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Abstract—Language-Based Information Flow Control (IFC)
provides strong security guarantees for untrusted code, but often
suffers from a non-negligible rate of false alarms. Multi-execution
based techniques promise to provide security guarantees without
raising any false alarms. However, all known multi-execution
approaches introduce extraneous performance overheads which
are rarely studied. In this work, we lay down the foundations
for optimisation techniques aimed at reducing these overheads
to a managable level, thus helping to make multi-execution more
practical. We characterise our optimisations as data- and control-
oriented. Data-oriented optimisations reduce storage overheads—
which also helps to remove unnecessary repeated computations.
In contrast, computation-oriented optimisations rely on program
annotations in order to reduce needless computation. These
annotations motivate the need for a new, stronger, theoretical
notion of transparency— i.e., a stronger notion for characterising
the lack of false alarms. To show the efficacy of our optimisation
techniques, we apply them to two case-studies: a secure (faceted)
database and a chat server written in a multi-execution based IFC
framework. Our case-studies clearly show that our optimisations
significantly reduce the storage and computational overhead,
sometimes from exponential to polynomial order. All of our
formal results are accompanied by mechanised proofs in Agda.

Keywords-Faceted Values, Secure Multi-Execution, Multiple-
Facets, Optimisation, Information Flow Control

I. INTRODUCTION

Information flow control [1] (IFC) is a promising tech-
nology for preserving confidentiality of data. Many IFC ap-
proaches are designed to prevent sensitive data from influ-
encing what attackers can observe from a program’s public
behavior—a security policy known as non-interference [2].
Researchers have proposed numerous enforcement mecha-
nisms for non-interference based on, for instance, type systems
[3, 4, 5] as well as execution monitors [6, 7]. While sound
w.r.t. non-interference, such IFC approaches typically suffer
from false alarms [8, 9, 10]. This phenomenon occurs due to
IFC mechanisms sometimes needing to be overly cautious.

To remove false alarms, researchers have recently proposed
IFC techniques based on multi-execution [9, 11, 12, 13]:
many copies of a given program (or parts of it) get executed
while carefully adapting their semantics to avoid information
leakage. Secure Multi-Execution [11] (SME) and Multiple
Facets [9] (MF) are two approaches based on this idea. The
price to pay for multi-execution, however, is a degradation
in both computation time and memory consumption due to
repeated computations.

Faceted Secure Multi-Execution [12] (FSME) is a recent
multi-execution technique capable of adjusting the perfor-
mance of multi-executions by exchanging degradation of
memory consumption for computation time and vice versa.
FSME achieves both of these while ensuring non-interference
in a setting involving a decentralised security lattice [14], a
lattice which allows mutually distrusting principals to inde-
pendently impose confidentiality and integrity requirements on
data. By adjusting the trade-off, FSME can behave as SME,
MF, or something “in between”—thus providing a unifying
framework for multi-execution. This unification has enabled
the first apples-to-apples comparison and benchmarking of
the mentioned multi-execution techniques—which before were
only contrasted in either an informal qualitative [9] or theo-
retical [15] manner.

FSME is attractive for building systems since developers
can choose where performance degradation can be tolerated
by offering a choice between memory consumption and com-
putation time. In this work, we argue that this trade-off is not
enough to build practical systems: memory and time can be
exponential in the number of principals aggregating data. In
these (not uncommon) situations, FSME programs could trade-
off a large amount of memory for a long computing time or
vice verse—an undesirable situation regardless what resource
developers favor. This exponential blowup is not exclusive of
FSME and also occurs in MF and SME when considering
decentralised or large lattices [13]. Furthermore, the memory
blowup can be translated to persistent storage when serialising
data into databases [16]. In this light, it becomes necessary to
introduce optimisations that mitigate both time and memory
consumption.

In this work, we present novel optimisations for the FSME
framework which we classify as data- and computation-
oriented, respectively. The former are designed to reduce
memory consumption as well as unnecessary repeated com-
putations, while the latter aim to reduce computation time
alone. We demonstrate, both formally and empirically, that
our optimisations can change an exponential consumption of
resources to more manageable polynomial sized overheads.
Our techniques work for a wide-range of security lattices,
from finite to decentralised ones. We also note that while our
empirical contributions concern the Multef framework, which
implements FSME, the insights of this work also apply in other
multi-execution settings. Furthermore, all our claims have been



mechanised in the Agda proof assistant and are available as
supplimentary material to this paper 1.

Data-oriented optimisations are designed to simplify the
internal representation of values in FSME as well as faceted
databases [16]. Values are represented by a tree-structure,
where each leaf captures a view for a given set of observers.
For instance, the faceted value 〈Alice ? 42 : 0〉 indicates
that the (secret) value 42 belongs to the principal Alice,
while any other principal will see the corresponding public
value 0. Programs operate in a manner which is agnos-
tic to the faceted structure. All operations in the language
work uniformly on faceted values in a way which respects
their structure. Such operations often result in deeply nested
trees. For instance, 〈Alice ? 42 : 0〉+ 〈Bob ? 5 : 2〉 results in
〈Alice ? 〈Bob ? 47 : 44〉 : 〈Bob ? 5 : 2〉〉 — a tree of depth two
and with four leaves. It is easy to imagine how quickly faceted
values can grow if nothing is done to prevent it.

In this work, we present a novel set of rewrite rules capable
of removing redundant leaves in faceted values. For that, we
first formalise an equivalence relation to ensure that our rules
do not change the observable views (i.e., who observes what)
encoded by faceted values (see Section III). In a nutshell,
the rewrite rules are targeted at shrinking nested structures
based on the relation among parent- and child-labels. However,
to maximise rewriting opportunities, we build on the notion
of lattice residuation [17] in order to systematically simplify
children’s labels based on the parents’—a step which may
lead to further simplifications. While residuation works out of
the box for standard security lattices, it is more challenging for
decentralised ones. We provide, to the best of our knowledge,
the first definition of residuation for the decentralised security
lattice of DC-labels [14]. We also present a case study (based
on [16]) where our rewriting rules shrink faceted values until
they become manageable in size.

Computation-oriented optimisations, on the other hand, aim
to avoid introducing leaves that are never meant to be accessed
by the computation. For instance, if we know that a sub-
computation will only ever write its result to Bob’s file, it
makes sense to never compute the values of leaves supposed
to be seen by Alice. More generally speaking, if we know that
a computation writes to a sink at level `, it makes sense to
only focus on computing leaves for observers at level `′ such
that `′ v `—the other leaves will never be accessed by the
computation and thus they are not needed! While it is simple
to see how this works when a computation is known to write
only to a single level, we show that the idea extends to more
complex situations as well. In previous work [9, 12, 13], au-
thors provide a notion of projection responsible for obtaining
from a faceted value the value observable at a certain level,
written f ↓ ` (where f is a faceted value)—observe that this
operator is almost exactly what we need! Unfortunately, the
projection operator has never been considered as part of the
language, but as an artifact of the proof technique used for
proving security and the absence of false alarms—a property

1https://github.com/OctopiChalmers/OptimisingFSME

known as transparency.
One contribution of this work is to show how to internalise

the projection operator into the language in a sound way,
written f ⇓ e, where e is a boolean expression over labels
(explained below). In this manner, developers can use it
as a mechanism to explicitly avoid computing unnecessary
leaves, thus saving computing time. By considering boolean
expressions (see Section IV), developers can naturally specify
which leaves of a given faceted value to compute. For example,
f ⇓ ¬Alice will throw away the leaves corresponding to
Alice while f ⇓ (¬Alice∧Bob) does the same but keeping
the leaves at least as sensitive as Bob. Unfortunately, the
internalisation of projection is incompatible with existing
formulations of transparency [9, 12, 13] (Section IV). In this
light, we introduce the notion of focused transparency, which
says that transparency holds for those security levels which
match the assumptions encoded in ⇓-projections. We show that
this notion of transparency subsumes the traditional one and
propose it as a new, stronger, alternative to the old definition.
We formalise the pure part of FSME as a lambda calculus
and show that programs executed by it fulfill both non-
interference and focused transparency. The main difference
between the calculus presented here and FSME [12] is that
ours lacks side-effects, namely references and I/O. We argue
that our optimisations naturally extend to these features (see
Section IV).

To summarise, the contributions of this paper can be cate-
gorised as follows.

I Novel optimisations to make multi-execution based ap-
proaches, like [9, 12, 18, 19], more likely to be usable in
practise.
I Data-oriented optimisations:

. A set of rewrite rules capable of shrinking a faceted value
without changing its semantics.
. A novel notion of residuation for security lattices, which

also covers decentralised label models like DC-labels [20].
. An Agda mechanisation showing that our that our rewrite

rules do not affect the semantics of faceted values.

