension
can create such labeled content scripts at run time, to
avoid over-tainting [25].) To ensure that extensions can-
not leak through the page’s DOM, we argue that exten-
sions should instead write to a shadow-copy of the page
DOM—any content loading as a result of modifying the
shadow runs with the privilege of the extension and not
the page. This ensures that the extension’s changes to the
page are isolated from that of the page, while giving the
appearance of a single layout.

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 98/102

Explicit sharing Of course, some functionality re-
quires sensitive data to be “leaked.” For instance,
Evernote Web Clipper [10] offers the functionality to
save part of the page (e.g., the current selection) to
evernote.com. Sharing page contents with arbitrary
origins violates confinement—the page may contain sen-
sitive information (e.g., a bank statement).

However, in some cases, the user may wish specific
information to be sent to evernote.com, e.g., to save
a recipe the user saw online. Confinement systems typ-
ically require declassification to allow such controlled
leaks. However, extensions cannot be trusted to declas-
sify data on their own. Our key insight is that informa-
tion sharing typically follows a user action (e.g., clicking
a “Save to Evernote” button), and therefore the intent of
the user can be used to declassify the data. Concretely,
we propose a sharing API that extensions can use to re-
ceived data from the user and trusted browser UIs that
users can employ to share specific content with these ex-
tensions, e.g., by means of a “Share with. . . ” context
menu entry. With this API, extensions like Evernote or
Google Dictionary can be implemented without requir-
ing specific declassification permissions. Of course, they
can only leak data the user shares explicitly.

Encrypted sharing Since credentials are usually
treated with more care than other data, our sharing API
does not allow extensions to receive credentials without
restrictions. Concretely, when sharing credentials, our
sharing API provides extensions with labeled blobs [25],
which the extension can only observe by tainting its con-
text. However, it is often useful to allow extensions to
synchronize and store such sensitive data. For this, we
propose an API that takes a blob labeled with a.com
and returns an unlabeled encrypted blob. This directly al-
lows the extension to send the encrypted data to the cloud
and synchronize it to another devices. There, a similar
extension can use our API to decrypt the data to a.com-
labeled credentials, which can then be used to, for ex-
ample, fill in a a.com login form. This API makes our
MAC system more flexible and directly allows the im-
plementation of an extension to manage user passwords
similar to LastPass. Unlike LasPass, however, the en-
cryption algorithms and parameters are provided by the
browser, only relying on the user to supply a master key.

Privileged content sharing Some extensions need to
read content from the page and communicate with the
network without user interaction. For example, the Red-
dit Enhancement Suite (RES) [4] fetches images that are
linked in a post as to display them inline. Unfortunately,
the page access API is insufficient when implementing
such extensions since the code cannot communicate with
arbitrary domains, as to fetch images, once it traverses
the DOM to find the image links. Instead, we provide

APIs that can be used to retrieve content from the page
without imposing confinement restrictions. In particu-
lar, extension developers can request to access different
kinds of elements on the page, e.g., URLs, or the cur-
rent origin, etc. Our extension system would, in turn,
ask the user to consent to the request at run time when
the extension requests the data, applying the lessons and
techniques of [11] to avoid desensitization (e.g., use dif-
ferent icons and colors to signify the severity of the
request). Unlike Chrome’s permissions requests, we
envision providing users with content-specific choices
(e.g., “RES wishes to see all the links on this page.”),
which they can also deny while continuing to use the
extension—extensions should gracefully handle excep-
tions from these APIs or risk removal from the platform.
Besides content-specific messages, other HCI techniques
would be employed to make permissions more meaning-
ful and to refrain users from blindly consenting to secu-
rity prompts [24].

We remark that other APIs (e.g., a network API or
declarative CSS replacement API) share many similari-
ties with the above: they are fine-grained, content-driven,
and abide by MAC. More interestingly, we note that our
MAC-based approach encourages safe extensions, i.e.,
extensions that do not rely on privileges and raise alarms,
but, rather, rely on sharing menu- and crypto-APIs to get
user data. But in cases where permissions are required,
our system presents security decisions at run-time and
in terms of data—by reasoning about the content being
disclosed users can make more educated decisions.

5 SUMMARY

We identify extensions as some of the most dangerous
code in the browser and show the pitfalls of modern ex-
tension security systems. For this reason, new extension
security models that protect user privacy are in need. We
outlined the goals of such as system and proposed a pre-
liminary system design to this end. Our proposal relies
on MAC-based confinement to prevent sensitive informa-
tion from being arbitrarily shared. We also outlined sev-
eral APIs that can be used to safely share data and make
such a system flexible enough to handle a large class of
common extensions, while keeping developer incentives
aligned with security. We hope this encourages browser
vendors to rethink extensibility.

ACKNOWLEDGEMENTS

We thank James Mickens, Petr Marchenko, Adrienne
Porter Felt, and the anonymous reviewers for their help-
ful comments. This work was funded by DARPA
CRASH under contract #N66001-10-2-4088, by multi-
ple gifts from Google, by a gift from Mozilla, by the
Swedish research agency VR and the Barbro Oshers Pro
Suecia Foundation.

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 99/102

REFERENCES

[1] Adblock Plus – surf the web without annoying ads!
https://adblockplus.org/, 2012. Visited
April 21, 2015.

[2] LastPass password manager. https://
lastpass.com/, 2012. Visited April 21,
2015.

