
Secure Programming via Libraries

Alejandro Russo
(russo@chalmers.se)

Department of Computer Science and Engineering
Chalmers University of Technology and Göteborg University

SE-412 96 Göteborg
Sweden

Göteborg, 2011

Introduction to Haskell

Introduction to information-flow security

Introduction to Sec

Secure Programming via
Libraries

Escuela de Ciencias Informáticas (ECI) 2011
UBA, Buenos Aires, Argentina

Introduction
Alejandro Russo (russo@chalmers.se)

Secure Programming via Libraries - ECI 2011 2

This Course: What is it?

● Programming language technology
● Type-systems ()
● Monitoring

● Theory and practice
● Haskell
● Python

● Focus on providing security via a library
● Based on recent research results

void main () { return ; }

Secure Programming via Libraries - ECI 2011 3

This Course: Learning Outcomes

● Security policies
● Intended behavior of secure systems

● Identify programming languages concepts useful
to provide security via libraries

● Practical experience with Haskell and Python
● Identify the scope of certain security libraries and

programming language abstractions or concepts
● Some experience on formalization of security

mechanisms
● To prove that they do what they claim!

Secure Programming via Libraries - ECI 2011 4

Organization

● Web page of the course
● http://www.cse.chalmers.se/~russo/eci2011/

● Discussion email list
● http://groups.google.com/group/eci-2011-security?hl=es
● eci-2011-security@googlegroups.com

● 5 Lectures (3hs, 20-25 minutes break)
● Exercises

● Exam in the end of the course
● Describe how is going to be

Secure Programming via Libraries - ECI 2011 5

Secure Programming via
Libraries

Escuela de Ciencias Informáticas (ECI) 2011
UBA, Buenos Aires, Argentina

Overview Haskell
Alejandro Russo (russo@chalmers.se)

Secure Programming via Libraries - ECI 2011 6

Haskell in a Nutshell

● Purely functional language
● Functions are first-class citizens!
● Referential transparency

● Lazy evaluation
– Expressions are evaluated at most once

● Advance type system

int plusone(int x) {return x+1;}

int plusone(int x) {calls++ ;
return x+1;}

Secure Programming via Libraries - ECI 2011 7

Haskell Overview

● Definition of functions

● Hindley-Milner Polymorphism

● Built-in lists

plusone :: Int -> Int
plusone x = x + 1

first :: forall a b. (a,b) -> a
first (x,_) = x

lst1 = [1,2,3,4] lst3 = lst1 ++ lst2
lst2 = 5 : []

Secure Programming via Libraries - ECI 2011 8

Haskell Overview

● User-defined data types

data Nationality = Argentinian | Swedish

f :: Nationality -> String
f Argentinian = "Asado"
f Swedish = "Surströmming"

data Tree a = Leaf | Node a (Tree a) (Tree a)

nodes :: Tree a -> [a]
nodes Leaf = []
nodes (Node a t1 t2) = a : (nodes t1 ++ nodes t2)

Secure Programming via Libraries - ECI 2011 9

Haskell Overview

● Type classes

● What is the type for the function?

● Type classes

bcmp x y = x == y

bcmp :: forall a. (Eq a) => a -> a -> Bool

bcmp :: forall a. a -> a -> Bool

class Eq a where
 (==) :: a -> a -> Bool
 (/=) :: a -> a -> Bool

instance Eq Int where ...
instance Eq Float where ...
instance Eq a => Eq [a] where

Secure Programming via Libraries - ECI 2011 10

Haskell Overview

● Input and Output (IO)

● If computations produce side-effects (IO) is reflected
in the types!
● Distinctive feature of Haskell.
● Very useful for security!

hello :: IO ()
hello = do putStrLn "Hello! What is your name?"
 name <- getLine
 putStrLn $ "Hi, " ++ name ++ "!"

Secure Programming via Libraries - ECI 2011 11

Monads in Haskell

● What is a monad? (Explanation for the masses)
● ADT denoting a computation that produces a value.

– We call values of this special type monadic values or
monadic computations

● Two operations to build complex computations from
simple ones
– return creates monadic computations from simple values

like integers, characters, float, etc.
– bind takes to monadic computations and sequentialize

them. The result of the first computation can be used in the
second one.

● Examples: IO

Secure Programming via Libraries - ECI 2011 12

Monads in Haskell

● Bind
getLine :: IO String putStrLn :: String -> IO ()

c :: IO ()
c = do name <- getLine
 putStrLn $ "Hi, " ++ name ++ "!"

hello :: IO ()
hello = do putStrLn "Hello! What is your name?"
 name <- getLine
 putStrLn $ "Hi, " ++ name ++ "!"

Secure Programming via Libraries - ECI 2011 13

Monads in Haskell

● return

return :: a -> IO a
return 42 :: IO Int

nextPrime :: Int -> Int
nextPrime =

prim :: IO (Int,Int)
prim = do number <- getLine
 let n = toInt number
 return (n, nextPrime n)

Secure Programming via Libraries - ECI 2011 14

Exercise

● Write programs that do the following

*Overview> quiz1
What day were you born?
28
Not interesting.
*Overview>

*Overview> quiz1
What day were you born?
11
It is a prime number!
*Overview>

quiz1 :: IO ()
quiz1 = do putStrLn "What day were you born?"
 (n, np) <- prim
 if n == np
 then putStrLn $ "It is a prime number!"
 else putStrLn $ "Not interesting."

Secure Programming via Libraries - ECI 2011 15

Why Monads?