I Computation-oriented optimisations:

. Identification of the need for computation-oriented opti-
misations both from a theoretical and a practical perspective.
. Introduction of a language-level projection operator based

on a boolean algebra to express what views to compute for.
. Introduction of the notion of focused transparency, a

stronger notion than traditional transparency.
. Introduction of a pure core-calculus which models a

essential functionality FSME.
. An Agda mechanisation showing that programs running

in this calculus fulfill non-interference as well as focused
transparency.

I Case studies that show how our optimisations help reduce
the exponential resource consumption associated with multi-



execution to a reasonable level.

II. BACKGROUND

A. Security Lattices
A Security Lattice [21] encodes the allowed flows of in-

formation using a set L of security labels together with an
order v (often pronounced “can flow to”) and operations for
combining security concerns, t and u. Data labeled `L can
flow to a data sink labeled `H if and only if `L v `H . The join
(t) and meet (u) operations compute least upper bounds and
greatest lower bounds respectively. In this work, we consider
lattices with a greatest element (>) called “top”, and a least
(⊥) called “bottom.”

There are a number of examples in the literature of useful
security lattices. In this paper, we start by focusing on the
powerset of principals lattice. The points in this lattice are
drawn from the set of sets of principals, written P(A ), where
A is some (possibly non-finite) set of actors or principals.
This lattice can express the concerns of multipl principals
simulatenously. For example, data labeled with {Alice,Bob}
indicates that both principal have confidentiality concerns
for the information. The order relation is given by subset,
`v `′ ⇐⇒ `⊆ `′, with ⊥= /0, >=A , t=∪, and u=∩. For
ease of reading we write singleton labels like {Alice} without
the curly brackets, simply as Alice.

Another interesting security lattice is Disjunction Category
Labels or DC-labels for short [22]. A DC-label is a pair
of labels, expressing confidentiality and integrity concerns
respectively. More precisely, a label consists of a monotone
logical formula with principals for atoms. For instance, when
considering confidentiality, labels like Alice simply expresses
that data is confidential to the principal Alice and Alice v `
if and only if `⇒ Alice, i.e., the label ` is strong enough to
preserve Alice’s concerns. In general, for any two confiden-
tiality labels ` and `′ we have that `v `′ if and only if `′⇒ `.
Conjunction expresses joint security concerns, data which is
sensitive to both Alice and Bob is labeled Alice∧Bob. In this
case, the flow Alice∧BobvAlice∧Bob∧Charlie is allowed,
but Alice ∧ Bob 6v Alice. Similarly, the label Alice ∨ Bob
expresses that either Alice or Bob can observe this data
separately.

Integrity labels are dual to confidentiality labels. For any
two integrity labels ` and `′ we have that `v `′ if and only if
`⇒ `′. Putting a confidentiality and an integrity label together
forms a DC-label, which we write as a pair (`c, `i), where `c
is a confidentiality label while `i an integrity one. Naturally,
we get that (`c, `i) v (`′c, `

′
i) if and only if `′c ⇒ `c ∧ `i ⇒ `′i.

DC-labels form a decentralised lattice that has been used in
various implementations of IFC systems [7, 12, 23, 24, 25].
DC-labels are also capable of modeling other decentralised
models, such as DLM [26].

B. Faceted Values
The set of faceted values over values v from V with labels

` from L is defined by the following grammar:

Faceted(V ) 3 f ::= 〈` ? f : f 〉 | v

A faceted value captures different views on data based on the
potential observers. For simplicity, we focus on confidentiality
from now on. To illustrate how faceted values work, we
consider the P(A ) lattice described in Section II-A. In
essence, the faceted value 〈Alice ? 5 : 7〉 should behave as
5 to anyone who is allowed to see Alice’s private data, and
7 to everyone else. Importantly, operations on faceted values
respect the different views of principals. For instance, adding
two faceted values like 〈Alice ? 5 : 7〉+〈Bob ? 1 : 3〉 results in:

〈Alice ? 〈Bob ? 6 : 8〉 : 〈Bob ? 8 : 10〉〉
Note that if the observer of the addition sees both Alice’s and
Bob’s data, then the result is 6, which comes from adding 5 in
〈Alice ? 5 : 7〉 and 1 in 〈Bob ? 1 : 3〉. However, if the observer
is precisely Bob, the result is 8, which comes from adding 7 in
〈Alice ? 5 : 7〉 and 1 in 〈Bob ? 1 : 3〉. In this work, we use both
the formal notation for faceted values as well as a graphical
representation in the form of trees. For instance, the addition
above can be described by the following trees:

Alice

5 7
+

Bob

1 3
=

Alice

Bob

6 8

Bob

8 10
The theory of faceted values comes equipped with a projec-

tion function responsible for extracting a value based on the
security level of the observer. This function simply navigates
through the tree structure until it finds the leaf that corresponds
to the “right” value. Formally, projection is defined as a binary
function ↓, such that if an observer at level `o observes t, she
sees t ↓ `o:

〈` ? f1 : f2〉 ↓ `o =

{
f1 ↓ `o, `v `o

f2 ↓ `o, otherwise

v ↓ `o = v

With the definition of projection in place, we can state prop-
erties about well-behaved faceted operations. For instance, the
addition of faceted values should respect the different views
found in faceted values:

∀`o. (t1 + t2) ↓ `o = (t1 ↓ `o)+(t2 ↓ `o)

Note that the addition on the left-hand side is on faceted
values, while the one on the right is for numbers. The equation
says that, for all observers, the resulting faceted values should
be consistent with the addition. This idea of preserving behav-
ior across all the observers motivates the following definition
of equivalence for faceted values.

Definition 1 (Equivalence): We say that t1 and t2 are equiv-
alent under projection, written t1 ∼ t2, if and only if t1 ↓ ` =
t2 ↓ ` for all ` ∈L .
The power of this equivalence relation is that programs which
treat faceted values securely are guaranteed to preserve it, and
therefore we are able to freely interchange equivalent values
in computation. In Section III we show how careful study of
this equivalence relation gives rise to a number of optimisation
rules for faceted values.



C. Residuated Lattices and Galois Connections

In its most general form, a residuated lattice [17] is a lattice
together with a monoid (it has an associative multiplication
with an identity) which has a kind of “inverse” called the
residuation. The relation between the multiplication and the
residuation is captured by a Galois connection (explained
below) [27]. For the purpose of this paper, we focus on two
special cases of residuated lattices, where the multiplication
operation is either the join (t), with residual 	, or meet (u),
with residual �, of the lattice.

Definition 2 (Join Residuated Lattice): We say that a lat-
tice L is join-residuated if and only if there exists a binary
operation 	 on L such that for all `, D`(`

′) = `′ 	 ` and
M`(`

′) = `′t ` form a Galois connection (written D` aM`):

∀`1, `2.D`(`1)v `2 ⇐⇒ `1 vM`(`2)

Intuitively, the equivalence above says that if `1 flows to
the “multiplication” of `2 with ` (`1 vM`(`2)), then we can
“divide” the inequality by `, thus resulting in just `2 on the
right-side, while the left-hand side is just `1 divided by `
(D`(`1)v `2).

Dually, we also consider residuation with respect to meets.
Definition 3 (Meet-residuated Lattice): We say that a lat-

tice L is meet-residuated if and only if there exists a binary
operation � on L such that for all `, M`(`

′) = `′ u ` and
D`(`

′) = `′� ` form a Galois connection (written M` a D`):

∀`1, `2.M`(`1)v `2 ⇐⇒ `1 v D`(`2)

We remark that is not always possible to take an arbitrary
lattice and make it join- or meet-residuated. However, many
lattices commonly studied in IFC are join residuated. For
example, the powerset set of principals lattice has for its join
residuation the relative compliment, or “set minus” operation
defined as `	 `′ = {p | p ∈ `, p 6∈ `′}. It is not hard to see
that the standard two-point lattice is also join residuated (by
observing that it is isomorphic to P(1)). However, it is not
clear if residuation works with more complex lattices like DC-
labels. In Section III-B, we show that DC-labels are both join
and meet residuated. This contribution allows us to apply the
optimisation techniques presented in the following sections to
practical applications.

III. DATA-ORIENTED OPTIMISATIONS

In this section we present a number of useful and instruc-
tive semantics preserving equivalences for faceted values—as
defined in Definition 1. These equivalences are designed to
remove as much redundant information as possible from the
tree-structure found in faceted values. We begin by considering
optimisations which work for faceted values where the labels
are drawn from an arbitrary security lattice, and proceed to
consider the (ubiquitous) special case of residuated lattices.

