
Faceted Secure Multi Execution
Thomas Schmitz

University of California, Santa Cruz

Santa Cruz, California

tschmitz@ucsc.edu

Maximilian Algehed

Chalmers University of Technology

Gothenburg, Sweden

algehed@chalmers.se

Cormac Flanagan

University of California, Santa Cruz

Santa Cruz, California

cormac@ucsc.edu

Alejandro Russo

Chalmers University of Technology

Gothenburg, Sweden

russo@chalmers.se

ABSTRACT
To enforce non-interference, both Secure Multi-Execution (SME)

andMultiple Facets (MF) rely on the introduction ofmulti-executions.

The attractiveness of these techniques is that they are precise: se-

cure programs running under SME or MF do not change their

behavior. Although MF was intended as an optimization for SME,

it does provide a weaker security guarantee for termination leaks.

This paper presents Faceted Secure Multi Execution (FSME), a

novel synthesis of MF and SME that combines the stronger security

guarantees of SME with the optimizations of MF. The development

of FSME required a unification of the ideas underlying MF and SME

into a new multi-execution framework (), which can be

parameterized to provide MF, SME, or our new approach FSME,

thus enabling an apples-to-apples comparison and benchmarking

of all three approaches. Unlike the original work on MF and SME,

supports arbitrary (and possibly infinite) lattices necessary

for decentralized labeling models—a feature needed in order to

make possible the writing of applications where each principal

can impose confidentiality and integrity requirements on data. We

provide some micro-benchmarks for evaluating and write a

file hosting service, called ProtectedBox, whose functionality can

be securely extended via third-party plugins.

CCS CONCEPTS
• Security and privacy → Information flow control; • Soft-
ware and its engineering→ Functional languages;

KEYWORDS
Multi-Executions; Decentralized Labels; Information-Flow Control;

Haskell

ACM Reference Format:
Thomas Schmitz, Maximilian Algehed, Cormac Flanagan, and Alejandro

Russo. 2018. Faceted Secure Multi Execution. In 2018 ACM SIGSAC Confer-
ence on Computer and Communications Security (CCS ’18), October 15–19,

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS ’18, October 15–19, 2018, Toronto, ON, Canada
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-5693-0/18/10. . . $15.00

https://doi.org/10.1145/3243734.3243806

2018, Toronto, ON, Canada. ACM, New York, NY, USA, 18 pages. https:

//doi.org/10.1145/3243734.3243806

1 INTRODUCTION
Information-flow control (IFC) is a promising technology for sys-

tematically protecting confidentiality and integrity of data. In the

last few years, there have been a proliferation of IFC techniques

applied to a wide range of areas such as hardware [59], operating

systems [36], programming languages [11], web browsers [51] and

distributed systems [33]. Many of these techniques guarantee that

secrets are not leaked by enforcing some notion of non-interference
[23]. This security policy can be enforced either statically (e.g. via

type-systems), dynamically (e.g. via runtime monitors), or by a

combination of both [45]. Regardless of its dynamic or static na-

ture, traditional IFC approaches might become conservative, thus

rejecting secure programs due to imprecisions in the analysis of

how information flows.

To mitigate (or even remove entirely) false alarms [43, 57], re-

searchers have recently proposed IFC techniques based on multi-

executions: many copies of a given program (or parts of it) get exe-
cuted while carefully adapting their semantics to avoid information
leakage. The price to pay is, however, a degradation in performance

due to repeated computations. Secure Multi-Execution [16] (SME)

and Multiple Facets [4] (MF) are two approaches based on this idea.

On one hand, SME considers programs as black boxes. It executes

a copy of the program for each security level while changing the

input and output behavior to avoid leaks. MF, on the other hand, in-

spects the code of the program in order to perform multi-execution

of instructions and multiplexing memory only when needed.

Although MF was intended as an optimization for SME, the

mechanisms present different security guarantees for termination

leaks [8]—i.e., leaks occurring by abnormal termination of pro-

grams. More specifically, MF guarantees termination-insensitive
non-interference (TINI), while SME can remove termination leaks

under the right scheduler [28]—thus ensuring termination-sensitive
non-interference (TSNI).

Ngo et al. [39] have recently shown how to combine MF and

SME for a simple while-language in order to ensure TSNI while

enjoying some of the MF benefits in terms of minimizing multi-

executions. The idea is very simple: run programs under a MF

semantics until hitting a sensitive computation which seems to

“take toomuch time to terminate”; in that case the evaluation should

restart under a SME semantics, i.e., by spawning one thread for

each security level. While a step in the right direction, that work

https://doi.org/10.1145/3243734.3243806
https://doi.org/10.1145/3243734.3243806
https://doi.org/10.1145/3243734.3243806

takes an all-or-nothing approach: either the program enjoys the

resource-usage-savings of MF or falls into the computations and

memory duplication of SME. Furthermore, their technique requires

a priori knowledge of all the points in the lattice, something which is

not feasible for decentralized lattices—lattices which are commonly

used by practical IFC systems to allow principals to independently

express their confidentiality and integrity requirements on data

(e.g., [21, 22, 29, 33, 37, 38, 48, 51]).

From a foundational perspective, this work presents a novel

(provably sound) combination of MF and SME called Faceted Secure

Multi Execution (FSME), which provides a synthesis of both ap-

proaches. Our technique starts running under a MF semantics and

spawns only two multi-executions when the current computation

seems to diverge. However, such multi-executions start running un-

der a MF semantics; so, it might never be necessary to spawn more

multi-executions if computations “do not take much time to finish.”

It may seem a small detail, but it is precisely due to this choice that

our approach enjoys the best of both worlds. The idea of spawning
multi-execution on-demand when combining MF and SME is also

novel. For that, we strongly rely on extending how MF and SME

work when not all the points in the lattice are known—another

foundational contribution.

Lastly, our work provides , a unifying framework for multi-

execution based IFC systems. Regardless the desiredmulti-execution

semantics (i.e., MF, SME, or FSME), behaves exactly the same

except for a single specific place.
This work also contributes to the implementation and evalu-

ation of multi-execution techniques. Despite many claims about

MF being more performant than SME, these approaches have not

been evaluated against each other besides qualitative informal [5]

and theoretical results [8]. It is not clear how they compare quan-

titatively in terms of performance and memory usage. We believe

that one of the main reasons for this is related to the considerable

effort it takes to implement such multi-execution based systems

[14]. In this light, we build upon abstractions found in the

functional programming (FP) language Haskell. Firstly, the use of

a functional language helps to close the gap between our formal

calculus and the implementation—it makes easier to see the corre-

spondence between the semantics rules and their implementation.

Secondly, and similar to other work [31, 44, 50], the special treat-

ment of side-effects in Haskell makes it possible to provide

as a mere library. In that manner, security developers are relieved

from building special IFC-aware languages from scratch or per-

forming heavy modifications to the runtime—a major task on its

own. Despite IFC libraries usually being small and elegant, it is

possible to build non-trivial secure systems [22]. We demonstrate

the flexibility of our framework by building a prototype file hosting

service, called ProtectedBox, capable of enforcing robust privacy

policies on users’ files even while allowing untrusted apps to deliver

extended features to the system.

It is our intention to establish as a foundation for building

multi-execution based systems. In summary, the contributions of

this work are as follows.

▶ FSME, a novel combination of MF and SME which lets us enjoy

the best of both worlds.

▶ An extension of SME to work on an “on-demand basis” together

with extension of MF to work with the infinite lattice induced by

decentralized label models like DC-labels [48].

▶ , a unifying framework capable of providing MF, SME, and

FSME.

▶ Mechanized soundness proofs of ’s security guarantees

in the proof assistant Coq. The proof is parametric on the se-

curity lattice as well as the scheduler responsible to run multi-

executions. The proof makes appropriated assumptions about these

parameters—e.g., decidable label equality and fairness of the sched-

uler.

▶ An implementation of in Haskell.

▶ Micro-benchmarks evaluating ’s performance when exe-

cuting under a MF, SME, or FSME semantics.

▶ The implementation of a secure file hosting service called Pro-

tectedBox.

The code, including Coq development and case study, for this

paper is available online
1
.

2 BACKGROUND
In this work, we assume that programs can access input and output

file handles, which in practice may refer to files in a local or remote

filesystem or to network sockets. Each input and output file has an

associated security label l , and these labels are partially ordered by⊑
and form a security lattice [15]. Concretely, data read from an input

file i with label li should only influence data written to output file

o (with label lo) if li ⊑ lo ; conversely, if li @ lo then such influences

or information flows are not permitted and should be prevented

by the enforcement mechanism. To simplify our discussion, we

initially assume a security lattice with two labels low (L) and high

(H), where H @ L is the only disallowed flow.

We begin with a review of prior technology for ensuring dynamic

information flow control via multi-execution. One prominent tech-

nology is SME [16], which we illustrate via the Haskell code below.

The when instruction is simply an if-then-else where the else branch

is just empty.

do input <- get highFile
when heavyExpr (put lowFile (input+1))

SME will execute this program twice. One execution is for the high

security label H , which can read from highFile (get highFile), but

is prohibited from writing to lowFile, i.e., put lowFile (input+1) is

ignored. The second execution is for the low label L and cannot

read from highFile; instead some dummy value (e.g., 0) gets bound

to variable input, and subsequently input+1 (e.g., 1) is written to

lowFile. By running the two executions concurrently, SME provides

termination-sensitive non-inteference (TSNI). Moreover, SME is

precise, i.e., it does not change the behavior of non-interfering pro-

grams (modulo some technicalities about the relative ordering of

writes [43, 57]).

One of the main limitations of SME is performance. For the 2-

point lattice, the boolean expression heavyExpr gets evaluated twice,

even if it does not depend on the input. More generally, a system

with n principals might have a powerset security lattice with 2
n

labels, and so require 2
n
executions.

1
https://github.com/MaximilianAlgehed/Multef

https://github.com/MaximilianAlgehed/Multef

To address these performance concerns, MF semantics, or also

called multi-faceted execution, tries to avoid repeated redundant

executions by running the evaluation of heavyExpr in the code above

just once. More concretely, variable input is bound to the faceted
value ⟨H ? 42 : 0⟩, which denotes that the high (secret) value of input

is 42 while its corresponding low (public/dummy) value is 0. As a

result, the evaluation of heavyExpr is triggered only once, not twice—

after all, it does not depend on secrets. The evaluation of input+1

yields the faceted value ⟨H ? 43 : 1⟩, and put then writes the public

facet, i.e., 1, to the low file, thus avoiding the information leak.

MF provides both precision and non-interference guarantees.

Unfortunately, since MF “intertwines” the low and high execu-

tions, a low output could block indefinitely on a divergent high

computation, and so MF provides only termination-insensitive non-

interference (TINI)—rather than the stronger and more desirable

TSNI guarantee of SME.

To illustrate this limitation, consider the program below.

do secret <- get highFile
when (secret == 42) diverge
put lowFile 0

Here, secret is bound to ⟨H ? 42 : 0⟩, indicating that the value 42 read

from highFile is considered private, with a corresponding public

dummy value of 0. Consequently, the subsequent when instruction

executes both the then branch (with side-effects and I/O effects visi-

ble to high observers) and the (empty) else branch (if it were not

empty, like in a regular if-then-else, the side-effect and I/O actions

would be visible to the low observers); after both branches termi-

nate, the remainder of the program executes (with effects visible

to both high and low observers). One consequence of this faceted

semantics is that the termination effect of the high branch is now

visible to low observers, which is why MF guarantees only TINI

rather than TSNI.

In summary, both MF and SME are precise (i.e., they do not

change the behavior of secure programs). On one hand, SME pro-

vides TSNI, but with some (perhaps significant) overhead. In con-

trast, MF addresses this overhead, but at the cost of a weaker secu-

rity guarantee (TINI).

This work presents a new runtime monitor called FSME (Faceted

Secure Multi Execution) that combines the advantages of MF and

SME. Note that our approach improves over [39] in that it does not

require to restart computations—instead, it gracefully transitions

from MF into SME as needed by mid-computations, which in turn

requires compatible representations of state and control in the two

semantics. Developing the appropriate semantic machinery to unify

MF and SME into FSME and to gracefully transition between them

is a key contribution of this work.

3 A UNIFYING MULTI EXECUTION
FRAMEWORK

We formalize our ideas in terms of a unifying operational semantic

framework, called , that can express all of SME, MF, and

FSME. Our formal development targets an imperative language

with mutable reference cells and reactive I/O. However, for ease of

exposition, we present here only the core calculus with facets and

mutable references; semantics for I/O is deferred to Appendix A.

Following Haskell, we distinguish between pure and side-effecting

computations.

3.1 Functional core
The functional core of is standard, including variables, func-

tions, function application, integers, addition, and conditionals. The

language is typed. For simplicity, the core types include just

Int and function typesT → T . We say t ::T to mean that t has type
T .

