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Abstract—Many state-of-the-art information-flow control
(IFC) tools are implemented as Haskell libraries. A distinctive
feature of this language is lazy evaluation. In his influencal
paper on why functional programming matters [1], John
Hughes proclaims:

Lazy evaluation is perhaps the most powerful tool
for modularization in the functional programmer’s
repertoire.

Unfortunately, lazy evaluation makes IFC libraries vulnerable
to leaks via the internal timing covert channel. The problem
arises due to sharing, the distinguishing feature of lazy evalua-
tion, which ensures that results of evaluated terms are stored
for subsequent re-utilization. In this sense, the evaluation of
a term in a high context represents a side-effect that eludes
the security mechanisms of the libraries. A naïve approach
to prevent that consists in forcing the evaluation of terms
before entering a high context. However, this is not always
possible in lazy languages, where terms often denote infinite
data structures. Instead, we propose a new language primitive,
lazyDup, which duplicates terms lazily. By using lazyDup to
duplicate terms manipulated in high contexts, we make the
security library MAC robust against internal timing leaks via
lazy evaluation. We show that well-typed programs satisfy
progress-sensitive non-interference in our lazy calculus with
non-strict references. Our security guarantees are supported
by mechanized proofs in the Agda proof assistant.

I. INTRODUCTION

Information-Flow Control [2] (IFC) scrutinizes source
code to track how data of different sensitivity levels (e.g.,
public or sensitive) flows within a program, and raises alarms
when confidentiality might be at stake. There are several
special-purpose compilers and interpreters which apply this
technology: Jif [3] (based on Java), FlowCaml [4] (based
on Caml and not developed anymore), Paragon [5] (based
on Java), and JSFlow [6] (based on JavaScript). Rather than
writing compilers/interpreters, IFC can also be provided as a
library in the functional programming language Haskell [7].

Haskell’s type system enforces a disciplined separation
of side-effect free from side-effectful code, which makes
it possible to introduce input and output (I/O) to the
language without compromising on its purity. Computations
performing side-effects are encoded as values of abstract
types which have the structure of monads [8]. This distinctive
feature of Haskell is exploited by state-of-the-art IFC libraries
(e.g., LIO [9] and MAC [10]) to identify and restrict “leaky”

side-effects without requiring changes to the language or
runtime.

Another distinctive feature of Haskell is its lazy evaluation
strategy. This evaluation is non-strict, as function arguments
are not evaluated until required by the function, and it
performs sharing, as the values of such arguments are stored
for subsequent uses. In contrast, eager evaluation, also known
as strict evaluation, reduces function arguments to their
denoted values before executing the function.

From a security point of view, it is unclear which evaluation
strategy—lazy or strict—is more suitable to preserve secrets.
To start addressing this subtlety, we need to consider the
interaction between evaluation strategies and covert channels.

Sabelfeld and Sands [11] suggest that lazy evaluation might
be intrinsically safer than eager evaluation for leaks produced
by termination—as lazy evaluation could skip the execution
of unneeded non-terminating computations that might involve
secrets. In multi-threaded systems, where termination leaks
are harmful [12], a lazy evaluation strategy seems to be the
appropriate choice.

Unfortunately, although lazy evaluation could “save the
day” when it comes to termination leaks, it is also vulnerable
to leaks via another covert channel due to sharing. Buiras and
Russo [13] described an attack against the LIO library [12]
where lazy evaluation is exploited to leak information via
the internal timing covert channel [14]. This covert channel
manifests by the mere presence of concurrency and shared
resources. It gets exploited by setting up threads to race
for a public shared resource in such a way that the secret
value affects their timing and hence the winner of the race.
LIO removes such leaks for public shared-resources which
can be identified by the library (e.g., references). Due to
lazy evaluation, variables introduced by let-bindings and
function applications—which are beyond LIO’s control1—
become shared resources and their evaluation affects the
threads’ timing behavior. Note that the internal timing
channel leverages the order with which threads access the
shared resource, not their execution time, which constitutes
a different covert channel, known as the external timing
covert channel [15], [16]. The attacker model for the external

1As a shallow EDSL, LIO reuses much of the host language features
to provide security (e.g., type-system and variable bindings). This design
choice makes the code base small at the price of not fully controlling the
features provided by the host language.



let ` = [1 . . 10000000]
r = sum `

in do fork LIO -- Secret thread
(do s← unlabel secret

when (s ≡ 1 ∧ r > 10) return ())
no_ops;no_ops

-- Public threads
fork LIO (do sendPublicMsg (r − r))
fork LIO (do no_ops; sendPublicMsg 1)

Figure 1: Lazy evaluation attack

timing covert channel assumes that the attacker has access
to an arbitrarily precise stopwatch to measure the wall-clock
execution time of instructions and thereby deduce information
about secrets. This paper does not address the external timing
covert channel, which is a harder problem and for which
mitigation techniques exist [17]–[19].

Figure 1 shows the lazy evaluation attack. In LIO, every
thread has a current label which serves a role similar to
the program counter in traditional IFC systems [20]. The
first thread inspects a secret value (s ← unlabel secret),
which sets the current label to secret. We refer to threads
with such current label as secret threads. The other spawned
threads have their current label set to public, therefore we
call them public threads. Observe that the variable r hosts an
expression that is somewhat expensive to calculate, as it first
builds a list with ten million numbers (` = [1 . . 10000000])
before summing up its elements (r = sum `). Importantly,
the variable r is referenced by both the secret and the public
threads. Observe that every thread is secure in isolation—the
secret thread always returns () and the public threads read no
secret. Assume that the expression no_ops is some irrelevant
computation that takes slightly longer than half the time it
takes to sum up the ten million numbers. Then the public
threads race to send a message on a shared-public channel
using the function sendPublicMsg :

. If s ≡ 1, then the secret thread has by now evaluated
the expression referenced by r , in order to check if r > 10
holds. Due to sharing, the first public thread will not have
to re-calculate r and can output 0 almost imediately, while
the other public thread is still occupied with no_ops .

. If s ≡ 0, then the secret thread did not touch r . While
the first public thread now has to evaluate r , the second public
thread has enough time to perform no_ops and output 1 first.
As a result, the last message on the public channel reveals
the secret s. This attack can be magnified to a point where
whole secrets are leaked systematically and efficiently [12].
Similar to LIO, other state-of-the-art concurrent IFC Haskell
libraries [10], [21] suffer from this attack.

A naïve fix is to force variable r to be fully evaluated
before any public threads begin their execution. This works,
but it defeats the main purpose of lazy evaluation, namely to

avoid evaluating unneeded expressions. Furthermore, it is not
always possible to evaluate expressions to their denoted value.
Haskell programmers like to work with infinite structures,
even though only finite approximation of them are actually
used by programs. For example, if variable ` in Figure 1
were the list [1 / n | n ← [1 . .]] of reciprocals of all natural
numbers and r the sum of those bigger than one millionth
(r = sum (takeWhile (> 1e−6) `)). The evaluation of r
uses only a finite portion of `, so the modified program
still terminates. But naïvely forcing ` to normal form would
hang the program. This demonstrates that simply forcing
evaluation as a security measure is unsatisfying, as it can
introduce divergence and thus change the meaning of a
program.

Instead, we present a novel approach to explicitly control
sharing at the language level. We design a new primitive
called lazyDup which lazily duplicates unevaluated expres-
sions. The attack in Figure 1 can then be neutralized by
replacing r with lazyDup r in the secret thread, which will
then evaluate its own copy of r , without affecting the public
threads.

To the best of our knowledge, this work is the first one
to formally address the problem of internal timing leaks via
lazy evaluation. In summary, our contributions are:
I We present lazyDup, a primitive to restrict sharing

in lazy languages with mutuable references.
I By injecting lazyDup when spawning threads, we

demonstrate that internal timing leaks via lazy evaluation
are closed. The primitive lazyDup is not only capable to
secure MAC against lazy leaks, but also a wide range of
other security Haskell libraries (e.g., LIO and HLIO).
I We prove that well-typed programs satisfy progress-

sensitive non-interference (PSNI) for a wide-range of de-
terministic schedulers. However, for ease of exposition in
this article, we focus only on a round-robin scheduler—the
same scheduler used in GHC’s runtime system2. Our non-
interference claims are supported by mechanized proofs in
the Agda proof assistant [22] and are parametric on the
chosen (deterministic) scheduler.
I As a by-product of interest for the programming

language community, we provide—to the best of our
knowledge—the first operational semantics for lazy eval-
uation with mutable references.