We split the equivalences in two kinds: those that remove
substructures in faceted values, shown in Figure 1, and those
that simply rewrite them by exchanging leaves or nodes, shown
in Figures 2 and 4. These equivalences can be used as part

of a rewriting system that applies, for instance, the rules in
Figure 1 until no rules apply, and then switches to apply those
in Figures 2 and 4 to obtain a faceted value where it is again
possible to apply the rules in Figure 1, and so on.

The rules in Figure 1 are equivalences that reduce the
size of faceted values. Rule CHOICE IRRELEVANCE elimi-
nates redundancy in the form of duplicated values. Rule
BOTTOM IRRELEVANCE is equivalent to saying that ⊥ does not
protect any information and gets rid this unnecessary label.
Rules LEFT SQUASH and RIGHT SQUASH remove redundancy
by exploiting the lattice structure. Observe that the last two
rules require a relationship among the left- (right-) child and
the parent node.

The ∼ relation does not just allow us to remove unnecessary
labels from the faceted tree. We also present some equiva-
lences which deal with rotations of faceted tree—see Figure 2.
For example, JOIN uses least-upper-bounds to rotate a faceted
tree from left to right. Similarly, QUALIFIED ROTATION allows
rotation back and forth given that `2 v `1. Rotations are
crucial as they may expose further opportunities to remove
duplicates using the CHOICE IRRELEVANCE rule. For example,
consider 〈Alice ? 1 : 0〉 × 〈Bob ? 1 : 0〉, which is equal to
〈Alice ? 〈Bob ? 1 : 0〉 : 〈Bob ? 0 : 0〉〉, and can be shrunk
considerably:

Alice

Bob

1 0

Bob

0 0

∼

Alice

Bob

1 0

0 ∼

{Alice,Bob}

1 Alice

0 0

∼
{Alice,Bob}

1 0

The derivation uses CHOICE IRRELEVANCE, then JOIN, followed
by CHOICE IRRELEVANCE again. All in all, the algebraic struc-
ture of faceted values is rich and we encourage the interested
reader to explore the theory at their leisure, and refer them to
the Agda mechanisation for a number of other equivalences
for rotations and similar equivalences with their equivalence
proofs.

Alice

{Alice, Bob}

1 2

Bob

1 2

Fig. 3. A motivating example

Next we focus our at-
tention on other equiva-
lences dedicated to the la-
bels in the tree. By doing
so, it may become possible
to subsequently apply other
equivalences like those in
Figure 1. To illustrate this
point, consider the tree in
Figure 3 with labels drawn from the powerset lattice: We
argue that this faceted value is equivalent to the much simpler
〈Bob ? 1 : 2〉. However, this is not easily derived from the
equivalences presented above. We could consider replacing
{Alice,Bob} by just Bob since Alice is already present as



CHOICE IRRELEVANCE
`

x x
∼ x

BOTTOM IRRELEVANCE
⊥

x y
∼ x

LEFT SQUASH

`2 v `1

`1

`2

x y

z ∼
`1

x z

RIGHT SQUASH

`1 v `2

`1

x `2

y z

∼
`1

x z

Fig. 1. Semantics preserving optimisations

JOIN
`1

`2

x y

z ∼

`1t `2

x `1

y z

QUALIFIED ROTATION

`2 v `1

`1

x `2

y z

∼

`2

`1

x y

z

Fig. 2. Semantics preserving manipulations

root of the left-hand child and thus redundant. In other words,
we hope that the following equivalence holds:

Alice

{Alice, Bob}

x y

z ∼

Alice

Bob

x y

z

We need to make sure that replacing {Alice,Bob} by Bob
does not affect the observers of x and y. On the left-hand side
of the equivalence, we have that the observers of x are those
at level `o such that Alice v `o (root) and {Alice,Bob} v `o
(left children). With these two facts, we can deduce that it
must be the case that Bob v `o. Hence, observers of x on
the left-hand side tree are also observers of x in the right-
hand side tree. In a similar manner, we can prove that all the
observers of x in the right-hand side tree are also observers
in the left-hand one. This reasoning shows that the observers
of x are the same on both trees. Similar reasoning can be
applied to the observers of y to finally conclude that the two
trees are equivalent. Note that we can now simplify labels first,
and then use CHOICE IRRELEVANCE to remove some faceted
values, which gives us the following derivation:

Alice

{Alice, Bob}

1 2

Bob

1 2

∼

Alice

Bob

1 2

Bob

1 2

∼
Bob

1 2

We face two challenges when generalising this approach to
arbitrary faceted values: (a) how do we know if a label can

LEFT REPLACEMENT
`1 ∼/

` `2

`

`1

x y

z ∼

`

`2

x y

z

RIGHT REPLACEMENT
`1 ∼.

` `2

`

x `1

y z

∼

`

x `2

y z

Fig. 4. Semantics preserving label replacement

replace another one? and (b) how do we simplify an existing
label as much as possible? Motivated by challenge (a), we
characterise the general notion of a label `2 replacing a label
`1 to the left or the right of a parent label `.

Definition 4 (Replaces to the Left/Right): We say that a la-
bel `2 replaces `1 to the left (right) of `, written `2 ∼/

` `1 (resp.
`2 ∼.

` `1), when for all `o we have that:

`v `o⇒ (`1 v `o ⇐⇒ `2 v `o)

(resp. ` 6v `o⇒ (`1 v `o ⇐⇒ `2 v `o))

Note that ∼/
` and ∼.

` are equivalence relations. This
definition lets us derive the LEFT REPLACEMENT and
RIGHT REPLACEMENT equivalences in Fig. 4. While this
definition characterises when it is possible to replace a label
`1 by another, `2, how do we know what the simplest label to
use is? To address this challenge, (b), we turn to residuated
lattices.

Theorem 1: For a join residuated lattice L and any labels
`1, `2 ∈L , the residual `2	`1 is the least label which replaces
`2 to the left of `1

When considering residuated lattices and the theorem above,
it turns out that we can derive LEFT SQUASH rule from above.
Assuming `2 v `1 we have:

`1

`2

x y

z ∼

`1

`2	 `1

x y

z ∼

`1

⊥

x y

z ∼
`1

x z



The second step, i.e., rewriting `2	`1 to ⊥, is due to a theorem
of join residuated lattices that says that `2 v `1⇔ `2	`1 =⊥.

A. Constructing Residuated Lattices

For distributive lattices, i.e., where t distributes over u,
residuation follows mechanically. The following known theo-
rem of residuated lattices make this point clear.

Theorem 2 (From [17]): If L is a lattice, then L is join-
residuated given the following:

∀`,L⊆L . `t
l

L =
l
{`t `′ | `′ ∈ L}

Note that the condition says that least upper bounds distribute
over (perhaps non-finite) meets. An immediate consequence
of the definition of join-residuation tells us that `	 `′ is the
least label such that `v (`	`′)t`′. By applying the theorem
above, and in order to obtain a join-residuated lattice, we
simply construct `	 `′ as the meet over all labels `r such
that `v `rt `′. Note that one simple consequence of this line
of reasoning is that, for all finite lattices satisfying Theorem
2, we have a constructive (albeit potentially expensive) way
of computing the residual. However, in the infinite cases like
those of decentralised lattices, we do not get such an algorithm
for free.

B. Residuation of DC-labels

In this section, we give (to the best of our knowledge)
the first algorithm for computing the residuation for a decen-
tralised (and thus infinite) security lattice. To illustrate how
our construction works, we focus only on the confidentially
part of DC-labels since integrity follows by duality. The con-
fidentiality part of a DC-label is a monotone logical formula,
which we express here in conjunctive normal form as sets of
sets of principals. The set of CNFs over A , denoted CNF(A ),
is defined as:

CNF(A ) = P(P(A ))

Intuitively, elements of P(A ) represent disjunctions of
principals (called clauses) which are put together in a set
P(P(A )) representing their conjunction. We introduce some
terminology.

Definition 5 (Discharged clauses): Given c ∈ P(A ), we
say that a clause c is discharged by a label `, written ` ⊃ c,
if and only if ∃c′ ∈ `. c′ ⊆ c.
Using this definition, we define join residuation as follows.

Definition 6 (Join-residuation for CNF(A )): Given `,`′ ∈
CNF(A ), we define join-residuation as

`	 `′ = { c ∈ ` | `′ 6⊃ c }

Note the similarity to the definition of residuation for the
powerset lattice, instead of removing elements of `′ from `,
we remove clauses implied by `′ from `. We prove that this
definition is sound.

Theorem 3: CNF(A ) is join-residuated.

