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Abstract—In the past years, researchers have been focusing
on applying information flow security to web applications.
These mechanisms should raise a minimum of false alarms
in order to be applicable to millions of existing web pages. A
promising technique to achieve this is secure multi-execution
(SME). If a program is already secure, its secure multi-
execution produces the same output events; otherwise, this
correspondence is intentionally broken in order to preserve
security. Thus, there is no way to know if unexpected results
are due to bugs or due to semantics changes produced by SME.
Moreover, SME provides no guarantees on the relative ordering
of output events from different security levels. We argue that
these shortcomings limit the applicability of SME.

In this article, we propose a scheduler for secure multi-
execution which makes it possible to preserve the order of
output events. Using this scheduler, we introduce a novel com-
bination between monitoring and SME, called multi-execution
monitor, which raises alarms only for actions breaking the
non-interference notion of ID-security for reactive systems.
Additionally, we show that the monitor guarantees trans-
parency even for CP-similarity, a progress-sensitive notion of
observation.

I. INTRODUCTION

In recent years there has been an increasing interest in
applying information flow control as a general mechanism to
preserve confidentiality on web applications (e.g. [11, 19, 22,
27, 46]). The adoption of this technology promises to reduce
the need for ad-hoc and purpose-specific counter-measures
(e.g. architectures to contain advertisement scripts [26],
browser extensions to control cache-based leaks [20], etc.) In
fact, several of the OWASP top-ten web vulnerabilities [49]
can be rephrased in terms of information-flow problems.

In a web scenario, where millions of web pages have
been written and deployed, it is important to provide per-
missive information-flow mechanisms, i.e. mechanisms that
raise as few false alarms as possible. Traditional Denning-
style [16, 35, 48] information-flow enforcements perform
over-approximations that could lead to reject secure pro-
grams. Driven by permissiveness and dynamic features of
web scripting languages, researchers tend to adopt dynamic
techniques in the form of execution monitors (e.g. [2, 4,
5, 37]). Despite efforts to push the limits of dynamic
information-flow, execution monitors are still not capable of
enforcing sound and precise information-flow policies [29,
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39], and must therefore reject possibly secure and useful
web pages.

Recently, Devriese and Piessens [17] devised an al-
ternative dynamic approach, called secure multi-execution
(SME), based on the idea of executing the same program
several times, once for each security level. As opposed
to previous enforcement mechanisms, this novel technique
works as a black-box approach; it only requires apply-
ing specific actions when inputs and outputs (I/O) are
produced. Secure multi-execution does not require either
static analysis or execution monitoring. As claimed by their
authors, secure multi-execution enforces a specific version
of non-interference with significantly better precision than
traditional static and/or other dynamic techniques. More pre-
cisely, they prove that termination-sensitive non-interferent
programs, which terminate under normal execution, match
the behaviour produced under secure multi-execution. In
contrast, if the program is leaking information, secure multi-
execution will change its semantics in order to enforce
security. It is claimed that this approach is the first one to
achieve both soundness and precision.

Although promising, secure multi-execution suffers from
some drawbacks which may limit the applicability of this
technique. More concretely, we identify the following weak-
nesses.

» Precision As described above, it is postulated that
secure-multi execution is precise, and thus more permis-
sive than static analysis and execution monitoring [7, 9,
17, 24]. We argue that such comparison might be some-
what unfair. While static analysis and execution monitors
are capable of accepting or rejecting programs, secure
multi-execution just runs them. Trading permissiveness by
uncertainty, secure multi-execution makes it not possible
to distinguish when the semantics of a program has been
altered in order to preserve security. As a result, users
might experience that their programs do not behave as
expected without knowing if it is due to software errors
or due to security reasons. We believe that a better termi-
nology to refer to the precision of secure multi-execution
is transparency [25], i.e. the ability of an enforcement
mechanism to preserve the semantics of executions which
already obey the security policy in question.



» Order of events Secure multi-execution is claimed to be
transparent for terminating runs of termination-sensitive
non-interferent programs. Under scrutiny, this claim only
holds if the interleaving of events from different security
levels is not relevant for the computation. In fact, output
events might be arbitrarily interleaved when coming from
different security levels. Not preserving the order of events
might be problematic, for instance, in web pages with
complex DOM-elements reacting to the same event (e.g.
mouse click.)!

» Schedulers In previous works on SME [7, 17], the
soundness and transparency arguments are given for a
particular scheduler, called selectiowprio. This scheduler
prioritises the execution of the copy of the program
associated to the lowest security level. Due to this choice,
secure multi-execution rules out leaks through the external
timing covert channel, i.e. revealing confidential data
by precisely measuring the time in which external (and
observable) events are triggered. However, one major
drawback of this scheduler is that it requires a total
extension of the lattice order. In web scenarios, however,
web domains are often modelled as incomparable security
levels [27], which prohibits the use of such scheduler.
Authors in [24] discuss alternative scheduling strategies
for arbitrary lattices which guarantee different security
policies for different security levels.

The main contribution of this paper is multi-execution
monitoring, a novel combination of monitoring and secure
multi-execution. This technique respects the interleaving
of events from different security levels, and thus provides
better transparency results than secure multi-execution. More
importantly, multi-execution monitoring allows to detect
insecure commands with precision, i.e. the monitor only
raises an alarm when a command breaks the non-interference
notion of ID-security [11] for reactive systems.

Intuitively, the idea of multi-execution monitoring is
simply to monitor a program by comparing it with its secure
multi-execution. A multi-execution monitor runs a program
simultaneously with its secure multi-execution version. The
two programs will be in sync (perform exactly the same I/O
operations) for as long as the execution is secure. If one
version tries to do something different from the other, then
the monitor reports that the program is insecure.

The most important contributions of this paper can be
summarised as follows.

» Inspired by the coalgebraic theory of systems [21],
we propose a novel semantics for programs based on
interaction trees. This formulation treats programs as
black-boxes, about which nothing is known except what is
inferred from their I/O interactions with the environment.
In this manner, we gain modularity since new program-

IThe W3C consortium specifies the expected behaviour for such scenar-
ios. http://www.w3.0org/TR/DOM-Level-2-Events/events.html

ming features related to internal operations do not affect
our formal results.

» We define a scheduler that significantly improves the
transparency guarantees for secure multi-execution. With
this scheduler, we can guarantee that secure multi-
execution preserves the order of events and progress of
secure programs.

» We introduce a multi-execution monitor which can
precisely detect when commands violate ID-security. This
feature, not only allows us to notify users when programs
are malicious, but also enables the debugging of inse-
cure programs. Multi-execution monitoring gives good
transparency guarantees for the non-interference notions
of ID- and CP-security [11]. In fact, these transparency
guarantees make it possible to report leaks as traces of
the original program.