This paper is organized as follows. Section II provides a
brief overview on MAC. Section III describes our formal-
ization for a concurrent non-strict calculus with sharing that
also includes references. Primitive lazyDup is described in
Section IV. Section V shows how lazyDup can remove leaks
via lazy evaluation and Section VI provides the corresponding
security guarantees. Related work is given in Section VII
and Section VIII concludes.

2The Glasgow Haskell Compiler (GHC) is a state-of-the-art, industrial-
strength, open source Haskell compiler.



-- Abstract types
data Labeled ` τ
data MAC ` τ

-- Monadic structure for computations
instance Monad (MAC `)

-- Core operations
label :: `L v `H ⇒ τ → MAC `L (Labeled `H τ)
unlabel :: `L v `H ⇒ Labeled `L τ → MAC `H τ

forkMAC :: `L v `H ⇒ MAC `H ()→ MAC `L ()

Figure 2: Core API for MAC

II. THE MAC IFC LIBRARY

To set the stage of the work at hand, we briefly introduce
the relevant aspects of the MAC IFC library [10].

Security lattice: The sensitivity of data is indicated by
labels. These are partially ordered by v and form a security
lattice [23]. Concretely, `1 v `2 holds if data labeled
with label `1 is allowed to flow to entities labeled with `2.
Although MAC is parameterized on the security lattice, for
simplicity we focus on the classic two-point lattice where
the label H denotes secret (high) data, the label L denotes
public (low) data, and H 6v L is the only disallowed flow.
In MAC, each label is represented as an abstract data type.
To improve readability, subscripts on label metavariables hint
at their relationship, e.g., if `L and `H appear together, then
`L v `H holds.

Security Types: Figure 2 shows the core of MAC’s API.
The abstract type Labeled ` τ classifies data of type τ with
a security label `. For example creditCard :: Labeled H Int
is a sensitive integer, while weather :: Labeled L String
is a public string. The abstract type MAC ` τ denotes a
(possibly) side-effectful secure computation which handles
information at sensitivity level ` and yields a value of
type τ as a result. Importantly, a MAC ` τ computation
enjoys a monadic structure, i.e., it is built by the two
fundamental operations return :: τ → MAC ` τ and
(>>=) ::MAC ` τ → (τ → MAC ` τ ′)→ MAC ` τ ′ (called
“bind”). The operation return x produces a computation that
returns the value denoted by x without causing side-effects.

do x ← m
return (x + 1)

Figure 3: do-notation

The function (>>=) is used
to sequence computations
and their corresponding side-
effects. Specifically, m >>= f
takes the result of running
the computation m and passes it to the function f , which then
returns a second computation to run. Haskell provides syn-
tactic sugar for monadic computations known as do-notation.
For instance, the program m>>=λx → return (x +1), which
adds 1 to the value produced by m, can be written as shown
in Figure 3.

Flows of information: Abstractly, the side-effects of a
MAC ` τ computation involve either reading or writing data.

impl :: Labeled H Bool → MAC H (Labeled L Bool)
impl secret = do
bool ← unlabel secret
if bool then label True

else label False

Figure 4: Implicit flows are ill-typed (H 6v L).

We need to ensure that these actions respect the flows of
information that are permitted by the security lattice. The
functions label and unlabel allow MAC ` τ computations
to securely interact with labeled expressions, which are the
simplest kind of resources available in MAC. If a MAC `L
computation writes data into a sink, the computation needs
to have at most the sensitivity of the sink itself. This
restriction, known as no write-down [24], preserves the
sensitivity of data handled by the MAC `L-computation.
The function label creates a fresh, labeled value. From the
security point of view, this action corresponds to allocating
a fresh location in memory and immediately writing a value
into it—hence the no write-down principle applies. The
type signature of label has a type constraint before the
symbol ⇒, which is a property that types must follow. The
constraint `L v `H ensures that, when calling label x , the
level of the computation `L is no more confidential than
the sensitivity `H of the labeled value that it creates. In
contrast, a computation MAC `H τ is only allowed to read
labeled values at most as sensitive as `H. This restriction
is known as no read-up [24] and gets enforced by the
constraint `L v `H in the type signature of unlabel . This
paper focuses on labeled expression, but MAC provides
additional side-effecting primitives for exception handling,
network communication, references, and synchronization
primitives [10].

Implicit flows: The interaction between the type of
a MAC `-computation and the no write-down restriction
makes an implicit flow ill-typed. Figure 4 shows a program
that attempts to implicitly leak a Boolean secret, which is
correctly rejected by the compiler. In order to branch on
sensitive data, a program needs first to unlabel it, which
forces the computation to be of type MAC H τ , for some
type τ . Regardless of which branch is taken, the computation
is at level H and cannot therefore write into public data due
to the no write-down restriction. Trying to do so, as shown
in Figure 4, incurs in a violation of the security policy and a
type error! Observe that the application of label is rejected
since its type constraint cannot be satisfied, i.e., H 6v L.

Concurrency: The mere possibility to run (conceptually)
simultaneous MAC ` computations provides attackers with
new tools to bypass security checks. In particular, threads
introduce the internal timing covert channel described in
the introduction. Furthermore, it considerably magnifies
the bandwidth of the termination covert channel, where
secrets are learned by observing the terminating behavior of



Types: τ ::= () | τ1 → τ2
Values: v ::= () | λx .t
Terms: t ::= v | x | t1 t2
Stacks: S ::= [ ] | C : S
Continuations: C ::= x | #x

(APP1)
fresh(x )

(∆, t1 t2,S ) (∆[x 7→ t2], t1, x : S )

(APP2)
(∆, λy .t , x : S ) (∆, t [x / y ],S )

(VAR1)
(∆[x 7→ t ], x ,S ) (∆, t ,#x : S )

(VAR2)
(∆, v ,#x : S ) (∆[x 7→ v ], v ,S )

Figure 5: Syntax and semantics à la Sestoft

threads [12]. To securely support concurrency, MAC forces
programmers to decouple computations which depend on
sensitive data from those performing public side-effects. In
this manner, non-terminating loops based on secrets cannot
affect the outcome of public events. In this light, the type
signature of forkMAC in Figure 2 only allows spawning threads,
i.e., a secure computation with type MAC `H (), which are at
least as sensitive as the current computation, i.e., MAC `L ().
It is secure to do so because that decision depends on less
sensitive data (`L v `H).

III. LAZY CALCULUS

In order to rigorously analyze the information leaks
introduced by sharing, we need to build on top of a formal
semantics that is operationally precise enough to make
sharing observable. The default choice for such a semantics
is Launchbury’s “Natural Semantics for lazy evaluation” [25],
where the structure of the heap is explicit and sharing, as well
as cyclic data structures, are manifestly visible. The heap is a
partial map from names to terms. This representation is still
more abstract than other formalisations such as the Spineless
Tagless G-machine (STG) [26], which concerns itself with
pointers and memory representation, and is the basis of the
Haskell implementation GHC [27]. That much operational
detail would only clutter this work, and in terms of lazy
evaluation, Launchbury’s semantics is a suitable model of
the actual implementation.

This work will have to address concurrency, for which a
big-step semantics such as Launchbury’s is unsuitable for.
Therefore, we build on Sestoft’s rendering of Launchbury’s se-
mantics as an abstract machine with small-step semantics [28].
Here, a judgement (∆, t ,S ) (∆′, t ′,S ′) indicates that a
configuration consisting of a current expression t , a heap

∆, and a stack S takes one step to the configuration on the
right hand side of the arrow.

The rules in Figure 5 describe the transitions of the abstract
machine for the standard syntactical constructs. Rule (APP1)
initiates a function call. Since we work in a lazy setting, the
function argument t2 is not evaluated at this point. Instead,
it is stored on the heap as a thunk, i.e., an unevaluated
expression, under a fresh name x with regard to the whole
configuration—which corresponds to allocating memory. The
machine proceeds to evaluate the function expression t1
to a lambda expression. Then, rule (APP2) takes over and
substitutes the name of the argument x , which is found on
the stack, into the body t of the lambda expression. The
argument x may, however, need to be evaluated at some point.
Rule (VAR1) finds the corresponding thunk t on the heap
and, after leaving an update marker #x on the stack, begins
to evalute the thunk—intuitively, this marker indicates that
when the evaluation of the current term finishes, the denoted
value gets stored in x . During evaluation, x is removed from
the heap. If the evaluation of t required the value of x ,
the machine would get stuck. This effect is desired: if the
binding for x were to remain on the heap, evaluation would
simply start to run in circles. Removing the variable from
the heap, a technique called blackholing, makes this error
condition detectable. When the machine reduces the thunk
to a value v , rule (VAR2) pops the update marker from the
stack and puts x back on the heap, but now referencing to
the value v . Every future use of x will use v directly instead
of re-calculating it. This updating operation is the crucial
step to implement sharing behavior.