● Monads represent computations.
● Different kind of monads represent different

kind of computations
● IO monad represents computation with

inputs and outputs
● In this course, we will define a monad to

represent secure computations
● Computations where security is preserved

Secure Programming via Libraries - ECI 2011 16

Secure Programming via
Libraries

Escuela de Ciencias Informáticas (ECI) 2011
UBA, Buenos Aires, Argentina

Information-Flow Security
Alejandro Russo (russo@chalmers.se)

Secure Programming via Libraries - ECI 2011 17

Introduction

● Computer systems usually send,
receive, and store confidential
information

● Computer networks provides benefits
but exposes systems to attacks
(malicious code)

● We want to preserve confidentiality
● End-to-end security policy

Secure Programming via Libraries - ECI 2011 18

End-to-end Security Policies

● Security policies (intended behavior)
that speaks about end-points of the
system

● End-points?
● Inputs and outputs!

● Confidentiality?

Secure Programming via Libraries - ECI 2011 19

Language-based Security
[Kozen 99]

● How to to guarantee and end-to-end
security requirements as confidentiality?

● Language-based security technology
inspects the code of applications to
guarantee security policies.
● Fusion of programming languages

technology and computer security
● Information-flow security

Secure Programming via Libraries - ECI 2011 20

Language-based Information-Flow Security
[Sabelfeld, Myers 03]

● Programming languages techniques to track how data flows
inside programs
● Preserve confidentiality
● Preserve some integrity of data

– Corrupt data does not influence security critical operation

● It can be performed
● Statically

– Type-system [Volpano Smith Irnive 96]
● Dynamically

– Monitor [Volpano 99] [Le Guernic et al. 06]
● Hybrid [Le Guernic et al. 06] [Russo, Sabelfeld 10]

● Comparison between static and dynamic techniques
[Sabelfeld, Russo 09]

Secure Programming via Libraries - ECI 2011 23

Types of Illegal Flows
[Denning, Denning 77]

● Explicit flows

● Implicit flows

l := h

if h>0
 then l:=1
 else l:=2

Secure Programming via Libraries - ECI 2011 24

Covert Channels

● Besides explicit and implicit flows, programs can leak information by
other means

● Not originally designed for that purpose

● It depends on the attacker observational power

● Energy consumption (e.g. Smartcards [Messerges et al])

● External timing

● Arbitrarily precise stopwatch [Agat 00]
● Cache attacks [Jackson et al 06]
● Termination [Askarov et al 08]

● Internal timing

● No precise stopwatch, but rather affecting the behavior of threads
depending on the secret [Russo 08]

Secure Programming via Libraries - ECI 2011 26

Declassification
[Sabelfeld, Sands 07]

● Useful system intentionally release information as
part of its behavior
● Password checker (pwd == input)

● Dimensions and principles of declassification
● What information can be leak?
● When can information be leaked?
● Where in the program is safe to leak information?
● Who can leak information?

● How to be certain that our programs
leak what they are supposed to leak?

Secure Programming via Libraries - ECI 2011 29

Web Security and Information-flow
[OWASP 10]

● Ten most frequent attacks
● A1 – Injection (SQL, OS, etc)

– Information-flow
● A2 – Cross Site Scripting (XSS)

– Information-flow
● A3 – Broken Authentication and Session Management

– Information-flow helps here as well
● A4 – Insecure Direct Object References

– Information-flow
●

● Very hot area at the moment for doing research

Secure Programming via Libraries - ECI 2011 30

Static vs. Dynamic Enforcement for
Information-flow

● Security policy: secrets must no be leaked!

● Termination insensitive non-interference
● Some purely dynamic mechanisms are as secure as

traditional type-systems [Sabelfeld, Russo 09]

● Should we go dynamic or static?

● Several arguments are possible to argue against
[Le Guernic et al, 06] [Shroff et al, 07] [Vogt et al, 07]

● In favor of dynamic monitors

– Permissiveness
– Dynamic code evaluation (eval in JavaScript)

● Web applications permissiveness is very important !

Secure Programming via Libraries - ECI 2011 31

Flow-sensitive and Flow-insensitive Enforcement
for Non-interference [Hunt, Sands 06]

● Traditional enforcements

● Avoid illegal explicit and implicit flows

● Fix sources of secret and public
inputs and outputs

● Flow-insensitive (FI)

● Each variable has a fix security
level during the execution of the program

● Flow-sensitive (FS)

● Variables can change their security level
during execution according to the data
stored at a given time

● More convenient for programmers!

● A program accepted by traditional
FS type-system is also accepted by
traditional FI type-system (rewriting)

v1 v2 v3 ... v40 v50 v60 …

v1 v2 v3 ... v40 v50 v60 …

v1 := h ;
v2 := v1+l ;
v1 := l ;
h := v1 + v2 ;

Secure Programming via Libraries - ECI 2011 32

● Hunt and Sands compare two static enforcements

● FI and FS type-systems

● Flow-insensitive

● FI monitor is as secure as
traditional FI type-sytems

● Monitor accepts more
programs

● Flow-sensitive

● No possible to obtain a sound and more permissive purely dynamic
monitor (than a FS type-system)

● To recover the picture above for FS, static analysis is needed!
● Is it desired to recover the picture above? [Austin, Flanagan 09]

– Open question

Flow-sensitive and Flow-insensitive Enforcement for
Non-interference [Sabelfeld, Russo 09] [Russo, Sabelfeld 10]

 FI type-systems

FI purely dynamic monitors

Secure programs

Secure Programming via Libraries - ECI 2011 33

Information-flow Security
● Active research area

● No more only motivated by military applications

● Web security and information-flow is a hot topic!
● Companies are showing interests on this technology

● During the 70's dynamic techniques were pioneers
● Operating system security

● During the 90's static techniques were dominant
● Language-based security

● During 00's, dynamic techniques are back!
● We can see combination of both

● Exiting times to do research on the area!