With join residuation in place, we can see
LEFT REPLACEMENT in action on faceted values which
only consider confidentiality.

Alice∧Bob

(Alice∨Dave)∧Charlie

x y

z ∼

Alice∧Bob

Charlie

x y

z

In the example above, ((Alice∨Dave)∧Charlie)	 (Alice∧
Bob) results in Charlie—intuitively, the residuation removes
the clause involving Alice since it appears in the root node.

Next we consider meet-residuation. Recall that the meet of
two formulae ` and `′ is precisely their disjunction `∨ `′ (see
Section II-A). When we frame this in terms of the sets of sets
formulation we have been considering, we end up with the
following definition of meet:

`u `′ = { c∪ c′ | c ∈ `,c′ ∈ `′ }

With this definition in mind, we define the meet-residuation
of Definition 3 as follows.

Definition 7 (Meet-residuation for CNF(A )): Given `,`′ ∈
CNF(A ), we define meet-residuation as

`� `′ =
l
{{c− c′ | c ∈ `} | c′ ∈ `′}

Theorem 4: CNF(A ) is meet-residuated.
By duality, the definitions in Theorems 4 and 3 respectively
provides us a join- and meet-residuation also when formulas
are seen as integrity requirements, which we write CNF(A )op.
In turn this gives us join- and meet-residuation for DC-
labels by simply considering the product lattice CNF(A )×
CNF(A )op.

Corollary 1: The lattice induced by DC-labels is join- and
meet-residuated.

C. Context-aware optimisations

A lot of the equivalences we have discussed are de-
signed to exploit the information provided by the par-
ent node (e.g., LEFT SQUASH, LEFT REPLACEMENT). For
a motivating example of why this may sometimes be
insufficient, consider the faceted value in Figure 5.

Alice

Bob

Alice

1 2

3

4

Fig. 5. A difficult to shrink tree

Optimising this tree
should be a simple case
of removing the redundant
〈Alice ? 1 : 2〉 subtree and
replacing it with the leaf
1, because Alice already
appears above this subtree.
However, none of the rules
presented so far allow us
to perform this simple optimisation, the LEFT SQUASHrule
for example only takes into consideration the immediate
parent-child relationship between nodes.

To remedy this shortcoming we introduce new optimisations
by generalising our equivalence relation to take into account



ANY
t ∼ t ′

t ∼γ t ′

EMPTY
t ∼{} t ′

t ∼ t ′

SUBTREES
t0 ∼{`+}∪γ t ′0 t1 ∼{`−}∪γ t ′1

`

t0 t1
∼γ

`

t ′0 t ′1

Fig. 6. Structural rules for context-aware optimisation.

all the nodes involved in the path leading to a subtree. We call
these paths contexts since they provide assumptions about the
labels that we can consider when optimising faceted values.

Definition 8 (Contexts): A context γ is a set of branches,
where a branch is either `+ or `− for ` ∈L . We define the
views of a context, written ν(γ):

ν(γ) = {`′ ∈L | ∀`+ ∈ γ. `v `′,∀`− ∈ γ. ` 6v `′}

A context γ corresponds to a set of left (`+) or right (`−)
branches taken when moving down a faceted value. The views
of γ should be seen as the set of labels which can “reach” that
part of the tree during projection. For example, consider the
faceted value t = 〈Alice ? 〈Bob ? 1 : 2〉 : 3〉 The labels ` such
that t ↓ ` = 2 are precisely those ` such that Alice v ` and
Bob 6v `. Equivalently, we have that ` ∈ ν({Alice+,Bob−}),
where the context {Alice+,Bob−} encodes “taking a left” at
Alice and “taking a right” at Bob.

We define equivalence up to a context, denoted ∼γ , as
follows:

Definition 9 (Equivalence up to contexts):

t ∼γ t ′ ⇐⇒ ∀` ∈ ν(γ). t ↓ `= t ′ ↓ `

Figure 6 shows how this notion of equality relates to our
earlier one (∼). Rule ANY says that if faceted values are
equivalent for any observer then they are equivalent under any
context. Rule EMPTY shows that equivalence under an empty
context corresponds to our standard equivalence notion. Fur-
thermore, observe that equivalence under contexts subsumes
our standard notion (∼) since we have t0∼{} t1 ⇐⇒ t0∼ t1 by
rules ANY and EMPTY. Rule SUBTREES shows how to construct
an equivalence by assuming a positive and a negative label
for the left- and right-subtree, respectively. By considering
contexts, we can define a natural generalisation of our notions
of replacing labels.

Definition 10 (Replacement under contexts): We say that a
label `2 replaces `1 under context γ , written `2 ∼γ `1, if and
only if ∀`o ∈ ν(γ). `1 v `o ⇐⇒ `2 v `o
Note that this definition is more general than “replaces to the
left” (∼/

`1
) and “replaces to the right” (∼.

`1
):

• `2 ∼/
` `1 if and only if `2 ∼{`+} `1

• `2 ∼.
` `1 if and only if `2 ∼{`−} `1

Naturally, if `2 ∼γ `1, then 〈`2 ? x : y〉 ∼γ 〈`1 ? x : y〉. In
what follows, we use the context information obtained when
traversing the faceted tree simplify faceted values.

We start by introducing a notion of non-contradictory con-
texts.

Definition 11 (Coherent Context): A context γ is coherent
if and only if ν(γ) 6= /0.

POSITIVE REDUNDANCY
` positively redundant in γ

`

x y
∼γ x

NEGATIVE REDUNDANCY
` negatively redundant in γ

`

x y
∼γ y

Fig. 7. Context-aware optimisation rules.

We also capture what it means for a label to be redundant in
an optimisation context.

Definition 12 (Redundant labels): Label ` is said to be Pos-
itively (resp. Negatively) redundant in context γ if and only if
∀`′ ∈ ν(γ). `v `′ (resp. ` 6v `′).
In essence, these definitions capture when a given label already
has a single known relationship (v or 6v) to all labels in the
view induced by the context. As a result, we can introduce
the rules in Figure 7. These rules gives us a way to traverse
a faceted value up to a given node and decide, based on the
path that took us there, if we could remove a branch. But, how
do we know if a label is positively (or negatively) redundant?
For that, we need to introduce the notion of candidate label
from Schmitz et al. [12].

Definition 13 (Candidate label (from [12])): The
candidate label of γ , written C (γ), is the join of all
positive labels in γ , C (γ) =

⊔
{ ` | `+ ∈ γ}.

By applying the decision procedure of Schmitz et al. [12],
we decide if a label is redundant with two simple checks.

Theorem 5 (from [12]): Given a coherent context γ , ` is
positively redundant in γ if and only if `v C (γ).

Theorem 6 (from [12]): Given any coherent context γ , ` is
negatively redundant in γ if and only if ∃`−1 ∈ γ. `1vC (γ)t`.
Schmitz et al. [12] show that coherence is a decidable property
by showing that γ is coherent if and only if C (γ) ∈ ν(γ).
Finally, we get a version of Theorem 1 for context.

Theorem 7: Given ` that is not negatively redundant in γ ,
`	C (γ) is the least label which replaces ` under γ .
Note that while the theorem above requires that ` is not
negatively redundant in γ , it says nothing about positive
redundancy. However, recall Theorem 5, if ` is positively
redundant in γ , then `v C (γ), and so `	C (γ) =⊥, which is
certainly the least label which replaces ` under γ!

Finally, we note that the optimisation strategies presented in
this section admit a natural implementation strategy, exhaus-
tively traverse the faceted tree and “gather up” the context
using the rules in Figure 6. At each label `, check if it is
redundant and, if so, remove it and replace it with its left
or right subtree depending on if it is positively or negatively
redundant. If ` is not redundant, replace it by `	C (γ).

IV. COMPUTATION-ORIENTED OPTIMISATION

In this section we tie together our data-oriented optimi-
sations from Section III with the FSME execution mode.
In order to do this we introduce a core calculus of faceted
execution designed to model the relevant parts of multi-
execution necessary to show that our optimisations are seman-
tics preserving. We also use our core language to accommodate



our novel “internalisation” of projection and the notion of
focused transparency.

A. Core Calculus

We define a core language of faceted evaluation which we
call λ Facet. The terms of λ Facet are generated by the following
grammar:

t ::= x | λx. t | t t | unit | µx. t | 〈` ? t : t〉 | ⊥

Where unit is the only value of the single-element type
unit and ⊥ is an element of every type. We extend the
definition of projection to cover terms, with the case for
facets being the same as above and all other constructs (like
application and λ ) are homomorphic. The full definition of
projection and a number of other constructs from this section
can be found in Appendix A.

