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Abstract—Environmental noise (e.g. heat, ionized particles,
etc.) causes transient faults in hardware, which lead to corruption
of stored values. Mission-critical devices require such faults to
be mitigated by fault-tolerance — a combination of techniques
that aim at preserving the functional behaviour of a system
despite the disruptive effects of transient faults. Fault-tolerance
typically has a high deployment cost — special hardware might
be required to implement it — and provides weak statistical
guarantees. It is also based on the assumption that faults are
rare. In this paper, we consider scenarios where security, rather
than functional correctness, is the main asset to be protected.
Our main contribution is a theory for expressing confidentiality
of data in the presence of transient faults. We show that the
natural probabilistic definition of security in the presence of faults
can be captured by a possibilistic definition. Furthermore, the
possibilistic definition is implied by a known bisimulation-based
property, called Strong Security. We illustrate the utility of these
results for a simple RISC architecture for which only the code
memory and program counter are assumed fault-tolerant. We
present a type-directed compilation scheme that produces RISC
code from a higher-level language for which Strong Security
holds - i.e. well-typed programs compile to RISC code which
is secure despite transient faults. In contrast with fault-tolerance
solutions, our technique assumes relatively little special hardware,
gives formal guarantees, and works in the presence of an active
attacker who aggressively targets parts of a system and induces
faults precisely.

I. INTRODUCTION

Transient faults, or soft errors, are alterations of the state in
one or more electronic components, e.g., bit flips in a memory
module [24]. In some situations, we are willing to accept that
a system may fail due to transient faults, for example, that an
occasional message may be lost or corrupted. The problem we
address in this paper is how to prevent transient faults (which
will be referred to as “faults” in the rest of the paper) from
compromising the security of the system — for example, by
allowing an attacker to access a secret.

It has indeed been shown that bit flips can effectively be
used to attack, e.g., the AES encryption algorithm and reveal
the cipher key [7]. More recently, it has been shown that faults
occurring in the computation of an RSA signature can permit
an attacker to extract the private key from an authentication
server [26]. Moreover, it is not just the security of crypto sys-
tems that is potentially vulnerable. Risks are greatly amplified
if the attacker can influence the code executed by a system that
can experience faults: it has been demonstrated that a single
fault can cause (with high probability) a malicious but well-
typed Java applet to violate the fundamental memory-safety
property of the virtual machine [16].
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Traditional countermeasures against faults aim to make
devices fault-tolerant, i.e. able to preserve their functional
behavior despite soft errors. Most fault-tolerance mechanisms
are based on redundancy: resources are replicated (either in
software or in hardware) so that it is possible to detect, if
not repair, anomalies. Typically, such solutions are designed
for protection against a very simple fault model, in which
a limited number of faults are assumed. Moreover, the for-
mal guarantees of software-based fault-tolerance mechanisms,
according to Perry et al. [27], are usually not stated — it
is more common that their efficacy is explored statistically.
In reasoning about security it is more difficult to give a
statistical model of the environment’s behaviour — it might
be that the environment is an active adversary with a laser
and a stopwatch (cf. [31]) rather than just passive background
radiation. Similarly, experimental evidence based on typical
deployment of representative programs is not likely to be
so useful if an attack, as it often does, requires an atypical
deployment of an unusual program.

Overview of the Paper and Contributions In order to
be precise about the guarantees that we provide and the
assumptions we make, we develop a formal, abstract model
of fault-prone systems, attackers who can induce faults based
on the observations made of the system’s public output, and
the resulting interaction between the two (Section II-A). From
this, we define our central notion of security in the presence
of faults, probabilistic fault-resilient non-interference (PNI). A
system is secure in the presence of faults if, for any attacker
influencing the injection of faults, the probability of a given
public output is independent of the secrets held by the system
(Section II-B).

Reasoning directly about fault-resilient non-interference is
difficult because (i) it demands reasoning about probabilities,
and (ii) it quantifies over all possible attackers (in a given
class).

Our contribution tackles these difficulties with two key
theorems. Theorem 1 (Section II-C) shows that PNI can be
characterised exactly by a simpler possibilistic definition of
noninterference, defined by assuming that the exact presence
and location of faults are observable to the attacker. This
removes difficulty (i), the need to reason about probabilities.
Theorem 2 (Section II-D) then shows that the possibilistic
definition is implied by a form of strong bisimulation prop-
erty, adapting ideas from its use in scheduler independent
security of concurrent programs [30]. This theorem eliminates



difficulty (ii), enabling PNI to be proved without explicit
quantification over all attackers.

Application (Section III) We illustrate the utility of Theo-
rem 2 in a specific setting: a fault-prone machine modeling a
program running on a RISC-like architecture, where faults can
occur in registers and data memory, but not in the part of the
memory storing the program instructions, or in the program
counter register. The aim is to give a sound characterisation
of RISC programs which, when placed in the context of the
machine, give a system which is secure despite faults. Our ap-
proach combines ideas from security type systems for simple
imperative programs with a type-directed compilation scheme.
Roughly speaking, our type-directed compilation of simple
imperative programs guarantees that a well-typed program
compiles to RISC code which, for this architecture, is secure
despite faults.

Our innovative perspective on the problem of guaranteeing
security in the presence of transient faults combines a lot of
concepts from other works, coming from both security and
dependability literature. In order to clarify these connections,
we discuss related works in Section IV, whereas in Section
V we focus on the main limitations of our results (including
those shared with other approaches). We complete the paper
in Section VI, where we briefly summarize the conclusions of
our study.

Due to space limitations, the full details of this
work, and in particular all of the proofs relating to
Section III, are presented in the extended version of
the paper [13].

II. A THEORY FOR PROBABILISTIC FAULT-RESILIENT
NON-INTERFERENCE

We begin (Section II-A) by setting up a rigorous but abstract
semantic model for systems that can experience transient
faults, and for environments inducing these faults. Then,
we establish a model for their interactions and a security
definition (Section II-B) for the composition of a system
with a fault environment as probabilistic fault-resilient non-
interference (PNI). We continue (Section II-C) by simplifying
the security model introduced for PNI in two steps. Firstly, we
propose a simpler, nondeterministic fault model for fault-prone
systems. This model leads to a more straightforward notion
of security called possibilistic fault-resilient non-interference
(PoNI)! which is then shown to be equivalent to PNI. Finally,
we introduce (Section II-D) the notion of Strong Security
(SS), a bisimulation-based security condition which is proved
stronger than PoNI, hence PNI.

A. Probabilistic Fault-Resilient Non-Interference

In this work we focus on systems that can be modelled
as deterministic labelled transition systems (intuitively, this
corresponds to having a deterministic program running on
some particular input). We assume that at any point of their
execution, these systems can experience a transient fault, and

'A similar but weaker notion of security has been presented in [12].

for this reason we call them fault-prone systems. Since we
have to reason about bit flips, we model the state of a system as
just a collection of bits, each of which is identified by a unique
location. The locations are partitioned into a fault tolerant
part of the system (e.g. memory with error correcting codes),
and a faulty part. Only the faulty locations are affected by
soft errors from the environment. The labels of the transition
system model outputs of the fault-prone system and ‘“clock
ticks” (7) which mark the discrete passage of time. We assume
that some outputs can be distinguished by an external observer,
whereas the others appear as 7.

Definition 1 (Fault-prone System): A fault-prone system Sys
is defined as Sys = {Loc, Act,— C S x Act x S}, where:

e The set Loc is finite and contains all the locations (ad-
dresses) of the system. It is partitioned into a fault-tolerant
subset and a faulty one, namely 7" and F'. Fault-tolerant
locations are not affected by soft errors, whereas bits stored
in the faulty part of the hardware can get flipped because
of transient faults.

e Act includes system outputs and a distinguished silent
action 7 marking the passage of time. We assume that
“public” observations (what an attacker can see) are limited
to events in LAct C Act, whereas any other action
performed by the system is observed as 7.

¢ The transition relation (—) formalizes the system behavior.
Given the set of all possible states for the system, namely
S which are functions from Loc to {0,1}, the transition
relation — models how the system evolves. We write
transitions in the usual infix manner S = S’ for S, S’ € S.
The system is deterministic in the sense that for any S € S
there is at most one state S’ and one action [ and a
transition S & .

We now introduce a probabilistic fault model, which induces
transient faults in F, the fault-prone subset of S. We refer
to this model as the environment, or, synonymously, as the
attacker.