Secure Programming via
Libraries

Escuela de Ciencias Informáticas (ECI) 2011
UBA, Buenos Aires, Argentina

Introduction
Alejandro Russo (russo@chalmers.se)

Secure Programming via Libraries - ECI 2011 2

This Course: What is it?

● Programming language technology
● Type-systems ()
● Monitoring

● Theory and practice
● Haskell
● Python

● Focus on providing security via a library
● Based on recent research results

void main () { return ; }

Secure Programming via Libraries - ECI 2011 3

This Course: Learning Outcomes

● Security policies
● Intended behavior of secure systems

● Identify programming languages concepts useful
to provide security via libraries

● Practical experience with Haskell and Python
● Identify the scope of certain security libraries and

programming language abstractions or concepts
● Some experience on formalization of security

mechanisms
● To prove that they do what they claim!

Secure Programming via Libraries - ECI 2011 4

Organization

● Web page of the course
● http://www.cse.chalmers.se/~russo/eci2011/

● Discussion email list
● http://groups.google.com/group/eci-2011-security?hl=es
● eci-2011-security@googlegroups.com

● 5 Lectures (3hs, 20-25 minutes break)
● Exercises

● Exam in the end of the course
● Describe how is going to be

Secure Programming via Libraries - ECI 2011 5

Secure Programming via
Libraries

Escuela de Ciencias Informáticas (ECI) 2011
UBA, Buenos Aires, Argentina

Overview Haskell
Alejandro Russo (russo@chalmers.se)

Secure Programming via Libraries - ECI 2011 6

Haskell in a Nutshell

● Purely functional language
● Functions are first-class citizens!
● Referential transparency

● Lazy evaluation
– Expressions are evaluated at most once

● Advance type system

int plusone(int x) {return x+1;}

int plusone(int x) {calls++ ;
return x+1;}

Secure Programming via Libraries - ECI 2011 7

Haskell Overview

● Definition of functions

● Hindley-Milner Polymorphism

● Built-in lists

plusone :: Int -> Int
plusone x = x + 1

first :: forall a b. (a,b) -> a
first (x,_) = x

lst1 = [1,2,3,4] lst3 = lst1 ++ lst2
lst2 = 5 : []

Secure Programming via Libraries - ECI 2011 8

Haskell Overview

● User-defined data types

data Nationality = Argentinian | Swedish

f :: Nationality -> String
f Argentinian = "Asado"
f Swedish = "Surströmming"

data Tree a = Leaf | Node a (Tree a) (Tree a)

nodes :: Tree a -> [a]
nodes Leaf = []
nodes (Node a t1 t2) = a : (nodes t1 ++ nodes t2)

Secure Programming via Libraries - ECI 2011 9

Haskell Overview

● Type classes

● What is the type for the function?

● Type classes

bcmp x y = x == y

bcmp :: forall a. (Eq a) => a -> a -> Bool

bcmp :: forall a. a -> a -> Bool

class Eq a where
 (==) :: a -> a -> Bool
 (/=) :: a -> a -> Bool

instance Eq Int where ...
instance Eq Float where ...
instance Eq a => Eq [a] where

Secure Programming via Libraries - ECI 2011 10

Haskell Overview

● Input and Output (IO)

● If computations produce side-effects (IO) is reflected
in the types!
● Distinctive feature of Haskell.
● Very useful for security!

hello :: IO ()
hello = do putStrLn "Hello! What is your name?"
 name <- getLine
 putStrLn $ "Hi, " ++ name ++ "!"

Secure Programming via Libraries - ECI 2011 11

Monads in Haskell

● What is a monad? (Explanation for the masses)
● ADT denoting a computation that produces a value.

– We call values of this special type monadic values or
monadic computations

● Two operations to build complex computations from
simple ones
– return creates monadic computations from simple values

like integers, characters, float, etc.
– bind takes to monadic computations and sequentialize

them. The result of the first computation can be used in the
second one.

● Examples: IO

Secure Programming via Libraries - ECI 2011 12

Monads in Haskell

● Bind
getLine :: IO String putStrLn :: String -> IO ()

c :: IO ()
c = do name <- getLine
 putStrLn $ "Hi, " ++ name ++ "!"

hello :: IO ()
hello = do putStrLn "Hello! What is your name?"
 name <- getLine
 putStrLn $ "Hi, " ++ name ++ "!"

Secure Programming via Libraries - ECI 2011 13

Monads in Haskell

● return

return :: a -> IO a
return 42 :: IO Int

nextPrime :: Int -> Int
nextPrime =

prim :: IO (Int,Int)
prim = do number <- getLine
 let n = toInt number
 return (n, nextPrime n)

Secure Programming via Libraries - ECI 2011 14

Exercise

● Write programs that do the following

*Overview> quiz1
What day were you born?
28
Not interesting.
*Overview>

*Overview> quiz1
What day were you born?
11
It is a prime number!
*Overview>

quiz1 :: IO ()
quiz1 = do putStrLn "What day were you born?"
 (n, np) <- prim
 if n == np
 then putStrLn $ "It is a prime number!"
 else putStrLn $ "Not interesting."

Secure Programming via Libraries - ECI 2011 15

Why Monads?