We simplified Sestoft’s presentation of the semantics in a
few ways to remove aspects not relevant for the discussion
at hand and to facilitate our machine-checked proofs in
Agda: i) our syntax does not include mutual recursive let
expressions; ii) in contrast to Sestoft and Launchbury, we
allow non-trivial arguments in function application, i.e., our
terms are not necessarily in Administrative Normal Form
(ANF). In that manner, a non-recursive let expression such as
let x = t1 in t2 can be expressed as (λx .t2) t1; iii) although
omitted in this presentation, our formalism sports types
with multiple values (e.g., Boolean expressions) and the
corresponding case-analysis clause (e.g., if -then-else) by
using the rules found in [29].

A. Security Primitives

We now extend this standard calculus with the security
primitives of MAC as shown in Figure 6. The new type
Labeled ` τ consists of pure values t :: τ wrapped in
Labeled , and annotates them with the security level `. We call
Labeled 42 :: Labeled ` Int a pure, side-effect free labeled-`
resource with content 42. We introduce a further form of
labeled resource, namely references, in the next section. The
semantics rules in Figure 6 are fairly straight-forward and
follow the pattern seen in Figure 5. It is worth noting that



`
τ ::= · · · | MAC ` τ | Labeled ` τ
v ::= · · · | return t | Labeled t
t ::= · · · | t1 �= t2 | label t | unlabel t
C ::= · · · x | >>=t | unlabel

(LABEL)
(∆, label t ,S ) (∆, return (Labeled t),S )

(UNLABEL1)
(∆, unlabel t ,S ) (∆, t , unlabel : S )

(UNLABEL2)
(∆,Labeled t , unlabel : S ) (∆, return t ,S )

(BIND1)
(∆, t1 >>= t2,S ) (∆, t1, >>=t2 : S )

(BIND2)
(∆, return t , >>=t2 : S ) (∆, t2 t ,S )

Figure 6: Security primitives

thanks to the static nature of MAC, no run-time checks are
needed to prevent insecure flows of information in these
rules.

We remark that the constructor Labeled is not available to
the user, who can only use label (unlabel ) to create (inspect)
labeled resources. Besides these primitives, the user can
create computations using the standard monad operations
return and >>=.

The actual MAC implementation knows even more labeled
resources (e.g., network) [10]. MAC requires no modification
to Haskell’s type system in order to handle labels: each label
is defined as an empty type, i.e., a type that has no value,
and labeled resources (type Labeled ) use labels as phantom
types, i.e., a type parameter that only carries the sensitivity
of data at the type-level.

B. References

We now extend the abstract machine with mutable refer-
ences, a feature available in MAC to boost the performance
of secure programs [10]. References live in the memory M ,
which is simply a list of variables, added as a component of
the program configuration—see Figure 7. The address of a
memory cell is its index in this list. The memory M [n 7→ x ]
is M with its n-th cell changed to refer to x . Observe that
the memory M and the heap ∆ are two distinct syntactic
categories and that, while the latter contains arbitrary terms
and enjoys sharing, the former merely contains pointers
to the heap. A labeled reference is represented as a value
Ref n ::Ref ` τ where n is the address of the n-th memory
cell, which contains a variable (a “pointer”) to some term t ::τ

Configuration: c ::= 〈M ,∆, t ,S 〉
Memory: M ::= [ ] | x : M
Addresses: n ::= 0 | 1 | 2 | · · ·
Types: τ ::= · · · | Ref ` τ
Values: v ::= · · · | Ref n
Terms: t ::= · · · | new t | read t

| write t1 t2
Continuations: C ::= · · · | read | write t

(LIFT)
(∆, t ,S ) (∆′, t ′,S ′)

〈M ,∆, t ,S 〉 −→ 〈M ,∆′, t ′,S ′〉

(NEW)
n = |M | fresh(x )

〈M ,∆,new t ,S 〉 −→
〈M [n 7→ x ],∆[x 7→ t ], return (Ref n),S 〉

(WRITE1)
〈M ,∆,write t1 t2,S 〉 −→ 〈M ,∆, t1,write t2 : S 〉

(WRITE2)
fresh(x )

〈M ,∆,Ref n,write t : S 〉 −→
〈M [n 7→ x ],∆[x 7→ t ], return (),S 〉

(READ1)
〈M ,∆, read t ,S 〉 −→ 〈M ,∆, t , read : S 〉

(READ2)
〈M ,∆,Ref n, read : S 〉 −→ 〈M ,∆, return M [n],S 〉

Figure 7: Syntax and semantics for references

new :: `L v `H ⇒ τ → MAC `L (Ref `H τ)
read :: `L v `H ⇒ Ref `L τ → MAC `H τ
write :: `L v `H ⇒ τ → Ref `H τ → MAC `L ()

Figure 8: API of memory operations

on the heap3. Only secure computations can manipulate these
labeled references using the secure primitives in Figure 8.
Observe that the types are restricted according to the no
read-up and no write-down restrictions—like those of label
and unlabel .

The extended semantics is represented as the relation c −→
c′ which extends  via [LIFT]—see Figure 7. Rule [NEW]
allocates the second argument on the heap with a fresh name
x , extends the memory with a new pointer to x and returns
a reference to it. Rule [WRITE1] evalutes its first argument
to a reference and rule [WRITE2] overrides the memory cell
with a pointer to a newly allocated heap entry, just like

3MAC’s implementation of labeled reference is a simple wrapper around
Haskell’s type IORef . However, we denote references as a simple index
into the labeled memory. This design choice does not affect our results.



Thread pool: Ts ::= [ ] | (t ,S ) : Ts
Configuration: c ::= 〈M ,∆, Ts〉
Terms: t ::= · · · | fork t

Figure 10: Syntax for the concurrent calculus

new . The two [READ]-rules retrieve a pointer from memory.
To the best of our knowledge, this is the first published
operational semantics that models both lazy evaluation and
mutable references, and although we constructed it using
standard techniques, we would like to point out a crucial
subtlety.

A naïve model might omit the extra memory M , let
a reference simply contain a variable on the heap (t ::=
· · · | Ref x ) and use the transition rule 〈∆,Ref x ,write t :
S 〉 −→ 〈∆[x 7→ t ], return (),S 〉. This transition interacts
badly with sharing, as shown by the program in Figure 9.

do r ← new (1 + 1)
x ← read r
write r 1
if (x ≡ 2) then return " "

else return " "

Figure 9: Immutability.

Clearly, we expect
the program to re-
turn " ", but it
returns " " with
the naïve semantics!
The new statement
allocates a new vari-
able x , binds it to
1 + 1, and returns the reference Ref x . The next read
statement brings variable x into scope, which is pure and we
expect its denoted value to stay the same. However, under
the naïve semantics, the following write statement changes
x to 1 and therefore chaos ensues.

The solution is to add an extra layer of indirection, and
distinguish between the mutable memory cells that make up
a reference, and the heap locations that—although changed
in [VAR2]—are conceptually constant. We chose to keep
track of them separately in the memory M and the heap ∆
since we found that it makes formal reasoning easier. It is
also viable to keep both on the heap, and just be disciplined
as to which variables denote references and which denote
values and thunks—this design choice would be closer to
GHC’s runtime, where both pure data and mutable references
are addressed by pointers into a single heap.

C. Concurrency

Finally, we extend our language with concurrency in the
form of threads whose execution interleave4.

We consider global configurations of the form 〈M ,∆, Ts〉,
where thread pool Ts consists of a list of threads—see Figure
10. A thread (t ,S ) is an interrupted secure computation,
consisting of a control term t and a stack S. Within a
global configuration, threads are identified by their position
in the thread pool. For simplicity and brevity, the concurrent
calculus features a Round Robin scheduler, the same kind

4MAC provides also synchronization variables [10], which we omit here.

of scheduler used by GHC’s run-time system5—however,
our results and semantics generalize to a wide range of
deterministic schedulers. In the following, we omit the
scheduler from the configuration and from the semantics
rules for space reasons.