A simple environment can be modeled as an agent that
induces bit flips in the faulty locations with some fixed (small)
probability. Unfortunately, this representation does not capture
many realistic scenarios: for example, some locations in the
system may be more error-prone than others, and (due to high
densities of transistors) the probability of a location being
flipped may be higher if a neighboring bit is flipped. We
could therefore consider environments that can induce faults
according to a probability distribution over the powerset of
faulty locations, where the probability associated with a given
set of locations L is the probability that exactly the bits of L
are flipped before the next computation step occurs. However,
such static model of the environment is not sufficient to model
an active attacker. An active attacker may have physical access
to the system (e.g., a tamper-proof smart card), and may be
able to influence the likelihood of an error occurring at a
specific location and time with high precision (see, e.g., [31]).
What is more, the attacker may do this in a way that depends
on the previous observations, namely the passage of time and



the publicly observable actions. We therefore formalize these
capabilities of an environment as follows (recall that p(A)
here denotes the powerset of a given set A).

Definition 2 (Fault environment):

Consider a fault-prone system Sys = {Loc, Act,—}. A
fault environment (Err, Fault) for Sys consists of:

* a labelled transition system Err = (£, LAct U {r},~ C
E x (LAct U {7}) x &), where & represents the set of
environment’s states;

» a function Fault € & — o(F) — [0,1] such that for
all states £ € £, we have that Fault(E) is a probability
distribution on sets of locations.

We require that for all states £/ € £ and for all actions a €
LAct U{r} there exists a unique state E’ € & such that F ~
E’. Intuitively, the state F € £ determines the probability that
a given set of locations (and no others) will experience a fault
in the current execution step of the system. At each step, the
state of the attacker evolves by the observation of “low” events
and the passing of time.

Example 1: We illustrate the use of Definition 2 by charac-
terizing the simplest most uniform fault-inducing environment:
a bit flip may occur in any location with a fixed probability e.
To model this as a fault environment, we need only a trivial
transition system involving the single state ¢ (£ = {¢}), whose
transitions are Ya € LAct U {T}. e ~ e. As for the Fault
function consider a set L C F where |L| = k and |F| = n.
Then the probability that flips occur in all locations in L and
nowhere else is equal to the probability of faults in every
location in L, namely €*, multiplied by the probability of the
remaining locations not flipping, namely (1 — €)"~*. Hence

Fault(e)(L) = €*(1 — €)" % where k = |L| and n = | F|

We now define how fault environments are composed to-
gether with fault-prone systems. Some preliminary considera-
tions are needed. We need to model the physical modification
performed by the environment on the faulty part of the system.
For this, a function flip is defined as flip(S,L) = S[I —
—-S[l],l € L], which gives the result of flipping the value
of every location in L of state S (assuming L C F'). Notice
that when L is the empty set, no modification to the state
is performed. We also need to formalize that an attacker
can distinguish only a subset of all possible actions of the
system. This is obtained by assuming that there is a function
low € Act — LAct U {7} that behaves as the identity for
actions in L Act, and maps any other action to 7. This provides
the public view of the system’s output. Finally, we say that a
state .S is stuck if there is no transition from that state.

Definition 3 (Fault-prone System and Environment): Con-
sider a fault-prone system Sys = {Loc, Act,—}, and an envi-
ronment Env = (Err, Fault) where Err = (€, LActU{7},~
). The composition of Sys and Env, defined as Sys x Env =
(§ x &,(Act,[0,1]), —) where S is the set of all possible
states for Sys, defines a labelled transition system whose states
are pairs of the system state and the environment state, and
with transitions labelled with an action @ and a probability p,

written i>p. Transitions depend on the state of the system as
follows:

o If the system state S is not stuck, it undergoes a transient

fault according to the flip function; then, providing the
flipped state is not stuck, the execution takes place, namely

m={L| L€ p(F) and flip(S,L) % S’}
p=SieFault(E) (L)  ENY B
(S, E)=p (8, E)
Observe that, in general, there might be several subsets
of L C F such that flip(S, L) results in a state that (i)
performs the same action a and (ii) performs a transition to
the final state S’. For this reason, the probability associated

with the rule corresponds to the sum of all probabilities
associated with locations in the set .

Step

e If the system state is made stuck by a transient fault, or it
is already stuck, it does not perform any action. However,
both the environment and the composition of the system
state with the environment state evolve as if the system
had performed a 7 action.

AS LS LepF) flipL,S) A
p = Fault(E)(L) E-L E
(S, EYD, (flip(L,S), E")

Stuck-1

S+4 E-LE
(S, E)51(S, E")

Stuck-2

We enforce these restrictions because an error environment
should not be able to distinguish between an active but
“silent” and a stuck state. Notice that this way of modeling
the composition of systems and environments guarantees
that any state of the composition can progress.

This form of transition system is sometimes known as a fully
probabilistic labelled transition system, or a labelled markov
process.

B. Defining Security

We can now reason about security of a system operating in
an environment: Sys x Enwv. Firstly, we define the observations
that the attacker can perform. Then, we define when sensitive
data remains secure despite the attacker observations.

Our attacker sees sequences of actions in LActU{7}, called
traces, and measures their probability, but does not otherwise
have access to the state of the fault-prone system.

We say that the sequence r = Z a#po AR/
Zy, is a run of size n of a system state Z € Sys x Env
and has probability Pr(r) = Ilo<i<n—1p;. The set of all n-
runs of Z are denoted run,(Z), and we define the set of
all runs for Z as run(Z) = Uyrun,(Z). Consider a run
r = Z a#pg Z1 .. Dy aglpn_l Z, and let trace €
run(Z) — (LAct U{7})* be a function such that trace(r) =
low(ag)...low(an—1). For any ¢t € (LAct U {7})™, define



Prz(t) = Xirerun, (2)|trace(r)=¢t} Pr (7). This definition induces
a probability distribution over (LAct U {7})".

Proposition 1: For any state Z € Sys x Env and for any
n >0 Sie(pactu{-pnPrz(t) = 1.

Proof 1: Appendix A-A.

We can now define the notion of probabilistic non-
interference [17] that characterises security for fault-prone
systems. For this purpose, we consider the case when the
initial state of a fault-prone system is an encoding of three
different components: (i) a “program”, the set of instructions
executed by the system, (ii) “public data”, that stores values
known by an attacker and (iii) “private data” for confidential
information. We formalize this partition by defining three
mutually disjoint sets ProgLoc, LowLoc and HighLoc (such
that Loc = ProgLoc U LowLoc U HighLoc) and, for a system
state .S, by defining the program component P as S| ProgLoc’

the public data L as S|LDwLOC and H as S|Hz'ghLoc'

Observe that the way locations are partitioned between
program and data is orthogonal to the way they are partitioned
between fault-tolerant and faulty components. This is because
fault-tolerance is orthogonal to the way security is defined.

Our definition of security, Probabilistic Fault-Resilient Non-
Interference (PNI), requires a notion of equivalence to be
defined for states that look the same from an attacker’s point of
view. Two system states .S and S’ are low equivalent, written as
S =8, if S’ TowLoe =5 | LowLee: LLOW €quivalence provides
us a way for defining when the program component of a state
is secure even in the presence of transient faults. Intuitively
the definition says that a program component P is secure if
the observed probability for any trace is independent of the
sensitive data, for all system states where P is the program
component.

Definition 4 (PNI): Let Sys be a fault-prone system and
let P be a program component of Sys. We say that P is
probabilistic fault-resilient non-interfering, if for any system
states 5,5’ € Sys such that S’ ‘ ProgLoc = S | ProgLoc = P and
S =, &, it holds that for any state E of any environment
Env, for any n > 0 and for any ¢t € (LAct U {7})"™ we have
Pris, g)(t) =Pri s, g)().

The definition demands that probability of publicly observable
traces only depends on values stored in the low locations. Also,
it requires that this must hold for any fault-environment.

C. Possibilistic Characterisation of Fault-Resilient Non-
Interference

Reasoning directly about fault-resilient non-interference is
difficult because (i) it demands reasoning about probabilities,
and (ii) it quantifies over all possible attackers (in a given
class). In this section, we address the first of these problems.

A possibilistic model (i.e. not probabilistic) of the interac-
tion between a fault-prone system and the error environment
can be obtained by interleaving the transitions of the fault
prone system with a nondeterministic flipping of zero or more
bits. While this model avoids reasoning about probability
distributions as well as injection of faults by an attacker, it is
not adequate to directly capture security, as it is well-known

that possibilistic noninterference suffers from probabilistic
information leaks (see e.g. [17]). In order to capture PNI
precisely, we augment this transition system by making the
location of the faults observable.