● Monads represent computations.
● Different kind of monads represent different

kind of computations
● IO monad represents computation with

inputs and outputs
● In this course, we will define a monad to

represent secure computations
● Computations where security is preserved

Secure Programming via Libraries - ECI 2011 16

Secure Programming via
Libraries

Escuela de Ciencias Informáticas (ECI) 2011
UBA, Buenos Aires, Argentina

Information-Flow Security
Alejandro Russo (russo@chalmers.se)

Secure Programming via Libraries - ECI 2011 17

Introduction

● Computer systems usually send,
receive, and store confidential
information

● Computer networks provides benefits
but exposes systems to attacks
(malicious code)

● We want to preserve confidentiality
● End-to-end security policy

Secure Programming via Libraries - ECI 2011 18

End-to-end Security Policies

● Security policies (intended behavior)
that speaks about end-points of the
system

● End-points?
● Inputs and outputs!

● Confidentiality?

Secure Programming via Libraries - ECI 2011 19

Language-based Security
[Kozen 99]

● How to to guarantee and end-to-end
security requirements as confidentiality?

● Language-based security technology
inspects the code of applications to
guarantee security policies.
● Fusion of programming languages

technology and computer security
● Information-flow security

Secure Programming via Libraries - ECI 2011 20

Language-based Information-Flow Security
[Sabelfeld, Myers 03]

● Programming languages techniques to track how data flows
inside programs
● Preserve confidentiality
● Preserve some integrity of data

– Corrupt data does not influence security critical operation

● It can be performed
● Statically

– Type-system [Volpano Smith Irnive 96]
● Dynamically

– Monitor [Volpano 99] [Le Guernic et al. 06]
● Hybrid [Le Guernic et al. 06] [Russo, Sabelfeld 10]

● Comparison between static and dynamic techniques
[Sabelfeld, Russo 09]

Secure Programming via Libraries - ECI 2011 23

Types of Illegal Flows
[Denning, Denning 77]

● Explicit flows

● Implicit flows

l := h

if h>0
 then l:=1
 else l:=2

Secure Programming via Libraries - ECI 2011 24

Covert Channels

● Besides explicit and implicit flows, programs can leak information by
other means

● Not originally designed for that purpose

● It depends on the attacker observational power

● Energy consumption (e.g. Smartcards [Messerges et al])

● External timing

● Arbitrarily precise stopwatch [Agat 00]
● Cache attacks [Jackson et al 06]
● Termination [Askarov et al 08]

● Internal timing

● No precise stopwatch, but rather affecting the behavior of threads
depending on the secret [Russo 08]

Secure Programming via Libraries - ECI 2011 26

Declassification
[Sabelfeld, Sands 07]

● Useful system intentionally release information as
part of its behavior
● Password checker (pwd == input)

● Dimensions and principles of declassification
● What information can be leak?
● When can information be leaked?
● Where in the program is safe to leak information?
● Who can leak information?

● How to be certain that our programs
leak what they are supposed to leak?

Secure Programming via Libraries - ECI 2011 29

Web Security and Information-flow
[OWASP 10]

● Ten most frequent attacks
● A1 – Injection (SQL, OS, etc)

– Information-flow
● A2 – Cross Site Scripting (XSS)

– Information-flow
● A3 – Broken Authentication and Session Management

– Information-flow helps here as well
● A4 – Insecure Direct Object References

– Information-flow
●

● Very hot area at the moment for doing research

Secure Programming via Libraries - ECI 2011 30

Static vs. Dynamic Enforcement for
Information-flow

● Security policy: secrets must no be leaked!

● Termination insensitive non-interference
● Some purely dynamic mechanisms are as secure as

traditional type-systems [Sabelfeld, Russo 09]

● Should we go dynamic or static?

● Several arguments are possible to argue against
[Le Guernic et al, 06] [Shroff et al, 07] [Vogt et al, 07]

● In favor of dynamic monitors

– Permissiveness
– Dynamic code evaluation (eval in JavaScript)

● Web applications permissiveness is very important !

Secure Programming via Libraries - ECI 2011 31

Flow-sensitive and Flow-insensitive Enforcement
for Non-interference [Hunt, Sands 06]

● Traditional enforcements

● Avoid illegal explicit and implicit flows

● Fix sources of secret and public
inputs and outputs

● Flow-insensitive (FI)

● Each variable has a fix security
level during the execution of the program

● Flow-sensitive (FS)

● Variables can change their security level
during execution according to the data
stored at a given time

● More convenient for programmers!

● A program accepted by traditional
FS type-system is also accepted by
traditional FI type-system (rewriting)

v1 v2 v3 ... v40 v50 v60 …

v1 v2 v3 ... v40 v50 v60 …

v1 := h ;
v2 := v1+l ;
v1 := l ;
h := v1 + v2 ;

Secure Programming via Libraries - ECI 2011 32

● Hunt and Sands compare two static enforcements

● FI and FS type-systems

● Flow-insensitive

● FI monitor is as secure as
traditional FI type-sytems

● Monitor accepts more
programs

● Flow-sensitive

● No possible to obtain a sound and more permissive purely dynamic
monitor (than a FS type-system)

● To recover the picture above for FS, static analysis is needed!
● Is it desired to recover the picture above? [Austin, Flanagan 09]

– Open question

Flow-sensitive and Flow-insensitive Enforcement for
Non-interference [Sabelfeld, Russo 09] [Russo, Sabelfeld 10]

 FI type-systems

FI purely dynamic monitors

Secure programs

Secure Programming via Libraries - ECI 2011 33

Information-flow Security
● Active research area

● No more only motivated by military applications

● Web security and information-flow is a hot topic!
● Companies are showing interests on this technology

● During the 70's dynamic techniques were pioneers
● Operating system security

● During the 90's static techniques were dominant
● Language-based security

● During 00's, dynamic techniques are back!
● We can see combination of both

● Exiting times to do research on the area!