Figure 11 describes the two rules under which a global
configuration c1 steps to c2 (written c1 ↪→ c2). In
both rules ([SEQ] and [FORK]), thread n is executed—the
scheduler actually deterministically chooses which thread
to run, which is retrieved from the thread pool Ts. In rule
[SEQ], the selected thread, i.e., (t1,S1), takes a sequential
step that is paired with the current memory and heap:
(〈M1,∆1, t1,S1〉 −→ 〈M2,∆2, t2,S2〉). The global config-
uration is then updated accordingly to the final sequential
configuration; in particular, the thread pool is updated with
the reduced thread, i.e., Ts[n 7→ (t2,S2)]. In rule [FORK],
the selected thread spawns a thread—note that term fork t
is stuck in the sequential semantics and rule [SEQ] does
not apply. The new thread is assigned the fresh identifier
m = |Ts|—thread pool Ts contains threads 0 ... |Ts| − 1.
Lastly, the thread pool is updated with the parent thread,
appropriately reduced to (return (),S ), and by inserting the
new thread initialized with an empty stack, i.e., (t , [ ]), at
position m .

Note that a thread that tries to evaluate a variable x that
is already under evaluation by another thread will not find
this variable on the heap, due to the blackholing mechanism
explained earlier. The thread is now blocked, guaranteeing
that, even in the concurrent setting, every thunk will only be
evaluated at most once. This mechanism is consistent with
the operational semantics used by Finch et al. [30].

IV. DUPLICATING THUNKS

This section presents one of our main contributions: a
primitive, called lazyDup, to prevent sharing. Given a term
t , evaluating lazyDup t will lazily create a copy of t . The
laziness is necessary in order to duplicate cyclic or infinite
data structures without sending the program into a loop. We
first present the basic semantics of lazyDup and then describe
how we handle references.

A. Semantics

Figure 12 extends the syntax and the semantics of the
calculus with lazyDup. The rule [LAZYDUP1] ensures
that the argument of lazyDup is a variable, if that is not
already the case. The interesting rule is [LAZYDUP2], which
evaluates lazyDup x and copies the expression t referenced
by x . This closes the covert channel represented by x , but it is
insufficient, as t might mention further variables. Therefore,
lazyDup has to descent into t , and handle these as well. But
instead of immediately duplicating the terms referenced by
those variables, we simply wrap them in a call to lazyDup—
this is the eponymous laziness.

5https://ghc.haskell.org/trac/ghc/wiki/Commentary/Rts/Scheduler
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(SEQ)
〈M1,∆1, t1,S1〉 −→ 〈M2,∆2, t2,S2〉

〈M1,∆1, Ts[n 7→ (t1,S1)]〉 ↪→ 〈M2,∆2, Ts[n 7→ (t2,S2)]〉

(FORK)
m = |Ts|

〈M ,∆, Ts[n 7→ (fork t ,S )]〉 ↪→ 〈M ,∆, Ts[n 7→ (return (),S )][m 7→ (t , [ ])]〉

Figure 11: Semantics of the concurrent calculus

Terms: t ::= · · · | lazyDup t

(LAZYDUP1)
¬ isVar (t) fresh(x )

〈∆, lazyDup t ,S 〉 〈∆[x 7→ t ], lazyDup x ,S 〉

(LAZYDUP2)
x 7→t ∈ ∆ fresh(x ′)

〈∆, lazyDup x ,S 〉 〈∆[x ′ 7→ JtK∅], x ′,S 〉

Jt1 t2KB = Jt1KB Jt2KB

Jλx .tKB = λx .JtKB∪{x }
J()KB = ()

JxKB =

{
x if x ∈ B

lazyDup x if x 6∈ B

JlazyDup tKB = lazyDup t

Figure 12: Synatx and semantics of lazyDup

Figure 12 shows (some of) the equations of the function
JtKB which implements this. It homomorphically traverses
the tree t , while keeping track of the set of bound variables
in its parameter B . Ground values and bound variables are
left alone. When lazyDup finds a free variable, i.e., one not
in B , it wraps it with a call to lazyDup as intended. In
the following, we omit the superscript B when irrelevant.
Finally, if J·K comes across a call to lazyDup, it does not
traverse further, as the existing lazyDup already takes care
of the duplication. In fact, without this case, evaluating
expression lazyDup (lazyDup t) would send the program
into an infinite loop. We conjecture that introducting lazyDup
does not change the termination behavior of programs. Note
that the term JtK has at most one call to lazyDup wrapped
around each free variable.

B. References

Duplicating references requires particular care. To illustrate
this, consider what does not work. We cannot leave references
alone (JRef nK = Ref n) because thunks can be passed
through the reference and open a new leaking channel. We
cannot either duplicate the reference and the term it currently
references since this would change the semantics of mutable
references. More concretely, consider a Ref n with M [n] =

Values: v ::= · · · | DRef m

JRef nKB = DRef n
JDRef nKB = DRef n

(READD )
〈M ,∆,DRef n, read : S 〉 −→

〈M ,∆, return (lazyDup M [n],S )〉

(WRITED )
fresh(x )

〈M ,∆,DRef n,write t : S 〉 −→
〈M [n 7→ x ],∆[x 7→ t ], return (),S 〉

Figure 13: Duplicate-on-read memory operations

x and ∆(x ) = t . Assume we duplicate t to ∆(y) = JtK
for a fresh name y and let JRef nK = Ref n ′ for a fresh
memory cell n ′, such that M [n ′ 7→ y ]. If later Ref n gets
updated with the value 42, i.e., M [n 7→ z ] with ∆(z ) = 42,
then this change would be invisible to Ref n ′, which would
still refer to JtK through variable y . This is bad, as lazyDup
is not supposed to change the observable semantics of the
program!

Crucially, we need to propagate any write operation on the
original reference to the duplicated reference. One manner
to achieve that is to have both references pointing to the
same memory location but carefully preventing leaks from
reading this shared resource. In this light, we introduce a
new variant of reference, called duplicate-on-read reference6,
which is represented by DRef n. When reading from a
DRef n , we wrap the read value in a call to lazyDup, as
shown in Figure 13, while write operations on a duplicate-
on-read reference are executed as usual. Function J.K does
not need to follow references and duplicate their content, but
simply turns them into duplicate-on-read-references. In this
sense, we apply lazyDup lazily to reference: the duplication
is suspended and continues when the reference is read.

V. SECURING MAC
We now pinpoint the vulnerability leveraged by the attack

sketched in the introduction and show how to modify MAC

6The same approach applies to synchronization variables.



(FORK)
|Ts| = m

〈M ,∆, Ts[n 7→ (fork t ,S )]〉 ↪→ 〈M ,∆, Ts[n 7→ (return (),S )][m 7→ ( lazyDup t , [ ])]〉

Figure 14: Patch needed to secure MAC

to close it using lazyDup. It turns out that one careful
modification to the [FORK] rule suffices. This change,
highlighted in greeen in Figure 14, ensures that when we
create a new thread to evaluate t , it will work on a lazily
duplicated copy of t , i.e., lazyDup t . As a result, each thunk
shared between the parent and the child thread gets lazily
duplicated: the parent thread works on the original thunk,
while the child thread works on a copy.7

Let us trace how our proposal fixes the leak shown in
Figure 1. Let t be the code of the secret thread. When it is
spawned, lazyDup t is added to the thread pool. Note that
the critical resource that causes the leak, namely variable r , is
a free variable of t . As the secret thread executes lazyDup t ,
the occurrence of r in the code is replaced by lazyDup r
(rule [LAZYDUP2]). Therefore, if s ≡ 1, the thread duplicates
r before evaluating it, leaving r itself alone, just like when
s ≡ 0 and the secret thread does not touch r at all. As a
result, the timing behavior of public threads, i.e., the order
with which they output a message on the public channel,
is unaffected by the value of the secret s and the internal
timing leak is closed.

Observe that lazyDup conservatively avoids sharing be-
tween secret and public threads. In principle, it is acceptable
for a secret thread to evaluate and update a thunk if that
action does not depend on the secret—for example if that
happens before any sensitive command such as unlabel .
Assessing whether this is the case requires sophisticated
program analysis techniques, which are beyond the scope of
this paper. On the other hand, sharing from public to secret
threads is always secure, and in fact lazyDup allows for this
“write-up” behavior: if, due to lucky scheduling, the public
thread finishes evaluating r before the secret thread looks
at it, then the latter will see the fully evaluated term and
securily enjoy the benefits of sharing.

The primitive lazyDup is capable of securing LIO as well
even though it has to be used differently—see Appendix A
for more details.