The paper is organised as follows. In Section II we
introduce reactive interaction trees, our model of reactive
systems, show how JavaScript-like programs might be in-
terpreted on it, and define the notion of ID-secure pro-
grams. Secure multi-execution is presented in Section III.
Section IV presents a scheduler for secure multi-execution
which preserves the order of events and provides better
transparency guarantees. In Section V, we define the security
condition on executions that the multi-execution monitor
will enforce. Multi-execution monitoring is introduced in
Section VI. In Section VII we discuss related work. Finally,
in Section VIII we conclude and discuss future work.

Complete proofs for all the results can be found in an
online extended version [50].

II. REACTIVE SYSTEMS AND NON-INTERFERENCE

We model reactive programs as interaction trees, i.e. data
structures in the form of trees describing every possible in-
teraction with the environment. We assume a set of channels
Chan, input values in a set I, and output values in a set O.
An event is a piece of data paired with the name of the
communication channel associated to it. Let E4 = Ch x A
denote the set of events of type A. Interaction trees are then
defined as the following coinductive datatype.

Definition 1 (Reactive Interaction Trees).

React = Read (E; — React)
| Write (Eo x React)
| Step React

Intuitively, constructor Read denotes a program that re-
ceives an input from a channel determined by the envi-
ronment (E;) and, based on that, decides how to con-
tinue (React). Constructor Write represents programs which
write an output in a chosen channel (Ep) and continue
with another computation (React). Finally, constructor Step
corresponds to a silent step, that is, a computation which



does not affect the environment. Silent steps allows us to
model divergence. We do not model termination (React trees
are necessarily infinite) as reactive systems are usually meant
to run forever. However, we could easily model termination
by adding a new constructor Stop.

Interaction trees have no notion of state, and therefore are
more abstract than concrete labelled transition systems and
make the semantics and proof machinery simpler.

The idea of modelling the interactions of reactive pro-
grams through an infinite tree comes from a coalgebraic
view of systems [21]. An interaction tree is the carrier of
the final coalgebra of a functor, implementations of concrete
systems are given by coalgebras for this functor, and the
interpretation of a program into React arises from the
universal property of the final coalgebra.

A. Semantics

An interaction tree is essentially a static description of
the possible inputs and outputs that might occur during
execution. To know exactly which interactions occur for a
given run, we need to provide an evaluation relation. We
start by defining possibly infinite sequences.’

Definition 2 (Colists). Let A be a set. Consider the type of
possibly infinite sequences of A to be coinductively defined
as follows.

Colista = []| A Colista
We write [a, b, c| to denote a finite colist @ :: b :: ¢ = [].

The structure of input and output events of the system is
given by colists.

Definition 3 (Colists of input and output events). We define
the set of colists of inputs Z and the set of colists of outputs
O for reactive systems as follows.

T = Colistg, O = Colistg, (e}

The elements of an output colist are either an event Fp, or
an invisible output e.

The evaluation relation = C (React x Z) x O is
coinductively defined by the rules in Figure 1, where we
write (t,i) = o for (t,4,0) € =. Intuitively, feeding an
interaction tree ¢ with a colist of input events ¢ € Z yields
the output colist 0 € O iff (¢,i) = o.

Rule (R;) produces no outputs ([]) when no input events
are present. Rule (R3) consumes the first available in-
put event (e), and based on that, produces the output o
((f(e),i) = o). Rule (W) outputs an event e (e :: 0),
and then the outputs triggered by program t ((t,7) = o).
Rule (S) simply outputs e when a silent computation step
is performed.

2We distinguish lists (finite sequences), colists (possibly infinite se-
quences), and streams (infinite sequences). However, we overload the
notation for constructors.

(R1)

(Read f,[]) =[]
(f(e),i) = o
(K2) (Read f,e:i)=e:xo0
) (t,i) = o

(Write(e, t),i) = e 0

(t,i) = o
(Step t,i) = e 0

()

Figure 1. Evaluation relation for interaction trees

Interaction trees are not concerned with the features of
the programming language used to code a reactive system.
This level of abstraction allows us to apply our technique
and results to, for instance, different imperative or functional
languages. For each language, it is enough to describe how
interaction trees are generated from programs. To illustrate
this point, we briefly describe interaction trees for reactive
JavaScript-like programs.

B. Interaction trees for a JavaScript-like language

Despite its simplicity, React

is able to model the interac- pu=-lh;p
tions of complex languages. As h = ch(x) {c}
an example of that, Figure 2 cu= skip
presents a language inspired e ¢

by [32]. This language is a sub-
set of JavaScript and describes |z :=e

many of its features. Expres- | if e {c}{c}
sions are side-effect free and | while e do c
denote strings, numbers, and

boolean values. Event handlers | out (ch, )
can change the state of the | new 1
system as well as define new | eval (e)

ones. Input and output channels
are disjoint since we focus on
how programs react with the
environment rather than them-
selves. Programs (p) are de-
fined as a sequence of event handlers. Event handlers (k)
indicate which commands (c¢) to execute when an input
arrives to a channel (ch(z) {c}). Most of the commands are
self-explanatory. However, some of them require further ex-
planation. Command out (ch, e) outputs the value denoted
by e into channel ch. Command new h declares a new event
handler (or replaces an existing one). Command eval (e)
dynamically evaluates the instructions denoted by a string
expression e.

Throughout the examples of this article, we will make
the following assumptions: events have integer values; there
are two input channels L?, H? and two output channels
L!, H!; events received on L? and events sent to L!

Figure 2. A JavaScript-like
language. Symbols ch and e
range over channels and ex-
pressions, respectively.



are considered public events; events received on H? and
events sent to H! are considered private or secret events.
Programs in this language may be seen as a loop which
reads an event and executes the handler associated to it.
Such a handler may produce some outputs, end silently
or diverge. We can interpret every JavaScript-like program
using interaction trees. More specifically, there exists a
function [—] : Pr¢g — M — React, that given a program
p € Prg and a memory p € M, it gives us the resulting
interaction tree [p](u) (see Appendix A for details). This
tree denotes the interactions that may happen when program
p is run under memory p. Here, M is the set of memories,
i.e. mappings of variables to values.

The programs of this language have a special structure:
no input event may be handled inside a handler. However,
this structure plays no role once we abstract away programs
by interpreting them into interaction trees. The same obser-
vation can be made about many features of this language,
such as assignments, conditionals, loops, and dynamic code
evaluation, as well as features not present in it, e.g., objects
and DOM-trees.

Example 4. Consider the following JavaScript-like program.
p= H?(x){r:=x};

L?(x){ if r = 0
{out (L!,0)}
{ while 1 do skip };

The program diverges when the secret value stored in r
is different from zero. The interpretation of p for a memory
w is the following interaction tree.

[p]() = Read (A(ch,v).case ch of
#? — Step ([pl(u[r — v]))
L? — Step (if p(r) =0
then Write ((L!,0), [p](r))
else diverge)

— Step ([p](w)))

We write f[z +— y] for the function that behaves like f,
except on z where it maps to y. We denote with diverge the
infinite sequence of Steps (i.e. diverge = Step diverge.)