3.2 Faceted values
The language includes faceted valuesV :: FacT , whose behavior can
differ according to the security label of an observer. The constructor

raw is used to encode concrete values within faceted ones, e.g.,

raw 42 should be thought of as simply 42. For instance, the faceted

value ⟨H ? 42 : 0⟩ from Section 2 gets encoded as ⟨H ? raw 42 : raw 0⟩

in our semantics. For another example, (raw 0) :: Fac Int should be

thought of as a faceted value that behaves like 0 for all observers.

In contrast,

⟨Alice ? raw 42 : raw 0⟩ :: Fac Int

is another value of type Fac Int that behaves like 42 for Alice (a

label in the security lattice), but like 0 for observers who cannot

see Alice’s private data. Faceted values can be nested in a tree-like

structure, so

⟨Alice ? ⟨Bob ? raw 42 : raw 1⟩ : raw 0⟩

behaves like 42 only for viewers who can see the secrets of both

Alice and Bob.

To ensure security, programs are not allowed to directly ma-

nipulate the raw leaves of a faceted value. Instead, we provide a

primitive called bind responsible to apply a computation to each

of the leaves of the tree structure denoted by faceted values. For

example, to add 1 to the faceted value shown above, we would write

bind ⟨Alice ? ⟨Bob ? raw 42 : raw 1⟩ : raw 0⟩ (λx . raw (x + 1))

which evaluates (in several steps) to

⟨Alice ? ⟨Bob ? raw 43 : raw 2⟩ : raw 1⟩.

Observe that the computation (λx . raw (x + 1)) is applied to each

leave of the faceted value to yield the result. Operationally, if

V :: Fac T1 and f :: T1 → Fac T2, then bind V f

▶ extracts each raw leaf of type T1 from the faceted tree V ,

▶ applies f to this T1 argument, producing a result of type Fac T2,
and

▶ joins these various results from f into a single faceted value of

type Fac T2, which is returned from bind.

3.3 FIO computations
So far, we can express side-effect-free computations on faceted val-

ues. To express programs that manipulate both faceted values and

mutable reference cells, we introduce the FIO monad—a monad

(e.g., [56]) is just a special-purposed data type designed to express

computations with side-effects in pure functional languages like

Haskell. In this light, the type FIO T characterizes side-effectful

secure computations that yield aT value. Because of being a monad,

computations of type FIO T are built by two fundamental opera-

tions:

return :: T → FIO T

(>>=) :: FIO T1 → (T1 → FIO T2) → FIO T2

The operation return x produces a computation that returns the

value of x without causing side-effects. The function (>>=)—called

FIO-bind to distinguish it from the analogous bind operation on

faceted values—is used to sequence FIO computations and their

associated side-effects. Specifically, fio >>= f executes fio, takes its
result and passes it to the function f , which then returns a second

computation to run. Some languages, like Haskell, provide syn-

tactic sugar for monadic computations known as do-notation. For
instance, the program fio >>= λx .return (x + 1), which adds 1 to the

value produced by computation fio, can be written as

do x ← fio
return (x + 1)

which gives a more “imperative” feeling to programs.

3.4 Building side-effectful computations based
on faceted values

In most programs, side-effects may occur conditionally based on

values in the program. For example, the following code snippet

performs two different side-effects depending on whether x :: Int
is positive. Let us imagine that, for instance, code effect0 :: FIO ()
writes 0 to a reference, while effect1 :: FIO () writes 1 instead:

if (x > 0) effect0 effect1 :: FIO ()

If computations have side-effects which must depend on faceted
values, then their type will be of the form Fac (FIOT) for some type

T , i.e., a faceted value whose tree-like structure stores side-effectful
computations at its leaves—thus expressing that different FIO T
computations should be visible to different security levels. In this

case, we rely on the special operator

run :: Fac (FIO T) → FIO (Fac T)

to enable interaction
2
between Fac and FIO. Intuitively, run takes

all the side-effectful actions inside the tree-like structure of the

argument and somehow (e.g., by sequentialising) executes them and

collects the results in another tree-like faceted value. For instance,

if we change the previous snippet so that the writes should depend

on fx :: Fac Int, then it becomes

p = bind fx (λx . raw (if (x > 0)
effect0
effect1)) :: Fac (FIO ())

The function (λx) :: Int→ Fac (FIO ()) is run for each integer in
fx, and so (bind fx (λx) :: Fac (FIO ()) results in a faceted tree of
FIO computations—we use ellipses here to denote the corresponding

code above. The primitive run in

run (p) :: FIO (Fac ())

then controls the sequential or concurrent execution of these vari-

ous FIO computations, and thus encapsulates the key design choices

2
This run operator enables interaction between the two monads FIO and Fac in the

manner proposed by Jones and Duponcheel [25] as the swap construction.

regarding the different multi-execution approaches that we con-

sider. In our framework, the semantics of this operation is the one
that determines if we consider MF, SME, or FSME when launching
multi-executions. We proceed now to add the operations related to

building and executing side-effectful computations.

3.5 Supported multi-executions approaches
Before we dive into the technicalities of our semantics, we provide

some examples to illustrate the different multi-executions semantics

that considers. Let us consider the following code fragment:

p = do fx ← get highFile
run (bind fx (λx . raw (put highFile (x + 1))))
run (bind fx (λx . raw (divergeIf42 x)))
put lowFile 0

This program p :: FIO () works as follows. It reads a secret value
from a sensitive file—let us assume that the file has stored the

number 42. Hence, primitive get returns the faceted integer fx =
⟨H ? raw 42 : raw 0⟩, thus protecting the secret 42. In the next line,

run and bind are used to extract the raw x :: Int from the secret,

increment it, and write it into a high file. Similarly, the next line

calls the function divergeIf42 which loops when the value given as

an argument is 42. Finally, the last instruction writes 0 to a public

file. We use this example to illustrate some of the challenges in

ensuring TSNI.

SME. The original formulation of SME [16] would run two ver-

sions of the program, as shown in Figure 1a. The left high execution

can read and write high files, but cannot write to low files. Con-

versely, the right low execution never sees any secret data; it reads

dummy values from high files, but it can write to low files. As the

figure shows, SME duplicates both memory and code. The diver-

gence of the high execution does not block the public write in the

low execution, thus satisfying TSNI.

Demand-driven SME. Our demand-driven optimization of SME

is shown in Figure 1b, where the high and low executions are not

forked until the first call to run, which then forks two copies of the

entire continuation, again satisfying TSNI. As with the main thread,

every forked multi-execution will not spawn others until reaching

another run.

MF. Figure 1c illustrates how MF processes the example, where

run forks two (high and low) subcomputations, and then waits for

them to terminate before executing the continuation. This approach

is potentially more efficient, but at the cost of violating TSNI, since

the divergent high computation now blocks the subsequent public

write.

FMSE. Finally, Figure 1d illustrates our novel combination of MF

and SME to obtain the best of both worlds, i.e., TSNI security and

MF efficiency. Here, run forks two subcomputations, and if both

subcomputations terminate within a given time bound (as in the

first call to run), then the continuation is run just once, as in MF.

However, if the time bound is exceeded (as in the second call of run),
then the continuation is executed twice, thus satisfying TSNI. The

newly spawned computations will not fork others until reaching

run and the time bound has been exceeded again—this is a novelty

with respect to previous combination of MF and SME [39] and it

get 42 from high file get dummy value 0

write 42 to high file no write to high file

diverge do not diverge

no write to low file write 0 to low file

(a) SME.

get ⟨H ? raw 42 : raw 0⟩ from high file

run (bind . . .)

write 42 to high file no write to high file

run (bind . . .) run (bind . . .)

diverge do not diverge

no write to low file write 0 to low file

(b) Demand-driven SME.

get ⟨H ? raw 42 : raw 0⟩ from high file

run (bind . . .)

write 42 to high file no write to high file

run (bind . . .)

diverge do not diverge

write 0 to low file

(c) MF.

get ⟨H ? raw 42 : raw 0⟩ from high file

run (bind . . .)

write 42 to high file no write to high file

run (bind . . .)

diverge do not diverge

no write to low file write 0 to low file

(d) FSME.

Figure 1: Control flow diagrams. Dashed boxes denote code that is not executed due to earlier divergence. Red means pc = {H }
(high view), blue means pc = {H } (low view), and white means pc = {} (i.e., instructions common to both views).

proves crucial to get good performance in our implementation (see

Sections 9 and 10). Furthermore, when it comes to non-termination,

FSME guarantees that the thread which hits divergence under a

branch does not stop others from making progress. Fully stopping

progress in programs can only occur when looping under an empty

pc—which is secure since it denotes divergence based on public

information.

Note that the TSNI guarantee holds for any finite timeout. Larger

timeouts may lead to fewer forked continuations and so better

performance. Various policies can be used to set the timeout. One

plausible option is to set the timeout for the private subcomputation

at (say) twice the time required for the public subcomputation.

supports all these variations in multi-execution semantics

just by changing the semantics of run, as we explain below.

3.6 Formal semantics
To illustrate the possible semantics for run, we formalize a

evaluation relation t −→pc t
′
that captures MF and SME, as well as

other forking strategies like FSME. Here, pc is the program counter
label, which is a set of constraints called branches, each of the form

k or k . If k ∈ pc , then the computation can see only the high-

confidentiality facet VH of any faceted value ⟨k ?VH :VL⟩. Con-

versely, if k ∈ pc , the computation should only see VL . If neither k

nor k are in pc , then the computation processes both facetsVH and

VL .
Conceptually, pc describes which security labels l ∈ Lattice

are represented by the current computation. We formalize this

intuition by the following function views, which maps a pc to the

corresponding set of labels:

views(pc) = {l ∈ Lattice | (∀k ∈ pc . k ⊑ l) ∧ (∀k ∈ pc . k @ l)}

For example, views({k1,k2,k3,k4}) only includes lattice elements

in the upward closure of k1 and k2 and not in the upward closure of

k3 or k4. The most interesting rules for t −→pc t
′
are summarized in

Figure 2—see Appendix A for the rest of the semantic rules.

Forking on-demand. The rules for run V form the core of our

evaluation strategy, and depend on the structure of the faceted com-

putation treeV :: Fac (FIOT). IfV is a faceted value ⟨k ? t1 : t2⟩, then
in general rule [f-run-facet-3] creates two new threads, denoted

by the syntax [⟨⟨k ? run t1 : run t2⟩⟩] , which will proceed to evaluate t1
and t2, respectively. Subsequently, the rule [f-thread-1] permits

evaluation of t1, with k added to the pc , indicating that side-effects

of the computation t1 should only be visible at security levels in

views(pc ∪ {k }). Conversely, the rule [f-thread-2] permits evalua-

tion of t2, with k added to pc . Both rules may be applicable at the

same time (our semantics is nondeterministic), which allows for

t1 and t2 to be evaluated in any order. A concrete scheduler can

choose to use either [f-thread-1] or [f-thread-2] first, and may

interleave them to achieve concurrency.

Observe that adding a new branch constraint to the pc may

entail views(pc) is empty, which means that the current compu-

tation is not visible to any observer. Rules [f-run-facet-1] and

[f-run-facet-2] are optimizations to avoid unnecessary creation

of such “invisible” threads.

MF semantics. Once each FIO computation run ti for i ∈ {1, 2}
terminates to return Vi , rule [f-merge] joins the two threads back

together into a single terminated FIO computation return ⟨k ?V1 :V2⟩.
The rules described so far performMF-like computation by blocking

the continuation of run until both sub-threads terminate.

SME semantics. Alternatively, to permit SME-like computation,

rule [f-fork-continuation] allows the continuation (the enclos-

ing evaluation context E) to be copied into each sub-thread, yielding
[⟨⟨k ?E[t1] :E[t2]⟩⟩] . Consequently, the evaluation of the continuation

E in the low thread E[t2] is not blocked by a divergent high compu-

tation t1 in the high thread. This enables a stronger termination-

sensitive security guarantee, but at the cost of evaluating E twice.

FSME semantics. Since supports both MF and SME, it is

now possible to express our novel approach, Faceted Secure Multi

Execution (FSME), which combines the benefits of both. Under most

circumstances, FSME proceeds exactly like MF. However, if say the

low subcomputation t2 returns but t1 exceeds a policy-specified

timeout, then the rule [f-fork-continuation] is applied to fork

the enclosing continuation E, thus allowing the low view to proceed

without blocking on the high view.

Note that our semantics is non-deterministic, enabling different

evaluation strategies to provide MF, SME, and FSME-like behav-

ior. Although we consider a call-by-name semantics, we expect

syntax

t ::= x | λx .t | t t | n | t + t | if t t t | V | return t | t >>= t | run t | a | new t | read t | write t t | get i | put o t | [⟨⟨k ? t : t⟩⟩]
V ::= raw t | ⟨k ?VH :VL⟩ | bind t t

t −→pc t

run ⟨k ? t1 : t2⟩ −→pc

run t1
run t2
[⟨⟨k ? run t1 : run t2⟩⟩]

if views(pc ∪ {k }) = ∅
if views(pc ∪ {k }) = ∅
otherwise.