Using projection, we construct an equivalence relation like
the one considered in previous section, t0 ∼ t1 if and only if
t0 ↓ ` = t1 ↓ ` for all ` ∈ L . Note that, while this notion of
equivalence is more involved than the one for pure faceted
values, the equivalences which apply to the former definitions
still apply here. We formalise λ Facet as a typed lambda
calculus, however, the type system is standard and orthogonal
to the rest of the development. We give λ Facet a small-step call
by name semantics. Figure 8 shows the non-standard rules, the
rest can be found in Appendix A.

The rules RLEFTFACET and RRIGHTFACET allow faceted
sub-computations to happen “in parallel”, this is similar
to the FSME execution mode of Multef [12]. The rule
RFACETAPP distributes function application over facets. It
is this rule which is responsible for the blowup associated
with faceted values, for example 〈` ? t0 : t1〉 〈`′ ? t ′0 : t ′1〉 −→
〈` ? t0 〈`′ ? t ′0 : t ′1〉 : t1 〈`′ ? t ′0 : t ′1〉〉. Finally, the first true addition
of λ Facet over previous work is the REQUIV rule, which ties
together the equivalences studied in Section III (through the
∼ equivalence) with FSME. The rule allows optimisation to
happen at any point during the evaluation of a program.

Transparency: We prove that λ Facet is transparent, i.e.
the semantics of secure programs are not influenced by the
special enforcement mechanism introduced by the faceted
values. To show this, following the literature [9, 11, 12] we
give a standard semantics −std→ for λ Facet. The role of
the standard semantics is to represent “normal” evaluation
of λ Facet programs without enforcement in place. Using this
notion we will be able to prove that λ Facet programs which are
secure under standard semantics do not have their semantics
modified by the multi-execution enforcement mechanism. The
standard semantics of λ Facet are identical to the normal se-
mantics, except that we omit the rules which deal with facets,
in place of these rules we have only a single rule to remove
facets, 〈` ? t0 : t1〉−std→ t0. Next we overload the∼ notation,
defining t0 ∼` t1 ⇐⇒ t0 ↓ `= t1 ↓ `. Using this definition we
are going to define what it means for a program to be secure
with respect to the standard semantics.

However, before we get there we need to introduce the
notion of a security policy. To keep the exposition simple we

only discuss the single-input programs and therefore a security
policy is simply a pair (`i, `) of an input label and an output
label. A term t is said to be compatible with an input label
`i if either t is on the form 〈`i ? t0 : t1〉 where t0 is unfaceted
or t itself is unfaceted. This definition of “secret input” is
in line with the standard encoding of secret inputs from the
multi-execution literature [9, 11, 12].

We use the notion of a secure program from [28], this
definition is different from that of previous work (e.g. Multef
[12]) and we refer the interested reader to Appendix A for
details on why and how. In the definition below we use the
standard definition of a “value”, a term is a value if and only
if it is either on the form λx. t or unit, values have the key
property that they do not evaluate further.

Definition 14 (TSNI Secure Program): A term Γ,x : τ0 ` t :
τ1 is secure w.r.t. the security policy (`i, `) when, for any two
inputs Γ ` t0, t1 : τ0 which are compatible with `i, such that
t0 ∼` t1, we have that if t[t0/x]−std→∗ v0 for some value
v0 then there exists a value v1 such that t[t1/x]−std→∗ v1
and v0 ∼` v1. As a consequence, if t[t0/x] does not evaluate to
a value, then neither does t[t1/x].
This definition is intended to mimic previous work on faceted
value semantics [9, 12, 13], where programs have input and
output channels where values received on a channel are
compatible with the label of the channel. In such a setting, the
definition of secure program says that and if in two different
runs the values on an input channel are `-equivalent, where `
is the label of some output channel, then both runs generate
equivalent outputs on the `-labeled channel. Our definition
mimics this by picking `i the label on the input channel and
` on the the output channel.

While the definition above is parameterised on a security
policy in the form of a label pair (`i, `) and a single variable
x : τ0, extending it to more complex policies and multiple
variables is straightforward. We direct the interested reader to
the literature on faceted value semantics [9, 12, 13] for a more
comprehensive treatment. Before we can address transparency
we need one key lemma:

Lemma 1 (Simulation): Given an `∈L and two terms Γ `
t, t ′ : τ such that t ↓ `−std→∗ t ′ there exists an t ′′ such that
t −→∗ t ′′ and t ′ ∼` t ′′.
Before we address transparency we need introduce the notion
of an unfaceted term, i.e. a term which does not use the
〈 ? : 〉 construct. More precisely, t is unfaceted if and only
if there is some ` (or equivalently, for all `) such that t ↓ `= t.
Note that if t ↓ ` is equal to t, t does not contain any 〈 ? : 〉
subterms, as these would be removed by projection in t ↓ `.

Theorem 8 (Transparency): For any policy (`i, `), given a
program Γ,x : τ0 ` t : τ1 which is secure with respect to
(`i, `) such that t is unfaceted and a term Γ ` t0 : τ0 which
is compatible with `i, we have that if t[t0/x]−std→∗ v for
some value v, then there exists a t ′ such that t[t0/x] −→∗ t ′

and v∼` t ′.
We prove termination sensitive noninterference (TSNI) for

λ Facet by following the proof strategy of earlier work [9, 12],
details can be found in Appendix A.



RLEFTFACET
t0 −→ t ′0

〈` ? t0 : t1〉 −→ 〈` ? t ′0 : t1〉

RRIGHTFACET
t1 −→ t ′1

〈` ? t0 : t1〉 −→ 〈` ? t0 : t ′1〉

RFACETAPP

〈` ? t0 : t1〉 t2 −→ 〈` ? t0 t2 : t1 t2〉

REQUIV

t0 ∼ t1
t0 −→ t1

Fig. 8. Small step semantics

J`K(t0, t1) = 〈` ? t0 : t1〉
Je∨ e′K(t0, t1) = JeK(t0,Je′K(t0, t1))
Je∧ e′K(t0, t1) = JeK(Je′K(t0, t1), t1)
J¬eK(t0, t1) = JeK(t1, t0)

RPROJECT

t ⇓ e−→ JeK(t,⊥)
RPROJECTSTD

t ⇓ e−std→ t

(t ⇓ e) ↓ `o =

{
t ↓ `o, `o |= e
⊥, otherwise

Fig. 9. The semantics of ⇓

Theorem 9 (TSNI): Given any ` ∈L and any three well-
typed terms Γ ` t0, t ′0, t1 : τ such that t0 ∼` t1 and t0 −→∗ t ′0,
there exists a Γ ` t ′1 : τ such that t1 −→∗ t ′1 and t ′0 ∼` t ′1.
Note that this theorem does not mention the notion of a policy
from above, this is because the present formuation is stronger
than a formulation which references a security policy. The
theorem above works for any two `-equivalent t0 and t1, which
implies that it works for the t[t0/x] and t[t1/x] introduced by
the “policy-formulation.”

B. Removing unnecessary views

We now present the key computation-oriented optimisation
in this paper. We show how to use knowledge of the potential
observers of a faceted computation to reduce the amount
of computation. We can represent such knowledge using a
boolean algebra over labels:

e ::= ` | e∨ e | e∧ e | ¬e

We say that a label ` satisfies an expression e, written ` |= e,
by which we mean that the expression e predicts that ` is
an observer of our computation. The interesting case is when
e = `′, for which we have ` |= `′ ⇐⇒ `′ v `. The rest of the
definition is standard, e.g. ` |= e0∧e1 if and only if ` |= e0 and
` |= e1, and can be found in Appendix A.

The idea behind label expressions is that if ` |= e, then the
term t ⇓ e can be used in a computation which will be written
to an output channel with label `. In Section V we will see
how this can be used to keep the number of sub-computations
introduced by faceted value semantics tractable in a setting
with multiple input and output channels. For now, however,
we will focus on the single-input single-output case of λ Facet

in order to keep the formalism concise.
We give a semantics to label expressions in terms of faceted

values, written JeK(t0, t1), which can be found in Figure 9. The
definition has the property that JeK(t0, t1) ↓ `= t0 ↓ ` when ` |= e

` |= e `� t
`� t ⇓ e

`′ v ` `� t0
`� 〈`′ ? t0 : t1〉

` |= `′ ⇐⇒ `′ v `

Fig. 10. Non-structural cases of `� t and ` |= e

and t1 ↓ ` otherwise. Next we extend our faceted language
with a primitive ⇓ which models injecting knowledge about
the future observers of the computation into our program.

t ::= . . . | t ⇓ e

For the semantics, we introduce the RPROJECT and
RPROJECTSTD rules in Figure 9.