Secure Programming via
Libraries

Escuela de Ciencias Informáticas (ECI) 2011
UBA, Buenos Aires, Argentina

A library for information-flow in Haskell
Alejandro Russo (russo@chalmers.se)

Secure Programming via Libraries - ECI 2011 2

Encoding information-flow in Haskell
[Li, Zdancewic 06]

● Show that it is possible to guarantee IFC by a
library

● Implementation in Haskell using Arrows
[Hughes 98]

● Arrows? A generalization of
Monads [Wadler 01]

● Pure values only
● No side-effects

● One security label for data
● All secret or all public!

Secure Programming via Libraries - ECI 2011 3

Encoding information-flow in Haskell
[Tsai, Russo, Hughes 07]

● Extend the library by Li and Zdancewic
● More than one security label for data
● Concurrency

● Major changes in the library
● New arrows
● Lack of arrow notation

● Why arrows?
● Li and Zdancewic argue that monads are

not suitable for the design of such a library

Secure Programming via Libraries - ECI 2011 4

A lightweight library for Information-flow in Haskell
[Russo, Claessen, Hughes 08]

● Lightweight
● Approximately 325 lines of code
● Static type-system of Haskell to enforce

non-interference
● Dynamic checks when declassification

occurs
● Use Monads (not Arrows!)

● Programmers are more familiar with
Monads than Arrows

Secure Programming via Libraries - ECI 2011 5

A lightweight library for Information-flow in Haskell
[Russo, Claessen, Hughes 08]

● The library relies on Haskell
● Capabilities to maintain abstraction of data types

– Haskell module system
● Haskell is strongly typed

– We cannot cheat!
● There are extensions of Haskell that break these two

requirements!

● For a full list, please visit the proposal of SafeHaskell
● An extension of Haskell to disallow those dangerous

features than can jeopardize security
● Join work with Prof. Mazieres et al. at Stanford university.

unsafePerformIO :: IO a -> a
unsafeCoerce :: a -> b

Secure Programming via Libraries - ECI 2011 6

Why Haskell?

● Clear separation of pure computations with those with
side-effects

● Every computation with side-effects is encapsulated
into the IO monad

● Side-effects can encode information about secret data

● It is necessary to control them
● It is known where they occur! Just look at the type!

Secure Programming via Libraries - ECI 2011 7

Side-effects and IO

● Just look at the type!

● All bets are off if an IO computation comes from
untrustworthy code
● It is not known the side-effects that it will produce

f1 :: Eq a => a -> [a] -> ([a], Bool)

f2 :: (Show a, Eq a) => Int -> a -> ([a], IO Bool)

f2 n x = (take n (iterate id x),
 do putStrLn "Hi!"
 putStrLn "The arguments of the function are"
 putStrLn $ "x = " ++ show x
 putStrLn $ "n = " ++ show n
 return True)

f1 x xs = (take 10 (cycle xs), elem x xs)

Secure Programming via Libraries - ECI 2011 8

Secure Pure Computations

f :: (Char {- secret -}, Int)
 -> (Char {- secret -}, Int)

f (c, i) = (chr(ord c + i), i)

f (c, i) = (chr(ord c + i), ord c)

f (c, i) = (chr(ord c + 1), i+1)

f (c, i) | c > 65 = (c, 42)
 | otherwise = (c, i)

YES

NO

YES

NO

YES

Secure Programming via Libraries - ECI 2011 9

A Security Monad for Pure
Computations

data Sec s a -- abstract
instance Monad (Sec s)

● Security monad
● It assigns a security level to data
● Once inside the monad, it is not possible to escape!

● We represent security levels by singleton types

H

L

secret :: Sec H Int
secret = ...

known :: Sec L Int
known = ...

Secure Programming via Libraries - ECI 2011 10

Using Sec

f :: (Char {- secret -}, Int)
 -> (Char {- secret -}, Int)

f' :: (Sec H Char, Int)
 -> (Sec H Char, Int)

f (c, i) = (chr(ord c + i), i)

YES

f' (sec_c, i) = (do c <- sec c
 return (chr(ord c + i))
 ,i)

YES

Secure Programming via Libraries - ECI 2011 11

Using Sec

f :: (Char {- secret -}, Int)
 -> (Char {- secret -}, Int)

f' :: (Sec H Char, Int)
 -> (Sec H Char, Int)

f' (sec_c, i) = (do c <- sec c
 return (chr(ord c + i))
 ,do c <- sec c
 return (ord c))

f (c, i) = (chr(ord c + i), ord c) NO

NO

Secure Programming via Libraries - ECI 2011 12

Security Guarantee

Type checks!

Non-interferece

Secure Programming via Libraries - ECI 2011 13

A Security Monad for Pure
Computations

data Sec s a -- abstract
instance Monad (Sec s)

● Security monad
● It assigns a security level to data
● Once inside the monad, it is not possible to escape!

● We represent security levels by singleton types
● What about the security lattice?