C. Reactive Non-Interference

We organise security levels in a lattice (£,C), with the
intention to express that data at level /; can securely flow
into data at level /5 when ¢; T /5, and we associate a
security level to each channel. The security level of an
event e (noted [vl(e)) is determined by the security level
of its channel. We define the predicate wvisible; on events
that determines when an event is observable for an observer
at level .

lvl(e) T ¢
visibleg(e)

Output colists may also have a silent event . Hence, for
output colists we extend the predicate so that silent events
are not visible at any security level (V¢. —wisibley(e)).

Definition 5 (ID-similarity). ID-similarity between colists
for an observer at level ¢ is formalised coinductively by the
following rules.

—wisibleg(e) s~ s
T~7 1 s s
—wistbleg(e) s~ s visibley(e) s~ s
s~ euns exs~Peuns

ID-similarity is reflexive and symmetric, but it is not tran-
sitive. In fact, the absent of transitivity turns this relationship
meaningful for divergent computations. Note that two colists
will be considered ID-similar if there is hope that they may
produce the same observable events. In particular, a colist s
will be similar to every other colist if it consist of nothing
but infinitely many events not visible at level ¢. Hence,
transitivity would imply that every pair of colists is similar,
but this is clearly not the case.

We define the non-interference notion of ID-security for
reactive programs [9, 11] as follows.

Definition 6 (ID-security). An interaction tree ¢ is ID-secure
iff, for every level ¢ and input colists 7, ¢’ such that (¢,7) = o

and (t,4") = o', i ~;” 7' implies 0 ~}” 0'.

III. SECURE MULTI-EXECUTION

Secure multi-execution runs a program multiple times,
once for each security level, but giving I/O operations a
level-dependent semantics. Outputs to a channel at security
level ¢ are only performed in the execution corresponding
to level £. Inputs from a channel at security level £ are only
available to executions corresponding to a level /., where
¢ C £, Itis clear that the secure multi-execution of programs
does not leak information. The execution at level ¢ produces
outputs only at that level, while consuming data with less
or equal confidentiality than /.

We will define secure multi-execution directly on inter-
action trees as a transformation that takes an interaction
tree and returns another one representing its secure multi-
execution. The returned interaction tree is guaranteed to be
non-interferent, i.e. it does not leak secrets (see Definition 6).
The transformation proceeds in two steps:

» The original interaction tree React gives rise to a
receiver interaction tree Receive and to one producer in-
teraction tree Produce for each security level. These new
types of interaction trees are generated by functions rcv
and prd,, respectively (explained below). Following the
modelling of reactive systems [9-11], the interaction tree
Receive captures actions related to obtaining input data
from the environment, while Produce captures actions
related to producing outputs.
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Figure 3. Transformation providing secure-multi execution

» The Receive and Produce interaction trees are re-
interpreted back into an interaction tree React with the
help of a scheduler Sch. This is done by the function
join.

Figure 3 illustrates the transformation process.

A. Receiver and Producers

Interaction trees Receive are coinductively defined as
follows.

Receive = RnQ (E1 — Receive)
| Step Receive

The transformation from the original interaction tree to a
receiver simply transforms writes into silent steps, and reads
into “read and queue” (constructor Rn@).

TCv . React — Receive
rcv (Read f) Rn@ (Me.rcv (f(e)))
rev (Write (e,t)) = Step (rev(t))

rcv (Step t) Step (rev(t))

When an input is obtained at security level ¢, secure multi-
execution dictates that it should be observable for executions
at level ¢/ such that ¢ C ¢'. In order to distribute data to the
appropriate executions, we use queues of events. Constructor
Rn(@) is then denoting the fact that every input data is
obtained from the environment and placed in the appropriate
queues (see function join).

Interaction trees Produce are coinductively defined as
follows.

Produce = Reuse (E; — Produce)
| Write (Eo x Produce)
| Step Produce

The producer function is parameterised by a security level
(prd,). Reads are replaced by fetching data obtained by
the receiver (constructor Reuse). How data is reused is
explained in detail in the function join. Writes are only
performed if the security level of the channel coincides with

the security level of the producer.

: React — Produce
Reuse (Xe.prd, (f(e)))
if £ =1lvl(e)
then Write (e, prd,(t))
else Step (prd,(t))
prd, (Step t) = Step (prd,(t))

Interaction trees of the kind Produce are isomorphic to
React. Moreover, Receive can be embedded into React. In
this light, functions rcv and prd, could be defined to simply
produce React interaction trees instead. However, we have
chosen to introduce new types of interaction trees in order
to make the presentation more intuitive.

prd,
prd, (Read f)
prd, (Write (e, t))

B. Obtaining ID-secure interaction trees

Once we have obtained the receiver and the producers,
we proceed to join them into a single interaction tree React.
We do this by choosing commands from different trees, as
dictated by a scheduler. Schedulers are modelled as streams
of elements in £ U {x}, where the symbol % accounts for
the receiver, while each ¢ € £ accounts for the producer at
level ¢. We denote with Sch the set of all schedulers.

In order to receive data from the receiver, we equip each
producer with a queue of input events. We model this system
of queues by a function from levels to queues of input events,
ie, @ = L — Queue(Er). As dictated by secure multi-
execution, input events are distributed to producers only
when the security level of the producer is equal or higher
than the security level of the event. We define the operator
@ responsible for the proper distribution of input events to
producers via queues. More precisely, given ¢ € () and an
event e € E, we define

qgDe= . if lvl(e) T ¢
then enqueue (q(£), e)
else ¢(¢)

where the function enqueue just adds an event to a queue.
Observe that function & modifies a system of queues g by
appending a new event e to each queue corresponding to a
level ¢ such that [vl(e) C £.

Function join, the most interesting function of the trans-
formation, takes a scheduler, a receiver, a producer for
each security level, and a system of queues. As a result,
it calculates an ID-secure interaction tree. More precisely,
the type signature of join is as follows.

join : Sch x Receive x (L — Produce) x ) — React

The function is defined by pattern-matching on the sched-
uler. If the scheduler dictates that it is the turn of the receiver
(%), join reproduces each Step in the receiver’s interaction
tree until it finds a Rn@). At this point join should perform
a Read. However, in order to avoid leaking secrets through
the termination channel, it must first check that all producers



have consumed their input queues and that they are waiting
for more input. This situation is verified by the predicate
sync(p,q), which holds iff the next interaction in every
producer is Reuse, and ¢(¢) is empty for all £. Hence, when
the producers are synched, a Read can be performed and the
input event added to the corresponding queues. If producers
are not synched (for example, because there is a producer
whose first action is to do a Step) then join should execute
producers in order to try to synchronise them. This execution
of producers is performed by the function nezt.

join (x: s,r,p,q) = case r of
Step ' —  Step (join (x:s,7",p,q))
Rn@ f — if sync(p,q) then
Read (Xe.join (s, f(e),p,q @ e))
else let (p',q') = next(p,q)
in Step (join (x = 8,7, 9, q"))

Here, next(p,q) = (AL (step(p, q,£))1, M. (step(p,q,£))2)
is the function that tries to make a single step at every

security level ¢ using the function step. The function step,
in turn, tries to make a single step at a single level. The
subindices in the definition of next denote pair projections.
The function step is defined as follows.