[f-run-facet-1]

[f-run-facet-2]

[f-run-facet-3]

[⟨⟨k ? t1 : t2⟩⟩] −→pc [⟨⟨k ? t ′
1
: t2⟩⟩] if k < pc and t1 −→pc∪{k } t

′
1

[f-thread-1]

[⟨⟨k ? t1 : t2⟩⟩] −→pc [⟨⟨k ? t1 : t
′
2
⟩⟩] if k < pc and t2 −→pc∪{k } t

′
2

[f-thread-2]

[⟨⟨k ? return V1 : return V2⟩⟩] −→pc return ⟨k ?V1 :V2⟩ [f-merge]

E[[⟨⟨k ? t1 : t2⟩⟩]] −→pc [⟨⟨k ?E[t1] :E[t2]⟩⟩] [f-fork-continuation]

Figure 2: Syntax and selected rules from the semantics.

our results to extend to strict languages by the introduction of ex-

plicit suspensions—a well-known technique to encode call-by-name

operations in call-by-value semantics.

Side Effects. We extend the operational semantics to support both

mutable reference cells and I/O by extending the evaluation relation

from terms t −→pc t
′
to states σ −→pc σ

′
, where each state has the

form (t ,M, P , I ,O). The memoryM maps reference addresses a to

faceted values. Note that reference cells always contain faceted data,

as they may be updated by computations that should only be visible

at certain security levels. The output buffer O contains an integer

sequence O (o) for each output channel o, which is extended by

put o n. The input buffer I also contains an integer sequence I (i) for
each input channel i , but these input buffers are not modified during

execution; instead, we maintain a buffer pointer P (i) (pointing into
I (i)) that is incremented as necessary during each get i operation.
Since computations at different security levels may advance at

different rates, the buffer pointer P (i) can be a faceted tree with

integer leaves.

M ∈ Memory = Address → FacetedValue
p ∈ BufferPointer ::= n | ⟨k ?p :p⟩
P ∈ BufferPointers = InputHandle → BufferPointer
I ∈ InputBuffer = InputHandle → Z∗

O ∈ OutputBuffer = OutputHandle → Z∗

σ ∈ State ::= (t ,M, P , I ,O)

The previously described rules extend in a natural manner from

terms to states. Figure 3 shows the rules to allocate, read, and write

reference cells, making sure that values written to the memoryM
appropriately reflect the current program counter label pc , using
the following notation to construct a faceted value from a pc:

⟨⟨• ? • : •⟩⟩ : PC → FacetedValue → FacetedValue
→ FacetedValue

⟨⟨{} ?V1 :V2⟩⟩ = V1
⟨⟨pc ∪ {k } ?V1 :V2⟩⟩ = ⟨k ? ⟨⟨pc ?V1 :V2⟩⟩ :V2⟩

⟨⟨pc ∪ {k } ?V1 :V2⟩⟩ = ⟨k ?V2 : ⟨⟨pc ?V1 :V2⟩⟩⟩

Appendix A contains a full definition of our operational semantics,

including various rules (such as for I/O) that we do not have space

to include here.

4 TERMINATION INSENSITIVE SECURITY
GUARANTEES

As a starting point for reasoning about the correctness properties

of our faceted framework, we first develop a corresponding “stan-

dard” semantics

std

−→ for that does not perform any faceted

evaluation. This semantics works over non-faceted states σ that do

not include faceted values ⟨k ?V :V ⟩, faceted input buffer pointers

⟨k ?p :p⟩, or concurrent faceted threads [⟨⟨k ? t : t⟩⟩] . Many of the rules

are identical to the corresponding −→pc rules; Figure 4 illustrates

some modified rules that avoid introducing facets for reference

cells.

For any faceted state σ and label l , we can generate a correspond-

ing non-faceted state, denoted σ↓l , that is the view of σ seen by

an observer at level l . This projection operation σ↓l is defined in

Figure 5. We say σ and σ ′ are l-equivalent (written σ ≈l σ
′
) if their

l-projections are identical (i.e., σ↓l = σ ′↓l).
We now show that each faceted framework step σ −→pc σ ′

corresponds to either zero or one standard evaluation steps of

σ↓l , provided that l ∈ views(pc). For example, σ −→pc σ ′ could
evaluate a high thread t1 inside σ = ([⟨⟨H ? t1 : t2⟩⟩] , . . .), resulting

in σ↓H
std

−→ σ ′↓H and σ↓L = σ ′↓L . Moreover, if σ −→pc is stuck,

then the projected state σ↓l
std

−→ is also stuck, again provided that

l ∈ views(pc). Finally, a faceted step σ −→pc σ
′
does not change

any of the state componentsM, P , I ,O seen by a viewer at any level

l < views(pc).
Theorem 1 (Projection).

(1) If σ −→pc σ ′ and l ∈ views(pc), then either σ ≈l σ ′ or

σ↓l
std
−→ σ ′↓l .

(2) If σ −̸→pc and l ∈ views(pc), then σ↓l ̸
std
−→ .

(3) If (t ,M, P , I ,O) −→pc (t ′,M ′, P ′, I ′,O ′) and l < views(pc),
thenM ≈l M

′ and P ≈l P ′ and I ≈l I ′ and O ≈l O ′.

Based on this projection theorem, we show that our framework

satisfies termination-insensitive non-interference. Essentially, if σ1
and σ2 are l-equivalent states, then running both states to termina-

tion will produce l-equivalent final states, that is, evaluation does

not leak information that should be kept hidden from l . Here we
use σ ′i −̸→∅ to denote that state σ ′i cannot be evaluated further,

and run both computations with the empty pc = ∅, so the faceted

framework simulates standard evaluation for all views.

σ −→pc σ

(new V ,M, P , I ,O) −→pc (return a,M[a := ⟨⟨pc ?V : raw 0⟩⟩], P , I ,O) if a < dom(M) [f-new]

(read a,M, P , I ,O) −→pc (returnM (a),M, P , I ,O) [f-read]

(write a V ,M, P , I ,O) −→pc (return V ,M ′, P , I ,O) ifM ′ = M[a := ⟨⟨pc ?V :M (a)⟩⟩] [f-write]

Figure 3: Rules for references.

σ
std

−→ σ

(new F ,M, P , I ,O)
std

−→ (return a,M[a := F], P , I ,O) if a < dom(M) [s-new]

(write a F ,M, P , I ,O)
std

−→ (return F ,M[a := F], P , I ,O) [s-write]

Figure 4: Selected rules of the standard semantics.

t↓l = t ⟨k ? F1 : F2⟩↓l =

F1↓l k ⊑ l

F2↓l otherwise

[⟨⟨k ? t1 : t2⟩⟩]↓l =

t1↓l k ⊑ l

t2↓l otherwise

(put o t)↓l =

put o (t↓l) lo = l
return (t↓l) otherwise

t↓l is homomorphic otherwise

M↓l = M M↓l = λa.M (a)↓l

p↓l = p n↓l = n

⟨k ?p1 :p2⟩↓l =

p1↓l k ⊑ l

p2↓l otherwise

P↓l = P P↓l = λi .P (i)↓l

I↓l = I I↓l = λi .

I (i) li ⊑ l

ϵ otherwise

O↓l = O O↓l = λo.

O (o) lo = l
ϵ otherwise

σ↓l = σ (t ,M, P , I ,O)↓l = (t↓l ,M↓l , P↓l , I↓l ,O↓l)

Figure 5: Projection functions.

Theorem 2 (Termination-Insensitive Non-Interference).

If σ1 ≈l σ2 and σ1 −→
∗
∅
σ ′
1
−̸→∅ and σ2 −→

∗
∅
σ ′
2
−̸→∅ then

σ ′
1
≈l σ

′
2
.

5 FAIR SCHEDULING
The semanticsσ −→pc σ

′
is non-deterministic, and so requires a fair

scheduler in order to guarantee the desired termination-sensitive

security properties. To illustrate this requirement, consider the term

t :

[⟨⟨k ? diverge : return (raw 2)⟩⟩] >>= λ_.t2

where t2 = put publicFile 3 and diverge is a computation that di-

verges based on the value of some secret. A scheduler that priori-

tized evaluation of the divergent high thread diverge via [f-thread-1]
could forever block the low output on publicFile—which produces

a termination leak since the attacker would never see the output

3 performed by t2. Alternatively, the semantics does permit the

low thread to make progress, by using [f-fork-continuation] to

lift the continuation (λ_.t2) inside each forked thread, and subse-

quently executing the continuation twice, at both security levels (in

a manner reminiscent of SME) and finally executing the low write

t2 without blocking on diverge.

t = [⟨⟨k ? diverge : return (raw 2)⟩⟩] >>= λ_.t2

−→∅ [⟨⟨k ? diverge >>= (λ_.t2) : return (raw 2) >>= λ_.t2⟩⟩]

−→∅ [⟨⟨k ? diverge >>= (λ_.t2) : (λ_.t2) (raw 2)⟩⟩]

−→∅ [⟨⟨k ? diverge >>= (λ_.t2) : t2⟩⟩]

We introduce a fairness requirement to ensure that the implemen-

tation does not indefinitely choose high executions when low exe-

cutions are available—thus avoiding possible termination leaks. A

fair state Σ = (σ , s) consists of a state σ plus additional scheduling

information s .

Σ ∈ FairState ::= (σ , s)
s ∈ SchedulingInfo

We leave the scheduling information s abstract and assume only a

fair evaluation relation

(σ , s)
fair

−→ (σ ′, s ′)

satisfying the properties

• Validity: If (σ , s)
fair

−→ (σ ′, s ′) then σ −→∅ σ
′
.

• Blocking: If (σ , s) ̸
fair

−→ then σ −̸→∅ .
• Fairness: ∀σ , s, l .∃n ∈ N. if σ can l-step, then any n-step fair

evaluation sequence (σ , s)
fair

−→n (σ ′, s ′) includes an l-step.

The fairness condition says that, given a fair state (σ , s) and a label

l , if the projected state σ↓l seen by a viewer at level l can make

progress, then there exists some step limit n ∈ N such that any

n-step fair evaluation (σ , s)
fair

−→n (σ ′, s ′) will include progress seen
by a viewer at level l . This is the essential requirement that stops

low outputs from being blocked indefinitely on high computations.

The fair evaluation relation will typically be deterministic.

6 TERMINATION SENSITIVE SECURITY
GUARANTEES

We next prove a stronger termination-sensitive non-interference

result, based on the fair scheduling semantics. First, given any fair

state (σ , s) where the l-projection σ↓l can perform a standard step,

then the fair semantics will eventually perform a corresponding

step. That is, no view l is ever blocked indefinitely by the fair

semantics.

Theorem 3 (Fair Projection).

If σ↓l
std
−→ σ1 then ∃σ2, s2. (σ , s)

fair
−→∗ (σ2, s2) and σ2↓l = σ1.

The fair semantics satisfies TSNI: given two l-equivalent states
σ1 ≈l σ2, if σ1 evaluates to σ

′
1
via the fair semantics, then σ2 must

also evaluate to a corresponding l-equivalent state σ ′
2
(and in par-

ticular σ2 cannot diverge before doing so).

Theorem 4 (Termination-Sensitive Non-Interference).

If σ1 ≈l σ2 and (σ1, s1)
fair
−→∗ (σ ′

1
, s ′
1
) then

∃σ ′
2
, s ′
2
. (σ2, s2)

fair
−→∗ (σ ′

2
, s ′
2
) and σ ′

1
≈l σ

′
2
.

Recently, Ngo et al. [41] call indirect termination sensitive non-
interference (ITSNI) to security conditions (like ours) where the

termination behavior of sensitive programs is not exposed via public

inputs and outputs despite their divergence. In this work, however,

we refer to our security condition as TSNI since it is a more widely

accepted term.
3

The fair semantics is also transparent, in that it does not perturb

the behavior of non-interfering programs. We consider a program
to be any term t without facets (i.e., without any secrets). We say

a program t is non-interfering if running t with two l-equivalent
inputs I1 ≈l I2 gives l-equivalent behavior, i.e. if

(t , ∅, λi .0, I1, λo.ϵ)
std

−→∗ σ1

then there is some σ2 ≈l σ1 such that

(t , ∅, λi .0, I2, λo.ϵ)
std

−→∗ σ2

Here, (t , ∅, λi .0, I1, λo.ϵ) is the initial state for running t with the

empty memory, 0-initialized buffer pointers, input I1, and empty

output buffers.

For such programs that are non-interfering under the standard

semantics, the fair faceted semantics does not change behavior.

Theorem 5 (Transparency).

Consider any standard run σ = (t , ∅, λi .0, I , λo.ϵ)
std
−→∗ σ ′ of a non-

interfering program t . For all l ∈ Lattice, the fair semantics generates
a corresponding run

(σ , s)
fair
−→∗ (σ ′′, s ′′)

with σ ′ ≈l σ ′′. In particular, all l-visible output buffers in σ ′ and σ ′′

are identical.

7 DECENTRALIZED LABELS
In our framework, the semantic rule for run determines when multi-

executions are necessary. To recap briefly, this rule has the following

side conditions (recall Figure 2) for a given pc and label k .

views(pc ∪ {k }) = ∅

views(pc ∪ {k }) = ∅

3
More precisely, our security condition is progress-sensitive non-interference[35]: it

ensures that information is not leaked via termination even in the presence of outputs.