There are two important things to note about the semantics
of ⇓. The first is that while we call the rule RPROJECT and
use a syntax similar to projection, what we are doing is not
strictly projection, we do not remove parts of the faceted value,
only encode additional assumptions. This choice is motivated
by the fact that internalising projection as something similar
to t ⇓ `= 〈` ? t ↓ ` :⊥〉 breaks noninterference, at least when
noninterference is formulated in the traditional way. To see
why, consider the H-equivalent terms (λx.x ⇓ L) 〈H ? 1 : 0〉
and (λx.x ⇓ L) 〈H ? 1 : 1〉, which would reduce to 0 and 1
respectively, which are not H-equivalent. The second thing to
note is that while we have chosen to present the meaning of ⇓
in terms of dynamic semantics, it could also be formulated as
a static “compilation step.” Our choice is motivated the fact
that the dynamic ⇓ more closely mimics our implementation
in Section V.

The ⇓ optimisation does not come for free. Recall that the
condition in the transparency theorem from above is that the
source program is both secure and unfaceted, that is t ↓ ` =
t. This condition is not fulfilled for programs containing ⇓.
Consequently, while including ⇓ in the calculus does not break
noninterference or transparency, as soon as we use ⇓, we no
longer have transparency guarantees.

To address this issue, we introduce a notion of focused
transparency which subsumes the traditional notion from
above. The intuition behind focused transparency is that if
the ⇓ annotations are correct, then we do not modify the
semantics of secure programs when running under faceted as
opposed to standard semantics. To formalise the idea of correct
annotations we introduce the notion of “clearance.” Intuitively,
a label ` clears t, written ` � t, if ` satisfies all the label
expressions e in t, and it can see all the facets in t. In other
words, `� t if ` is one of the intended observers of t, i.e. the
view of t associated to ` is not culled by any ⇓ optimisation.
Figure 10 shows the interesting (non-structural) cases of `� t,



the rest can be found in Appendix A.
With clearance in place, we can move on to proving focused

transparency. The proof of focused transparency is similar to
the proof of normal transparency, but here we generalise the
definition to include faceted terms t where ` � t and show
that the theorem still holds. In this presentation we omit some
tedious lemmas to do with the interaction between projection
and clearing. We note only only that the proof of the next
theorem relies on a version of the Simulation lemma with
precondition ` � t, the interested reader will find details in
Appendix A.

Theorem 10 (Focused Transparency): For any policy
(`i, `), given a program Γ,x : τ0 ` t : τ1 which is secure with
respect to (`i, `) such that ` � t (i.e. the annotations in t are
correct) and a term Γ ` t0 : τ0 which is compatible with `i, we
have that if t[t0/x]−std→∗ v for some value v, then there
exists a t ′ such that t[t0/x]−→∗ t ′ and v∼` t ′.
As `� t ↓ `′ holds for all ` and `′, focused transparency implies
traditional transparency as presented in Theorem 8. In other
words, our notion of focused transparency is can safely replace
the traditional notion from above.

V. CASE STUDIES

In this section, we present two case studies to show how
the optimisation techniques in this paper can be applied to the
multi-execution framework Multef [12].

A. Data-Oriented Optimisation

{Alice,Bob,Charlie}

{Bob,Charlie}

v0 v1

⊥

Fig. 11. Example for optimising

Our data-oriented opti-
misations are suitable when
dealing with storage of
faceted values. For exam-
ple, Yang et al. [16] use
faceted values in a database
backed application to en-
code multiple views of the
same data. Intuitively, each
“leaf” of the faceted value gets stored as a record within
a table—the more leaves the faceted values has, the more
space it takes in the database. One of the case studies of
Yang et al. presents a small calendar application where faceted
values provide different views of calendar events. In their
model, group events can have sophisticated views associated
with them which allows encoding multiple groups of event
attendees with different privileges w.r.t. what they can observe.
For example, if Bob and Charlie are organising an event for
Alice, the calendar event may be encoded as the faceted value
in Figure 11. Where v0 may contain secret information like
what gifts Bob and Charlie are planning to give Alice, while
v1 encodes what Alice gets to see, i.e., that she has an event
next Wednesday. Plainly following Yang et al.’s approach for
storing events in the database will likely, considering that
faceted values might blow up in size when combined with
other faceted values, result in storing a prohibitively large
number of records in the database, especially after computing
aggregates of data.

Employing the data oriented-optimisations presented in
this paper, however, allows us to shrink these combined
faceted values to a manageable size. Our experiment con-
siders a simple implementation of our shrinking optimi-
sations. We apply the JOIN rule exhaustively, then we
apply the context optimisations from Figure 7 and Fig-
ure 6 alongside CHOICE IRRELEVANCE and residuation with
the candiate label, finally we rotate the tree back (to bal-
ance it) using QUALIFIED ROTATION and exhaustively apply
CHOICE IRRELEVANCE again. This approach is not optimal in
terms of speed, it runs in (at least) quadratic time. However,
for the purpose of this case study we focus on the storage
overhead of faceted values and therefore we are not concerned
with optimising or precisely measuring time overheads.

To show the effect of applying our shrinking techniques,
we randomly and uniformly generated two sets of 105 lists of
four faceted values, one with integer leaves and the other with
leaves of pairs of integers representing the start and end time of
a meeting. The events were between 1 and 4 hours long and all
scheduled during business hours on the same day. Each faceted
value has two or three different leaves with labels drawn from
the powerset lattice over 15 different principals – so, the lattice
contains 215 possible points. In a real application, these faceted
values could be derived from four calendar events.

We then compute the aggregation of the faceted values
by taking their sum (integer leaves) and computing if any
meetings overlap (meeting leaves) respectively. Finally, we
compare three different distributions of sizes.

We first consider the case for computing sums. The first
distribution (UNOPT) is the size of the faceted values in the
number of leaves without optimising. The second (OPT1) is
the result of optimising each value before computing the sum.
Finally, the third distribution (OPT2) is the result of optimising
both before and after computing the sum. Figure 12 shows
the cumulative distributions. The x axis shows the number
of leaves in the resulting trees and the y axis shows the
cumulative number of occurrences. The value of y at x shows
how many faceted values have fewer or equal to x number of
leaves.

The results in Figure 12 show that naively computing
aggregates quickly leads to blow up in faceted value sizes.
The largest trees in UNOPT have 81(!) leaves with an average
of 39.1 leaves per tree, the same goes for OPT1 but with
an average of 21 leaves, while OPT2 has a maximum of
48 and average 10.7 leaves! The OPT1 distribution shows
that optimising the faceted values reduces the amount of
blowup, the difference between OPT1 and OPT2 makes it
clear that optimisation needs to be performed continuously as
aggregation and computation themselves introduce redundant
views of faceted values.

Turning our attention to the distribution of sizes for the
meeting times in Figure 13 we see more extreme results than
in the other experiment. The largest trees in OPT2 have only
13 leaves and with an average of 1.1! This is because the
CHOICE IRRELEVANCE rule kicks in more often, as there are
only two possible values for the leaves after computing the
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Fig. 12. Data-optimisations on faceted values (computing sums)
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Fig. 13. Data-optimisations on faceted values (computing overlapping times)

overlap (True and False). Interestingly, the OPT1 and UNOPT
results look very similar to the case for sums. We attribute this
similarity to the fact that optimising only before computing the
sums means that the optimisation opportunities are mostly due
to the label structure, not the values at the leaves.

B. Computation-Oriented Optimisation

For this case study, we present a small chat server called
FChat, written in the multi-execution framework Multef [12].
The server allows clients to connect to channels where they
can send and receive messages. Figure 14 shows the relevant
Haskell [29] code of the server’s main loop.

The security policy of FChat is expressed with DC-labels.
Each chat channel is given a DC-label (cr

0∨ cr
1∨ . . .∨ cr

n,c
w
0 ∨

cw
1 ∨ . . .∨ cw

k ), where cr
i are the clients allowed to read the

mainLoop :: Policy -> FIO ()
mainLoop pol = do

fevent <- readFIChan evCh
fstate <- readFIORef stRef
control $ do
st <- fstate
ev <- fevent
return $ case ev of
Connect client chan

| canConnect pol client chan -> do
write stRef ((client, chan) : st)

Write client chan msg
| canWrite pol client chan -> do
sequence_ [ clientWrite client msg

| (client, ch) <- st
, chan == ch ]

...
Fig. 14. The main loop of the unoptimised chat server

channel and cw
i the clients allowed to write to it. The actual

implementation also needs to consider declassification and
endorsement of messages to be able conform to this security
policy. However, this is mostly orthogonal to the rest of this
discussion and these details are omited here in the interest of
clarity.