(pe,q(€)) if p(€) = Step pe

(f(e),qe) if p(f) = Reuse f
ANgll)=e:q

(p(£),q(f)) otherwise

This function simply makes a computation step on a
producer unless there is a Write or a Reuse with an empty
queue.

Continuing with the definition of join, if the scheduler
dictates that it is the turn of the producer at level ¢, join
will inspect the producer tree corresponding to level ¢ and
execute it until it finds a write. If that producer would
perform a write, a Write is added to the resulting tree. If
the producer tries to reuse an event when there is none, it
just yields the execution; if, on the other hand, there is an
event, it gets consumed. If the producer makes a Step, join
will replicate it.

step(p,q,0) =

join (£ s,r,p,q) = case p({) of
Write (0,pe) — Write (o, join (s,r,p[l — pe], q))
Step pe — Step (join (€ = s,r,p[l — D], q))
Reuse f — case ¢(¢) of
e = es — Step (join (€2 s,r,p[l — f(e)],q[l — es]))
I — Step (join (£ :: s,7,p,q))

Given a scheduler, secure multi-execution for interaction
trees is defined by the following function.

sme : Sch x React — React
sme (s,t) = join (s, rcv(t), \. prd,(t), \.[])

The next proposition states the security of sme.

Proposition 7. Let t € React and s € Sch. Then, the

interaction tree sme (s,t) is ID-secure.

Similarly to [7, 9, 17, 24], we can prove that the trans-
formation preserves the semantics of ID-secure programs
when the interleaving of events at different security levels
is not relevant (see the extended version [50] for the precise
statement and proof.)

The security and transparency propositions [50] quantify
over all schedulers. This might seem surprising, as clearly
one can choose a bad scheduler. For instance, we could
choose the scheduler that always chooses the receiver. Such
a scheduler would never issue a Write, and therefore would
always diverge. As discussed in Section II, a silent infinite
colist is ID-similar to every other one. In particular, the
output colist | = e :: | is infinite and silent at every level,
and therefore ID-similar to every output colist. Therefore,
the trivial transformation bad(t) = diverge satisfies the
security and transparency propositions. After all, diverge
is ID-secure and produces an output (L) ID-similar to any
other output. We believe that secure multi-execution can do
better than the trivial diverging transformation, but in order
to show it we need to state better formal guarantees.

In the next section, we present one of the main con-
tributions of this paper. We show how the program under
execution and its input induce a scheduler that signifi-
cantly improves the transparency guarantees of secure multi-
execution.

IV. ORDER-PRESERVING SCHEDULER

The definition of secure multi-execution in the previous
section is parameterised by a scheduler. However, if we
are interested in the order in which events from different
levels are produced, the choice of scheduler is of paramount
importance. The standard precision result for secure multi-
execution [7, 9, 17, 24] ensures that the order of output
events is preserved only when looking at a given security
level in isolation. However, in certain scenarios (such as
the monitor in Section VI) one needs to take into account
the interleaving of events from different security levels.
Therefore, a stronger guarantee is required. Example 8§,
although very simple, illustrates this point.

Example 8. We define program p with just one handler as
follows:

p=1L2(x){out(L!,x);
if x > 10 {out (H!,x)}
{skip};
out (L!,1) };
This program is non-interferent. Since there is no handler
for channel H?, every secret input is ignored.
It is easy to see that, for all inputs, every event on channel

H! is preceded by an event on channel L! with exactly the
same value. However, the secure multi-execution of p with



a selecCtiowpro Scheduler has a different behaviour for a
high observer: every event on channel H! is preceded by an
event with constant 1 on L!.

In order to preserve the order of events we will look
at the order of events generated by the original program.
That is, we will use the execution of the original program
to guide secure multi-execution. If the original execution
issues a Read command, the scheduler chooses the receiver,
identified as x, to run. Observe that this is the only inter-
action tree under secure multi-execution capable of issuing
such command. Instead, if the original execution issues a
Write command to a channel at level ¢, then the producer
p(£) is run. Observe that p(¢) is the only interaction tree
under secure multi-execution that is able to perform Writes
into channels at level ¢. However, if the original execution
issues a Step, there is no information from which to decide
what to schedule next. To account for this situation, we
extend our definition of schedulers (Sch) in Section III-B
with the element o. Finally, if read commands are issued by
the execution of the original program under an empty colist
of input events, it does not really matter which program
under secure multi-execution gets scheduled. After all, the
execution of the original program has stopped (see rule (R;)
in Figure 1). More precisely, the order-preserving scheduler,
called ops, is defined as follows.

ops . React x T — Sch
ops (Read f,e:i) = x:(ops (f(e),1))
ops (Read 1)) = o (ops (Read £.])
ops (Write (e,t),i) = lvl(e) = ops (t,1)
ops (Step t,1) = ouops (t,i)

The scheduler takes the interaction tree of the program to be
executed under secure multi-execution (React), the colist of
inputs (Z), and returns the scheduling policy (Sch). Observe
how reads in the presence of inputs are mapped to the
receiver (%), while writes are mapped into producers with
the same security level as the channel (lvi(e)).

As a consequence of adding symbol o to the scheduler,
we need to extend the definition of join with the following
additional case.

join (o

s,p,7,q) = Step (join (s,p,7,q))

When join finds the symbol o
simply makes a Step.

in the scheduling policy, it

A. Transparency guarantees for the scheduler ops

The order-preserving scheduler ops allows secure multi-
execution to provide better transparency guarantees than the
ones previously shown.

Theorem 9 (Transparency for ID-secure trees). Let t be an
ID-secure interaction tree, and i an input colist such that
(t,i) = o. If (sme(ops(t,i),t),i) = o then Vl.o ~}P 0.

The theorem above states that the output of the origi-
nal program and its secure multi-execution are ID-similar
for ID-secure interaction trees. This means that for any
observer at some level ¢, the order of ¢-visible events is
preserved. This is an improvement over previous results
since it considers the interleaving of events. Nevertheless,
satisfying transparency for ID-secure programs does not
guarantee that secure multi-execution performs any progress,
e.g., sme might always diverge (see discussion at the end
of Section III.) In order to guarantee progress, we consider
a stronger notion of non-interference for reactive systems
called CP-security [11].

We coinductively define when a colist of events is not
visible (silent) for an observer at level £ as follows.