H

L

Secure Programming via Libraries - ECI 2011 14

Security Lattice

● We model it using type classes in Haskell
● Constrains to polymorphic types

● Encoding two-point lattice is just provide instances for
that type class

H

L

class Less s s' where
 less :: s -> s' -> ()

instance Less L H where
less _ _ = ()

instance Less L L where
less _ _ = ()

instance Less H H where

less _ _ = ()

Secure Programming via Libraries - ECI 2011 15

Security Monad and
the Security Lattice

● Push up information in the security lattice

● It allows to convert public values into secrets

● What if it is possible to make the following instance?

up :: Less s s' => Sec s a -> Sec s' a

fup :: Sec L Int -> Sec H Char

fup sec_i = do i <- up (sec_i)
 return (chr i)

instance Less H L where
less _ _ = ()

Secure Programming via Libraries - ECI 2011 16

Security Monad and
the Security Lattice

● The library works as long as
● Attackers cannot define method
less for arbitrary instances of the
type class Less

● How to ensure that?
● Mainly by the abstraction power of

Haskell's module system

Secure Programming via Libraries - ECI 2011 17

SecLib.Trustworthy

Arquitecture

module X where

import SecLib.Untrustworthy
import SecLib.LatticeLH

...

SecLib.UntrustworthySecLib.LatticeLH

Secure Programming via Libraries - ECI 2011 18

Importing SecLib.Trustworthy

● SecLib.Trustworthy must not be imported by
untrustworthy code
● Otherwise, no security guarantees are possible

instance Less H L where
less _ _ = ()

Secure Programming via Libraries - ECI 2011 19

Other Assumptions

● The monad Sec s must remain abstract

● Guarantee by the installation of the library

● Sec.hs is not an exposed module

● Use of unsafe Haskell extensions
● StandaloneDeriving

● System.IO.Unsafe

– unsafePerformIO, unsafeIterleaveIO, etc.

● OverlappingInstances

● Check SafeHaskell (work-in-progress)

● A Haskell extension to safely execute
untrusted Haskell code

Secure Programming via Libraries - ECI 2011 20

Security API for Pure Computations

up :: Less s s' => Sec s a -> Sec s' a

data Sec s a -- abstract
instance Monad (Sec s)

module X where

import SecLib.Untrustworthy
import SecLib.LatticeLH

Introduction to SecIO

Secure Programming via
Libraries

Escuela de Ciencias Informáticas (ECI) 2011
UBA, Buenos Aires, Argentina

A library for information-flow in Haskell
(side-effects)

Alejandro Russo (russo@chalmers.se)

Secure Programming via Libraries - ECI 2011 2

Side-effects?
[Russo, Claessen, Hughes 08]

● What about trying to do side-effects inside of the
security monad?

● Would you run the IO computation?

Sec H (IO ())
YES

NO

Secure Programming via Libraries - ECI 2011 3

Malicious Code

● The following code shows malicious side-effects

● Important Haskell feature for security: by looking the
type of a piece of code, it is possible to determine
if it performs side-effects!

func :: Sec H Char -> Sec H (IO ())
func sec_c = do c <- sec_c
 return $ do putStrLn "The secret is gone!"
 writeFile "PublicFile" [c]

Secure Programming via Libraries - ECI 2011 4

Side-effects and Sec

● Trustworthy code
module SideEffectsSecT where

import Data.Char
import SecLib.LatticeLH
import SecLib.Trustworthy

import SideEffectsSecU -- Import the untrustworthy function unsafe

secret :: Sec H Char -- This is the secret to be manipulated by the
 -- untrustworthy code
secret = return 'X'

execute :: IO ()
execute = reveal $ unsafe func

-- reveal :: Sec s a -> a and it is only used by trustworthy code!

Secure Programming via Libraries - ECI 2011 5

Side-effects and Sec

● Untrustworthy code
module SideEffectsSecU where

import Data.Char
import SecLib.LatticeLH
import SecLib.Untrustworthy

-- Do not execute IO operations inside Sec!
func :: Sec H Char -> Sec H (IO ())
func sec_c = do c <- sec_c
 return $ do putStrLn "The secret is gone!"
 writeFile "PublicFile" [c]

Secure Programming via Libraries - ECI 2011 6

Little Quiz

● What about programs of the following type?

Sec H (IO (Sec L Int))

Sec H (Sec L (IO Char))

Sec L (Sec H (IO ()))

Sec L (IO (Sec H Char))

NO

NO

NO

YES

Secure Programming via Libraries - ECI 2011 7

Side-effects?
[Russo, Claessen, Hughes 08]

● What about trying to do side-effects inside of the
security monad?

● We do not know if the side-effects are safe to perform
● What should we do?
● IO is a monad that encapsulates side-effects
● Let us make another monad that encapsulates safe

side-effects!

Sec H (IO ())
YES

NO

Secure Programming via Libraries - ECI 2011 8

Monad SecIO

● It is a monad that performs secure side-effects
● Side-effects that preserve confidentiality!

data SecIO s a -- abstract
instance Monad (SecIO s)

It is a computation that
a) writes to security locations above s and
b) which result, of type a, has confidentiality
 level at least a

Secure Programming via Libraries - ECI 2011 9

Monad SecIO

● We show how it works for files
● It also works for references and sockets (check the

library)

data SecIO s a
It is a computation that
a) writes to security locations above s and
b) which result, of type a, has confidentiality
 level at least a

c1 :: SecIO H Int

c2 :: SecIO L (Sec H Int)

c3 :: SecIO L Int

It writes to secret files and returns
a secret integer

It writes to public and secret files and
returns a secret integer

It writes to public and secret files and
returns public integer

Secure Programming via Libraries - ECI 2011 10

API for SecIO

data SecIO s a
instance Monad (SecIO s)

type File s

readFileSecIO :: File s -> SecIO s' (Sec s String)

writeFileSecIO :: File s -> String -> SecIO s ()