Definition 5 (Augmented Fault-prone System): Given a fault-
prone system Sys = {Loc, Act,—} we define the augmented
system Sys™ as SysT = {Loc, p(F) x Act,~} , where ~
is defined according to two cases:

e If the system state S is not stuck, it undergoes a nonde-
terministic transient fault first; then, providing the flipped
state is not stuck, execution takes place, namely

flip(S,L) % S" LCF
S ﬁi@ S’
Observe that, compared to the corresponding rule in Defi-
nition 3, we have that L induces a unique transition since
it appears in the transition label.

e If the system state is stuck, or it is made stuck by a
transient fault, the transition does not modify it. However,
the label attached to the transition is (L,7) so that, as in
Definition 3, we make a stuck state indistinguishable from
a silently diverging one.

The model resembles the composition of fault-prone sys-
tems and fault environments presented in Definition 3, in-
cluding the fact that it hides the termination of a system
configuration. However, it introduces two main differences
that influence the way security is defined. On one hand,
the augmented system is purely nondeterministic, and this
supports a simpler definition of security. On the other hand, the
augmented system has more expressive labels, that include not
only the action performed by the system but also information

about flipped locations.
Ly—1,an-1

We call the sequence r = S S1...85,_1
S, a possibilistic run of a system state S € Sys', and
we say that ¢ = Lg,low(ag),...,Ln—1,low(a,—1) is its

Lo,ao

corresponding trace. We write S ~45 when there exists a run r,
produced by S, that corresponds to ¢. With these conventions,
security for augmented systems, Possibilistic Fault-Resilient
Non-Interference (PoNI), is defined by using the same notation
presented in the previous section for fault-prone systems
composed with environments.

Definition 6 (PoNI): We say that a program component P
satisfies possibilistic fault-resilient non-interference, if for any
S,8" € Sys™ such that S’ = P and

S = S, for any trace t, it holds that S o o G

The following result says that the definitions of PNI and
PoNI coincide.

Theorem 1: A program component P satisfies PNI if and
only if it satisfies PoNI.

Proof 2: Appendix A-C.
Some intuition about this result is perhaps appropriate here.
As mentioned previously, it is common wisdom that the
possibilistic view of a system’s behaviour may not be adequate

’ ProgLoc = S‘ ProgLoc



to rule out information flows transmitted not by the possible
observable behaviours, but by the probability of their occur-
rence [17]. At first glance this seems contrary to the thrust of
Theorem 1, where a probabilistic security property is implied
by a possibilistic property and not vice versa. The reason why
this works is that we augmented the original model with ad-
ditional observable behaviours (the exact fault locations); the
information carried by this additional information subsumes
(and hence is a proxy for) the information that can be carried
solely by probabilities.

D. Strong Security Implies PNI

We now formalize a different notion of security that guar-
antees PoNI (and hence PNI) without explicitly modeling the
effects of transient faults in a fault-prone system. This notion,
called Strong Security, was developed as a way to capture
a notion of scheduler independent compositional security for
multithreaded programs [30].

Strong security is a bisimulation relation over program
components of fault-prone systems. Our goal is to relate strong
security to the possibilistic security definition established for
augmented systems, and show that indeed it is stronger.
Before doing so, we need to make sure that the semantics
of fault-prone systems hides termination, as it is the case for
augmented systems. In particular, for a fault-prone system
Sys = {Loc, Act,—}, we define its termination-transparent
version as Sys™ = {Loc, Act,—~} where —, coincides
with — for active states, but has additional transitions S —
S whenever S /4 (details are discussed in Appendix A-B).
With this, we define strong security for termination-transparent
fault-prone systems as follows.

Definition 7 (Strong Security (SS)): Let Sys be a fault-prone
system and Sys>™ = {Loc, Act,—} be the corresponding
termination-transparent fault-prone system. A symmetric rela-
tion R between program components is a strong bisimulation
if for any (P, P') € R we have that for any two states S,V
in S, if S|p, o =P and V|, =P andS=;V and

S % S then V 5. V' such that (i) low(a) = low(b) and
(i) " =1 V" and (iD) (5|5, 1000 V' | progroc) € B We say
that a program component P is strongly secure if there exists
a strong bisimulation R such that (P, P) € R.

Intuitively, a program component P is strongly secure when
differences in the private part of the data are neither visible
in the computed public data, nor in the transition label.
This anticipates the fact that even though an external agent
(the error environment, in our scenario) might alter the data
component, the program behavior does not reveal anything
about secrets.

The next result shows that Strong Security is sufficient to
obtain PoNI. Notice, however, that the definition of Strong
Security only deals with the modifications that occur in the
data part of a fault-prone system. Hence, it only makes sense
for the class of systems that host the program component in
the fault-tolerant part of the configuration.

Theorem 2 (Strong security = PoNI): Let P be a program

component such that ProgLoc C T. If P satisfies SS then P
satisfies PONI.

Proof 3: Appendix A-D.

We now propose a brief overview of the strategy that is used
to prove this result.

The main step when proving this theorem is to find a
formalization of SS that is closer to the way PoNI is defined,
and use it to show that SS is indeed stronger than PoNI.

We achieve this result by introducing a “transition traces”
semantics for fault-prone systems. This semantic model has
been proposed in [9] for assigning a trace-based semantics to
concurrent programs. We say that a program F, has a tran-
sition trace (Mo, ag, No), (M1,a1,N1),..., (Mg, ar, Ni), ...
if, for any ¢, the program P; transforms the input data
configuration M; into the output data configuration NV;, with
a visible action a;, and becomes P; 1. Notice that the output
data configuration resulting from a computation step does not
necessarily correspond to the input data configuration used in
the subsequent step. This feature explicitly models the fact
that in a concurrent setting, the actions of a program can be
arbitrarily interleaved with the modification performed by the
environment in which the execution takes place.

We instantiate the transition trace definition in the context of
fault-prone system by considering the partition of the system
locations between the program and the data component (in
its public and private parts) introduced for defining Strong
Security. Notice that, in fact, this semantic view of fault-prone
systems is reminiscent of the way Strong Security is defined,
since in both cases the memory configurations are changed in
every step.

Within the transition trace semantic model for fault-prone
systems, we define a security property called Strong Trace-
based Security, that captures the main features of Strong
Security and, at the same time, models the modification
induced by bit flips. We say that a program component of a
fault-prone system satisfies Strong Trace-based Security when
any two transition traces that are input-low equivalent (i.e. all
the corresponding input configurations are low equivalent), are
also output low equivalent (i.e. all the corresponding output
configurations, and all the corresponding actions, are low
equivalent).

We use transition trace semantics and Strong Trace-based
Security to prove the relation between SS and PoNI. The first
step is to show that Strong Security implies Strong Trace-based
Security. This is intuitively correct since the latter property
is, approximately, an unwinding of the former. Then, we
show that Strong Trace-based Security implies PoNI. This is
achieved by noticing that low equality is preserved by bit-
flips, hence any pair of runs involved in PoNI can be mapped
to their correspondent pair involved in the definition of Strong
Trace-based Security.

We conclude this section by noting a negative result: PoNI
does not imply SS. Strong security requires that the partition
of the state into program, low, and high part is preserved (re-
spected) during the whole computation, whereas the definition
of PoNI imposes no special requirement on intermediate states



of the computation.

III. A TYPE SYSTEM FOR FAULT-RESILIENT
NON-INTERFERENCE

In this section, we present an enforcement mechanism
capable of synthesizing strongly secure assembly code. The
enforcement is given as a type-directed compilation from
a source while-language. All in all, we present a concrete
instance of our fault-prone system formalization by defining
the RISC architecture (Section III-A) and propose a technique
to enforce strong security over RI SC programs (Section III-B),
whose soundness is sketched in Section III-C. By achieving
strong security, we automatically get secure RISC code that is
robust against transient faults (recall Theorem 2).

A. A Fault-Prone RISC Architecture

The architecture we are interested in has various hardware
components to operate over data and instructions.

Data resides in the memory and in the register bank. We
model the memory M as a function W — W, where W is
the set of all constants that can be represented with a machine
word. The register bank R is modeled as a function Reg — W,
where Reg, ranged over by r, 1/, is a set of register names.