Recall that the definition of views(pc) hinges on quantifying over
all labels in the lattice. The definition of views(pc) in Section 3 is:

views(pc) = {l ∈ Lattice | (∀k ∈ pc . k ⊑ l) ∧ (∀k ∈ pc . k @ l)}

Where l ranges over labels in the lattice. The reader may be worried

that this definition means that our calculus is not applicable to

infinite, decentralised, lattices, a severe restriction to real-world

applicability would it be the case. In this section, we show that the

condition views(pc) = ∅ is decidable given that the lattice has a

decidable ordering relation (⊑) and computable join (⊔)—a novelty

with respect to previous work (e.g., [4, 39]) that assume either finite

lattices or lattices with just a confidentiality component.

We introduce the notion of a candidate label for a given pc ,
defined as

lc (pc) =
⊔
{k | k ∈ pc}

which is the smallest label that must be in views(pc). To check if

views(pc) is non-empty, we simply check that for any negated label

k ∈ pc , k does not flow into this candidate label.

Theorem 6 (Emptiness Check).

∀pc . views(pc) , ∅ ⇔ ∀k ∈ pc . k @ lc (pc)

This theorem gives us a decision procedure for finite PCs when

the lattice has decidable (⊑) and computable (⊔): it guarantees

that we are not limited in our choice of lattice when instantiating

. One consequence of this result is that can use practical

decentralised label models like DC-labels [49] and DLM [34].

7.1 Disjunction Category Labels
Disjunction Category (DC) Labels is a decentralized labeling scheme

whereby labels are represented as pairs of finite monotonic propo-

sitional logical formulas, i.e., logical formulas without negation

or implication. The atoms in the formulae represent actors in the

system. Each label consists of two such formulas, one expressing a

confidentiality and the other an integrity requirement.

A DC label, then, is a tuple ⟨C, I ⟩, where C stands for confiden-

tiality and I for integrity. When it comes to confidentiality, conjunc-

tions represent the multiple interest of principals to protect the data,

while disjunctions denote groups wherein any member may learn

the information. For instance, the formula Alice ∧ Bob indicates
that information is sensitive to both principals and requires their

joint consensus to observe it. In contrast, Alice ∨ Bob reflects that

data can be observed either by one of the principals. Dually, when

it comes to integrity, conjunctions of principals represent groups

of principals where members are independently responsible for the

information. As a example, the formula Alice∧ Bobmeans that Al-

ice is completely responsible for the data, and so is Bob. Conversely,

disjunctions of principals represent groups that collectively take

responsibility for the information, i.e., no single principal takes full

responsibility. For example, the formula Alice ∨ Bob means that

Alice and Bob collectively are responsible for the data—both may

have contributed to or influenced it. This notion of labels is general

enough to encode the label models used in many IFC operating

systems (e.g., Asbestos [21], HiStar[58], and Flume [29]) as well as

a subset of DLM [34].

DC Labels form a lattice where the definition of the ordering

(can-flow-to) relation ⊑ is as follows.

C1 ⊢ C0 I0 ⊢ I1
⟨C0, I0⟩ ⊑ ⟨C1, I1⟩

The sequent A ⊢ B should be read "given the assumption A, we
can prove B using the rules of propositional logic." As an example,

let us consider the DC label L1 = ⟨Bob,Bob ∨ Alice⟩, where data
is confidential to Bob but he does not assume full responsibility

for it, and label L2 = ⟨Bob ∧ Alice,Bob⟩ where data is confidential
to both principals but Bob assumes responsibility for it. Can data

label with L1 flow into entities label with L2, i.e., L1 ⊑ L2? When it

comes to confidentiality, it holds that Alice ∧ Bob ⊢ Bob. However,
Alice∨Bob ⊬ Bob; otherwise Bob would assume full responsibility

for information that he has not completely vouched for, wherefore

L1 @ L2. Note that for any pair of labels ℓ and ℓ′ the statement

ℓ ⊑ ℓ′ is decidable using standard techniques like SAT solvers or

BDDs [1, 20].

The join (⊔) of two labels is also easily constructed by taking the
conjunction of the confidentiality components and the disjuction

of the integrity components.

⟨C0, I0⟩ ⊔ ⟨C1, I1⟩ = ⟨C0 ∧C1, I0 ∨ I1⟩

With computable join (⊔) and decidable ordering (⊑) we obtain a

full decision procedure for emptyness of view of finite PCs under

DC-labels, thus can naturally support expressive DC-labels.

8 IMPLEMENTATION
In this section, we give an overview of the implementation of .

Particularly, we describe some technical problems to overcome in

order to deliver as a Haskell library. Our implementation

supports references and I/O, and is easily extended with any effects

that can be accommodated by our formal results. can be used

as a basis to implement IFC-secure plugins and applications.

8.1 Basic structures
We begin by representing labels and program counters as data types

in Haskell.

data Label -- Kept abstract for this presentation
data Branch = Private Label | Public Label
type PC = [Branch]

We use the syntax [a] for denoting the type of lists of elements of

type a and x:xs to denote the insertion x at the head of the list xs.

The decision procedure described in Section 7.1 for deciding if a

view is empty is named but kept abstract in the interest of brevity.

isEmptyViews :: PC -> Bool

Faceted values are implemented as the following data type [26].

data Fac a where
Raw :: a -> Fac a
Bind :: Fac a -> (a -> Fac b) -> Fac b
Q :: Label -> Fac a -> Fac a -> Fac a

The constructors Raw, Bind, and Q (for question mark) correspond to

the constructors raw, bind, and ⟨• ? • : •⟩ in our calculus, respec-

tively. With faceted values in place, we proceed to provide the FIO
operations in our calculus.

data FIO a where
Return :: a -> FIO a
(:>>=:) :: FIO a -> (a -> FIO b) -> FIO b
Run :: Fac (FIO a) -> FIO (Fac a)
-- Primitives for references and I/O
...

Similarly to Fac, the constructors of FIO denote different operations

used to build terms of type FIO—a standard approach taken when

representing domain-specific languages (DSLs) in Haskell [52]. For

brevity, we focus only on constructors representing return, :>>=:,
and run, and we refer the interested reader to Appendix B for fur-

ther details.

8.2 Executor commonalities
Our goal is to implement three executors for programs of type

FIO a so that, by changing the executor, we can execute programs

under MF, MF-par, SME, or FSME. Ideally, we want our executors

to have the same type and to “factor out” their common behavior

as much as possible. With this in mind, we propose the following

type for the executors: FIO a -> PC -> IO (a, PC), i.e., it takes a FIO-

program and an initial pc (PC), and returns a (possibly) side-effectful
program which produces a result of type a and a final pc (IO (a,PC)).

In Haskell, the special data type IO r denotes programs that might

perform side-effects (e.g., writing to a file) and return values of type

r.

We start by defining the executor execute as a base implemen-

tation of all the commonalities across the multi-executions tech-

niques.

execute :: FIO a -> PC -> IO (a, PC)
-- Def. monadic FIO primitives
execute (Return a) = return (a, pc)
execute (fio :>>=: rest) = do

(a, pc) <- execute fio pc
execute (rest a) pc

-- Def. for references and I/O
...

The code skeleton above shows how to execute the monadic FIO-

primitives in a manner that is common to all the multi-execution

techniques—we omit those for references and I/O for brevity and

simplicity. More precisely, Return simply maps to the return in

IO (i.e., return (a,pc)). The bind operator (:>>=:) is defined as ex-

pected: it reduces the given fio computation and passes its result

of type a to rest and executes the resulting FIO computation (i.e.,

execute (rest a) pc). According to Figure 2, the behavior of many

FIO-operations are common to all the multi-executions techniques

supported by our calculus. It is easy to show that the cases in the def-

inition of execute corresponds to the semantic rules in Appendix A,

Figure 12. For instance, execute (Return t :>>=: rest) is equivalent to

execute (rest t)—thus matching the rule [f-bind-fio] in Figure 10.

The interesting part of implementing execute arises from evaluating

Run, the constructor responsible of introducing multi-executions.

For Run, it is not possible (as expected) to have a common code for

all the different multi-execution techniques.

8.3 MF executor
We show here the behavior of Run in the MF executor.

execute (Run (Q k priv publ)) pc
| isEmptyViews (Public k : pc) -> execute (Run priv) pc
| isEmptyViews (Private k : pc) -> execute (Run publ) pc
| otherwise -> do

(priv', _) <- execute (Run priv) (Private k : pc)
(publ', _) <- execute (Run publ) (Public k : pc)
return (Q k priv' publ', pc)

As in our formal calculus, the definition consists of three cases di-

vided by the symbol |. The first cases are triggered when pc can ob-

serve only the private (see rule [f-run-facet-1]) or public facet (see

rule [f-run-facet-2]), respectively. When it comes to the otherwise

case, the MF executor sequentially evaluates the private and pub-

lic facets, respectively—observe the recursive calls with the pcs
Private k : pc and Public k : pc, respectively. The resulting faceted

value, Q k priv' publ' (aka ⟨k ? priv' : publ'⟩), is constructed with the

result of these evaluations. This implementation corresponds to the

applications of rules [f-thread-1], then [f-thread-2], and finally

[f-merge] in our calculus.

MF-par executor. We also implement a slight variation of the MF

executor above called theMF-par executor. This executor essentially
runs the private and public sub-computations in parallel, which

then gives different performance characteristics. Observe that this

variation is supported by our formal framework in Section 3.

8.4 Continuations and SME
We now turn to trying to implement our SME executor for the

same representation of programs used above. However, we run

into a problem, it is impossible to make the executor correspond to

the calculus. The key observation is that when spawning the new

thread, we not only want to execute the instruction Run priv under

the pc Private k : pc but also the rest of the program! Imagine

we wish to execute the program Run (Q k priv pub) :>>=: rest. If

we just execute fork (execute (Run priv) (Private k : pc)) under the

otherwise guard, we will end up not running rest for the private

view. The problem lies in the interaction between :>>=: and Run.

More precisely, when evaluating Run, the executor has no access to

the “rest of the program.” Note that evaluation contexts denote the

rest of the program, so this problem does not exist in our formal

semantics and only materialises in practise.

There are two possible solutions to the problem outlined above,

the first is to change the type of the executors to reflect the need

for keeping track of the “rest of the program” via continuations.

Unfortunately, the new type quickly becomes cluttered.

Instead, we choose a simpler approach: to remove the trouble-

some (:>>=:) construct without loosing any expressive power in our

language. For that, we apply a known technique for domain-specific

languages (DSL) [12] for deriving alternate implementations of APIs.

In a nutshell, what we will do is to replace the constructor Run with

a new one called RunBind such that its semantics is determined by

the equation RunBind fac rest ≡ (Run fac) :>>=: rest. We change our

implementation of FIO as follows.

data FIO a where
Return :: a -> FIO a
RunBind :: Fac (FIO a) -> (Fac a -> FIO b) -> FIO b
-- Primitives for references and I/O
...

The type form of RunBind arises from its semantics definition. We

can now soundly derive an implementation of a bind function

(>>=) :: FIO a -> (a -> FIO b) -> FIO b by simply applying RunBind’s

semantics. In other words, whatever FIO-program was built before

using the constructor :>>=:, it can be obtained with function (>>=)

without changing its semantics—see Appendix B for details.

With this new representation, we can write the behavior of

RunBind for SME.

execute (RunBind (Q k priv pub) rest) pc
...
| otherwise -> do
fork (execute (RunBind priv rest) (Private k : pc))
execute (RunBind pub rest) (Public k : pc)

Observe that rest contains “the rest of the program”, which then gets

evaluated twice as expected, i.e., once for each view. The MF execu-

tor is also easily adjusted to accomodate this new representation—

see Appendix B for the details.

8.5 FSME executor
Implementing the FSME executor requires careful thought. It in-

volves setting a timeout that, when triggered, causes the execution

to be split into two separate executions. The splitting, however,

needs to be done in a safe manner, e.g., not in the middle of an out-

put. To achieve that, when hitting the otherwise guard, our executor
spawns a thread to compute the private facet, send the result to a

pre-determined location, and wait for what to do next. In contrast,

the thread for the public facet sets a timeout to check if the result of

the private facet arrived on time. If that is the case, then the thread

for the public facet indicates to the private one to terminate; other-

wise, it sends a signal to compute the "rest of the program" in the

separate thread. The notion of the continuation in the constructor

RunBind turns out to be essential to implementing this approach. Un-

fortunately, explaining the implementation of this executor requires

explaining some synchronisation and concurrency primitives in

Haskell. For the sake of brevity, we refer to the interested reader to

Appendix C for the details.

9 EVALUATION
We next evaluate the performance of our four executors (MF, MF-

par, SME, and FSME) on several micro-benchmarks. Suppose we

have n principals/actors, which we formalize as n incomparable

labels l1, . . . , ln ∈ Lattice. Let si = ⟨li ? . . . : . . .⟩ be a string secret
to label li . Then the concatenation of these n strings generates a

faceted tree s with height n and 2
n
leaves. Computations over s

thus may generate N = 2
n
subcomputations over the leaves, and

so we use s as a suitable faceted value to stress the implementation

of RunBind’s otherwise guard.