VI. SECURITY GUARANTEES

In this section, we show that our calculus satisfies progress
sensitive non-interference (PSNI). We start by describing
our proof technique, based on term erasure. To facilitate
reasoning, we proceed to decorate our calculus with labels

7It is secure to avoid duplication whenever the parent and the child thread
share the same security level, which are both statically known in MAC,
see Figure 2. Since the label of the child thread (`H) is at least as sensitive
as that of the parent, i.e., `L v `H, we only have to use lazyDup if
`L @ `H.

c c′

ε`A (c) ε`A (c′)

ε`A ε`A

Figure 15: Single-step simulation

Pure conf. `: c ::= (∆`, t ,S `)
Seq. conf. `: c ::= 〈Σ,Γ, t ,S `〉
Heap map: Γ ::= (` : Label)→ Heap `
Store: Σ ::= (` : Label)→ Memory `
Memory `H: M ::= · · · | x `L : M
Terms τ : t ::= · · · | x `

Cont. `: C ::= · · · | x ` | #x `

Conc. conf.: c ::= 〈Σ,Γ,Φ〉
Pool map: Φ ::= (` : Label)→ Pool `

Figure 16: Decorated Calculus

that keep track of the security level of terms stored in
memory, heaps and configurations. We then prove PSNI for
the decorated calculus and conclude that MAC is likewise
secure by establishing a mutual simulation relation with the
vanilla (undecorated) calculus.

A. Term Erasure

Term erasure is a technique to prove non-interference
in functional programs [31] and IFC libraries (e.g., [9],
[12], [21], [32], [33]). It relies on an erasure function,
which we denote by ε`A . This function rewrites data above
the attacker’s security level, denoted by label `A, to the
special syntactic construct •. At the core, this technique
establishes a simulation between reductions of configurations
and reductions of their erased counterparts. Figure 15 shows
that erasing sensitive data from a configuration c and then
taking a step (orange path) yields the same configuration as
first taking a step and then erasing sensitive data (cyan path),
i.e., the diagram commutes. If the configuration c were to
leak sensitive data into a non-sensitive resource, then it will
remain in ε`A(c′). The same data would be erased in ε`A(c)
and the diagram would not commute.

B. Decorated Calculus

The erasure proof technique was conceived to work on
dynamic IFC approaches [31], where security labels are
attached to terms. Applying term erasure to MAC, where
labels are parts of the types instead of the terms, demands
to extend our calculus with extra information about the



sensitivity nature of terms. As in similar work [33], [34], we
annotate terms with their type and make the erasure function
type-driven. The annotated term t :: τ denotes that the term
t has type τ . We likewise decorate configurations, heaps,
memories, stacks, and continuations with labels.

Figure 16 summarizes the main changes required to
decorate our calculus. A pure configuration 〈∆`, t ,S `〉,
labeled with `, consists of a labeled heap ∆`, and a labeled
stack S `. An `-labeled heap ∆` can be accessed by `-labeled
variables, e.g., x `. An `-labeled stack contains exclusively `-
labeled continuations, which involve only `-labeled variables,
i.e., continuations x ` and #x `. Furthermore an `-labeled
heap contains terms that can be evaluated only by threads
at level `. A sequential configuration 〈Σ,Γ, t ,S `〉 labeled
with `, consists of a store Σ, a current term t , an heap
map Γ, and a labeled stack S `. An `-labeled configuration
denotes a computation of type MAC ` τ , for some type τ .
Note that this does not necessarily mean that term t is a
MAC computation—when the configuration steps the current
term is changed with the next redex, which might have a
completely different type. Instead, the combination of current
term and stack guarantees that the whole configuration
represents a MAC ` computation.

It is known that dealing with dynamic allocation of memory
makes it challenging to prove non-interference (e.g., [35],
[36]). One manner to tackle this technicality is by establishing
a bijection between public memory addresses of the two
executions we want to relate and considering equality of
public terms up to such notion [35]. Instead, and similar to
other work [9], [32]–[34], we compartmentalize the memory
into isolated labeled segments, one for each label of the
lattice. This way, allocation in one segment does not affect
the others. A similar argument holds for the heap and the
thread pool, which we therefore also organize in partitions,
accessed through the heap map Γ respectively the pool map
Φ. Since we now have multiple heaps in one configuration,
we need to annotate the free variables with the label of the
heap in which they are bound. So a variable x ` denotes
that x is bound in the heap Γ(`). Variables bound inside a
term remain unlabeled, e.g., λx .x . A variable x `L in a `H-
labeled memory will have a label of at most the memory’s
sensitivity, `L v `H. Unlike variables, we do not need to
annotate memory cells n , as they only occur in a Ref n
expression, which carries a label in its type. So a reference
Ref n :: Ref ` τ points to the n-th entry in the `-labeled
memory. In the following, we write fresh(x `) to denote that
variable x is fresh with respect to heap Γ(`) = ∆` and stack
S `. We write Γ[`][x `] := t for the heap map obtained by
performing the update Γ(`)[x ` 7→ t ], and likewise for stores
and pool maps.

C. Decorated Semantics

The interesting rules of the annotated semantics are shown
in Figure 17. The rules for the pure fragment of the calculus

(APP1)
fresh(x `)

(∆`, t1 t2,S
`) (∆`[x ` 7→ t2], t1, x

` : S `)

(APP2)
(∆`, λy .t , x ` : S `) (∆`, t [x ` / y ],S `)

(VAR1)
(∆`[x ` 7→ t ], x `,S `) (∆`, t ,#x ` : S `)

(VAR2)
(∆`, v ,#x ` : S ) (∆`[x ` 7→ v ], v ,S `)

(LIFT)
(Γ(`), t1,S

`
1) (∆`, t2,S

`
2)

〈Σ,Γ, t1,S `
1〉 −→ 〈Σ,Γ[` 7→ ∆`], t2,S

`
2〉

(LAZYDUP1)
¬ isVar (t) fresh(x `)

〈Σ,Γ, lazyDup t ,S `〉 −→
〈Σ,Γ[`][x `] := t , lazyDup x `,S `〉

(LAZYDUP2)
x `L 7→t ∈ Σ(`L) fresh(y`H)

〈Σ,Γ, lazyDup x `L ,S `H〉 −→
〈Σ,Γ[`H][y`H ] := JtK∅, y`H ,S `H〉

(NEW)
|Σ(`H)| = n fresh(x `L)

〈Σ,Γ,new t ,S `L〉 −→
〈Σ[`H][n] := x `L ,∆[`L][x `L ] := t , return (Ref n),S `L〉

(WRITE2)
fresh(x `L)

〈Σ,Γ,Ref n,write t : S `L〉 −→
〈Σ[`H][n] := x `L ,Γ[`L][x `L ] := t , return (),S `L〉

(READ2)
Σ(`)[n] = x `

〈Σ,Γ,Ref n, read : S `〉 −→ 〈Σ,Γ, return x `,S `〉

(READD )
〈Σ,Γ,DRef n, read : S `H〉 −→

〈Σ,Γ, return (lazyDup Σ(`L)[n]),S `H〉

Figure 17: Decorated Semantics



are adapted to work with labeled variables. Note that rule
[APP2] replaces the bound, hence unlabeled, variable y with
the labeled variable x ` and thus maintains the invariant that
free variables are labeled.

Why do we get away with giving the pure fragment of
the annotated calculus only access to the heap Γ(`) in a
configuration at level `? What if the program accesses a
variable at a different level `′? Because that cannot happen
in a safe program, as the following example shows. Consider
the following reduction sequence:

([x `′ 7→t ], x `′ , [ ])

 ([ ], t , # x `′ : [ ]) -- rule [VAR1]
 ∗ ([ ], v , # x `′ : [ ])

 ([x `′ 7→v ], v , [ ]) -- rule [VAR2]

In the first step, the `-labeled configuration reads the variable
x `′ . According to the no read-up security policy, this is
only safe if `′ v `. In the last step, the `′-labeled heap
entry is updated with the value v . This constitutes a write
operation, so accoring to the no write-down policy, this
requires ` v `′. By the antisymmetry of the security lattice,
it follows that ` ≡ `′ must hold. So in the presence of
sharing, a configuration complies with the no write-down
and no read-up security policies only if it interacts soley
with the `-labeled heap.