I == []B

B :=loadr k |storekr |jmpl |jzlr | nop
movek r n | mover r v/ | opr 7’ | out chr

ch = low | high

Fig. 1. RISC instructions syntax

Figure 1 describes the instruction set of our architecture. We
consider that every instruction I could be optionally labeled
by a label in the set Lab. Instruction load r k accesses the
data memory M with the pointer &k € W and writes the
value pointed by k into register r € Reg. The corresponding
store k r instruction writes the content of r into the data
memory address k. Instruction jmp [ causes the control-flow
to transfer to the instruction labeled as [. Instruction jz [ r
performs the jump only if the content of register r is zero.
Instruction nop performs no computation. The instruction
movek 7 k writes the constant k to r, whereas the instruction
mover 7 7’ copies the content in 7’ to r. The instruction op
stands for a generic binary operator that combines values in r
and r’ and stores the result in 7. Instruction out ch r outputs
the constant contained in r into the channel ch, that can be
either low or high.

The processor fetches RISC instructions from the code
memory P, separated from M. The code memory is modeled
as a list of instructions. We require the code memory to
be well-formed, namely not having two different instructions
labeled in the same way. A dedicated program counter register
stores the location in P hosting the instruction being currently
executed. The value of the program counter is ranged over by
pe.

As described in Section II, we partition the architecture
into faulty and fault-tolerant components. Both R and M

P(pc) =load r p
P e BM) D (P et Rl o M(p)], M)
P(pc) =store p r
" (P,pc, R, M) =5 (P, pct, R, M[p — R(r)])
P(pc)=jzlr R(r)=0
" (P, pc, R, M) =5 (P, pc — resp(l), R, M)

P(pc)=jzlr R(r)#0
(P, pc, R, M) =5 (P, pc*, R, M)
P(pc) = out ch r Reg(r) =
(P, pc, R, M) — chin — (P, pct, R, M)

Jz-F

Out

Fig. 2. Selected rules for RISC instructions semantics

are considered to be faulty: transient faults can strike any
location at any time during the execution. On the other hand,
we assume P and the program counter are implemented in the
fault-tolerant part of the architecture. The fact that the code
memory is fault-tolerant corresponds to having the machine
code in a read-only memory with ECC, a common assumption
in dependability domain. The requirement on the program
counter is a restriction that turns out to be necessary for
proving the soundness of our enforcement mechanism.

We instantiate the RISC architecture as a fault-prone system
by defining the semantics of the language as a labelled transi-
tion system. A state is defined as a quadruple (P, pc, R, M),
for pc € W, where the first two elements correspond to the
fault-tolerant portion of the hardware. Any action of the system
is either an output (low!k when the output is performed on the
publicly observable channel, high!k otherwise) or the silent
action 7. A few examples of transition rules are described in
Figure 2 (the full presentation can be found in the extended
version of this paper [13]). We write P(pc) as a shorthand
for the instruction at position pc in P and pc™ as a shorthand
for pc + 1. We assume that the function resp € Lab — W
returns the position at which label [ occurs in P: resp(l) =i
iff P(i) =1: B for some B.

Once the rule [Load] is triggered, the register content at r is
updated with the memory content at p (R[r — M(p)]), and the
program counter is incremented by one (pc™). Conversely, the
rule [Store] writes the content at register » in memory location
p (M[p — R(r)]. In case of a jump instruction, neither
memory nor registers are modified. If the guard is 0, as in
rule [Jz— 8], the execution is restarted at the instruction of the
label used as the jump argument pc — resp(l), otherwise the
program counter is just incremented. All previous instructions
map to silent actions 7: channels are written by instruction
[Out] which, on the other hand, leaves both register and
memory untouched.

B. Strong Security Enforcement

We guarantee strong security for some RISC programs
via a novel approach based on type-directed compilation.



Our strategy targets a simple high-level imperative language,
while. For while programs we define a type system that
performs two tasks: (i) translation of while programs into
RISC programs (ii) enforcement of Strong Security on while
programs. The compilation is constructed so that the strong
security at the level of while programs is preserved by the
compilation.

To facilitate the proof of strong security, the method is
factored into a two-step process: a type-directed translation
to an intermediate language followed by a simple compilation
to RISC. In this section, we limit ourself to an overview of
the method and therefore elide this intermediate step from the
presentation.

The grammar of the while language is presented in Figure
3. Both expressions and commands are standard, and assume
that the language contains an output command out.

C == skip | z:=FE | if Ethen C; else Cy
| outch E | C1;C | while z do C

E = keW | ze€ Var | E;op Es

ch low | high

Fig. 3. while programs syntax

Typing Expressions The general structure of the typing
judgement for expressions is presented in Figure 4.

2 “)

= —~
S AllF E — P {(\n)r®
—— ~~ ~—~
M 3 ®)

Fig. 4. General structure for expression typing rules

The core part of the judgement says that while expression
E (2) can be compiled to secure RISC program P (3), with
security annotation (4). For defining the security annotation,
we assume while variables and RISC registers are parti-
tioned into two security levels {L, H} (ordered according to
C, which is the smallest reflexive relation for which L © H)
according to the function level € Var U Reg — {L, H}. The
first component A of a security annotation (A,n) specifies
the security level of the registers that are used to evaluate an
expression. The second component n represents the number of
RISC computation steps that are necessary to evaluate I. The
reason for tracking this specific information about expressions
(and in commands later on) is related to obtain assembly code
which avoids timing leaks — the type-directed compilation will
use n, for instance, to do padding of code when needed [1].
In fact, most of the involved aspects in our type-system arises
from avoiding timing leaks in low-level code.

Because the compilation is defined compositionally, some
auxiliary information (1) is required: we firstly need to know
the label [ which is to be attached to the first instruction of P.
Also, we have to consider the set A of registers which cannot
be used in the compilation of E, since they hold intermediate
values that will be needed after the computation of E is
complete. Finally, we need to keep track of how variables

are mapped to registers. This is done via the register record
®, which requires a slightly more elaborate explanation.

Register Records In order to allow for efficiently compiled
code, expression compilation builds up a record of associations
between while variables and RISC registers in a register
record ® € Reg — Var. If ®(r) = x then it means that the
current value of variable z is present in register r. There are
two important aspects of the register record to consider. Firstly,
the domain of ® is finite and roughly corresponds to the
largest number of variables used in any expression. Notice that
by pre-processing the code before type checking this can be
reduced to a fixed size - and so “register shuffling” can thus be
represented in the source-code prior to compilation. Secondly,
observe that the register record produced by a compilation
is highly nondeterministic, meaning that we do not build any
particular register allocation mechanism into the translation. In
this context nondeterminism is used to keep the specification
simple by not committing to any particular choice, and thus
all available choices are shown to be secure.

The rules (in particular the later rules for commands)
involve a number of operations on register records which
we briefly describe here. We ensure that a register record
is always a partial bijection, namely a register is associated
to at most one variable and a variable is associated with
at most one register. We write ®[r < z] to denote the
minimal modification of ® which results in a partial bijection
mapping 7 to x. Similarly, ®[r 4] denotes the removal of any
association to r in ®. The intersection of records ®M®’ is just
the subset of the bijections on which ® and ®’ agree. Finally,
inclusion between register records, written as ® C &', holds
if all associations in @ are also found in @’.

Beside the compiled expression and its security annotation,
each rule returns a modified register record and specifies the
actual register where the evaluation of the expression E is
found at the end of the execution of P (5).

Expression Rules

It will be convenient to extend the set of instructions with
the empty instruction ¢;. Some sample rules for computing
the types of expressions are presented in Figure 5 (the full
presentation can be found in the extended version of this paper

(13D).

rég A
movek r k], (level(r), 1), r, ®[r /4]

O, ARk [l

O(r)=x
O A lIFx—[l: e, (level(r),0),r, &

V-cached

Fig. 5. Selected type system rules for while expressions

In rule [K] the constant & is compiled to code which writes
the constant to some register r via the movek r k instruction,
providing r is not already in use (r ¢ A). As a result, any
previous association between register r and a variable is lost
(®[r 4]). The security level of the result is simply the level
of the register, and the computation time is one.
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Fig. 6. General structure for command typing rules

In rule [V — cached] the variable to be compiled is already
associated to a register, hence no code is produced.

Typing Commands The general structure of a typing rule for
commands is presented in Figure 6. Judgements for commands
assume a starting label for the code to be produced, and
an incoming register record (1). A compilation will result
in a new (outgoing) register record, and the label of the
next instruction following this block (2) (cf. Figures 8, 9
and 10). The security annotation (3) is similar to that for
expressions; w, the write effect, provides information about
the security level of variables, registers, and channels to which
the compiled code writes, and ¢ describes its timing behaviour.
However, w and ¢ are drawn from domains which include
possible uncertainty.