It is a file which content has confidentiality level s

The secure version of the operations to
read and write files in Haskell

readFile :: FilePath -> IO String

writeFile :: FilePath -> String -> IO ()

Secure Programming via Libraries - ECI 2011 11

value :: Sec s a -> SecIO s a

plug :: Less sl sh =>
 SecIO sh a -> SecIO sl (Sec sh a)

-- Only trustworthy code (breaks the abstraction)
revealSecIO :: SecIO s a -> IO (Sec s a)

API for SecIO

It pushes any pure secure value
into a side-effectful computation

It plugs computations that
perform side-effects at a higher level

into computations that perform side-effect
into lower levels

Secure Programming via Libraries - ECI 2011 12

Small Example

● We want to write a function that copy contents of files

● We do not want the function to leak information

● The function should allow copying:
● a public file into another public file,
● a secret file into another secret file,
● a public one into a secret one

● It must avoid copying a secret file into a public one

● We will use the library to get the security part of the
code right!

Secure Programming via Libraries - ECI 2011 13

Small Example: Trustworthy code

module CopyT where

import SecLib.LatticeLH
import SecLib.Trustworthy

import CopyU (copy)

secret_file :: File H
secret_file = mkFile "SecretFile"

public_file :: File L
public_file = mkFile "PublicFile"

trusted_copy :: Less s s' => (File s -> File s' -> SecIO s' ())
 -> File s -> File s' -> IO ()

trusted_copy copy_func fs fs' = do sec <- revealIO $ copy_func fs fs'
 return $ reveal sec
execute :: IO ()
execute = trusted_copy copy public_file secret_file

It establishes the confidentiality level
of the files

Type for the untrustworthy
 copying function

It executes the untrustworthy function.
Does it preserve confidentiality?

It imports the untrustworthy
copying function

Secure Programming via Libraries - ECI 2011 14

Small Example: Untrustworthy code

module CopyU where

import SecLib.LatticeLH
import SecLib.Untrustworthy

copy :: Less s s' => File s -> File s' -> SecIO s' ()
copy file1 file2 = do sec_str <- readFileSecIO file1
 str <- value (up sec_str)
 writeFileSecIO file2 str

It provides a function with the type
requested by module CopyT

● Can you write the function above in such a way that
copies the content of a secret file into a public one?
● Try it out!

● The type-checker will not allow it

Secure Programming via Libraries - ECI 2011 15

Constructing a Secure Password
Administrator

● Linux Password Administrator
● /etc/passwd

● /etc/shadow

● Linux Shadow Password HOWTO: Adding shadow
support to a C program

bjorn:x:1003:100::/home/andrei:/bin/bash
hana:x:500:100::/home/tsa:
josef:x:1006:100::/home/john:/bin/bash

bjorn:$1$0ID5oZxB$0tdKR1VQWWQlkJR1Uj7na0:13397:0:99999:7:::
hana:1.28fO/M9$aaNMN4SWEKZiGPYoEq9996:13460:0:::::0
josef:1UP1uD.28$hi3vYEa20.zgWYNVN/Lq81:13539:0:99999:7:::

Adding shadow support to a program is actually fairly straightforward.
The only problem is that the program must be run by root (or SUID root) in
order for the the program to be able to access the /etc/shadow file.

Secure Programming via Libraries - ECI 2011 16

Password Administrator

● What are the security concerns?

● Give root permission to a program that only needs to authenticate
a user

● Password might be leaked (un)intentionally (dictionary attacks)

● Linux provides an API to access /etc/shadow

● File /etc/shadow can be accessed by other means (not only
by the API)

● We assume the opposite (e.g. in kernel space, remote server,
etc)

#ifdef HAS_SHADOW
#include <shadow.h>
#include <shadow/pwauth.h>
#endif

Secure Programming via Libraries - ECI 2011 17

More graphically

Storage for passwords

API

Program A Program B

Required root access Confidentiality

C program + shadow.h YES NO

Haskell program +
SecLib

NO YES

Secure Programming via Libraries - ECI 2011 18

Password Administrator

● Let us implement the API in Haskell
● Recall that shadow password are only accessible via

the API
● The module structure of the API

API

Generic API

Storage for
passwords

Storage for
user

information

This module encodes the
API to work with any store

We assume it is the
file passwd

We assume it is the
file shadow

Secure Programming via Libraries - ECI 2011 19

GenericAPI

module GenericAPI
 (getSpwdName, putSpwd, getNames)
where

import Spwd

getSpwdName :: FilePath -> FilePath -> Name -> IO (Maybe Spwd)

putSpwd :: FilePath -> Spwd -> IO ()

getNames :: FilePath -> IO [Name]

type UID = Int
type Cypher = String
type Name = String

data Spwd = Spwd { uid :: UID, cypher :: Cypher }

Store for user
information

Store for
password

Store for
password

Store for user
information

Secure Programming via Libraries - ECI 2011 20

API
module API
 (
 getSpwdName
 , putSpwd
 , getNames
)
where

import Spwd
import qualified GenericAPI as GenericAPI (getSpwdName, putSpwd, getNames)

passwd :: FilePath
passwd = "./passwd"

shadow :: FilePath
shadow = "./shadow"

getSpwdName :: Name -> IO (Maybe Spwd)
getSpwdName = GenericAPI.getSpwdName passwd shadow

putSpwd :: Spwd -> IO ()
putSpwd = GenericAPI.putSpwd shadow

getNames :: IO [Name]
getNames = GenericAPI.getNames passwd

Store of user information

Store for passwords

The module applies the
generic API interface to

specific stores

Secure Programming via Libraries - ECI 2011 21

Implementing getSpwdName

● Some internals of the implementation
● It is not the most advance password administrator
● You can do it better!
● It is only for pedagogical purposes