Rule [LIFT] executes a pure reduction step, giving it access
to the appropriate heap Γ(`) and updating the heap map
afterwards. Rules [LAZYDUP1] and [LAZYDUP2] adapt the
semantics of lazyDup to label-partitioned heaps. The first
rule takes care of allocating a non-trivial argument on the
heap labeled as the current configuration. The second rule is
the heart of our security leak fix: it handles the case where
a high thread reads a thunk from a lower context. The rule
fetches the thunk t from the lower heap, i.e., t 7→Σ(`L), and
extends the heap labeled as the configuration with a copy of
the thunk, i.e., Σ[`H][y`H ]:=JtK∅. Observe that this operation
relabels the original thunk t from `L to `H securely because
t is duplicated, ensuring that the free variables in t will,
by the time they are about to be evaluated, be wrapped in
lazyDup, so that [LAZYDUP2] kicks in again. In rule [NEW],
a computation at level `L creates a reference labeled with
`H. The thunk t is allocated on the `L heap under the name
x `L , which is written to the fresh cell in memory Σ(`H).
This ensures the invariant that in well-typed configurations a
memory holds references to lower heaps. The same applies
to rule [WRITE2]. Rule [READ2] enforces that a computation
at level ` can only read from a non-duplicated reference if
the referenced variable is at the same level `. Relaxing this
would allow a high thread to read a thunk from a low level
and thus open another leaky channel. But the interplay of rule
[FORK] (in its annotated variant in Figure 18 in Appendix C),
rule [LAZYDUP2] and lazyDup rewriting of references to
duplicate-on-read references precludes this scenario. Rule

[READD] then allows a `H high computation to read a low
variable from a duplicate-on-read reference, by duplicating
it to ensure security.

D. Erasure Function
The term ε`A(t :: τ) is obtained from a term t with type

τ by erasing data not observable by an attacker at level `A.
For clarity, we omit the type annotation when irrelevant or
obvious. Ground values (e.g., (), True) are unaffected by
the erasure function. For most syntactic forms, the function
recurses homomorphically as in ε`A(lazyDup t :: τ) =
lazyDup (ε`A(t :: τ)). The interesting cases are terms of
type Labeled ` τ and Ref ` τ . For such cases, the erasure
function recurses as usual if ` v `A. If, however, ` 6v `A,
and the resource is above the attacker’s level, then it is erased
and replaced by •, e.g., ε`A(Labeled t :: Labeled ` τ) =
Labeled (ε`A(t :: τ)) if `A v ` or Labeled • otherwise. The
erasure function is described with more detail in Appendix C.

E. Decorated Progress-Sensitive Non-Interference
The non-interference proof relies on the two main prop-

erties determinancy and simulation. Determinancy simply
states that transitions are deterministic:

Proposition 1 (Determinancy): If c1 ↪→ c2 and c1 ↪→ c3

then c2 ≡ c3.
The equality in this statement is alpha-equality, i.e., up
to the choice of variables. In the machine-checked proofs
all variables are De Bruijn indexes, and we indeed obtain
structural equality.

The choice of determinism makes the concurrent model
robust against scheduler refinement attacks. The second
property, i.e., simulation, says that if a thread steps in a
global configuration, then, either the same thread steps in
the erased configuration, when the thread’s level is visible
to the attacker, i.e., ` v `A, or otherwise, the initial and
resulting configuration are indistinguishable to the attacker.
We call such indistinguishability relation `A-equivalence,
written c1 ≈`A c2 and defined as ε`A(c1) ≡ ε`A(c2). Observe
that two `A-equivalent configurations contain exactly the
same number of `A-equivalent public threads, but possibly a
different number of secret threads. The notation c1 ↪→(`,n) c2

expresses that the configuration c1 runs the n-th thread at
security level `—threads are identified by label and number
in the decorated semantics.

Proposition 2 (Simulation): Given a global reduction step
c1 ↪→(`,n) c

′
1 then

• ε`A(c1) ↪→(`,n) ε`A(c′1), if ` v `A, or
• c1 ≈`A c′1, if ` 6v `A

From Propositions 1 and 2, we prove progress-sensitive
non-interference. Note that, unlike our previous work [33],
Proposition 2 does not simulate sensitive threads, because
`A-equivalence suffices for PSNI. For more details, please
refer to our Agda formalization8.

8Available at https://github.com/marco-vassena/lazy-mac

https://github.com/marco-vassena/lazy-mac


Theorem 1 (PSNI): Given two configurations c1 ≈`A c2

and a reduction c1 ↪→(`,n) c
′
1, then there exists a configura-

tion c′2 such that c′1 ≈`A c′2 and c2 ↪→∗ c′2.
As usual, ↪→∗ denotes the transitive reflexive closure of ↪→.

Proof: If ` v `A, by `A-equivalence, configuration c2

contains a thread identified by (`,n), that is `A-equivalent to
that run by c1. However, c2 might contain a finite number of
high threads, which are scheduled before that. After running
those high threads, i.e., c2 ↪→∗ c′′2 , for some configuration c′′2 ,
the same low thread is scheduled, i.e., c′′2 ↪→(`,n) c

′
2, for some

other configuration c′2. Applying the simulation proposition to
the first set of steps yields c2 ≈`A c′′2 , as they are all above the
attackers level, and by transitivity it follows that c1 ≈`A c′′2 ,
i.e., ε`A(c1) ≡ ε`A(c′′2 ). Applying simulation again we learn
that ε`A(c′′2 ) ↪→(`,n) ε`A(c′2), since ` v `A as well as
ε`A(c1) ↪→(`,n) ε`A(c′1). The determinancy proposition shows
ε`A(c′1) ≡ ε`A(c′2) or, in other words, c′1 ≈`A c′2. If ` 6v `A,
then simulation tells us c1 ≈`A c′1 and c′′2 ≈`A c′2, so we
obtain c′1 ≈`A c′2 by transitivity.

F. Simulation between Vanilla and Decorated semantics

To conclude the proofs of the security guarantees, we
have to relate the decorated semantics with the vanilla
semantics. On the one hand, we show that we can strip
off the annotations from a decorated program, run it in the
vanilla semantics, and get the same behaviour as running
the decorated program in the decorated semantics. On the
other hand, we show that we can annotate a well-typed
vanilla program, based on the type derivations, and obtain
an decorated program that executes correspondingly.

The main challenge is to map the partitioned heap, memory,
and stack in the annotated calculus into a single heap,
memory, and stack and vice versa. We apply techniques
inspired by other IFC works on dynamic allocation [35] and
partitioned heaps [32] and show that configurations in the
annotated calculus are equal to those in the vanilla calculus up
to bijection on variables names and memory addresses. These
bijections describe how to flatten the partitioned memories
and heaps into single entities without changing the results
produced by programs—of course, modulo variable names
and memory addresses. Note that our references are opaque
to programs, i.e., there is no pointer arithmetic, equality, etc.,
which makes the proof easier.

We work with two bijections, Ψ1 for heap variables and
Ψ2 for memory addresses:

Ψ1 :: (Label × Var)→ Var
Ψ2 :: (Label × N)→ N

Var is the set of variables and N the set of memory addresses.
When we refer to both bijections, we simply write Ψ.

As one expects, we consider an annotated configuration
equivalent up to bjections to a vanilla configuration, written

〈Σ,Γ, t ,S `〉 ∼=Ψ 〈M ,∆, t ′,S 〉, if and only if their compo-
nents are related, i.e., Σ ∼=Ψ M , Γ ∼=Ψ ∆, S ` ∼=Ψ S , and
t ∼=Ψ t ′. The equivalences on memories (Σ ∼=Ψ M ), heap
(Γ ∼=Ψ ∆), and stack (S ` ∼=Ψ S ) are defined point-wise.
Equivalence of terms is a congruence relation with x ` ∼=Ψ y
if and only if Ψ1 (`, x ) = y and Ref n ::Ref ` τ ∼=Ψ Ref m
and DRef n :: Ref ` τ ∼=Ψ DRef m if and only if
Ψ2 (`,n) = m . Using this notion of equivalence modulo Ψ,
we can state the simulation results:

Proposition 3 (Decorated to vanilla): Given well-typed
configurations 〈Σ,Γ, t1,S `〉 and 〈M ,∆, t2,S 〉 that denote a
computation of type MAC ` τ , if we have that:
• 〈Σ,Γ, t1,S `〉 −→ 〈Σ′,Γ′, t ′1,S ′

`〉 and
• 〈Σ,Γ, t1,S `〉 ∼=Ψ 〈M ,∆, t2,S 〉

then there exist M ′, ∆′, t ′2, S ′ and Ψ′ such that:
• 〈M ,∆, t2,S 〉 −→ 〈M ′,∆′, t ′2,S ′〉
• 〈Σ′,Γ′, t ′1,S ′

`〉 ∼=Ψ′ 〈M ′,∆′, t ′2,S ′〉
Note that the resulting configurations are in relation

according to some new bijection Ψ′, rather than Ψ, as the
bijection has to be extended with new memory or heap
allocations. Dually, we show that configurations in the vanilla
calculus can be simulated in the annotated one.