The write effect w is described with a label taken from the
two-element set {Wr H, Wr L}, with partial ordering Wr H C
Wr L. The value Wr H is for programs that never write to
registers and memory locations outside of H. The value Wr L
is used when write operations might occur at any security
level.

TmOC---CTmnC---CTmLCTm H, n€eN

Ut — Tm L ift4CTrm L and t2 C Trm L

tee Trm H otherwise

Wt = Trm ny +ny  if Vi 6'{1,2} t; = Trm n;
t1 Hio otherwise

Fig. 7. Termination Partial Ordering

The timing behavior of a command is described by an
element of the partial order (and associated operations) defined
in Figure 7. We use timing ¢ = Trm n, for n € N, when
termination of the code is guaranteed in exactly n steps (and
hence is independent of any secrets); ¢ = Trm L is used for
programs whose timing characterization does not depend on
secret values, but whose exact timing is either unimportant,
or difficult to calculate statically. When secrets might directly
influence the timing behavior of a program, the label Trm H
is used.

Command Rules We now introduce some of the actual rules
for commands. The concatenation of code memories P and P’
is written P+ P’ and is well defined if the resulting program
remains well-formed. It will be convenient to extend the set of
labels Lab with a special empty label ¢;,; such that €4, : B
simply denotes B. Also, we consider that the empty instruction
er is such that if P = [B, I4,...,I,] we define [l : ¢;] H P
as [l : B,Il7_[2, AN 7In]

The rule [:=] in Figure 8 requires that the security

O, {},lIF E < P, (level(z),n),r,® " =d'[r < z]

O, lFx:=FE < {P 4 [store v2p(z) 7|}, tp, €lap, D"

(Wr H,Trm n + 1)
(Wr L, Trm L)

here ¢ if level(z) = H
where tp =
P otherwise.

Fig. 8. Type system rule for assignment

level of expression E matches the level of the variable x
((level(z), n)). If this is possible, the compilation is completed
by storing the value of r into the pointer corresponding to x
via the instruction store v2p(z) r (assuming there exists an
injective function v2p € Var — W which maps while vari-
ables to memory locations), and the register record is updated
by associating r and = (®'[r « z]). The resulting security
annotation depends on the level of x: when level(z) = H
the security annotation is (Wr H, Trm n + 1), otherwise it is
(Wr L, Trm L). Rules for skip and out can be found in the
extended version of this paper [13].

The rule [if — any] in Figure 9 builds the translation of
the if statement by joining together several RISC fragments.
The basic idea of this rule is that it follows Denning’s classic
condition for certifying information flow security [14]: if
the conditional involves high data then the branches of the
conditional cannot write to anything except high variables.
This is obtained by imposing the side condition w; C write(A),
where w; is the write-effect of the respective branches, and
write is a function mapping the security level of the guard into
its corresponding write-effect (such that write(H) = Wr H
and write(L) = Wr L). In this rule, in contrast to the [if — H]
rule for the conditional, the timing properties of the two
branches may be different, so we do not attempt to return
an accurate timing. Hence, the use of the operator U which
just records whether the timing depends on only low data, or
possibly any data (notice that the security level of the guard
is mapped into its corresponding timing label by the function
term, such that term(L) = Trm L and term(H) = Trm H).
The compilation of the conditional code into RISC is fairly
straightforward: compute the expression (Fy) into register 7,
jump to else-branch (FP:) if r is zero, otherwise fall through
to “then” branch (P;) and then jump out of the block. The
resulting register record of the whole command compilation
is the common part of the register records resulting from the
respective branches.

The rule [if — H] (Figure 9) allows the system to be more
permissive. It deals with a conditional expression which only
writes to high locations — a so-called high conditional. This
rule, when applicable, compiles the high conditional in a way
that guarantees that its timing behaviour is independent of
the high data. This is important since it is the only way
that we can permit a computation to securely write to low
variables after a high conditional. This is related to timing-
sensitive information-flow typing rules for high conditionals
by Smith [32]. The basic strategy is to compute the timing



(I), {},l - E — P(), <>\,Tl0>,T,‘I)1

Vie{1,2} @160 F Ci = Py, (wi,ts), li; ®igy

w; C write(\)  br, ex fresh

if-any

Py 4 [jz br 7]+

@, I if E then Cy else Cy — ¢ P+ 1[Iy :

b’/‘IPQ—H-[lQZ

(bv{}vl I E < POa <H,7’l0>,7’,(1)1
m = ng +maz(ny,ng) + 2

jmp ex]+H

, (write(\), term(\) Hty Hita), ex, $o M Py
nop]

Vie{1,2} @y, €a F Ci — Py, (Wr H,Trm ny), 1;, ®iqq

br, ex fresh

if-H

®, [ Fif E then Cy else Cy — {

Py 4 [jz br r] + Py 4 11 : nop™ ™" H [jmp ex]
H Py 413 : nop™ "2 4 [nop]

}, (Wr H, Trm m), ex, ®y 1 P3

Fig. 9. Type rules for if

of each branch (n; and no respectively) and pad the respec-
tive branches in the compiled code with sequences of nop
instructions so that they become equally long, where nop™ is
a sequence of m consecutive nop instructions when m > 0,
and is ¢; otherwise.

The rule [;] for sequential composition (Figure 10) is
largely standard: the label and register records are passed
sequentially from inputs to outputs, and the security types
are combined in the obvious way. The only twist, the side
condition, encodes the key idea in the type system of Smith
[32]. If the computation of the first command has timing
behaviour which might depend on high data (t; = Trm H),
then the second command cannot be allowed to write to low
data (wo, = Wr H), as this would otherwise reveal information
about the high data through timing of low events.

The compilation of the while command (Figure 10) is quite
involved for two reasons. Firstly, as one would expect in
a typing rule for a looping construct, there are technical
conditions relating the register record at the beginning of the
loop, and the register record on exit. This is because we
need a single description of the exit register record ® 5 which
approximates both the register record at the start of the loop
body (®[r <> z]) and the register record after computing the
loop body and putting = back into register r (Pg[r + x]).
Secondly, for technical reasons relating purely to the proof
of correctness (security), the code is (i) a little less compact
that one would expect to write due to an unnecessarily re-
peated subexpression, and (ii) contains a redundant instruction
store v2p(x) r immediately after having loaded z into 7. The
lack of compactness is due to the fact that the proof goes
via an intermediate language that cannot represent the ideal
version of the code. The redundant instruction establishes a
particular invariant that is needed in the proof: not only is x
in register r, but it arrived there as the result of writing r into
x. The security concerns are taken care of by ensuring that the
security level of the whole loop is consistent with the levels
of the branch variable x and the branch register r, and that if
the timing of the body might depend on high data, then the
level of the loop variable (and hence the whole expression)
must be H.

C. Soundness

In this section we give a brief outline of the correctness
proof of the type systems, the full details are provided in the
extended version of this paper.

We begin by instantiating the definition of strong security
for RISC programs, which requires to view the RISC machine
as an instance of a fault-prone system (Definition 1). For this
we consider the set of locations Loc of the RISC fault-prone
system to be the names of the individual bits comprising the
registers and memories. So, for example, a general purpose
register r corresponds to some set of locations rg, .. .73 (for
a word-size of 32). With this correspondence, the set of states
of the RISC system are isomophic to the set of functions
Loc — {0,1}. As mentioned earlier, the fault-prone locations
F' are those which correspond to the general purpose registers
and the data memory.

For the definition of security we must additionally partition
the locations into the program ProgLoc, the low locations
LowLoc, and the high locations HighLoc: ProgLoc comprises
the locations of the code and the program counter register,
LowLoc the locations of the low variables and registers, and
HighLoc the locations of the high variables and registers.

Since assembly programs are run starting at their first
instruction, the following slightly specialised version of strong
security is appropriate:

Definition 8 (Strong Security for RISC programs): We
say that an assembly program P 1is strongly secure if
(P,0) is strongly secure according to Definition 7 instan-
tiated on the fault-prone system A = {Loc,{chlk|ch €
{low, high} and k € W} U {7}, —}.

The type system defined in Section III-B guarantees that
any type-correct while program is compiled into a strongly
secure RISC program. This is formalized as follows.

Theorem 3 (Strong security enforcement): Let C' be a
while program, and suppose {}, € = C — P, (w,t),l, ®.
Then P is strongly secure.