We now define an expensive function on faceted values.

benchmark1 :: Int -> Fac String -> FIO (Fac String)
benchmark1 n fac =
RunBind (Bind fac

(\s -> Raw (Return (hashes n s))))
Return

This function takes a faceted value and computes nested hashes on

all its leaves. Function hashes n s computes n nested SHA256 hashes

of the string s.

Figure 6a shows the performance characteristics for our execu-

tors when executing (benchmark1 100000 s). The measurements were

taken on a 2.8GHz 4 core Intel Core i7-7700HQ processor. Note

that the MF-par, SME, and FSME executors run roughly 4 times

101 102 103

N

0

10

20

30

40

W
al

lC
lo

ck
Ti

m
e

in
se

co
nd

s

Wall Clock Time

MF
MF-par
SME
FSME

101 102 103

N

0e+00

2e+01

4e+01

6e+01

8e+01

M
em

or
y

in
K

B

Memory

MF
MF-par
SME
FSME

(a) 10
5 rounds of SHA256 for a faceted

value with N leaves

101 102 103

N

0

20

40

60

80

W
al

lC
lo

ck
Ti

m
e

in
se

co
nd

s

Wall Clock Time

101 102 103

N

0e+00

1e+06

2e+06

3e+06

M
em

or
y

in
K

B

Memory

(b) 10
5 rounds of SHA256 for a faceted

value with N leaves using different time-
outs in FSME. Red is a shorter timeout and
blue is a longer timeout.

101 102 103

N

0

2

4

6

8

10

W
al

lC
lo

ck
Ti

m
e

in
se

co
nd

s

Wall Clock Time

MF
MF-par
SME
FSME

101 102 103

N

0e+00

2e+01

4e+01

6e+01

M
em

or
y

in
K

B

Memory

MF
MF-par
SME
FSME

(c) 10
5 rounds of SHA256 after branching

on a faceted value with N leaves (FSME co-
incides with MF)

Figure 6: Time and memory consumption for different micro-benchmarks

faster than MF, due to parallelism. Interestingly, the memory con-

sumption, measured in peak resident set size, is significantly larger

for MF-par and SME than for MF. This is a result of SME spawning

additional threads which need to be represented in the Haskell

runtime, whereas the MF executor only keeps the current task in

memory.

The performance of FSME sits between MF and SME, obtaining

the best of both worlds. Figure 6a shows that FSME gains speedup

while keeping memory consumption close to MF most of the time.

What we observe is that the timeout mechanism implemented by

FSME is triggered early enough to obtain only a few threads. From

that point on, the program is run in parallel; however, within the

threads, the execution continues mainly under a MF semantics, i.e.,

the timeout mechanisms subsequently does not get triggered fre-

quently. These results were obtained with a timeout of 1.5 seconds.

We also ran the same benchmark described above for timeouts

varying from 0 to 20 seconds, going from full SME closer to MF. Fig-

ure 6b shows the result of this experiment. The graphs go from red,

indicating a low timeout (SME-like semantics), to blue indicating a

large timeout (MF-like semantics). Interestingly, imposing any non-

zero timeout, 1 second in the example, drastically reduces memory

consumption. This is also the case for even smaller timeouts, like

0.25 and 0.1 seconds.

It is worth noting that while variations in timeout impact perfor-

mance, the security implications of the timeout are not as severe.

Regardless of the length of the timeout, non-terminating compu-

tations will always encounter it. However, if we take terminating

computations, and we take a sufficiently long timeout, we can run

everything just as MF.

The performance of SME versus MF seen so far may give the

impression that SME is always faster than MF at the cost of an

increased memory footprint. However, Figure 6c shows evidence of

the contrary. For this benchmark, instead of taking the hash of the

faceted value, we take the hash of a constant value after branching

on a faceted one.

benchmark2 :: Int -> Fac () -> FIO (String)
benchmark2 n fac =
RunBind (Bind fac

(\() -> Raw (Return ()))
(\f -> Return (hashes n "hello"))

In this benchmark, SME is exponentially slower thanMF. The rea-

son for this is that every time that benchmark2 branches on a faceted

value, it duplicates the continuation (\f -> Return (hashes n "hello")).

As a result, the expensive computation (hashes n "hello") executes

many times even though it does not depend on the faceted value.

MF, MF-par, and FSME, on the other hand, run all the inexpensive

computation first (i.e., Raw (Return ())), i.e., once for every leaf in

the faceted value, and subsequently executes the hashing function

only once.

10 PROTECTEDBOX
In order to demonstrate the viability of our framework for building

practical IFC systems, we have implemented a prototype service

called ProtectedBox. ProtectedBox is a essentially an API for the

cloud storage solution Dropbox [18] that makes possible to securely

write and execute (mutually distrust) third-party plugins on users’

files. Plugins are written in extended with I/O primitives

specific to the Dropbox API [19].

10.1 Labeling policy
File owners specifies how information can be shared with differ-

ent plugins. Initially, every file in User’s folders are labeled as

{⟨User, User⟩}, thus indicating that the files are confidential to the

principal (or source of authority) User and that User is responsible

for its content. We consider plugins as another source of authority.

In this light, a given plugin named Plugin is considered a princi-

pal whose initial PC corresponds to {⟨⊥, Plugin⟩}—so the plugin

does not have any confidentiality requirements a priori. Below, we

describe three plugins that we implemented for ProtectedBox as

well as the labeling discipline that they follow.

▶ Comments: this plugin allows the user to add comments to a file.

The comments are stored in a different file with label ⟨User,User∨
Comments⟩. This indicates that the content of the comments is

confidential to the user, but might have been affected by either the

user or the plugin.

▶ Tarball: this plugin creates a tarball of several files. The tarball is

labeled with the least upper bound of all the files in the tarball joined

with ⟨⊥, Tarball⟩ to indicate that the plugin may have influenced

the contents of the files, i.e., the tarball gets the label (
⊔
lf) ⊔

⟨⊥, Tarball⟩.
▶ Checksum: This plugin computes the SHA256 hash of a file and

saves it to another file. The file created by the plugin is labeled as

lf ⊔⟨⊥,Checksum⟩. This means that the checksum is as confidential

as the file it comes from but that Checksum might have influenced

its content.

Plugins are restricted from arbitrarily querying information about

folders (e.g., list of files) and files (e.g., update time, etc.) in order to

avoid leaks of information via many different covert channels [30].

Instead, they have access to the following file-specific API and, of

course, the primitives of our framework.

-- Interact with user files
createFile :: Label -> String -> String -> FIO ()
writeFile :: String -> String -> FIO ()
readFile :: String -> FIO (Faceted (Maybe String))

A read operation on a file with label l returns the faceted value

⟨l ? contents :⊥⟩. Similarly, writes to a file with label l only hap-

pens if l ∈ views(pc), similarly to the semantics of put. The same

goes for creating files, a file can only be created if its label is in the

view of the PC .

10.2 Performance
We have evaluated the performance overheads associated with our

executors in ProtectedBox. We have five different FIO executors, MF,

MF-par, SME, FSME, and STD. The latter is analogous to

std

−→ in

that it never introduces faceted values, only deals with raw values,

and provides no security guarantees.

Figure 7 shows the performance characteristics when running

the Tarball plugin on up to 30 files. As can be seen from the figure,

our secure executors (MF, MF-par, SME, FSME) do not introduce

extraneous overheads over the unsecure STD executor. All execu-

tors had the same memory footprint in this experiment. The total

memory overhead was small, measured in a few hundred KB at

most. This benchmark provides evidence that, in the case of non-

malicious plug-ins, the performance is similar for the different

multi-execution approaches. Malicious code, however, may stress

the system in ways like what is shown in Section 9.

The performance is dominated by network overheads. For this

reason it is important that the safe executors do not introduce large

0 5 10 15 20 25 30
N

5

10

15

20

25

30

35

W
al

lC
lo

ck
Ti

m
e

in
se

co
nd

s

Wall Clock Time

MF
MF-par
SME
FSME
STD

0 5 10 15 20 25 30
N

0.5

1.0

1.5

2.0

U
se

rT
im

e
in

se
co

nd
s

User Time

MF
MF-par
SME
FSME
STD

Figure 7: Time for different executors in the Tarball bench-
mark, where N is the number of files.

numbers of sequential requests. The code under test in Figure 7

does not display such weakness. It is possible to construct programs

similar to the first benchmark in Section 9 which introduce an

exponential number of network requests, these programs degrade

performance differently under MF, MF-par, SME and FSME in a

way similar to the results in Section 9. However, due to throttling

from the Dropbox API we have been unable to thoroughly evaluate

scenarios of this kind in ProtectedBox, but tentative experiments

suggest that the effect exist.

11 RELATEDWORK
SME. The idea of utilizing multi-executions to secure programs

has been independently proposed by many researchers. Capizzi

et al. [10] propose running two copies of the same program, so

called shadow executions: one for public and other for handling

private data, respectively. Cristiá and Mata independently formal-

ize a similar system at the operating system level [13]. Devriese

and Piessens [16] coin the term SME and are the first to formalise

the soundness and precision guarantees of the approach. Different

from our approach, the original formulation of SME is black-box,
i.e, language independent, which makes it possible to deploy it

for complex languages like JavaScript. Jaskelioff and Russo [24]

present an implementation of SME in Haskell in less than 150 lines

of code. Barthe et al. [6] propose a program that inlines SME into

JavaScript-like programs—so that it is not necessary to modify the

runtime system to obtain multi-executions. We believe that our

contributions could be used to extend the approaches above to

work on decentralized labels as well as obtaining multi-executions

“on-demand.” When it comes to applications, the web has been the

chosen domain to test SME ideas [7] and their implementations,

e.g., FlowFox [14]. The implementation accompanying [7] handles

SME for a specific infinite lattice with levels L (public or bottom),

H (secret or top), andM (d) for every incomparable web domain d .
When receiving an event from an unseen domain, the enforcement

creates a copy of the browser’s state which gets initialized with

the L-state—which is only suitable under the considered lattice.

Instead, our work allows for more general infinite lattices and ini-

tialization of multi-executions’ states without loosing soundness or

transparency guarantees. SME has also been successfully applied

to the map-reduce programming model [40]. When it comes to se-

curity guarantees, secure programs interpreted under SME produce

the same outputs as if they were run under a standard semantics

modulo the relative ordering of observable events from different se-
curity levels. The work in [28] explores how different scheduling

policies affect the security guarantees provided by SME, i.e., TINI or

TSNI. In [43, 57], the authors combine scheduling techniques with

monitoring approaches to guarantee that interleaving of events

gets preserved for secure programs. The authors of [43, 53] provide

means for declassification. While our framework does not present

means for declassification, we state as future work adapting such

techniques for a functional language.

MF. Austin and Flanagan introduce MF semantics [5], where

authors refer to it as an optimization for SME. Schmitz et al. [46]

show an implementation of MF in Haskell—part of that design

inspired ours. Bielova and Rezk [8] later show that SME and MF

are actually different: they differ on the provided security guaran-

tees (i.e., TINI vs. TSNI) and the treatment of default values. They

propose an all-or-nothing combination of MF and SME using a

non-decidable semantics—which takes decisions based on the ter-

mination behavior of commands. Their enforcement run programs

under a MF semantics but switches to SME (with a low priority

scheduler) when commands inside a branch do not terminate. In

the same all-or-nothing spirit, Ngo et al. [39] combine MF and SME

techniques for a simple while-language, where timeouts are set to

determine when to switch to SME. These works and ours share simi-

lar goals, but the underlying mechanisms are entirely different. One

obvious difference is that we use a monad-based operational seman-

tics vs. a while-like language. From the enforcement perspective,

our technique uses a decidable semantics (unlike [8]) and spawns

multi-executions on-demand while [39] does not, thus duplicating

memory and execution of code. Furthermore, their switching mech-

anism between MF and SME requires knowledge of all points in the

lattice, something which is not feasible in decentralized lattices like

DC-labels (or DLM). Different from that work, supports de-

centralized labeling models and it does not spawn as many threads

as security labels when providing termination-sensitive guarantees.

Schoepe et al. [47] investigate how to apply MF semantics to encode

taint analysis.

IFC libraries. Many IFC security libraries exists for Haskell. They

can enforce non-interference statically [2, 32, 44, 54], dynamically

[50], or as a combination of both [9, 17]. Many of these libraries uti-

lize the concept of monads to control the side-effects that programs

are allowed to perform. Differently from them, our work (library)

uses monads to adapt programs semantics to MF, SME, or FSME.

12 CONCLUSIONS
MF and SME are two promising approaches to dynamic IFC that

provide complementary benefits—MF provides better performance,

whereas SME provides stronger termination-sensitive security guar-

antees. This paper provides the unifying framework , a syn-

thesis of both prior approaches in the form of both a unifying

formal semantics and a corresponding Haskell IFC library. Using

, we have developed Faceted Secure Multi Execution, which

combines the performance benefits and termination-sensitive guar-

antees of MF and SME, respectively. In addition, our work supports

decentralized labels, necessary in many realistic settings.