—wisibleg(e)  silenty(s)

silent,([])

We define a relation that identifies the next event that it is
visible to an observer at level ¢ (if exists). Intuitively, we
say that s by e :: 8/ when e is the next event in s visible at
level ¢. The following rules inductively define the relation
Dy.

silenty(e = 8)

visibley(e) —wisibleg(e)  spge s

ensbpes

eunsppe s
Note that the relation is inductively defined, which means

that when s >y e = s, the next £-visible event e of the colist
s must come after a finite sequence of /-invisible events.

Definition 10 (CP-similarity). CP-similarity between colists
is defined coinductively by the following rules.

silentye(s)  silente(s')
s~gr s
sppensy  sppens) s ~F" s

s~gr s

As opposed to ID-similarity, CP-similarity is an equiva-
lence relation. Moreover, CP-similarity guarantees progress
by asking one colist to be as productive as the other, i.e. the
two colists either produce the same visible event in a finite
number of steps, or both become silent. We now define when
a program is CP-secure.

Definition 11 (CP-security). An interaction tree t is CP-
secure iff, for every level £ and input colists 7, ¢’ such that

t,i) = o and (t,7') = o', i ~§7 ¢/ implies o ~5* 0o'.
(7) ) ~y p 4

CP-security is strictly stronger than ID-security: any CP-
secure program is ID-secure [11]. We show that secure
multi-execution is also transparent with respect to CP-secure
programs when using the order preserving scheduler.

Theorem 12 (Transparency for CP-secure trees). Let t be a
CP-secure interaction tree, and i an input colist such that
(t,%) = o. If (sme(ops(t,i),t),i1) = o then ¥l.o ~F" 0.



The transparency theorem for CP-secure trees is a signif-
icant improvement over previous results for secure multi-
execution in reactive systems. Previous results did not show
that secure multi-executions approaches fulfilling the secu-
rity and transparency properties were any better than the
transformation that always produces diverging runs. The
above theorem, however, is able to guarantee progress for
CP-secure programs as well as event-order preservation.
Hence, if a CP-secure program produces a visible event,
its secure multi-execution is forced to produce it too.

V. SECURE INPUTS

We want to precisely detect leaks of secret information
in reactive systems. Non-interference, a property of
programs, cannot be precisely enforced by an execution
monitor [29, 39]. More importantly, it may not be a desirable
property to enforce. For instance, many web applications
deployed on the web might be harmless most of the time,
but leak information only in certain situations. That is, they
may leak information in certain runs, but not on others. In
this light, it is not surprising that some information-flow
monitors accept runs of interferent programs as long
as they do not leak information. For instance, monitors
in [2, 5, 19, 34, 37, 42] accept the runs of program
if public == 42 then public := secret else skip
when the public input is different from 42. With this in
mind, we define a security condition on runs (rather than on
programs), by characterising the inputs for which programs
do not leak secret information (we ignore leaks due to
covert channels.) In order to define this notion, we need to
present an auxiliary relation.

We coinductively define the relation », responsible for
removing all the events unobservable at level .

silenty(s)
S Py H

sy s
swpyeus’

sppens

Observe that given a colist s, there is a unique colist s’ such
that s », s’. We will write s,., for this unique colist, and
refer to it as the restriction of s at level /.

Let us assume a level-indexed similarity relation ~y
between colists. Two inputs for a program reveal the same
secrets at a given security level £ if, for an observer at level
¢, they are similar and induce similar outputs.

Definition 13 (=, ). Let t € React, ¢ € £, and 4,4’ input
colists such that ¢ ~; 7', (¢,7) = o and (¢,i') = o/. We say
that the program ¢ reveals the same /-secrets when given the
inputs 7,7, noted ¢ =, 7', iff 0 ~;p 0.

Similarly to [9], we consider an input to be secure for a
program ¢t if it reveals the same information about the secrets
as the input where secrets have been erased.

Definition 14 (Secure input). Let ¢ be an interaction tree.
An input colist i is secure for t iff V0.1 ~;; ip,. We say

p= H?(x){r:=x}

L2 (x){ if r > 1
{out (L!, )}
{while 1 do skip }};

Figure 4. ID-insecure program with ID-secure inputs

that the input ¢ is ID-secure (CP-secure) for ¢ when ~ is
instantiated to ~}” (~§") in Definition 13.

It is desirable to establish a connection between programs
and their secure inputs, so as to be able to transfer security
properties from one notion to the other. Fortunately, there is
a close relationship between CP-secure programs and CP-
secure inputs.

Lemma 15 (Secure inputs and CP-security). A reactive
interaction tree t € React is CP-secure iff Vi € I. 1 is
CP-secure for t.

When it comes to ID-security, the relationship between
secure programs and secure inputs is not that strong.

Lemma 16 (Secure inputs and ID-security). If a reactive
interaction tree t € React is ID-secure, then Vi € I. 1 is
ID-secure for t.

It is easy to prove that all inputs are secure for a secure
program, in both the ID-security and the CP-security case.
However, it might not be obvious that a program such that
every input is CP-secure is a CP-secure program. Note that
whenever two inputs 7,4’ are similar at some level ¢ they
have exactly the same restriction at that level.

- coP s . o
1ryg 1 =  ip, =1,

By definition of secure input and transitivity of ~g”, we can

conclude that the output streams produced by ¢ with ¢ and
7/ must be CP-similar, provided that ¢ and ¢’ are CP-secure.

Lemma 16 indicates that if a program is ID-secure, then
every input for that program is ID-secure, i.e. running
the program under those inputs leaks the same amount of
information as if secrets had been erased. The converse,
however, does not hold. We illustrate this point with the
following example.

Example 17. Consider the program p in Figure 4. Every
input is ID-secure for p but p is not an ID-secure program,
as the following two ID-similar inputs show.

i=[(H?,1),[(L2,0)] ~F i =[(H?,2),(L?,0)]

Let pp be the initial memory where every variable is
initialised to 0, and let ¢ = [p](uo), the interaction tree
obtained from p and pg. Then, we see that ¢ is not ID-
secure, since ¢ and ¢’ are ID-similar at level L, but their



outputs are not ID-similar at level L.

(t7i) = [o,o,o,o;D(L!,l)]
(t’z") = [o,o7o7of(L!,2)]

Nevertheless, all inputs ¢ are ID-secure for ¢ (Definition
14). The key observation here is that ¢ diverges for iy,
(which coincides with z’, ), since 7 was initially zero. In
other words, the input colist without events on channel H?
produces an output which is silent and infinite, and hence
ID-similar to every other output.

The following theorems state the transparency of secure
inputs for secure multi-execution with our order-preserving
scheduler. That is, the theorems show that outputs of a given
program under secure multi-execution are not observably
different when provided with a secure input.

Theorem 18 (Transparency for ID-secure inputs). Let t be
an interaction tree, and let i be an input colist ID-secure
for t such that (t,i) = o. If (sme(ops(t,i),t),1) = o then
Vl.o~p 0.