Primitive readFIChan :: IChan a -> FIO (Faceted a)

reads a faceted event from a channel—variable fevent

in the code. In the interest of simplicity, the trusted
computing based (TCB) around FChat is responsible
for parsing client messages and generating faceted
events accordingly. For instance, if Alice connects to
the channel chan, the TCB places a faceted event
〈Alice ? Connect Alice chan : ⊥〉 in the event
channel.

The code in Figure 14 keeps the state of all connections
in a reference stRef. The value stored in that reference
(fstate) is also faceted, as the state of alive connections
depends on who the observer is—recall that only Alice will
see that she has an open connection. The control primitive
executes the code that follows for every leaf in the “cartesian
product” of fevent and fstate—this is the primitive that
introduces multi-executions in Multef. Inside the control

block, variables st and ev are leaves in fstate and fevent,
respectively.

When it comes to connecting users to channels,
the main loop simply checks that principals
appear in the DC-label of the channel (see check
canConnect pol client chan). In that case, that
faceted state of the server gets updated to reflect the new
connection (write stRef ((client, chan) : st)).

Observe that after n clients have connected, without even
sending any messages, the faceted state of the server stRef
becomes a reference containing a faceted value with 2n leaves!
The exponential size of fstate means that when a new
connection arrives or a message is sent to the server, the code
inside control is executed O(2n) times! This exponential
complexity is in contrast to the O(n) time complexity which
would be required if the server was running under a standard,
but insecure, semantics instead of a faceted one. The degrada-
tion is reflected in the exponential runtime of UNOPT in our
experiment, shown in Figure 15.

The key observation that enables performance optimizations
in this case study is that, while the control block runs an
exponential number of times, most of the instructions are
no-ops. To see why, recall that events arising from reading
channels are of the form 〈p ? event :⊥〉 for some principal p
and event, e.g., writing to a channel. In this light, and since
Multef guarantees security and transparency, the main loop is
guaranteed to send messages to clients in the same way as
under an standard semantics. Hence, from all the O(2n) times
Multef executes the control block, only one will trigger
the side-effect of writing to a channel. More specifically,
when using the side-effectful primitive clientWrite, Multef
checks that the current view is the one in which the side-effect
can be triggered (i.e. the one compatible with the DC-label of



the channel)—otherwise it behaves as a no-op. The security
policy of our application considers each client c’s channel as
labeled (c,>), i.e., we are only able to write to it if we have not
branched on any information more secret than c. This means
that we only need to consider the parts of the faceted state
fstate which contain only c’s private branches!

With this in mind, we can employ the ⇓ optimisation
to reduce the exponential blowup to consider only these
leaves of the faceted trees! We implement ⇓ as a function
atMostOne :: [Client] -> Faceted a -> Faceted a.
The expression atMostOne ["Alice", "Bob"] f should
be read as f ⇓ (Alice ∧ ¬Bob ∨ ¬Alice ∧ Bob). We use
atMostOne to optimise away the unnecessary leaves of the
state:
mainLoop :: Policy -> FIO ()
mainLoop pol = do

st0 <- readFIORef stRef
let state = atMostOne (principals pol) st0
writeFIORef stRef state
...

The rest of the code (denoted by ...) is the same as
above. Over time, the content of the reference stRef in-
creases in size with extra faceted constructors due to the
command writeFIORef stRef state. Consequently, if we
do nothing, st0 will grow exponentially large. For this reason,
the function atMostOne also employs the ∼ optimisation
techniques from Section III to remove redundant labels in the
tree denoted by st0. With this optimisation in place, we see
an important difference in performance.

Figure 15 shows the time taken for N clients to connect
to the server and send 10 messages each to a single shared
channel. The unoptimised version of the code, shown in the
figure as UNOPT, is exponential in N, whereas the optimised
implementation runs in polynomial time. In our particular
example the memory behaviour of the optimised an unopti-
mised versions of the program are practically identical. We
attribute this phenomenon to the small number of connected
clients, limited to 10 due to the exponential blowup in the un-
optimised implementation, which means that the overhead in
memory is relatively small and difficult to measure.

VI. RELATED WORK

Much prior work has explored IFC techniques based on
multi-execution [9, 11, 12, 13], running multiple copies of a
program (or parts of it) simultaneously at different security
levels, while carefully adapting their semantics to avoid infor-
mation leakage. Capizzi et al. [30] propose running two copies
of the same program, one for public and other for private data.
Cristiá and Mata independently formalize a similar system
at the operating system level [31]. Devriese and Piessens
[32] coin the term Secure Multi-Execution (SME) and are
the first to formalise the soundness and precision guarantees
of the approach. This original formulation of SME is black-
box, i.e, language independent, which makes it possible to
deploy it for complex languages like JavaScript. Jaskelioff and
Russo [33] present an implementation of SME in Haskell.
Barthe et al. [34] propose a program that inlines SME into
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Fig. 15. The Performance of the Optimised and Unoptimised implementa-
tions of the chat server.

JavaScript-like programs—so that it is not necessary to modify
the runtime system to obtain multi-executions. The web has
been the chosen domain to test many SME ideas [35] and
their implementations, e.g., FlowFox [36]. SME has also been
applied to the map-reduce programming model [37].

Secure programs interpreted under SME produce the same
outputs as if they were run under a standard semantics modulo
the relative ordering of observable events from different secu-
rity levels. The work in [38] explores how different scheduling
policies affect the security guarantees provided by SME, i.e.,
TINI or TSNI. In [39, 40], the authors combine scheduling
techniques with monitoring approaches to guarantee that in-
terleaving of events gets preserved for secure programs. The
authors of [40, 41, 42] provide means for declassification.

A limitation of SME is that it requires multiple execu-
tions, potentially one for each element in the security lattice,
which is particularly problematic for large powerset lattices
or unbounded decentralized lattices. To address this concern,
Austin and Flanagan introduce a Multiple Facets (MF) se-
mantics [43] as an optimization for SME. Schmitz et al. [19]
show an implementation of MF in Haskell. Schoepe et al.
[44] investigate how to apply MF semantics to encode taint
analysis. Bielova and Rezk [15] later show that SME and MF
provide different security guarantees, namely TINI for MF vs.
TSNI for SME. They propose an all-or-nothing combination
of MF and SME that runs programs under a MF semantics
but switches to SME when commands inside a branch do not
terminate within a timeout. In the same all-or-nothing spirit,
Ngo et al. [18] combine MF and SME for a simple while-
language, where timeouts determine when to switch to SME.



That work also presents some local “peephole” optimizations
for faceted values that are applied when values are constructed,
rather than at arbitrary times during execution as in our work.
Schmitz et al. [12] present a synthesis of MF and SME called
Faceted Secure Multi-Execution (FSME), and an underlying
multi-execution framework in Haskell called Multef that can
be parameterized to provide either MF, SME, or FSME.

Yang et al. [16] present an approach for persisting faceted
values into a database, and include an “early pruning” opti-
mization that shrinks faceted values according to the observer,
in a manner that is similar to our projection operator. A key
distinction is that our projection operation is a construct in the
language, thus enabling the programmer to control where this
simplification is applied.

Many other IFC security libraries exists for Haskell. They
can enforce non-interference statically [45, 46, 47, 48], dy-
namically [7], or as a combination of both [49, 50]. Many
of these libraries utilize the concept of monads to control the
side-effects that programs are allowed to perform.

VII. CONCLUSIONS

We have present both data- and computation-oriented opti-
misations for multi-execution based techniques like MF, “on-
demand” SME (as implemented by [12, 13]), and FSME.
The data-oriented optimisations are based on tree transforma-
tions which preserve the views of faceted values. Meanwhile,
the computation-oriented optimisations allow programmers
to reduce unnecessary computations by making assumptions
about who observes the produced results. We provided case
studies that support our claims. As future work, we plan to
explore different rewriting strategies and evaluate the trade-
offs between the time they take to execute and the introduced
space savings—an aspect that our case studies do not evaluate.

We believe that this work fortifies the foundations of more
practical multi-execution based techniques for realistic scenar-
ios, where we not only optimisations are needed but also our
novel notion of focused transparency.
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[27] M. Erné, J. Koslowski, A. Melton, and G. E. Strecker, “A
primer on galois connections,” Annals of the New York
Academy of Sciences, vol. 704, no. 1, pp. 103–125, 1993.

[28] D. Hedin and A. Sabelfeld, “A Perspective on
Information-Flow Control,” in Proc. of the 2011 Mark-
toberdorf Summer School. IOS Press, 2011.