We believe the our mechanically-verified semantics and IFC

library provide a solid foundation for the future development of

extensions as well as realistic applications with strong IFC-based

security guarantees. We envision as future work to extend

to support exceptions and timing-sensitive guarantees. Specifically,

we expect to need some mechanism for propagating exceptions

across threads for MF- and FSME-based multi-executions. On the

other hand, when it comes to timing guarantees, we believe it is

possible to leverage some existing results to make FSME robust

against timing leaks—perhaps by assuming a specific scheduler [28],

or perhaps by padding the sensitive computations by the chosen

timeout [3].

ACKNOWLEDGMENTS
We would like to thank Tamara Rezk and Nataliia Bielova for initial

discussions on this work as well as the anonymous reviewers for

their helpful comments. This workwas funded by the Swedish Foun-

dation for Strategic Research (SSF) under the project Octopi (Ref.

RIT17-0023) and WebSec (Ref. RIT17-0011), the Swedish research

agency Vetenskapsrådet, and NSF Grants 1337278 and 1421016.

REFERENCES
[1] Sheldon B. Akers. 1978. Binary decision diagrams. IEEE Transactions on computers

6 (1978), 509–516.

[2] Maximilian Algehed and Alejandro Russo. 2017. Encoding DCC in Haskell. In

Proc. of the 2017 Workshop on Programming Languages and Analysis for Security
(PLAS ’17). ACM.

[3] Aslan Askarov, Danfeng Zhang, and Andrew C. Myers. 2010. Predictive black-box

mitigation of timing channels. In Proc. of the 17th ACM conference on Computer
and Communications Security. ACM.

[4] Thomas H. Austin and Cormac Flanagan. 2012. Multiple facets for dynamic

information flow. In Proc. of the ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2012. 165–178.

[5] Thomas H. Austin and Cormac Flanagan. 2012. Multiple facets for dynamic infor-

mation flow. In Proceedings of the 39th annual ACM SIGPLAN-SIGACT symposium
on Principles of programming languages (POPL ’12). ACM.

[6] Gilles Barthe, Juan Manuel Crespo, Dominique Devriese, Frank Piessens, and Exe-

quiel Rivas. 2012. Secure multi-execution through static program transformation.

In Formal Techniques for Distributed Systems (FMOODS/FORTE 2012).
[7] Nataliia Bielova, Dominique Devriese, Fabio Massacci, and Frank Piessens. 2011.

Reactive non-interference for a browser model. In Proceedings of the 5th Interna-
tional Conference on Network and System Security (NSS 2011),.

[8] Nataliia Bielova and Tamara Rezk. 2016. Spot the Difference: Secure Multi-

execution and Multiple Facets. In European Symposium on Research in Computer
Security. 501–519.

[9] P. Buiras, D. Vytiniotis, and A. Russo. 2015. HLIO: Mixing Static and Dynamic

Typing for Information-Flow Control in Haskell. In Proc. of the ACM SIGPLAN
International Conference on Functional Programming (ICFP ’15). ACM.

[10] Roberto Capizzi, Antonio Longo, V. N. Venkatakrishnan, and A. Prasad Sistla.

2008. Preventing Information Leaks through Shadow Executions. In Proc. of the
Annual Computer Security Applications Conference (ACSAC ’08). IEEE Computer

Society.

[11] Ethan Cecchetti, Andrew C. Myers, and Owen Arden. 2017. Nonmalleable Infor-

mation Flow Control. In Proc. of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2017. 1875–1891.

[12] Koen Claessen. 2004. Parallel Parsing Processes. Journal of Funcitonal Program-
ming 14, 6 (2004), 741–757.

[13] Maximiliano Cristiá and Pablo Mata. 2009. Runtime Enforcement of Noninter-

ference by Duplicating Processes and their Memories. In Workshop de Seguridad
Informática WSEGI 2009, Argentina (38 JAIIO).

[14] Willem De Groef, Dominique Devriese, Nick Nikiforakis, and Frank Piessens.

2012. FlowFox: a web browser with flexible and precise information flow control.

In Proceedings of the 2012 ACM conference on Computer and communications
security (CCS ’12). ACM, New York, NY, USA.

[15] Dorothy E. Denning and Peter J. Denning. 1977. Certification of Programs for

Secure Information Flow. Commun. ACM 20, 7 (July 1977), 504–513. https:

//doi.org/10.1145/359636.359712

[16] D. Devriese and F. Piessens. 2010. Noninterference through Secure Multi-

execution. In Proc. of the 2010 IEEE Symposium on Security and Privacy (SP ’10).
IEEE Computer Society.

[17] D. Devriese and F. Piessens. 2011. Information flow enforcement in monadic

libraries. In Proc. of the ACM SIGPLAN Workshop on Types in Language Design
and Implementation (TLDI ’11). ACM.

[18] Dropbox. [n. d.]. Dropbox. https://www.dropbox.com. ([n. d.]).

[19] Dropbox. [n. d.]. Dropbox HTTP API. https://www.dropbox.com/developers/

documentation/http/overview. ([n. d.]).

[20] Niklas Eén and Niklas Sörensson. 2003. An extensible SAT-solver. In International
conference on theory and applications of satisfiability testing. Springer, 502–518.

[21] Petros Efstathopoulos, Maxwell Krohn, Steve VanDeBogart, Cliff Frey, David

Ziegler, Eddie Kohler, David Mazières, Frans Kaashoek, and Robert Morris. 2005.

Labels and event processes in the Asbestos operating system. In Proc. of the
twentieth ACM symp. on Operating systems principles (SOSP ’05). ACM.

[22] Daniel B. Giffin, Amit Levy, Deian Stefan, David Terei, David Mazières, John C.

Mitchell, and Alejandro Russo. 2012. Hails: Protecting Data Privacy in Untrusted

Web Applications. In 10th USENIX Symposium on Operating Systems Design and
Implementation, OSDI.

[23] J.A. Goguen and J. Meseguer. 1982. Security policies and security models. In Proc
of IEEE Symposium on Security and Privacy. IEEE Computer Society.

[24] M. Jaskelioff and A. Russo. 2011. Secure multi-execution in Haskell. In Proc. Andrei
Ershov International Conference on Perspectives of System Informatics (LNCS).
Springer-Verlag.

[25] Mark P Jones and Luc Duponcheel. 1993. Composing monads. Technical Report.
Technical Report YALEU/DCS/RR-1004, Department of Computer Science. Yale

University.

[26] Simon L. Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Geoffrey

Washburn. 2006. Simple unification-based type inference for GADTs. In Proc. of
the ACM SIGPLAN International Conf. on Functional Programming, ICFP.

[27] Simon Peyton Jones (Ed.). 2003. Haskell 98 Language and Libraries – The Revised
Report. Cambridge University Press, Cambridge, England.

[28] V. Kashyap, B. Wiedermann, and B. Hardekopf. 2011. Timing- and Termination-

Sensitive Secure Information Flow: Exploring a New Approach. In Proc. of IEEE
Symposium on Sec. and Privacy. IEEE.

[29] Maxwell N. Krohn, Alexander Yip, Micah Z. Brodsky, Natan Cliffer, M. Frans

Kaashoek, Eddie Kohler, and Robert Tappan Morris. 2007. Information flow

control for standard OS abstractions. In Proc. of the 21st ACM Symposium on
Operating Systems Principles. 321–334.

[30] B. W. Lampson. 1973. A Note on the Confinement Problem. Commun. ACM 16,

10 (Oct. 1973).

[31] P. Li and S. Zdancewic. 2006. Encoding Information Flow in Haskell. In Proc. of
the IEEE Workshop on Computer Security Foundations (CSFW ’06). IEEE Computer

Society.

[32] P. Li and S. Zdancewic. 2010. Arrows for secure information flow. Theoretical
Computer Science 411, 19 (2010), 1974–1994.

[33] Jed Liu, Michael D. George, K. Vikram, Xin Qi, LucasWaye, and Andrew C. Myers.

2009. Fabric: A Platform for Secure Distributed Computation and Storage. In

Proc. of the ACM SIGOPS Symposium on Operating Systems Principles. ACM.

[34] B. Montagu, B.C. Pierce, and R. Pollack. 2013. A Theory of Information-Flow

Labels. In Computer Security Foundations Symposium (CSF), 2013 IEEE 26th.
[35] Scott Moore, Aslan Askarov, and Stephen Chong. 2012. Precise enforcement of

progress-sensitive security. In the ACM Conference on Computer and Communica-
tions Security, CCS’12.

[36] Toby Murray, Daniel Matichuk, Matthew Brassil, Peter Gammie, Timothy Bourke,

Sean Seefried, Corey Lewis, Xin Gao, and Gerwin Klein. 2013. seL4: From General

Purpose to a Proof of Information Flow Enforcement. 2012 IEEE Symposium on
Security and Privacy 0 (2013).

[37] Andrew C Myers and Barbara Liskov. 2000. Protecting privacy using the decen-

tralized label model. ACM Transactions on Software Engineering and Methodology
(TOSEM) 9, 4 (2000), 410–442.

[38] A. C. Myers, L. Zheng, S. Zdancewic, S. Chong, and N. Nystrom. 2001. Jif: Java

Information Flow. (2001). http://www.cs.cornell.edu/jif .

[39] Minh Ngo, Nataliia Bielova, Cormac Flanagan, Tamara Rezk, Alejandro Russo,

and Thomas Schmitz. 2018. A better facet of dynamic information flow control. In

The Web Conference. Research track: Security and privacy of the Web. (WWW’18).
[40] Minh Ngo, Fabio Massacci, and Olga Gadyatskaya. 2013. MAP-REDUCE Runtime

Enforcement of Information Flow Policies. CoRR (2013). http://arxiv.org/abs/

1305.2136

[41] M. Ngo, F. Piessens, and T. Rezk. 2018. Impossibility of Precise and Sound

Termination-Sensitive Security Enforcements. In IEEE Symposium on Security
and Privacy (SP).

[42] S. Peyton Jones, A. Gordon, and S. Finne. 1996. Concurrent Haskell. In Proc. of
the ACM SIGPLAN-SIGACT symposium on Principles of programming languages
(POPL ’96). ACM.

[43] Willard Rafnsson and Andrei Sabelfeld. 2013. Secure multi-execution: fine-

grained, declassification-aware, and transparent. (Feb. 2013). Submitted.

[44] A. Russo, K. Claessen, and J. Hughes. 2008. A library for light-weight information-

flow security in Haskell. In Proc. ACM SIGPLAN symposium on Haskell (HASKELL
’08). ACM.

[45] Alejandro Russo and Andrei Sabelfeld. 2010. Dynamic vs. Static Flow-Sensitive

Security Analysis. In Proc. of the 2010 23rd IEEE Computer Security Foundations
Symp. (CSF ’10). IEEE Computer Society, 186–199.

[46] Thomas Schmitz, Dustin Rhodes, Thomas H. Austin, Kenneth Knowles, and

Cormac Flanagan. 2016. Faceted Dynamic Information Flow via Control and

Data Monads. In Principles of Security and Trust - 5th International Conference,
POST 2016, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings.

[47] Daniel Schoepe, Musard Balliu, Frank Piessens, and Andrei Sabelfeld. 2016. Let’s

Face It: Faceted Values for Taint Tracking. In Computer Security - ESORICS 2016 -
21st European Symposium on Research in Computer Security, Heraklion, Greece,
September 26-30, 2016, Proceedings, Part I.

[48] D. Stefan, A. Russo, D. Mazières, and J. C. Mitchell. 2011. Disjunction Category

Labels. In Proc. of the Nordic Conference on Information Security Technology for
Applications (NORDSEC ’11). Springer-Verlag.

[49] Deian Stefan, Alejandro Russo, David Mazières, and John C Mitchell. 2011. Dis-

junction category labels. In Nordic conference on secure IT systems. Springer.
[50] D. Stefan, A. Russo, J. C. Mitchell, and D. Mazières. 2011. Flexible Dynamic

Information Flow Control in Haskell. In Proc. of the ACM SIGPLAN Haskell
symposium (HASKELL ’11).

[51] Deian Stefan, Edward Z. Yang, Petr Marchenko, Alejandro Russo, Dave Herman,

Brad Karp, and David Mazières. 2014. Protecting Users by Confining JavaScript

with COWL. In 11th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 14). USENIX Association.

[52] Wouter Swierstra and Thorsten Altenkirch. 2007. Beauty in the Beast: A Func-

tional Semantics of the Awkward Squad. In Haskell ’07: Proceedings of the ACM
SIGPLAN Workshop on Haskell. 25–36.

[53] Mathy Vanhoef, Willem De Groef, Dominique Devriese, Frank Piessens, and

Tamara Rezk. 2014. Stateful declassification policies for event-driven programs.

In Proc. IEEE Computer Sec. Foundations Symposium. IEEE.