The theorem above uses ~;” and therefore assures trans-
parency under this notion of observation, i.e. differences in
outputs due to divergence are not observable and therefore
not captured. If one wants to distinguish productive outputs
from divergence, then CP-similarity is the right notion of
observation.

Theorem 19 (Transparency for CP-secure inputs). Let t be
an interaction tree, and let i be an input colist CP-secure
for t such that (t,1) = o. If (sme(ops(t,i),t),i) = o then
Ve.o~§" 0.

VI. MULTI-EXECUTION MONITOR

An important problem of the secure multi-execution ap-
proach is that it makes programs non-interferent by mod-
ifying its semantics. Consequently, it is difficult to detect
if, and when, programs behave maliciously. To remedy this
situation, we present a monitor capable of precisely detecting
when an input is insecure for a program.

Our monitor executes the original program and its secure
multi-execution in parallel, checking at each step that both
executions would produce the same output command. If
outputs differ, we are in presence of an information leak, and
thus execution is aborted. If, on the other hand, executions
remain synchronised, the output command is safe to be
executed. It is crucial for the monitor to work that secure
multi-execution is run under a scheduler that preserves the
order of output events such as the scheduler ops from
Section IV.

At any point during execution, the monitor might need to
signal an alarm. We define a new kind of datatype that can
represent the outputs of the monitor. This datatype, written
O, is similar to a colist of output events, but it may end

i(e) =¢ pl) = Write(e,pe)
) (t,%,p[t = pe),q) Y o
! (Write (e,t),i,p,q) Jexo
lle) =€ p(l) = Write(e/,p;) e#¢€
(W2) - -
(Write (e,t),i,p,q) | €
wl(e) =€ p(f) = Reuse fo q(f) = qe

(Write (e,t),1,plt = fo(e)],all > ai]) Vo
(Write (e,t),i,p,q) | @0
wl(e) =€ p(f) = Reuse fr q(f) =]
(Write (e, t),i,p,q) | €

(Wa)

ll(e) =4 p(l) = Step pe
e (WT’ZtE (e7t)aiap[£pr]aq)UO
s (Write (e, t),i,p,q) | @0
(Step t,i,p,q) J @0
(f(e),i,p.q) Yo
(Ra) -
(Read f,e:i,p,q) oo
(R2)
" (Read £,[l,p,9) 4 go(p, q)
Figure 5. Semantics for the multi-execution monitor

with an alarm e. More formally, we coinductively define O,
as follows.
O.=[1€]O:=0

At a first glance, it seems enough to simply run the
interaction tree of the program under consideration in par-
allel with the one obtained from the sme transformation.
However, in order to precisely detect violations of the
security policy a new relation is needed. The monitor
is expressed by the relation | C React x T X (L —
Produce) x Q x O, defined in Figure 5, where we write
(t,i,p,q) | o whenever (¢,i,p,q,0) €|. The intuition is
that whenever (¢, 4, p, q) |} o, the evaluation of the interaction
tree ¢, together with the input ¢, a producer for each security
level p, and a system of queues g, results in an output o.
Note that components ¢ and ¢ pertain to the execution of the
original program, while p and q to its secure multi-execution.

Rules (WW7) to (W5) concern the case where the monitored
interaction tree wants to do a Write of an event at security
level £. In rule (W), the producer at level £ (p(¢)) tries to
write the same event, hence the event is performed (e :: 0).
In rule (W3), on the other hand, the producer at level ¢ tries
to write a different event (e # ¢’), so the monitor raises an
alarm () and aborts execution. In rule (W3) and (Wy), the
producer at level /£ tries to reuse some input events. If there
is an event available (¢(¢) = €’ :: ), rule (W3) provides



the information to the producer (p[¢ — f;(e’)]). In contrast,
if there is no event available (¢(¢) = []), rule (Wy) aborts
execution (). Finally, in rule (W3), the producer at level ¢
makes a silent step, so a silent event is performed by the
monitor (e).

In rule (5), the interaction tree tries to make a silent step
(Step), in which case the monitor outputs a silent event (e).
Rules (R;) and (Ry) are related to consuming input data. If
there is an input event (e :: ¢ ), rule (R;) consumes it (f(e)).
If, on the other hand, there is no event, rule (Ry) determines
the result of the evaluation depending on the state of system
of queues, as determined by the function go.

The function go tries to examine if the termination
behaviour of the interaction tree matches its secure multi-
execution version. There are three possible situations. In the
first one, every producer has consumed its input queue and
the next command to be executed is a Reuse, thus matching
the Read event. That is, the producers are synchronised
(sync(p, q)), and go can simply return the empty colist. In
the second situation, if there is one Write event as the next
command to be executed by a producer at level ¢, noted
writer(p({)), then an alarm is raised, since executions are
out of sync. Lastly, it may happen that none of the two
conditions above apply, e.g., there are no writes but some
of the producers are on Step commands. In this situation,
go should make progress on the producers until some of the
two first situations occur. This search, however, may lead to
divergence. More specifically, we define go as follows.

I if sync(p, q)
go(p,q) = € if 3¢, writer(p(¢))
e :: go(next(p,q)) otherwise

where the predicate sync and the function next are those
defined in Section III. It may seem odd to go through the
complication of defining the function go when the program
was going to end anyway, but the following example shows
why this is needed:

Example 20. Consider the following reactive program:
p= H?(x){r:=x};

L?(x){ if r = 0
{out (L!,1)}
{skip} };

Let ¢ be the interaction tree obtained from it for the initial
memory f, and let ¢ = [(H,1),(L,0)]. The evaluation of
t with input 4, will result in a finite sequence of invisible
events.

(t,i) = [0,0,0 0 o

On the other hand, the evaluation of ¢ when fed with the
restriction of ¢ at level L, ie. iy, = [(L,0)], has an
observable event.

(tv iPL) = [.7 °, (L7 1)]

Since the outputs are distinguishable at level L, we conclude
that ¢ is not ID-secure for .

In order to detect cases like this one, where the normal
execution ends, but its execution with the secrets erased
would produce an output, the monitor needs to make sure
that the execution of the producers with the available inputs
will not produce an output, as done by rule (Rs).

A. Properties of multi-execution monitoring

This section describes the most important contribution
of this work. We establish the security policy enforced
by our monitor as well as the transparency guarantees. To
simplify notation, given an interaction tree ¢ and input colist
i, we define monitor(t,) = (t,i, M. prd,(t), M. iy.,) as the
initial configuration of our monitor for auditing program ¢
under the input events :. We define the predicate ok C O,
identifying outputs colists where the monitor has not raised
an alarm. The predicate is defined coinductively by the
following rules.

ok(s)
ok([]) ok(e i s)

It is easy to see that an output is not ok precisely when
it ends with an alarm e. Clearly, we can embed any output
o € O, such that ok(0) in O. To avoid additional notation,
we perform such embedding transparently.

The following theorem states that the multi-execution
monitor is able to precisely detect ID-secure inputs.