[29] P. Hudak, S. Peyton Jones, P. Wadler, B. Boutel,
J. Fairbairn, J. Fasel, M. M. Guzmán, K. Hammond,
J. Hughes, T. Johnsson, D. Kieburtz, R. Nikhil,
W. Partain, and J. Peterson, “Report on the programming
language haskell: A non-strict, purely functional
language version 1.2,” SIGPLAN Not., vol. 27,
no. 5, pp. 1–164, May 1992. [Online]. Available:
http://doi.acm.org/10.1145/130697.130699

[30] R. Capizzi, A. Longo, V. N. Venkatakrishnan, and A. P.
Sistla, “Preventing Information Leaks through Shadow
Executions,” in Proc. of the Annual Computer Security

Applications Conference, ser. ACSAC ’08. IEEE Com-
puter Society, 2008.
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APPENDIX A
COMPUTATION ORIENTED OPTIMISATIONS

In this appendix we provide full definitions of semantics and
operations as well as proof sketches for the main theorems of
Section IV. Full proofs can be found in the Agda mechanisa-
tion. Figure 17 shows the full semantics of λ Facet. Figure 16
contains the full definition of ` |= e.

Our definition of a secure program differs from that of both
Schmitz et al. [12] and Devriese and Piessens [11] because
their notions are too restrictive to accurately capture what it
means to be a secure program. We will demonstrate this by
considering the program λx.if x then 1 else 1 with the
security policy (H,L), secret input and public output. In [12],
t is secure if when t0 and t1 are low equivalent and t t0−

RAPPCONG
t0 −→ t ′0

t0 t1 −→ t ′0 t1

RBETA

(λx. t0) t1 −→ t0[t1/x]

RFIX

µx. t −→ t[µx. t/x]

RLEFTFACET
t0 −→ t ′0

〈` ? t0 : t1〉 −→ 〈` ? t ′0 : t1〉

RRIGHTFACET
t1 −→ t ′1

〈` ? t0 : t1〉 −→ 〈` ? t0 : t ′1〉

RFACETAPP

〈` ? t0 : t1〉 t2 −→ 〈` ? t0 t2 : t1 t2〉

REQUIV

t0 ∼ t1
t0 −→ t1

RPROJECT

t ⇓ e−→ JeK(t,⊥)
BOTTOM

⊥ t −→⊥

Fig. 17. The full operational semantics of λ Facet

x ↓ `o = x

λx. t ↓ `o = λx. (t ↓ `o)

t0 t1 ↓ `o = (t0 ↓ `o) (t1 ↓ `o)

unit ↓ `o = unit

µx. t ↓ `o = µx.(t ↓ `o)

〈` ? t0 : t1〉 ↓ `o =

{
t0 ↓ `o, `v `o

t1 ↓ `o, otherwise

(t ⇓ e) ↓ `o =

{
t ↓ `o, `o |= e
⊥, otherwise

⊥ ↓ `o =⊥

Fig. 18. The full definition of projection extended to λ Facet

std→∗ t ′, there exists a term t ′′ such that t t1 − std→∗
t ′′ and t ′ is low equivalent to t ′′. The definition requires that
all of the reduction steps for t t0 can be mimicked by t t1.
This is best illustrated by comparing the evaluation of t =
λx.if x then 1 else 1 with inputs t0 = 〈H ? 0 : 0〉 and
t1 = 〈H ? 1 : 0〉. Both t t0 and t t1 terminate with the value 1
and t is clearly a secure program. The problem is that t t0−
std→∗ if 1 then 1 else 1 before terminating, and in
order for t to be secure in the sense of [12], they also require
that t t1−std→∗ if 1 then 1 else 1. Because the latter

`� x
`� t

`� λx. t
`� t0 `� t1
`� t0 t1

`� unit

`� t
`� µx. t

`�⊥
` |= e `� t
`� t ⇓ e

`′ v ` `� t0
`� 〈`′ ? t0 : t1〉

Fig. 19. Full definition of `� t



is not the case, t is not secure by the definition in [12]. In
order to avoid this issue, we instead use the notion of a secure
program from [28]:

Definition 15 (TSNI Secure Program): A term Γ,x : τ0 ` t :
τ1 is secure w.r.t. the security policy (`i, `) when, for any two
inputs Γ ` t0, t1 : τ0 which are compatible with `i, such that
t0 ∼` t1, we have that if t[t0/x]−std→∗ v0 for some value
v0 then there exists a value v1 such that t[t1/x]−std→∗ v1
and v0 ∼` v1. As a consequence, if t[t0/x] does not evaluate to
a value, then neither does t[t1/x]. We also state the definition
diagrammatically in Figure 20.

t[t0/x] v0

t[t1/x] v1

std
∗

∼` ∼`

std
∗

Fig. 20. TSNI Secure Program

Full lines in the diagram
in Figure 20, and the dia-
grams to come, denote pre-
conditions and dashed lines
denote the “result”, what is
in the existential quantifi-
cation. For example, in the
definition above t[t0/x] −
std→∗ v0 is given, while
v1 and t[t1/x]−std→∗ v1 are obtained from the existential.

Lemma 2 (Simulation): Given an `∈L and two terms Γ `
t, t ′ : τ such that t ↓ `−std→∗ t ′ there exists an t ′′ such that
t −→∗ t ′′ and t ′ ∼` t ′′.

t ↓ ` t ′

t t ′′

std
∗

∼`↓`

∗

Theorem 11 (Transparency): For any policy (`i, `), given a
program Γ,x : τ0 ` t : τ1 which is secure with respect to (`i, `)
such that t ↓ ` = t, that is to say that t is unfaceted, and a
term Γ ` t0 : τ0 which is compatible with `i. We have that if
t[t0/x]−std→∗ v for some value v, then there exists a t ′ such
that t[t0/x]−→∗ t ′ and v∼` t ′. Stated as a diagram:

t[t0/x] v

t ′

std
∗

∗

∼`

Proof: We give a diagrammatic proof sketch:

t[t0/x] v

t[t0 ↓ `/x] t ′′

t[t0/x] t ′′′

std
∗

∼`

=

∼`

∼`std
∗

↓`

∗

∼`

The top square, relating the standard evaluation of t[t0/x] with
that of t[t0 ↓ `/x] is obtained from the definition of a secure
program. The bottom square is obtained from the Simulation

lemma. Note that this lemma requires t[t0/x] ↓ `−std→∗
t ′′, but we have t[t0 ↓ `/x]− std→∗ t ′′. This is where our
condition that t ↓ ` = t comes in, as for any t0, t1, ` we have
t0[t1/x] ↓ `= t0 ↓ `[t1 ↓ `/x]. The bottom reduction, t[t0/x]−→∗
t ′′′ is the required diagonal in the statement of the theorem.

Lemma 3 (Projection): Given any ` ∈L and any two well
typed terms Γ ` t, t ′ : τ such that t −→ t ′ we have that
t ↓ `− std→∗ t ′ ↓ ` in zero or one steps. When rendered
diagrammatically we have:

t t ′

t ↓ ` t ′ ↓ `

↓` ↓`

std
∗

Lemma 4 (Single Step TSNI): Given any ` ∈ L and any
three well-typed terms Γ ` t0, t ′0, t1 : τ such that t0 ∼` t1 and
t0 −→ t ′0, there exists a Γ ` t ′1 : τ such that t1 −→∗ t ′1 and
t ′0 ∼` t ′1. Rendered in diagram form, we have:

t0 t ′0

t1 t ′1

∼` ∼`

∗

Proof: We chase diagrams:

t0 t ′0

t0 ↓ ` t ′0 ↓ `

t1 t ′1

↓`

∼`

↓`

∼`std
∗

∼`↓`

∗

The top square is obtained from the Projection lemma and the
bottom from Simulation.

Theorem 12 (TSNI): Given any ` ∈L and any three well-
typed terms Γ ` t0, t ′0, t1 : τ such that t0 ∼` t1 and t0 −→∗ t ′0,
there exists a Γ ` t ′1 : τ such that t1 −→∗ t ′1 and t ′0 ∼` t ′1.

Proof: By induction on the derivation of t0 −→∗ t ′0,
making use of Single Step TSNI in the step case.

Theorem 13 (Focused Transparency): For any policy
(`i, `), given a program Γ,x : τ0 ` t : τ1 which is secure with
respect to (`i, `) such that ` � t (i.e. the annotations in t are
correct) and a term Γ ` t0 : τ0 which is compatible with `i, we
have that if t[t0/x]−std→∗ v for some value v, then there
exists a t ′ such that t[t0/x]−→∗ t ′ and v∼` t ′.
The full proof, which can be found in the Agda mechanisation,
works by the same diagram chasing style argument as the
proof of transparency above.