[54] Marco Vassena, Alejandro Russo, Pablo Buiras, and Lucas Waye. 2017. MAC A

Verified Static Information-Flow Control Library. Journal of Logical and Algebraic
Methods in Programming (2017). https://doi.org/10.1016/j.jlamp.2017.12.003

[55] Philip Wadler. 1993. Monads for functional programming. In Program design
calculi. Springer, 233–264.

[56] Philip Wadler. 1995. Monads for functional programming. In International School
on Advanced Functional Programming. Springer, 24–52.

[57] Dante Zanarini, Mauro Jaskelioff, andAlejandro Russo. 2013. Precise Enforcement

of Confidentiality for Reactive Systems.. In Proc. IEEE Computer Sec. Foundations
Symposium. IEEE, 18–32.

[58] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Mazières. 2006.

Making information flow explicit in HiStar. In Proc. of the 7th USENIX Symp. on
Operating Systems Design and Implementation. USENIX.

[59] Danfeng Zhang, Yao Wang, G. Edward Suh, and Andrew C. Myers. 2015. A

Hardware Design Language for Timing-Sensitive Information-Flow Security.

In Proc. of International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’15. 503–516.

A SEMANTICS AND PROOF SKETCHES
This appendix presents the full syntax, type system, and semantics

of our language as well as our security guarantee results and proof

sketches. The full syntax can be found in Figures 8 and 9 along

with the semantics in Figure 10 and the type system in Figure 11.

Figure 12 shows the full standard semantics. Next we go through

our security guarantees as well as their respective proof sketches.

Theorem 2 (Termination-Insensitive Non-Interference).

If σ1 ≈l σ2 and σ1 −→∗∅ σ
′
1
−̸→∅ and σ2 −→∗∅ σ

′
2
−̸→∅ then σ ′

1
≈l σ

′
2
.

Proof sketch
By repeated application of Projection 1, and by using Projection 2,

we have σ1↓l
std

−→∗ σ ′
1
↓l ̸

std

−→ and σ2↓l
std

−→∗ σ ′
2
↓l ̸

std

−→ . Since

std

−→

is deterministic and σ1 ≈l σ2, therefore σ
′
1
≈l σ

′
2
, as desired. □

https://doi.org/10.1145/359636.359712
https://doi.org/10.1145/359636.359712
https://www.dropbox.com
https://www.dropbox.com/developers/documentation/http/overview
https://www.dropbox.com/developers/documentation/http/overview
http://www.cs.cornell.edu/jif
http://arxiv.org/abs/1305.2136
http://arxiv.org/abs/1305.2136
https://doi.org/10.1016/j.jlamp.2017.12.003

Theorem 3 (Fair Projection).

If σ↓l
std
−→ σ1 then ∃σ2, s2. (σ , s)

fair
−→∗ (σ2, s2) and σ2↓l = σ1.

Proof sketch
By strong induction on measure(l ,σ), which is roughly defined as

the sum of 2
depth

of each occurence of ⟨• ? • : •⟩ or [⟨⟨• ? • : •⟩⟩] in the

program, ignoring subterms that are not visible to l and ignoring

the right hand subterms of any occurrences of bind. This number

represents an upper bound on the number of invisible (to l) steps
that σ can take. Also, do induction on the number n mentioned in

the definition of Fairness. □
Theorem 4 (Termination-Sensitive Non-Interference).

Ifσ1 ≈l σ2 and (σ1, s1)
fair
−→∗ (σ ′

1
, s ′
1
) then∃σ ′

2
, s ′
2
. (σ2, s2)

fair
−→∗ (σ ′

2
, s ′
2
)

and σ ′
1
≈l σ

′
2
.

Proof sketch
By Scheduler Validity, we have σ1 −→

∗
∅
σ ′
1
. By Projection 1, we have

σ1↓l
std

−→∗ σ ′
1
↓l . Now because σ1 ≈l σ2, we have σ2↓l

std

−→∗ σ ′
1
↓l . By

Fair Projection, we have ∃σ ′
2
, s ′
2
.(σ2, s2)

fair

−→∗ (σ ′
2
, s ′
2
) and σ ′

2
≈l σ

′
1
,

as desired. □

Definition 1 (Non-interfering). We say that a program (i.e., a
non-faceted term) t is non-interfering when the following is the case.

For all l , I1, I2,σ1, if I1 ≈l I2 and (t , ∅, λi .0, I1, λo.ϵ)
std
−→∗ σ1 then

there exists σ2 such that (t , ∅, λi .0, I2, λo.ϵ)
std
−→∗ σ2 and σ2 ≈l σ1. □

n ∈ Z
k, l ∈ Lattice
b ∈ Branch ::= k | k

pc ∈ PC = 2
Branch

V ∈ FacetedValue ::= raw t
| ⟨k ?V :V ⟩
| bind t t

x ∈ Var
t ∈ Term ::= x

| λx .t | t t
| a
| n | t + t
| if t t t
| V
| return t | t >>= t
| new t | read t | write t t
| get i | put o t
| run t
| [⟨⟨k ? t : t⟩⟩]

T ∈ Type ::= Int
| T → T
| Fac T
| FIO T
| FIORef T

Γ ∈ VarTypes = Var → Type

Figure 8: Full syntax (part I).

a ∈ Address
i ∈ InputHandle
o ∈ OutputHandle
li ∈ Lattice is the label of the channel i
lo ∈ Lattice is the label of the channel o
v ∈ Value ::= V

| λx .t
| n
| a
| return v

E ∈ Context ::= • t
| bind • t
| • + t | v + •
| if • t t
| •>>= t
| run • | run (bind • t)
| new • | read • | write • t | write a •
| put o •
| return •

M ∈ Memory = Address → FacetedValue
p ∈ BufferPointer ::= n | ⟨k ?p :p⟩
P ∈ BufferPointers = InputHandle → BufferPointer
ns ∈ Sequence = Z∗

I ∈ InputBuffer = InputHandle → Sequence
O ∈ OutputBuffer = OutputHandle → Sequence
σ ∈ State ::= (t ,M, P , I ,O)
∆ ∈ MemoryTypes = Address → Type

Figure 9: Full syntax (part II).

Theorem 5 (Transparency).

If t is non-interfering and σ = (t , ∅, λi .0, I , λo.ϵ)
std
−→∗ σ ′ then there

exists σ ′′, s ′′ such that (σ , s)
fair
−→∗ (σ ′′, s ′′) and σ ′ ≈l σ ′′.

Proof sketch

Since t = t↓l is non-interfering, we haveσ
′′′

such thatσ↓l
std

−→∗ σ ′′′

and σ ′ ≈l σ
′′′
. By repeated application of Fair Projection, we have

σ ′′ and s ′′ such that (σ , s)
fair

−→∗ (σ ′′, s ′′) and σ ′′↓l = σ ′′′. Finally,
σ ′↓l = σ ′′′↓l = σ ′′↓l↓l = σ ′′↓l , as desired. □

Theorem 6 (Emptiness check).

∀pc . views(pc) , ∅ ⇔ ∀k ∈ pc . k @ lc (pc)

Proof Sketch Right-to-left holds trivially by the definition of the

candidate label. In the other direction we have that for any l ∈
views(pc), it is the case that lc (pc) ⊑ l by simple properties of the

join, i.e., as lc (pc) computes the least upper bound of the positive

labels in pc , and ∀k ∈ pc . k @ l by (6). We will prove the theorem by

contradiction. Assume that ¬(∀k ∈ pc . k @ lc (pc)), we then have

∃k ∈ pc . k ⊑ lc (pc). Let us take k0 to be the witness of this existen-

tial quantification. We obtain, by transitivity of (⊑), k0 ⊑ lc (pc) ⊑ l ,
but l ∈ views(pc) which implies that k0 @ l , contradiction. □

B IMPLEMENTATION
DC labels, see section 7.1, are represented as a Haskell data type:

σ −→pc σ

(E[t],M, P , I ,O) −→pc (E[t ′],M ′, P ′, I ′,O ′) if (t ,M, P , I ,O) −→pc (t ′,M ′, P ′, I ′,O ′) [f-context]

((λx .t1) t2,M, P , I ,O) −→pc (t1[x := t2],M, P , I ,O) [f-app]

(n1 + n2,M, P , I ,O) −→pc (n,M, P , I ,O) if n = n1 + n2 [f-plus]

(if n t1 t2,M, P , I ,O) −→pc (t1,M, P , I ,O) if n , 0 [f-if-1]

(if n t1 t2,M, P , I ,O) −→pc (t2,M, P , I ,O) if n = 0 [f-if-2]

((return t1) >>= t2,M, P , I ,O) −→pc (t2 t1,M, P , I ,O) [f-bind-fio]

(run (raw t),M, P , I ,O) −→pc (t >>= λx .return (raw x),M, P , I ,O) [f-run-raw]

(run ⟨k ? t1 : t2⟩,M, P , I ,O) −→pc

(run t1,M, P , I ,O) if views(pc ∪ {k }) = ∅
(run t2,M, P , I ,O) if views(pc ∪ {k }) = ∅
([⟨⟨k ? run t1 : run t2⟩⟩] ,M, P , I ,O) otherwise.

[f-run-facet-1]

[f-run-facet-2]

[f-run-facet-3]

(run (bind (raw t1) t2),M, P , I ,O) −→pc (run (t2 t1),M, P , I ,O) [f-bind-fac-1]

(run (bind ⟨k ?V1 :V2⟩ t),M, P , I ,O) −→pc (run ⟨k ? bind V1 t : bind V2 t⟩,M, P , I ,O) [f-bind-fac-2]

(run (bind (bind t1 t2) t3),M, P , I ,O) −→pc (run (bind t1 (λx .bind (t2 x),M, P , I ,O) t3)) [f-bind-fac-3]

(E[[⟨⟨k ? t1 : t2⟩⟩]],M, P , I ,O) −→pc ([⟨⟨k ?E[t1] :E[t2]⟩⟩] ,M, P , I ,O) [f-fork-continuation]

([⟨⟨k ? return V1 : return V2⟩⟩] ,M, P , I ,O) −→pc (return ⟨k ?V1 :V2⟩,M, P , I ,O) [f-merge]

([⟨⟨k ? t1 : t2⟩⟩] ,M, P , I ,O) −→pc ([⟨⟨k ? t ′
1
: t2⟩⟩] ,M, P , I ,O) if k < pc and t1 −→pc∪{k } t

′
1

[f-thread-1]

([⟨⟨k ? t1 : t2⟩⟩] ,M, P , I ,O) −→pc ([⟨⟨k ? t1 : t
′
2
⟩⟩] ,M, P , I ,O) if k < pc and t2 −→pc∪{k } t

′
2

[f-thread-2]

(new V ,M, P , I ,O) −→pc (return a,M[a := ⟨⟨pc ?V : raw 0⟩⟩], P , I ,O) if a < dom(M) [f-new]

(read a,M, P , I ,O) −→pc (returnM (a),M, P , I ,O) [f-read]

(write a V ,M, P , I ,O) −→pc (return V ,M ′, P , I ,O) ifM ′ = M[a := ⟨⟨pc ?V :M (a)⟩⟩] [f-write]

(get i,M, P , I ,O) −→pc (return ⟨li ?V : raw 0⟩,M, P[i :=p′], I ,O) if (V ,p′) = fac_get(pc, P (i), I (i)) [f-get]

(put o n,M, P , I ,O) −→pc

{
(return n,M, P , I ,O[o :=O (o) ++n])
(return n,M, P , I ,O)

if lo ∈ views(pc)
if lo < views(pc)

[f-put-1]

[f-put-2]

(V ,p) = fac_get(pc,p,ns)

(V1,p
′
1
) = fac_get(pc \ {k,k },p1,ns) (V2,p

′
2
) = fac_get(pc \ {k,k },p2,ns) k ∈ pc

(⟨k ?V1 :V2⟩, ⟨k ?p
′
1
:p2⟩) = fac_get(pc, ⟨k ?p1 :p2⟩,ns)

[r-facet-1]

(V1,p
′
1
) = fac_get(pc \ {k,k },p1,ns) (V2,p

′
2
) = fac_get(pc \ {k,k },p2,ns) k ∈ pc

(⟨k ?V1 :V2⟩, ⟨k ?p1 :p
′
2
⟩) = fac_get(pc, ⟨k ?p1 :p2⟩,ns)

[r-facet-2]

(V1,p
′
1
) = fac_get(pc \ {k,k },p1,ns) (V2,p

′
2
) = fac_get(pc \ {k,k },p2,ns) k,k < pc

(⟨k ?V1 :V2⟩, ⟨k ?p
′
1
:p′

2
⟩) = fac_get(pc, ⟨k ?p1 :p2⟩,ns)

[r-facet-3]

nsn1
= n2

(raw n2, ⟨⟨pc ?n1 + 1 :n1⟩⟩) = fac_get(pc,n1,ns)
[r-raw]

n ≥ length(I (i))

(raw (−1), ⟨⟨pc ?n + 1 :n⟩⟩) = fac_get(pc,n,ns)
[r-raw-eof]

Figure 10: Full semantics.