According to Theorem 3, we can obtain strongly secure
RISC programs from type-correct while programs. Theorem
2 (Section II-C) states that strong security is a sufficient
condition to guarantee PoNI. The two results together express
a strategy to translate while programs into RISC programs



Q1+ Cy — P1, (wi,t1), l1, O

‘I)17l1 }_CQQPQ) <w27t2>7 l23 ¢)2

ti=Trm H = wy, =Wr H

seq

A = level(x) = level(r)
Op C Dfr + z
Pp, e - C — P, (w,t>, l/, [0

t=Trm H = write(A\) = Wr H
@B [ (PE[’I’ A d 1’]

<I>,H—01;Cg~'—>{ P+ P }, (w1 Uwa, ty Wita), lo, $o

w C write()\)
Ip, ex fresh
P; = [load r v2p(z), store v2p(z) 7]

while

®, [+ while z do C — ]
U': P+ [jmp lp]

l: Pi4[lp:jzexr]# P+

}, (write(A\),term(A) Ht), ex, Pp

Fig. 10. Type rules for sequential composition (;) and while

that satisfy PoNI. We state this formally by instantiating the
definition of PoNI for RISC programs.

Definition 9 (PoNI for RISC programs): We say that an
assembly program P satisfies PONI if (P, 0) is PoNI according
to Definition 6 instantiated on the fault-prone system A =
{Loc, {chlk|ch € {low, high} and k € W} U {7}, —}.

Corollary 1 (PoNI enforcement on RISC programs): Let
C be a while program, and suppose {},eup F C —
P, (w,t),l,®. Then P is PoNI.

Proof 4: Direct application of Theorem 3 and Theorem 2.

IV. RELATED WORK

Fault Resilient Non-Interference The only previous work
of which we are aware that aims to prevent transient faults
from violating non-interference is by Del Tedesco et al. [12].
The enforcement approach of that paper is radically different
from the approach studied here, and the two approaches are
largely complementary. Here we highlight the differences and
tradeoffs:

e Targeting a similar RISC machine, the implementation
mechanism of [12] is a combination of software fault
isolation [33] and a black-box non-interference technique
called secure multi-execution [15]. This can be applied to
any program, but only preserves the behaviour of noninter-
fering memory-safe programs. Verifying that a program is
memory-safe would have to be done separately, but could
be achieved by compiling correctly from a memory-safe
language.

e In [12], fault-tolerance is assumed for the code memory
but not in the program counter register. The cost of this is
that the method described in that paper can only tolerate
up to a statically chosen number of faults, whereas in the
present work we can tolerate any number.

¢ The security property enforced by the method described in
[12] can be viewed as a restriction of PoNI to runs with
a limited number of faults. However, the work does not
justify this definition with respect to the more standard
notion of probabilistic noninterference. The limitation in
the number of faults, together with our result, shows that
the established security property is strictly weaker than
PNIL

Strong Security for Fault Tolerance Mantel and Sabelfeld
[29] used strong security in a state-based encoding of channel-
based communication. They observed that strong security is
not affected by faults occurring in message transmission. An-
other way to think of this is that strong security of individual
threads implies strong security of their composition; a faulty
environment is itself a strongly secure thread, simply because
it has no ability to read directly from secrets in the state.

Related Type Systems The type-directed compilation pre-
sented here combines several features which are inspired
by existing non-interference type systems for sequential and
concurrent programming languages. Our security notion is
timing sensitive and has some similarities with Agat’s [1] type-
directed source-to-source transformation method that maps
a source program into an equivalent target program where
timing leaks are eliminated by padding. Similar ideas were
shown to apply to a type system for strong security [30]. Our
padding mechanism is different from Agat’s, since it is based
on counting the number of computation steps in the branches
of a high conditional expressions, and our system is more
liberal, since it allows e.g. loops with a secret guard. These
distinguishing features are both present in Smith’s type system
for a concurrent language [32] (see also [8]).

Non-interference for Low-level Programming Lan-
guages Medel et al. [22] propose a type system for a
RISC-like assembly language capable to enforce (termination
and time insensitive) non-interference. Enforcing the same
security condition, Barthe et al. [5] introduce a stack-based
assembly language equipped with a type system. Subsequent
work [6] shows a compilation strategy which enforces non-
interference across all the intermediate steps until reaching a
JVM-like language. Barbuti et al. [4] use a different notion for
confidentiality, called o-security, which is enforced by abstract
interpretation.

Dependability The need for a stronger connection between
security and dependability has been stated in many works
(e.g. [19], [23]). Interestingly, it can be observed that many
solutions for dependability are based on information-flow
security concepts. In [28], well-known concepts from the
information-flow literature are introduced as building blocks
to achieve dependability goals. In [35], [20], non-interference-



like definitions are used to express fault tolerance in terms of
program semantics.

On the other hand, one could argue that the security domain
has been influenced by dependability principles as well. For
instance, our enforcement is sound only if fault-tolerant hard-
ware components are deployed for the code memory and the
program counter.

Language-Based Techniques for Fault-tolerance The style
of our work — in terms of the style of formalisation, the
use of programming language techniques, and the level of
semantic precision in the stated goals — is in the spirit of Perry
et al’s fault-tolerant typed assembly language [27]. Because
we need to reason about security and not conventional fault
tolerance, our semantic model of faults is necessarily much
more involved than theirs and more recent variants [18], which
are purely nondeterministic.

Security and Transient Faults We have not been the first
ones to consider the implications of transient faults for security
— Bar-El et al. [3] survey a variety of methods that can be used
to induce transient faults on circuits that manipulate sensitive
data. Xu et al. [36] study the effect of a single bit flip that
strikes the opcode of x86 control flow instructions; their work
states the non-modifiability of the source code, which is a
crucial assumption in our framework. Bao et al. [2] illustrate
several transient-fault based attacks on crypto-schemes. Their
protection mechanisms either involve some form of replication
or a more intensive usage of randomness (to increase the
unpredictability of the result). In a similar scenario, Ciet et
al. [11] show how the parameters of an elliptic curve crypto-
system can be compromised by transient faults, and illustrate
how a comparison mechanism is sufficient to prevent the attack
from being successful. Canetti et al. [10] discuss security
in the presence of transient faults for cryptographic protocol
implementations where they focus on how random number
generation is used in the code.

Our approach relies on fault-tolerant support for the pro-
gram counter. While it seems a bit restrictive, there are fault-
tolerant solutions for registers (e.g. [25], [21]).

V. LIMITATIONS

The hardware model discussed here is similar to those
introduced in [27], [12] and, in common with many informal
models of faults, has similar shortcomings: faults occurring at
lower levels e.g. in combinatorial circuits, are not modelled.
It has been argued [34] that these non-memory elements of
a processor have much lower sensitivity to faults than state
elements, but in our attacker model this does not say so much.

For timing channels discussed in Section III-B we make
a large simplifying assumption: that the time to compute an
instruction is constant. In practice modern RISC architectures
are not that simple, so there is a need for further refinements

to the method to ensure that cache effects are mitigated by
preloading or using techniques from [1].

The language we are able to compile is too small to be
practical. The minimum required for real examples is to
extend to arrays. Our intuition suggests that static arrays and
function pointers can be covered in our framework, at the
price of deploying more fault-tolerant hardware in the system.
Specifically, we believe that array indexing can be secured by
deploying an additional dedicated fault-tolerant register, to be
used for confining the pointer values within pre-determined
address ranges defined at compile time. For function pointers
more extensive fault-tolerant hardware would be needed; one
could think about a hardened call stack, for guaranteeing
that the control flow is not jeopardized by transient faults.
Considering the current status of our work, the main challenge
in exploring these hypothesis is incorporating them in the
already non-trivial correctness proof [13]. In this perspective,
a necessary step forward is to move to mechanically verifiable
proofs, which will facilitate extending our system to other
features, as well as verifying our confidence in the formal
results.

The type system presented in Section III is clearly too
restrictive. For example, consider a program that leaks secrets
through memory operations but does not perform any output
action. Clearly, the program fulfils PNI, however it would be
rejected by the type system. This is partially explained by the
fact that the rules which constitute the type system are meant
to enforce a generic timing-sensitive non-interference property,
which is not tailored to PNI.

VI. CONCLUSION

We formalize security in presence of transient faults as Prob-
abilistic Fault-Resilient Non-Interference (PNI). We simplify
it by reducing it to a possibilistic framework (PoNI), and we
show that another well-known security condition, called Strong
Security [30], implies it. We explore a concrete instance of
our formalism, a simple RISC architecture for which the only
fault-tolerant components are the program counter and the
code memory. We define a type system that maps programs
written in a simple while-language to the assembly language
executed by our architecture and, at the same time, ensures
that the produced code satisfies Strong Security (hence PNI).
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APPENDIX A
DETAILS AND PROOFS OF MAIN RESULTS (§II)

A. Proof of Proposition 1

In order to prove Proposition 1, we prove an auxiliary result
which ensures that our assignment of probability to n-sized
runs is a probability distribution.