Theorem 21 (Precision for ID-secure runs). Let t : React
and let i be an input colist such that monitor(t,i) | o. Then

i is ID-secure for t <= ok(0)

This theorem states that, if and only if the monitor raises
an alarm (—0k(0)), the run 7 is not ID-secure. Consequently,
the run has tried to leak more information than the one
observed in a run where secrets are not present in the system
(Definition 14). In this case, having detected such condition,
the monitor assures that the program under surveillance is
not ID-secure (contrapositive of Lemma 16). Differently
from most of the dynamic monitoring techniques for confi-
dentiality (e.g. [2, 5, 19, 28, 37, 40, 42]), our monitor does
not raise false alarms due to some imprecision in the analysis
of information flow inside a program.

When our monitor does not raise an alarm, we cannot
infer the ID-security of the program, only the ID-security
of the observed run. It could be the case that the program
is ID-secure, in which case the monitor will never raise an
alarm (Lemma 16), but also that the program is interferent
and the input was ID-secure. This last case is common
in dynamic monitors which accept non-leaking runs of
interferent programs [2, 5, 19, 34, 37, 42].

Once an alarm is raised, the multi-execution monitor is
capable to report a trace where the detected insecurity gets



revealed. More precisely, if we have that monitor(t,i) | o
and —0k(0), o is a trace that exposes the detected insecurity.
The preservation in the order of events, i.e., the use of the
scheduler ops, is essential to assert that o is indeed a trace
of the monitored program.

The next theorem establishes that the monitor is trans-
parent for ID-secure runs. In particular, the interleaving of
events from different security levels is not altered (~”).

Theorem 22 (Transparency for ID-secure runs). Let t :
React and i an input colist such that (t,i) = o and
monitor(t,i) |} o'. Then,

i is ID-secure fort — Ok(O/) N VLo~ o'

When considering CP-security, we can guarantee that the
monitor will not raise an alarm and be transparent for CP-
secure inputs. However, a CP-insecure input may cause the
monitor to diverge without raising an alarm, as the monitor
cannot predict if another visible event will be found.

Theorem 23 (CP-precise monitor). Let t : React and © an
input colist such that (t,1) = o and monitor(t,i) | o
Then,

i is CP-secure fort = ok(0') N Vl.o~y" 0.

Raising an alarm clearly reveals information by the ter-
mination channel [1]. To mitigate this particular leak, our
monitor can be adapted to include techniques for suppression
or modification of outputs [25]. For instance, and consid-
ering ID-security, the monitor could silently diverge when
an insecurity is detected. Alternatively, the monitor could
change the outputs of the program to match those dictated
by SME under any scheduler. In both cases, the execution
would be the same as that of an ID-secure program.

VII. RELATED WORK

Precise dynamic enforcement of non-interference: A
series of work characterises the security policies enforceable
by execution monitoring [18, 25, 39]. As a result of that,
it is known that non-interference is not a safety property
(see [29, 39] for a proof), and therefore not enforceable by
execution monitors. The main argument for that claim relies
on the fact that non-interference relates a pair of execution
traces, while safety properties refer to a single one. Despite
being inherently imprecise, researchers propose execution
monitors to enforce, in the shape of a safety property, a
stronger version of non-interference (e.g. [2, 4, 5, 34, 37].)
Although these monitors stop the execution of potentially
dangerous programs, they still reject some non-interferent
ones. Motivated by theorem proving techniques, Darvas,
Hihnle, and Sands [15] show how to cast non-interference
into a safety property by composing programs with a copy
of themselves. This technique is known as self-composition
(term coined in [8]) and it has been used to exploit known
techniques for program verification [8, 45]. It is an open

question if some sort of self-composition could precisely,
and dynamically, detect when programs violate confiden-
tiality. This work shows that it is possible to precisely, and
dynamically, detect when the notion of non-interference ID-
security [11] gets violated.

Secure multi-execution: The closest related work to
ours is secure multi-execution. From a systems perspec-
tive, Capizzi et al. [12] describe the idea of secure multi-
execution for two security levels using the term shadow
executions. Similarly to this work, the authors do not cover
timing covert channels. However, they do not give any trans-
parency guarantees for secure programs when using shadow
executions. Similarly to Capizzi et al., but looking to obtain
a secure Linux kernel, Cristia and Mata [14] consider similar
ideas as secure multi-execution using two security levels and
ignoring timing channels. Differently from this work, their
method is formalised for a specific programming language.
Devriese and Piessens [17] introduce secure multi-execution.
In that work, authors evaluate the practicality of their ideas
in the Spidermonkey JavaScript engine and prove theoretical
results for a specific scheduler. Barthe et al. [7] show how to
achieve secure multi-exection by code transformation. While
their transformation is defined over a specific programming
language, ours in Section III is described for interaction
trees and thus it is more general. Under the same scheduler
and security condition as Devriese and Piessens, Barthe et
al. prove the soundness and precision of the transformed
code. Focusing only on implementation issues, Jaskelioff
and Russo [23] provide secure multi-execution for Haskell
programs via a library. In that work, the authors propose
a pure description of the I/O operations of programs that
influenced the adoption of interaction trees in this paper. In
order to deal with timing leaks, authors in [7, 17] require a
total order of the lattice and choose a specific scheduler.
Instead, authors in [24] describe a range of schedulers
capable of preventing timing leaks which depends on the
comparability of the elements in the lattice. In this work,
we ignore the external timing covert channel for the sake of
simplicity and precision of our enforcement. However, due
to the modularity of our approach, we could easily apply
practical black-box techniques [3, 51] to mitigate timing
leaks. Bielova et al. [9] adapt secure multi-execution for
web browsers. Similarly to this work, they consider a notion
of secure runs for which they can provide transparency
guarantees, i.e., that the behaviour of those runs is not
altered by secure multi-execution. An extended version of
this work describes, as an implementation optimization,
situations where it is not necessary to run a browser per
security level in the lattice. None of the works described
above [7, 9, 12, 14, 17, 24] can preserve the interleaving
of events generated at different security levels as well as
report when insecurities occur. Instead, at the price of not
considering timing covert channels, our work describes a
scheduling strategy capable of preserving such order and



detecting insecure actions violating ID-security. Focusing on
extending secure multi-execution, and independent of this
work, Rafnsson and Sabelfeld [33] propose a scheduler that
is also able to preserve the order of events for interactive
programs. Their work lifts the totality assumptions on input
channels, i.e. that inputs are always available, and introduce
means for declassification. Our monitor might be able to
benefit from these results since it uses secure-multi execution
underneath.

Faceted values: Focusing on gaining performance,
Austin and Flanagan [6] proposed a semantics based on
faceted values that simulates multiple executions in one run.
Differently from this work, execution with faceted values
requires a full description of the underlying programming
language semantics. They provide no formal guarantees that
the interleaving of output events at different security levels is
preserved. Similarly to secure multi-execution, this approach
is not capable of detecting when insecurities occur during
the execution of programs.