[3] Google dictionary. https://chrome.
google.com/webstore/detail/
google-dictionary-by-goog/
mgijmajocgfcbeboacabfgobmjgjcoja,
2015. Visited April 21, 2015.

[4] Reddit enhancement suite. http://
redditenhancementsuite.com/, 2015.
Visited April 21, 2015.

[5] Adam Barth. The web origin concept. https:/
/tools.ietf.org/html/rfc6454, 2011.
Visited April 21, 2015.

[6] Adam Barth, Adrienne Porter Felt, Prateek Saxena,
and Aaron Boodman. Protecting browsers from ex-
tension vulnerabilities. In NDSS, 2010.

[7] BBC. Google purges bad extensions from
Chrome. http://www.bbc.com/news/technology-
32206511, 2015. Visited April 21, 2015.

[8] Nicholas Carlini, Adrienne Porter Felt, and David
Wagner. An evaluation of the google chrome ex-
tension security architecture. In Security. USENIX,
2012.

[9] Mohan Dhawan and Vinod Ganapathy. Analyzing
information flow in JavaScript-based browser ex-
tensions. In ACSAC, 2009.

[10] Evernote. Evernote web clipper. https:/
/chrome.google.com/webstore/
detail/evernote-web-clipper/
pioclpoplcdbaefihamjohnefbikjilc,
2015. Visited April 21, 2015.

[11] Adrienne Porter Felt, Serge Egelman, Matthew
Finifter, Devdatta Akhawe, David Wagner, et al.
How to ask for permission. In HotSec. USENIX,
2012.

[12] Adrienne Porter Felt, Kate Greenwood, and David
Wagner. The effectiveness of application permis-
sions. In WebApps’11. USENIX, 2011.

[13] Google. Declare permissions. https://
developer.chrome.com/extensions/
declare permissions, 2014. Visited April
21, 2015.

[14] Google. Chrome Web Store - Ex-
tensions. https://chrome.
google.com/webstore/category/
extensions? sort=1, 2015. Visited April 21,
2015.

[15] Google. Google mail checker. https:/
/chrome.google.com/webstore/
detail/google-mail-checker/
mihcahmgecmbnbcchbopgniflfhgnkff,
2015. Visited April 21, 2015.

[16] Arjun Guha, Matthew Fredrikson, Benjamin
Livshits, and Nikhil Swamy. Verified security for
browser extensions. In Security and Privacy. IEEE,
2011.

[17] Norm Hardy. The confused deputy:(or why capa-
bilities might have been invented). ACM SIGOPS
OS Review, 22(4):36–38, 1988.

[18] Alexandros Kapravelos, Chris Grier, Neha Chachra,
Christopher Kruegel, Giovanni Vigna, and Vern
Paxson. Hulk: Eliciting malicious behavior in
browser extensions. In Security. USENIX, 2014.

[19] Butler W. Lampson. A note on the confine-
ment problem. Communications of the ACM,
16(10):613–615, 1973.

[20] Petr Marchenko, Ulfar Erlingsson, and Brad Karp.
Keeping sensitive data in browsers safe with Script-
Police. Technical Report RN/13/02, UCL, January
2013.

[21] Niels Provos, Markus Friedl, and Peter Honey-
man. Preventing privilege escalation. In Security.
USENIX, 2003.

[22] Alex Russell and Jungkee Song. Service work-
ers. http://www.w3.org/TR/service-
workers/, 2014. Visited April 21, 2015.

[23] Jerome H Saltzer and Michael D Schroeder. The
protection of information in computer systems.
IEEE, 63(9), 1975.

[24] S. W. Smith. Humans in the loop: Human-
computer interaction and security. IEEE Security
and Privacy, 1(3), May 2003.

[25] Deian Stefan, Edward Z. Yang, Petr Marchenko,
Alejandro Russo, Dave Herman, Brad Karp, and
David Mazières. Protecting users by confining
JavaScript with COWL. In OSDI. USENIX, 2014.

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 100/102

[26] Kurt Thomas, Elie Bursztein, Chris Grierand Grant
Ho, Nav Jagpal, Alexandros Kapravelos, Damon
McCoy, Antonio Nappa, Vern Paxson, Paul Pearce,
Niels Provos, and Moheeb Abu Rajab. Ad injection
at scale: Assessing deceptive advertisement modifi-
cations. In Security and Privacy. IEEE, 2015. To
appear.

[27] Anne van Kesteren and Maciej Stachowiak. HTML
design principles. http://www.w3.org/TR/

html-design-principles, 2007. Visited
April 21, 2015.

[28] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie
Kohler, and David Mazières. Making information
flow explicit in HiStar. In OSDI. USENIX, 2006.

[29] Michal Zelwski. Browser security handbook,
part 2. http://code.google.com/p/
browsersec/wiki/Part2, 2009. Visited
April 21, 2015.

Building Secure Web Applications: From Theory to Practice

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 101/102

Building Secure Web Applications: From Theory to Practice

Contents
1 Introduction . 1
2 Security Policies . 12
3 Web Browser Security . 38
4 Web Server Security . 62
5 Formal Aspects . 67
6 Bonus: The Most Dangerous Code in Your Browser . 92

ECI 2015, UBA, Buenos Aires, Argentina | July 20–25, 2015 102/102

	Introduction
	Security Policies
	Web Browser Security
	Web Server Security
	Formal Aspects
	Bonus: The Most Dangerous Code in Your Browser