Proposition 2: Let Sys be a fault-prone system and Env
an environment. Then VZ € Sys x Env and Vn > 0
Ererunn(Z)Pl’(T) =1.

Proof 5: We prove the statement by induction on n.

When n = 0, the set rung(Z) contains only one element,
the empty run, and its probability is 1.

Consider n > 0.

Any run r €
Z B Zy...Zn

run,(Z) can be written as r =

7,
Zy . Ty ) (Zny S, Zn), where v = Z 28,
Zy...Zy—1 is a prefix of r in run,_1(Z) with probability
Pr(r') = py.

Consider the set R, C run,,(Z) of all n-sized runs from Z
that has 7’ as prefix. Since for all subsets in p(F') there is a
transition rule in Sys x Env, we have ¥,¢qyn, (z,_,)Pr(r) = 1.
Hence ¢ Pr(r) = p,.

Hence we conclude that X, (2)Pr(r) =
z1”’€runn,1(Z)Z7‘6RT/ F)rZ (’I") = Zr’€runn,1(Z)pr’ = 1,
where the last result holds by inductive hypothesis.

Proof 6 (Proof of Proposition 1): Recall that for any trace
te (LACt U {T})n’ PrZ(t) = 2:{TErun”(Z)|trace(r):t}Pr("d)'
Since for any run r there is a trace t € (LActU{7})" such that
trace(r) = t, we have as a result that ¥;¢ (L acrugry)nPrz(t) =
Yrerun, (z)Pr(r) = 1, where the last equality holds because
of Proposition 2.

Pn—1 Zn =

B. Full definitions of Augmented Fault-prone and Termination
Transparent Systems

An augmented fault-prone system is formally described as
follows.

Definition 10 (Augmented Fault-prone System): Given a
fault-prone system Sys = {Loc, Act,—} we define the
augmented system Sys™ as Syst = {Loc, Act x p(F),~}
by the following rules:

AsL s flip(S,L) %S LCF
gkl g
AsL s flip(S,L)A LCF

S =5 flip(S, L)

SA LCF
L,7

S~ §
A termination transparent system is formalized as follows.

Definition 11 (Termination Transparent System): For a fault-
prone system Sys = { Loc, Act,—} we define its termination-
transparent version as Sys™ = {Loc, Act,— } where —
is defined with the following rules:

sS4 s
S5 S
C. Proof of Theorem 1
Before proving the theorem in question, we need to define
some auxiliary concepts.
Definition 12 (Enabling set): Let Z = (S, E ) and Z’ =
(S, E') be a pair of states in Sys x Env such that Z %, Z'.

We say that L is an enabling set (of locations) for Z i>p z'
in the following cases:

S

SL. S

* the transition is derived from rule [Step] and L € T;
* the transition is derived from rule [Stuck — 1] and L is
the argument in flip(S, L);

* the transition is derived from rule [Stuck — 2].

Definition 13 (Enabling sequence): Let r be a run for
( So, Eo ) in Sys x Env such that { Sy, Ey ) %,
(8, By )... =%, (S, E, ). The sequence
L = Lo...L,_1 such that VO < 4 < n —1 L; is an
enabling set for { S;, E; ) <%, ( Sit1, Fit1 ) is called
an enabling sequence for . We define the probability of L as
Pr.(£) = Ip<i<n—1Fault(E;)(L;). We define the set of all
enabling sequences for r as ¢(r).

We also need the following intermediate result.

Lemma 1: Let r be a run for Z in Sys X Env. Then we
have that Pr(r) = X,cy)Prz(L).

We can now prove Theorem 1.

Proof 7 (Proof of Theorem 1): Suppose P enjoys PoNI,
we now show it enjoys PNI as well.
Consider a faulty system Sys, an error environment
Env = (Err,Fault) and two states Z = ( S, E ) and
Z'= (8, E), for 5,58 € Sys and E € Err. Assume
S’Pro Loc S/’ProgLoc = P and S =L S’
We first show that for any n > 0 and for any trace
t € (LAct U {r})", Prz(t) < Prgz(t), and hence by
symmetry that Prz(t) = Prz (¢).
We prove the inequality by relating the probability of a trace
to the probability determined by the enabling sequences that
corresponds to it.
Consider a trace ¢ such that Prz(t) > 0. Let pz(¢) defined as
pz(t) = {r € run(Z)|trace(r) = ¢} be the (nonempty) set of
runs from Z whose trace is ¢.
We  have  Pryz(t) = Yreps)Pr(r) =
Yreps ) Eces(r)Prz(L), where the first equality holds
by definition and the second one follows from Lemma 1.
We now show that all enabling sequences for Z are also
enabling sequences for Z'. Let kz = U,¢,, 1)@(r) be the set
of all enabling sequences for ¢ in Z and let £ be an enabling
sequence for a run 7 € run(Z). Since P is PoNI, there must
be a run r’ from Z’ such that £ is an enabling sequence for 7,
and trace(r’) = t. Hence, for the set Kz = Upe,,, 1)@ (1)
we have that Kz C kz.



Also, observes that for any £ € kz. Prz(L) = Prz (L),
since trace(u) = trace(u’).

Then Prz(t) = deﬁzprz(ﬁ) < EgeHZ,Przl(ﬁ) = PI’Z/(t).
We continue by showing that PNI implies PoNI by proving
the contrapositive. Suppose that P is not PoNI. Then there
must a fault-prone system Sys, two states S, S’ such that
S|ngLOC = S’|ngLoc = P and S = 9, together with a
location set A € p(F), a trace t = Lg,aq,...,L;,a; and

a b
a,be LAct U {r} such that a # b, S <% and §" <25,

Define an error environment Fnv = (FErr,Fault) such that
Err = ({Li|L; € t} U{\}, LAct U{r}, {L; & Li 10 <i <
j—1landa € LAct U{r}} U{L; & Na € LAct U {7}})
and Fault(\)(\) = Fault(L)(L) = 1. Essentially, Env
deterministically traverses all flipped locations included in ¢,
and terminates in A, regardless of the actions performed by
the fault-prone system.

Consider now the composition of Sys with Env and let
Z:<S, Lo)andZ’:<S’, Lo ).Lett’:ao ..... a;.a
be a trace in (LAct U {7})* obtained from ¢ by (i) striping
flipped locations and (ii) appending the action a at the
end. Then there exists a unique run 7 € run(Z) such that
trace(r) = t' and Pr(r) = Prz(t') =1 # Prz (¢') = 0. The
inequality between Prz(t') and Pryz: (t') follows from the
hypothesis of P not being PoNI, which implies that there is
no r’ € run(Z’) such that trace(r’) =t'.

D. Proof of Theorem 2

Rather than showing that Strong Security implies PoNI
directly, we take an indirect approach.

First we characterize the semantics of a termination-
transparent system in terms of “transition traces”, borrowing
ideas from [9]. Then we define an ad-hoc security property,
called Strong Trace-based Security within this semantic model.
We finally show that Strong Security implies Strong Trace-
based Security, which in turn implies PoNI.

For improving readability we represent S ‘ LowLocU HighLoc
as M, the data component, therefore the state of a fault-prone
system is represented as (P, M). We adapt the concept of
low equality between states to data components by saying that
M= M if M’LowLoc = M/’LowLoc'

Definition 14 (Transition trace semantics): Let Sys be a
fault-prone system and Sys™ = {Loc, Act,—} be its
termination-transparent version. The n-step transition-trace
semantic of a program component Py is defined as T, (FPy) =
{(Mo, aop, ]\46)7 (Ml, ai, M{) ce (Mn—la Ap—1, M'rlz—l)| YO0 S
i < n— (P, M;)*5 (Py1,M])}. The transition trace
semantics of Py is defined as T (FPo) = U, Tn(Fo).

In the transition trace model, the semantics of a program
component P is built in sequences of steps. In particular, at
any step, the program component is executed on a certain
data component, then the data component is modified and the
execution is restarted. Observe that the model is very similar
to the way a fault-prone system and an error environment
interact with each other. This is even more clear when viewing
the modification of the data component as the effect of its

interaction with the error environment.
We say that two transition traces

t= (M03a03M6)7 (MlaalaM{) s (Mn—laa7l—17M7li,—1)
t'= (N07b07N[,))7 (vath{) ce (anlabnflvN:zfl)

are input low-equivalent, written ¢ =; ¢/, if VO < i < n,
M; =1 N;, whereas they are output low-equivalent, written
t=p t'if VO <i < n, low(a;) = low(b;) and M] =1, N/.