Non-interference for reactive systems: Bohannon et
al. [11] define several non-interference notions for reactive
systems including ID- and CP-security. While CP-security
provides stronger guarantees, it is more difficult to enforce
by information-flow techniques. As noticed by Rafnsson
and Sabelfeld [32], ID- and CP-security are termination-
insensitive, making it possible to leak secret values by brute
force attacks. Modern information-flow tools like Jif [30]
(based on Java), SPARK Examiner [13] (based on Ada),
and the sequential version of LIO [42] (based on Haskell)
are not strong enough to avoid these leaks. For deterministic
systems like the ones we consider, the bandwidth of leaking
information by exploiting outputs in combination with ter-
mination is logarithmic in the size of the secret, i.e. it takes
exponential time in the size of the secret to leak its whole
value [1]. Nevertheless, the bandwidth can be reduced by
applying buffering techniques [32]. We could easily adapt
our multi-execution monitor to do that.

Interaction trees: The interaction trees used to model
reactive systems in this work are based on the coalgebraic
view of systems [21]. Swierstra and Altenkirch [43, 44] use
interaction trees to provide a functional model of some of
the features of Haskell’s I/O monad such as mutable state,
interactive programming and concurrency. Differently from
us, they do not consider reactive systems.

VIII. SUMMARY

We propose multi-execution monitoring, a novel technique
combining execution monitoring and secure multi-execution.
This technique precisely detects actions that reveal informa-
tion under the notion of ID-security. Consequently, we keep
alarms to the minimum. We also prove that the monitor
provides good transparency guarantees for the progress-
sensitive non-interference notion of CP-security. To achieve
these results, we rely on a scheduling strategy for secure

multi-execution which allows us to preserve the interleaving
of events, and the notions of ID-secure and CP-secure inputs.
Having the foundations for our multi-execution monitor,
we can take our work into several future directions. In-
teraction trees can be easily adapted to model interactive
programs [43, 44] (by adding one constructor Stop and mod-
ifying the Read constructor to let the program, instead of
the environment, choose the channel.) However, interactive
programs would require the modification of the secure multi-
execution mechanism in order to consider default values for
producers reading data from higher security levels. Mod-
elling non-determinism is another interesting direction to
explore. To model non-determinism, instead of considering
one interaction with the environment at the time, one could
consider finite sets of them [21]. This modification demands
a change in the notion of similarity depending on attackers’
power [31, 41, 47]. Clearly, this extension requires to extend
secure multi-execution to account for non-determinism while
being permissive, which is an open challenge. Declassifica-
tion [38], or intended release of information, is a desirable
feature of any practical information-flow system. Taking the
declassification policy of delimited release [36], Askarov
and Sabelfeld [2] show techniques to dynamically enforce it.
We believe that our monitor could enforce declassification
permissively. For that, we would extend the interaction tree
model with a special constructor indicating a declassification
action. Every time that the original program reads a secret
data that would eventually be declassified, our monitor
forwards it to the public producers. Then, when reaching
a declassification point, the original program and the public
producers need to be sync: they should both release the same
values; otherwise, the original program might be releasing
more information than expected.
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APPENDIX A.
INTERACTION TREES FOR JAVASCRIPT-LIKE PROGRAMS

We show how to obtain the corresponding interaction tree
for programs in the JavaScript-like language of Figure 2.
We assume that every handler uses variable z to store the
message received, and we extend the set of commands C
with an special symbol ¢. Making these assumptions, we can
reinterpret p as mapping from channels to the set C U {¢}
as follows.

()m =
(ch(@){ckip)m =

Ach. ¢
Ach’. (if ch = ch’ then c else (p),)



(P 15 €)= (P 11, §)

. ©
(Pms 1, SKIP) — (D, 11, ¢)

(e) Yo
(P, 1@ 2= €) ~ (P, il = 0], ¢)

(Pm, i, new ch(z){c}) ~= (pmlch = ], 11, §)

(ne) Jv

ch

T'v
(pma:uv out (Ch’e)) — (pm’luv ¢)

(Pm, 1, €val(s)) == (pm, p1, parse(s))
(ne) 40
(P, 1, A€ e {H}) =2 (pm, 1, )
(me)bv v#0
(P> 11, 3£ € {cH}) =2 (P, s €)
(ne) 40

(p7n7.u'7While e do C) & (pm,/./q 4:)

(e) bv  v#0
(Pm, pu,while e do c) 9 (pm, p,c; while e do ¢)

(P, €)== (Do, 11, €)
(P s ¢; €)== (P ', )

co# ¢

(p’ﬂhl%C; C/) _Z> (p;’rL7M/700; C/)

(pm7 122 C) # (p;’nv /I/a CO)

Figure 6. Next interaction for a reactive state

The definition above simplifies our transformation, since
we can treat uniformly all input events. We note (p),, as
P for simplicity.

A state s is a tuple (pm, i, ¢), where

> D, is a mapping from channels to C U {¢} (the re-

interpretation of a reactive program p as a mapping);

» 4 is a mapping from variables to values, the memory;

» ¢ € CU{¢} is the command being executed by the

machine in response to an input event, or ¢ if the
system is ready to receive an input.

We name State the set of states for our JavaScript-like
reactive program. Given a state s = (pm, i, c), we can
compute the next interaction of s with the environment. An
interaction is an element in the set Signal = {|, 1" ©}.
Interaction | is raised if s is a consumer state, i.e. if
c = ¢ Signal 1" is raised when c will produce an
output message (ch,v). Otherwise, the next step of s is

[—]st : State — React
[s]st = let (3, (pm, i, ¢)) = step(s) in
case i of

© = Step ([(Dm, g, €)]st)
<h— Write (ch,v, [(pm, i1, ¢)]st)
I = Read (A(ch,v). [(pm, p[z — v], pm(ch))]st)

Figure 7. Generation of interaction trees for Javascript-like programs

silent, represented by signal ©. Figure 6 defines a function
step : State — Signal x State. We write s —s s’ for
step(s) = (i,$').

The definition of step makes use of some auxiliary
functions. The first one is an evaluation function |}, such that
(1, e) U v iff expression e evaluates to value v in memory
. We assume that |} is a side-effect free function. Second,
function parse takes an string s and returns the command
denoted by it if successfully parsed. For simplicity, if there is
an error when parsing s, we assume parse returns skip. The
rules are self-explanatory and therefore we do not discuss
them.

Given a state s = (pm, i, ¢), and using function step,
Figure 7 shows how to map interactions from s into inter-
action trees. The effects on the environment (i.e. ®, |, and
1<) are simply mapped into the constructors of interaction
trees. The interesting case is the one related to input events.
When processing input events, the interaction tree describes
that, when an event arrives, the corresponding event handler
is invoked (p,,(ch)), and variable x gets updated with the
received value.

We now define function [—] from Section II-B as follows.

[-1 : Prgx M — React
[PI() = [P 11 )1t