Proposition 4 (Vanilla to decorated): Given well-typed
configurations 〈Σ,Γ, t1,S `〉 and 〈M ,∆, t2,S 〉 that denote a
computation of type MAC ` τ , if we have that:
• 〈M ,∆, t2,S 〉 −→ 〈M ′,∆′, t ′2,S ′〉
• 〈Σ,Γ, t1,S `〉 ∼=Ψ 〈M ,∆, t2,S 〉

then there exist Σ′, Γ′, t ′1, S ′` and Ψ′ such that:
• 〈Σ,Γ, t1,S `〉 −→ 〈Σ′,Γ′, t ′1,S ′

`〉 and
• 〈Σ′,Γ′, t ′1,S ′

`〉 ∼=Ψ′ 〈M ′,∆′, t ′2,S ′〉
We omit the typing rules, which are rather standard—the
important bits are present in the type signatures given in
Figures 2 and 8. For the decorated calculus, the typing rules
correspond to those of the vanilla calculus, but in addition
ensure that the security labels appearing in the type conincide
with those in the decorations. The proof is rather standard
including references and variables allocation, where we keep
some invariant regarding the lengths of heap and memories
to connect the notion of “freshness” of variables on both
calculi. The details of the proofs of these simulations can be
found in the extended version of this paper.

G. Vanilla Progress-Sensitive Non-Interference

We prove that well-typed programs in the vanilla lazy
calculus satisfy progress-sensitive non-interference. This
result relies on the PSNI proof for the decorated calculus
and the simulations described above. We first define that two
global configurations are `A-equivalence up to a bijection
Ω, written 〈M1,∆1, Ts1〉 ≈Ω

`A
〈M2,∆2, Ts2〉, if and only if

they are well-typed and their components are `A-equivalent
up to bijection Ω, where `A-equivalence between terms is
also type-driven and follows a structure similar to the one
for the decorated calculus—the main difference being that



it inspects the type-derivation of term and use the bijection
Ω to relate memory addresses and heap variables. In the
vanilla calculus we need to consider low-equivalence up
to a bijection as in [35] to relate executions which might
allocate a different amount of high entities, thus affecting
the addresses and names of public references and variables
respectively. Observe that bijection Ω connects heap variables
and memory addresses of the vanilla calculus, that is Ω is a
pair of bijections of type:

Ω1 :: Var → Var
Ω2 :: N→ N

Configurations of the form 〈[ ],∅, [(t , [ ])]〉 are initial con-
figurations in the vanilla calculus, where the memory and
thread’s stacks are empty ([ ]), and the heap consists of an
empty mapping (∅).

Theorem 2 (Vanilla PSNI): Given closed terms t1 ::
MAC ` τ and t2 ::MAC ` τ written with the surface syntax
(i.e., they do not contain constructors Labeled and Ref ), we
have that if:
• t1 ≈∅

`A
t2, and

• 〈[ ],∅, [(t1, [ ])]〉 ↪→∗ c1, then
there exists c2 and bijection Ω such that:
• 〈[ ],∅, [(t2, [ ])]〉 ↪→∗ c2, and
• c1 ≈Ω

`A
c2

Proof: (Sketch) Define i1 = 〈[ ],∅, [(t1, [ ])]〉 and i2 =
〈[ ],∅, [(t2, [ ])]〉. Since t1 and t2 are closed and well-typed
terms in the surface syntax, we can lift them in the decorated
calculus, as decorated terms tD1 , tD2 , and their corresponding
initial annotated configurations iD1 and iD2 . Configurations i1
and i2 are equivalent up to the empty bijection ∅, i.e., iD1 ∼=∅
i1 and iD2

∼=∅ i2 and iD1 ≈`A iD2 . By lifting Proposition 4
to thread pools and repetitively applying it, there exists a
bijection Ψa and a configuration cD1 , such that iD1 ↪→∗ cD1
and cD1

∼=Ψa c1. By Theorem 1, there exists a decorated
configuration cD2 such that iD2 ↪→∗ cD2 and cD1 ≈`A cD2 . By
lifting Proposition 3 to thread pools and repetitively applying
it, we have that there exists a bijection Ψb and configuration
c2 such that i2 ↪→∗ c2 where cD2

∼=Ψb
c2. We then conclude

that c1 and c2 are `A-equivalent up to bijection Ω, obtained
composing Ψa (from vanilla to decorated), and Ψ−1

b (from
decorated to vanilla), i.e., c1 ≈Ω

`A
c2, where Ω = Ψa ◦ Ψ−1

b .

VII. RELATED WORK

Mutable references and lazyness: In Section III-B we
present an operational semantics that sports both mutable
references and lazyness. It is a straight-forward combination
of Sestoft’s semantics with the standard approach to model
references using a store, as described by Pierce et al. in
the context of call-by-value ([37], [38]). To the best of
our knowledge, this is the first work that presents this
combination. The “Awkward Squad” paper [39], which

describes the implementation of I/O in Haskell, and addresses
both references and concurrency, remarkably avoids dealing
with sharing in its operational semantics.

deepDup: Our primitive lazyDup was inspired by the
related primitive deepDup proposed by the second author
[40], with the aim to limit sharing in cases where it is actually
detrimental to program performance. Because the terms in
that work are in Administrative Normal Form (ANF), the
rules for deepDup look different from our [LAZYDUP2], but
this difference is inconsequential. We significantly improve
over that work with the support to handle references, via
the duplicate-on-read references introduced in Section IV-B.
The Haskell library ghc-dup implements deepDup without
changes to the compiler or runtime, therefore we are
optimistic that an implementation of lazyDup is feasible.

Evaluation strategies and IFC: Sabelfeld and Sands
suggest that lazy evaluation might be safer than eager
evaluation for termination leaks [11]. Buiras and Russo
identify the risk imposed by internal timing leaks via
lazy evaluation [13]. Vassena et al. enrich MAC’s API for
labeled expressions by considering them as (applicative-like)
functors [34] and show that their extension is vulnerable
to termination leaks under eager evaluation, but secure
under lazy evaluation. In a imperative sequential setting,
Rafnsson et al. describe how Java’s on-demand (lazy) class
initialization process can be exploit to reveal secrets [41].
Strictness analysis detects functions that always evaluate
their arguments, which can then be eagerly evaluated to
boost performance of lazy evaluation [42]. In this context,
this technique could be used to safely force the evaluation of
shared thunks upfront. However, the analysis must necessarily
be conservative, especially when it comes to infinite data
structures and advanced features such as references and
concurrency, therefore it is unlikely that all leaks could be
closed by the analysis alone. Nevertheless, strictness analysis
could avoid unnecessary duplication: the thunks, which are
guaranteed by the analysis to be evaluated anyway, could
be eagerly forced, and lazy duplication could be applied
otherwise.

IFC libraries: LIO dynamically enforces IFC applying
similar concepts to MAC (i.e., labeled expressions, secure
computations, etc.). We argue that LIO can be secure against
the attack presented in this work by applying lazyDup to the
“rest of the computation” every time that the current label gets
raised. For that, LIO needs to be reimplemented to work in
a continuation passing style (CPS)—we leave this direction
as future work. HLIO (hybrid-LIO) works as LIO, except
it enforces IFC by combining type-level enforcement with
dynamic checks [21]. To secure HLIO, lazyDup needs to be
inserted when forking threads if IFC gets enforced statically
and when raising the current label if dynamic checks are
involved. HLIO also needs to be reimplemented using CPS.
In MAC, the type signature for the bind operator restricts
computations to maintain the same security level. Its type



could be relaxed to involve different increasing labels, along
the lines of the “is protected” relation used in the typing
rule of bind in the Dependency Core Calculus (DCC) [43].
However, in that case, a secure computation would not enjoy
a standard monadic structure, but it would rather incorporate
multiple monads.

Devriese and Piessens provide a monad transformer to
extend imperative-like APIs with support for IFC [44].
Jaskelioff and Russo implement a library which dynamically
enforces IFC using secure multi-execution (SME) [45].
Schmitz et al. [46] provide a library with faceted values,
where values present different behavior according to the
privilege of the observer. While these libraries do not support
concurrency yet, we believe that, this work could secure them
against lazy evaluation attacks, if they were extended with
concurrency.