data Form = T | F | And Form Form | Or Form Form | Atomic String
data Label = Label Form Form

Where Label (Atomic "a" `Or` Atomic "b") (Atomic "b") denotes a

DC label ⟨a ∨ b,b⟩. Similarly, faceted values are represented as a

Generalised Algebraic Data Type:

data Fac a where
Raw :: a -> Fac a
Bind :: Fac a -> (a -> Fac b) -> Fac b
Q :: Label -> Fac a -> Fac a -> Fac a

Where Q l priv pub represents the faceted value ⟨l ?priv :pub⟩. We

represent FIO references using Haskell’s mutable IORef references.

data Ref a = Ref (IORef (Fac a))

Channels are represented using file handles and mutable references:

[t-var]

Γ,∆ ⊢ x :: Γ(x)

[t-lam]

Γ[x :=T1],∆ ⊢ t2 :: T2

Γ,∆ ⊢ λx .t2 :: T1 → T2

[t-app]

Γ,∆ ⊢ t0 :: T1 → T2 Γ,∆ ⊢ t1 :: T1

Γ,∆ ⊢ t0 t1 :: T2

[t-addr]

Γ,∆ ⊢ a :: ∆(a)

[t-int]

Γ,∆ ⊢ n :: Int

[t-plus]

Γ,∆ ⊢ t1 :: Int Γ,∆ ⊢ t2 :: Int

Γ,∆ ⊢ t1 + t2 :: Int

[t-if]

Γ,∆ ⊢ t0 :: Int Γ,∆ ⊢ t1 :: T Γ,∆ ⊢ t2 :: T

Γ,∆ ⊢ if t0 t1 t2 :: T

[t-raw]

Γ,∆ ⊢ t :: T

Γ,∆ ⊢ raw t :: Fac T

[t-facet]

Γ,∆ ⊢ V1 :: Fac T Γ,∆ ⊢ V2 :: Fac T

Γ,∆ ⊢ ⟨k ?V1 :V2⟩ :: Fac T

[t-bind-fac]

Γ,∆ ⊢ t1 :: Fac T1 Γ,∆ ⊢ t2 :: T1 → Fac T2

Γ,∆ ⊢ bind t1 t2 :: Fac T2

[t-return]

Γ,∆ ⊢ t :: T

Γ,∆ ⊢ return t :: FIO T

[t-bind-fio]

Γ,∆ ⊢ t1 :: FIO T1 Γ,∆ ⊢ t2 :: T1 → FIO T2

Γ,∆ ⊢ t1 >>= t2 :: FIO T2

[t-new]

Γ,∆ ⊢ t :: Fac T

Γ,∆ ⊢ new t :: FIO (FIORef T)

[t-read]

Γ,∆ ⊢ t :: FIORef T

Γ,∆ ⊢ read t :: FIO (Fac T)

[t-write]

Γ,∆ ⊢ t1 :: FIORef T Γ,∆ ⊢ t2 :: Fac T

Γ,∆ ⊢ write t1 t2 :: FIO (Fac T)

[t-get]

Γ,∆ ⊢ get i :: FIO (Fac Int)

[t-put]

Γ,∆ ⊢ t :: Int

Γ,∆ ⊢ put o t :: FIO Int

[t-run]

Γ,∆ ⊢ t :: Fac (FIO T)

Γ,∆ ⊢ run t :: FIO (Fac T)

[t-threads]

Γ,∆ ⊢ t1 :: FIO T Γ,∆ ⊢ t2 :: FIO T

Γ,∆ ⊢ [⟨⟨k ? t1 : t2⟩⟩] :: FIO T

Figure 11: Typing rules Γ,∆ ⊢ t :: T

σ
std

−→ σ
Same rules: [f-context], [f-app], [f-plus], [f-if-1], [f-if-2], [f-bind-fio], [f-run-raw], [f-bind-fac-1],

[f-bind-fac-2], [f-read]

(new F ,M, P , I ,O)
std

−→ (return a,M[a := F], P , I ,O) if a < dom(M) [s-new]

(write a F ,M, P , I ,O)
std

−→ (return F ,M[a := F], P , I ,O) [s-write]

(get i,M, P , I ,O)
std

−→ (return (raw n),M, P[i := P (i) + 1], I ,O) if n = I (i)P (i) [s-get]

(get i,M, P , I ,O)
std

−→ (return (raw (−1)),M, P , I ,O) if P (i) ≥ length(I (i)) [s-get-eof]

(put o n,M, P , I ,O)
std

−→ (return n,M, P , I ,O[o :=O (o) ++n]) [s-put]

Figure 12: Full standard semantics.

data Ch = Ch { label :: Label, iH :: Handle
, iPtr :: IORef (Fac Int), oH :: Handle }

FIO computations are represented as a deep embedding in a continuation-

passing style. Representing the computation as a concrete data type

allows us to implement multiple different executors for the same

syntax.

data FIO a where
RunBind :: Fac (FIO a) -> (Fac a -> FIO b) -> FIO b
New :: Fac a -> (Ref a -> FIO b) -> FIO b
Read :: Ref a -> (Fac a -> FIO b) -> FIO b
Write :: Ref a -> Fac a -> (() -> FIO b) -> FIO b
Get :: Ch -> (Fac Char -> FIO b) -> FIO b
Put :: Ch -> Char -> (() -> FIO a) -> FIO a
Return :: a -> FIO a

We proceed to implement the interface for side-effectful operations

based on FIO constructors as follows:
newFIORef :: Fac a -> FIO (Ref a)
newFIORef f = New f Return

readFIORef :: Ref a -> FIO (Fac a)
readFIORef r = Read r Return

The other operations are implemented analogously.

Note that the primitives Read, New and Write support continuations,

as motivated in Section 8.4. Based on these continuation-based

primitives, we implement non-continuation-based wrappers that

have the expected type matching Figure 11.

The return and (>>=) constructs are implemented as derived op-

erations (they are usually provided as parts of the standard Monad

interface) [27, 55].

(>>=) :: FIO a -> (a -> FIO b) -> FIO b
Return a >>= k = k a
RunBind f c >>= k = RunBind f (\a -> c a >>= k)
New f c >>= k = New f (\a -> c a >>= k)
Read r c >>= k = Read r (\a -> c a >>= k)
...

The program counter (PC) is implemented as a list of branches.

data Branch = Private Label | Public Label
type PC = [Branch]

The decision procedure from section 7 is implemented as pure

Haskell function making use a library for BDDs:

isEmptyViews :: PC -> Bool
isEmptyViews pc =
let lc = foldr lub (Label T F) [k | Private k <- pc]
in not (and [canFlowTo k lc | Public k <- pc])

We have implemented two different executors for FIO, mf, sme.

All the executors have the same type, FIO a -> PC -> IO (a, PC), a

function from an FIO computation and a program counter to a

result and a new program counter in the IO monad. The definition

of mf is straight forward:

mf :: FIO a -> PC -> IO (a,PC)
mf (Return a) pc = return (a, pc)
mf (New fac k) pc = do ref <- newIORef fac

mf (k (Ref ref)) pc
mf (Read (Ref ref) k) pc = do fac <- readIORef ref

mf (k fac) pc
mf (Write (Ref ref) fac k) pc = do
atomicModifyIORef' ref $

\old_fac -> (pcF pc fac old_fac, ())
mf (k ()) pc

mf (Get i k) pc = do ptr <- readIORef (iPtr i)
(val, ptr') <- fac_get pc (iH i) ptr
writeIORef (iPtr i) ptr'
mf (k val) pc

mf (Put o v k) pc
| label o `inViews` pc = do hPutChar (oH o) v

mf k pc
| otherwise = mf k pc

mf (RunBind (Raw fio) k) pc = do (a, pc') <- mf fio pc
mf (k (Raw a)) pc

mf (RunBind (Bind (Raw fio) c) k) pc = mf (RunBind (c fio) k) pc
mf (RunBind (Bind (Bind t0 c0) c1) k) pc =
mf (RunBind (Bind t0 (\x -> Bind (c0 x) c1)) k) pc

mf (RunBind (Q l priv pub) k) pc
| isEmptyViews (Public l : pc) = mf (RunBind priv k) pc
| isEmptyViews (Private l : pc) = mf (RunBind pub k) pc
| otherwise = do

(a1,_) <- mf (RunBind priv return) (Private l : pc)
(a2,_) <- mf (RunBind pub return) (Public l : pc)
mf (k (Q l a1 a2)) pc

The function pcF used in the case for Write implements the nota-

tion ⟨⟨pc ?priv :pub⟩⟩ from Section 3.

In the case for Return we just return the value and the current PC.

For New we create a new IORef and run the continuation k with that

IORef wrapped in a Ref constructor. Similarly for Read, read the value

of the reference and run the continuation. The case for Write is more

interesting, when we are a value to a reference we need to update

the current faceted value to reflect that the update is done with

the current PC. Writes are executed atomically; while this is not

important for the defintion of mf (which is sequential), it matters in

concurrent executors like sme below. The two cases for Run depend

on the faceted value being branched over. If the value is a leaf

(Raw fio), we execute the FIO computation at the leaf and continue

with the continutation. If the value is a branch (Q l priv pub), we

check the branching conditions described in Section 3 and execute

one of three cases. The first two cases simply pick the private or

public branches depending on if the specific branching condition is

satisfied. The third case is more interesting, we run both the public

and the private branches with different PCs, each containing either

Private l or Public l. Note that this is a literal translation of the

The definition of sme is identical except for the clause for Get,

where we use a lock to ensure that the file pointers are not concur-

rently updated, and the final clause of the definition for Run:

sme (RunBind (Q l priv pub) k) pc
...
| otherwise = do

forkIO . void $ sme (RunBind priv k) (Private l : pc)
sme (RunBind pub k) (Public l : pc)

Instead of first running the private branch and then the public,

we fork the private branch to run in parallel and continue with the

public branch. Note that the use of forkIO . void is a technicality, the

type of forkIO requires a computation of type IO () as argumentand

void as type IO a -> IO ().

C FSME (SWITCHING) EXECUTOR
The rule [f-fork-continuation] in the semantics models switch-

ing from a single thread of execution to multiple threads. In this

appendix we show how the rule can be implemented in a switching

executor. The only difference between the executor we develop

here and the sme and mf variants are in the implementation of the

case for RunBind which needs to run both the private and the pub-

lic computations. The idea of this executor is to run the private

computation assuming it is going to terminate. If the private compu-

tation does not terminate we start running the public computation

in parallel with the private and continue by doing SME. The way

this is achieved by our executor, which can be seen below, is by

executing the the private computation in a separate, lightweight,

thread. The thread running the private computation communicates

the result of the computation to the main thread when finished.

It then waits for the main thread to tell it to either terminate or

continue running the continuation. The main thread waits for the

result of the private computation for a bounded amount of time. If

the main thread receives the result of the computation on time, then

it continues running in the fashion of MF. If the main thread does

not receive the result on time, then it signals the thread running

the private computation to run its continuation, and the execution

continues in the fashion of SME.

The necessary communication is achieved using the MVar data

structure. A value of type MVar a [42] is a concurrent datastructure

which is either empty or contains a term of type a. An empty MVar

is created using newEmptyMVar :: IO (MVar a). The function readMVar

empties a full MVar and returns its content or blocks otherwise. The

function putMVar :: a -> MVar a -> IO () fills an empty MVar or blocks

otherwise.

fsme (RunBind (Q k priv pub) f) pc =
...
| otherwise = do

privResult <- newEmptyMVar
privCont <- newEmptyMVar
fork $ do -- Private facet behavior
(priv', pc') <- fsme (RunBind priv Return) (Private k : pc)
putMVar privResult priv'
-- Wait for what to do next
switchSME <- readMVar privCont
when switchSME $ void (fsme (k priv') pc')

-- Public facet behavior
onTime <- timeout waitTime (readMVar privResult)
case onTime of

Just priv' -> do -- No need to switch to SME
putMVar switchSME False
fsme (RunBind publ (\publ' -> f (Q p priv' publ')))

(Public p : pc)
Nothing -> do -- Switching to SME

putMVar switchSME True
fsme (RunBind publ f) (Public p : pc)

	Abstract
	1 Introduction
	2 Background
	3 A Unifying Multi Execution Framework
	3.1 Functional core
	3.2 Faceted values
	3.3 FIO computations
	3.4 Building side-effectful computations based on faceted values
	3.5 Supported multi-executions approaches
	3.6 Formal semantics

	4 Termination Insensitive Security Guarantees
	5 Fair Scheduling
	6 Termination Sensitive Security Guarantees
	7 Decentralized Labels
	7.1 Disjunction Category Labels

	8 Implementation
	8.1 Basic structures
	8.2 Executor commonalities
	8.3 MF executor
	8.4 Continuations and SME
	8.5 FSME executor

	9 Evaluation
	10 ProtectedBox
	10.1 Labeling policy
	10.2 Performance

	11 Related work
	12 Conclusions
	Acknowledgments
	References
	A Semantics and Proof Sketches
	B Implementation
	C FSME (switching) executor