Definition 15 (Strong Trace-based Security (StbS)): We say
that a program component P is n-Strong Trace-based Secure
if for any two transition traces t,t" € T,(P), if t =; ¢’ then
t =o t'. We say that a program component P is Strong Trace-
based Secure if it is n-Strong Trace-based Secure for any n €
N.

We now show how to use the notion of Strong Trace-based
Security to bridge the gap between Strong Security and PoNI.
We show that Strong Security implies Strong Trace-based
Security first.

Lemma 2 (SS implies StbS): Let P be a program component.
If P enjoys SS then P enjoys StbS.

Proof 8: We define some notation first. We refer to the
i-th triple in a transition trace ¢t as t;, and to the pro-
gram component used to evaluate it as P, (for a trace
t = (]\407 aop, M(/)), (Ml, ai, M{) e (Mn—h Ap—1, Mwlz—l) we
therefore say that the i-th triple (M;, a;, M]) is induced by
(thMi) %oo (Pti+1 ) Mz/))

Consider a program component P and two n-transition
traces

t = (Mo, aop, ]\46)7 (Ml, ai, M{) e (Mn—h Ap—1, M;z—l)
and
t" = (No,bo, Ng), (N1,b1, Ny) ... (Np—1,bn—1, N}, q)

in 7, (P).

We want to show that if P enjoys SS and ¢t =; ¢/, then
t=ot.

Starting from a strong bisimulation R for (P, P), the idea
of the proof is to infer properties of ¢ by unwinding R for
n-steps. We proceed by showing that for all 0 < ¢ < n we
have that (P,,Py) € R. For i = 0 P, = Py = P and
(P,P) € R.If (P, Py) € R, then by definition of @ we
have that if (P, M;) e (P;,,,, M) and M; =1, N; then
(Py,Ni) o0 (P, N}) and (P, Py ) € R. But this is
the case for ¢ and ¢/, since t =y t'.

The statement of the lemma is therefore proved by recalling
that two program components P and P’ in a strong bisimu-
lation R are such that their executions from low equivalent
data result in (i) low equivalent data and (ii) low equivalent
actions.

We now discuss the relation between Strong Trace-based
Security and PoNI. In general it is not true that Strong Trace-
based Security is stronger than PoNI. Consider, for example,
the class of systems such that ProgLoc € T'. Due to transient
faults, a completely innocuous program component can be



converted into a harmful one, even when it enjoys Strong
Trace-based Security.

Surprisingly, this is not the only constraint that we must
impose to the systems of our interest. We must also require
that they show a uniform behavior for termination, as shown
in the following example.

Example 2: Consider the fault-prone system in Figure 11.
For each state S = {b; — {0,1}|¢ € {0,1,2}} we consider
ProgLoc = {by}, HighLoc = {b;} and LowLoc = {b2}. We
also assume that the states where P is 1 are stuck and therefore
are omitted.

Sp = 000 T

Fig. 11. StbS does not imply PoNI in general

The system is Strongly Trace-based Secure: all states are
either stuck or perform a transition on themselves, therefore
low equivalence is preserved. The only difference in the output
behavior is observable between S; and S5: the former is
stuck, the latter perform a 7 transition. Nonetheless they result
indistinguishable in the termination transparent version of the
system. However, the system is not PoNI. In fact, if a bit flip

. {b2},7
on by can transform S, into S3 so we have S 25 but
{bz},a
82 V\AAMA,—).

From now onwards we focus our attention on “standard
fault-prone” systems. For such systems, we have that the whole
program component is fault-tolerant (formally ProgLoc C T')
and it is either stuck or active, regardless of the data compo-
nent.

Definition 16 (Standard fault-prone systems): A fault-prone
system is called standard if ProgLoc C T and, for all P, either
for any data component M there exists an action [ such that
(P, M) L5 or for any data component M the system is stuck,
namely (P, M) 5.

For the class of systems of our interest, Strong Trace-based
Security is indeed stronger than PoNI.

Lemma 3 (Strong Trace-based Security implies PoNI): Let
P be a program component in a standard fault-prone system
Sys. If P enjoys StbS then P enjoys PoNI.

Proof 9:

We prove this lemma by showing the contrapositive. Sup-
pose that P is not PoNI. Then there must be two states
S = (P,My) and S’ = (P, Np) in the augmented version
of a fault-prone system Sys such that My =1 Ny, and two
runs that exit from them whose corresponding traces violate

the security condition. Let

Lo.a Li.a
r =(P, M) = (Py, M) 55
Lj,l,aj,l L,a

. (Pj_l,Mj—l) RANNeaatested (Pijj) —

and
T/ :(P, No) ‘LVVOV’VbV_)O (Pl, Nl) ‘Lwljb”"l
. Lj_1,bj_1 . b
L (PITYNG ) RIS (P Ny S

be the runs in question, such that V0 < i < j low(a;) =
low(b;) but low(a) # low(b).

Before continuing, we observe that, in the initial configura-
tion, P cannot be stuck. Also, it must be that at most one run
between r and 7’ contains a sequence of stuck configurations.
Both conditions are necessary to have low(a) # low(D).

We now show that it is possible to build two transition traces
for P that violate Strong Trace-based Security. Recall that the
flip function can be applied only to locations in F’, and that
we consider systems whose faulty locations are restricted to
the data component (F' C LowLoc U HighLoc). Hence, when
S = (P, M), we write flip(S,L) as (P,flip(M, L)), and we
focus on the data component flip(M, L) when necessary.

We proceed by distinguishing two cases, depending on
whether or not a stuck configuration is traversed by r (equiv-
alently 17).

Case 1: no stuck configurations are traversed in either r or
r.
Consider the following two transition traces

t = (Eo, a0, M), (E1,a1,Ms) ... (Ej,a,M;q1)
and
t' = (Fo,bo, N1), (F1,b1,Na) ... (F;,b,Nj41)

where E; = flip(M;,L;), F; = flip(V;,L;) for some
{M;}ieqi..jy> {Ni}ieq1...j3» and where L; = L. Since r
does not traverse stuck configurations, all transitions are

computed by an application of the rule [Step]. This means
Li,a;

that for any transition we have (P;, M;) ~~= (Pit1, M;+1)
if (P, flip(My, L)) 25 (Piy1, Miy1). Hence t is in T(P).
By applying a similar argument for 7/, we conclude that ¢ is
in T(P) as well.

Observe that flip preserves low equivalence between data
components (if M; = N; then for all set of locations L
it is true that flip(M;, L) =g, flip(IV;, L)). Considering that
My =1 Ny, there are two possible cases. Either there exists
k, such that 0 < k < j and (flip(My, Lk), ax, My+1) and
(flip(Nk, Li), b, Niy1) and My #1 Npy1, or VO < k <
j My =r Nj and low(a) # low(b). In both cases Strong
Trace-based Security is violated.

Case 2: there is a stuck configuration in r.

We consider the case in which a configuration in 7 is stuck.
The symmetric case for 7’ is similar, and it is omitted.

Since Sys is a “standard fault-prone” system, the rule
[Stuck — 2] cannot be applied in the first step. Let 1 < w < j



be the index of the first stuck state (P,,, M,,) in r. Consider As observed in the previous case, since flip preserves

the following transition traces low equivalence of data components, there are the fol-
lowing cases to be considered. Either there exists £ such

t = (EO’CLO’Ml)v"'?(Ew—laawaMw)a that 0 < k£ < w and (ﬂip(Mk,Lk),ak,M/H_]) and

(Bw, Ty Ew), -, (Ej, T, Ej) (flip(Ng, L), b, Ng+1) and My1q1 #1, Ngy1, or there exists

t = (Fy,bo,N1),.., (Fu_1,bw_1, Nu), k such that w < k < j and (flip(Ng, Li), 7, flip(Ng, Li))

and (f|ip(Nk,Lk),bk,Nk+1) and ﬂlp(Nk,Lk) #L Nk+1, or
7 # low(b). In all cases Strong Trace-based Security is
where E; = flip(M;,L;), F; = flip(N;, L;) for some Violated. . .
{M;}icr1.y- {Nitieq1. j3» and where L; = L. Proof 10 (Proof of Theorem 2): Directly obtained by apply-
' ing Lemma 2 and Lemma 3.

(vabw7Nw+1)a"'a(FjabaNj+1)