Programming languages: Besides the already mentioned
tools Jif, Paragon, FlowCaml, and JSFlow, we can remark
the SPARK language and its IFC analysis, which has been
extended to guarantee progress-sensitive non-inference [47]
and JOANA [48], which stretches the scalability of static
analyzes, in this case of Java programs. Some tools apply
dependent-types to protect confidentiality (e.g., [49]–[51]). In
such languages, type-checking triggers evaluation, potentially
opening up possibilities to leak sensitive data via covert
channels (e.g., lazy evaluation). In this light, it would be
possible to learn something about a static secret when
type-checking the program—an interesting direction for
future work. Laminar combines programming languages
and operating systems techniques to provide decentralized
information flow control [52]. While supporting concurrency,
Laminar does not handle covert channels like termination or
internal timing leaks.

VIII. CONCLUSIONS

We present a solution to internal timing leaks via lazy
evaluation, an open problem for security libraries written
in Haskell. We believe that repairing existing libraries with
lazyDup would be a reasonably painless experience. The
utilization of lazyDup would make past and future systems
built with security libraries more secure (e.g., Hails [53]).
Even though it is still not clear which evaluation strategy is
more beneficial for security, this work shows that the risks
of lazy evaluation in concurrent settings can be successfully
avoided.

Generally speaking, functional languages (and Haskell in
particular) rely on their runtime (e.g., lazy evaluation, garbage
collector, etc.) to provide essential features. Unfortunately,
besides providing their functionality, they could also be
misused to jeopardize security. This work shows that a
program can control parts of the complex runtime system
(e.g., sharing) via a safe interface (lazyDup). Then, the
obvious question is which other features of the runtime

system could jeopardize security and how to safely control
them—an intriguing thought to drive our future work.
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APPENDIX A.
SECURING LIO

In LIO, it is not possible to know, at the time of forking,
if the parent or the spawned thread will become sensitive,
because threads get dynamically “tainted” when they observe
a piece of sensitive information, e.g., by means of unlabel—
an approach known as floating-label system. One could
follow the same idea used in MAC and conservatively apply
lazyDup to all spawned threads. However, such approach
would overly restrict sharing, e.g., if the thread never observes
secrets. Instead, lazyDup should be applied to the “rest of the
computation” whenever the thread gets tainted—only then
the evaluation of thunks can leak information! Implementing
this idea requires to refactor the full implementation of
LIO to work in a continuation-passing style, where the
continuation represents the “rest of the computation”. Then,
when the thread gets tainted, lazyDup can be applied to the
continuation, thus disabling sharing with the parent thread
from that point on.

APPENDIX B.
SHARING IN PRESENCE OF REFERENCES

Our calculus captures sharing precisely, even in presence
of references, and despite the extra-indirection between the
memory and heap. We provide two examples showing the
interaction among references, sharing, and thunks.

Example 1: Consider the following program, which cre-
ates a reference, immediately overwrites it with 1, and finally
returns 0:

let x = 0 in
do r ← new x

write r 1
return x

If reference r pointed directly to x (no extra-indirection),
the next write operation would actually rewrite x to 1 in the
immutable heap and the program would return 1, instead of
0.

Example 2: Consider the following program, which writes
a thunk in a reference, reads it and evaluates its content twice.

let x = id 1 in
do r ← new x

y ← read r
when (y 6 0) return ()
z ← read r
when (z > 0) return ()

This program demands the value of y to evaluate y 6 0 and
the value to z to evaluate z > 0, but, surprisingly enough,
the value of z is already computed. This sounds counter-
intuitive because we expect y and z to be bound to the
same expression id 1, since the program does not overwrite
reference r between the first and the second read. In fact,
variables y and z are aliases of the same variable x , whose
thunk id 1 is updated with 1 after checking y 6 0, thanks
to sharing, and used to check z > 0. Observe that, while
this program does not contain an explicit write operation, it
still does perform one subtly, in the heap, since it indirectly
updates x .

APPENDIX C.
ERASURE FUNCTION

Figure 19 shows the definition of the erasure functions for
the interesting cases. Configurations, whose label is above
that of the attacker, i.e., ` 6v `A are rewritten to •, otherwise
they are erased by erasing each component. Steps involving
sensitive configurations are then simulated by rules [HOLE1 ,
HOLE2], shown in Figure 20. Memories, heaps, stacks and
thread pools labeled with ` are also collapsed to •, if their
label is not visible to the attacker, i.e., ` 6v `A, otherwise
they are erased homomorphically. Label partitioned data
structures, i.e., heap maps, stores and pool maps, are erased
pointwise, e.g. ε`A(Γ) = ` 7→ ε`A(Γ(`)). The term label t ::

http://www.degruyter.com/view/j/itit.2014.56.issue-6/itit-2014-1051/itit-2014-1051.xml
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(FORK)
Φ(`L) = Ts1[n 7→ (fork t ,S `L)]

Φ(`H) = Ts2 |Ts2| = m T ′s1 = Ts1[n 7→ (return (),S `L)] T ′s2 = Ts2[m 7→ (lazyDup t , [ ]`H)]

〈Σ,Γ,Φ〉 ↪→ 〈Σ,Γ,Φ[`L 7→T ′s1][`H 7→T ′s2]〉

(FORK•)
Φ(`L) = Ts1[n 7→ (fork• t ,S

`L)] T ′s1 = Ts1[n 7→ (return (),S `L)]

〈Σ,Γ,Φ〉 ↪→ 〈Σ,Γ,Φ[`L 7→T ′s1]〉

Figure 18: Semantics rules of fork and fork•

ε`A(〈∆`, t ,S `〉) ={
〈ε`A(∆`), ε`A(t), ε`A(S `)〉 if ` v `A

• otherwise

ε`A(〈Σ,Γ, t ,S `〉) ={
〈ε`A(Σ), ε`A(Γ), ε`A(t), ε`A(S `)〉 if ` v `A

• otherwise

ε`A(Ref t :: Ref `H n) =

{
Ref • if `H 6v `A

Ref n otherwise

ε`A(label t :: Mac `L (Labeled `H τ)) ={
label • if `H 6v `A

label (ε`A(t :: τ)) otherwise

ε`A(fork t :: Mac `L ()) ={
fork• (ε`A(t :: Mac `H ())) if `H 6v `A

fork ε`A(t) otherwise

ε`A(•) = •

Figure 19: Erasure function

(HOLE1)
• •

(HOLE2)
• −→ •

Figure 20: Semantics rules for •

MAC `L (Labeled `H τ) is erased to label •, if `H 6v `A,

so that rule [LABEL] commutes. The terms new , write,
fork are interesting. Observe that all these terms perform
a write-effect, to a non-lower security level, due to the no
write-down policy, which allows a computation visible to
the attacker (`L v `A) to write to a non-visible resource
(`H 6v `A). Simulating such steps, i.e., the label-decorated
version of rules [NEW, WRITE, FORK], is challenging and
requires two-steps erasure [33], a technique that performs
erasure in two-stages, by firstly rewriting the problematic
constructs , such as new , write and fork to special constructs,
i.e., new•, write• and fork•, whose special semantics rule
guarantees simulation. We remark that such special constructs
are introduced due to mere technical reasons and they are
not part of the plain calculus. We use fork• as an example
to illustrate this technique. Figure 18 shows rules [FORK]
and [FORK•], that is the label annotated rules for fork and
fork• respectively. Rule [FORK] is similar to its annotated
counterpart shown in Figure 14, save for the extra look-up
and update through the thread pool map Φ. Rule [FORK•]
mimics rule [FORK] for what concerns the parent thread, but
it ignores thread t , which is not added to the thread pool.
Observe that rule [FORK] does not correctly simulate fork
operations that occur in high threads. In particular, the high
thread pool Ts2 is rewritten by the erasure function to •,
since `H 6v `A, however | • | 6≡ m .

On the other hand by rewriting fork to a new term, i.e.,
fork•, we are free to adjust its semantics, to correctly simulate
a low thread forking a high one in erased configurations.
Specifically, we can show that [FORK] commutes with
[FORK•], by proving that for all thread pool maps Φ, Φ′,
such that Φ′ = Φ[`H 7→(t ,S `H)] and `H 6v `A, then
ε`A(Φ) ≡ ε`A(Φ′), i.e., the attacker is oblivious to writes in
thread pools above its security level.
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