API

Generic API

shadowpasswd

[(Name, UID)]

[(UID, Cypher)]

parse_passwd :: FilePath -> IO [(Name,UID)]

parse_shadow :: FilePath -> IO [(UID,Cypher)]

Secure Programming via Libraries - ECI 2011 22

Implementing getSpwdName

getSpwdName :: FilePath -> FilePath -> Name -> IO (Maybe Spwd)
getSpwdName passwd shadow user =
 do pw <- parse_passwd passwd
 sh <- parse_shadow shadow
 case lookup user pw of
 Nothing -> return Nothing
 Just id -> return $ Just (case lookup id sh of
 Nothing -> error "Error!”
 Just c -> Spwd { uid = id ,
 cypher = c})

pw :: [(Name, UID)]

sh :: [(UID, Cypher)]

parse_passwd :: FilePath -> IO [(Name,UID)]

parse_shadow :: FilePath -> IO [(UID,Cypher)]

Secure Programming via Libraries - ECI 2011 23

Using the API

● Programs using that API can build up more sophisticated functions

● How does it work?

● User “david” is in the system, then it suggests “david0”. If “david0” is in the
system, then it suggests “david1”, etc.

● Could someone implement some unintended behaviour in this function?

module Auxiliaries where

import Data.Maybe
import Spwd
import API

-- Function to suggest a user name
suggest_name :: Name -> IO Name
suggest_name name =
 do ns <- getNames
 case (name `elem` ns) of
 False -> return name
 True -> return $ fst $ head
 $ filter (\(_,b) -> b == False)
 [(name', name' `elem` ns)
 | n <- [0..], let name'= name ++ show n]

Secure Programming via Libraries - ECI 2011 24

Using the API
suggest_name :: Name -> IO Name
suggest_name name =
 do ns <- getNames
 f ns
 case (name `elem` ns) of
 False -> return name
 True -> return $ fst $ head
 $ filter (\(_,b) -> b == False)
 [(name', name' `elem` ns)
 | n <- [0..], let name' = name ++ show n]

f :: [Name] -> IO ()
f ns = do lst <- f' ns
 writeFile "foo" (show lst)
 return ()

 where f' [] = return []
 f' (n:ns) = do spwd <- getSpwdName n
 lst <- f' ns
 return $ (n, (cypher $ fromJust spwd)) : lst

What is this?

It is copying the passwords
to a file

Secure Programming via Libraries - ECI 2011 25

Modifying the API?

● We see two versions of suggest_name

● Built on the password adminstrator API
● To identify the one violating confidentiality, we looked

at the code and think for a bit
● Code revision

● Let us use the SecLib to automatically enforce
confidentiality
● In that manner, we do not need to do code review!
● Of course, we still need to do testing for correctness

Secure Programming via Libraries - ECI 2011 26

Marking the Secret Data

type UID = Int
type Cypher = String
type Name = String

data Spwd = Spwd { uid :: UID, cypher :: Cypher }

● How do we start?
● Indicating which are the secrets (passwords) in our

program

type UID = Int
type Cypher = String
type Name = String

data Spwd = Spwd { uid :: UID, cypher :: Sec H Cypher }

Secure Programming via Libraries - ECI 2011 27

GenericAPI: Secure Version
module GenericAPI
 (getSpwdName, putSpwd, getNames)
where
import SecLib.LatticeLH
import SecLib.Untrustworthy
import Spwd

-- getSpwdName :: FilePath -> FilePath -> Name -> IO (Maybe Spwd)
-- putSpwd :: FilePath -> Spwd -> IO ()
-- getNames :: FilePath -> IO [Name]

getSpwdName :: File L -> File H -> Name -> SecIO s (Maybe Spwd)

putSpwd :: File H -> Swpd -> SecIO H ()

getNames :: File L -> SecIO s [Name]

Store for user
information

Store for
password

This function does
not write to any file

Store for
password

This function writes to
a secret file

This function does
not write to any file

type UID = Int
type Cypher = String
type Name = String

data Spwd = Spwd { uid :: UID, cypher :: Sec H Cypher }

Secure Programming via Libraries - ECI 2011 28

API: Secure Version
module API
 (
 getSpwdName
 , putSpwd
 , getNames
)
where

import Spwd
import qualified GenericAPI as GenericAPI (getSpwdName, putSpwd, getNames)

import SecLib.Trustworthy
import SecLib.LatticeLH

passwd :: File L
passwd = mkFile "./passwd"

shadow :: File H
shadow = mkFile "./shadow"

getSpwdName :: Name -> SecIO s (Maybe Spwd)
getSpwdName = GenericAPI.getSpwdName passwd shadow

putSpwd :: Spwd -> SecIO H ()
putSpwd = GenericAPI.putSpwd shadow

getNames :: SecIO s [Name]
getNames = GenericAPI.getNames passwd

This module is trustworthy

It assigns the security level
of each store. That is why
this module is trustworthy!

As the unsecure version but it
returns a SecIO instead as IO

Secure Programming via Libraries - ECI 2011 29

Summarizing

● We have a new API

● Any program that wants to use the API needs to use
SecLib

● Confidentiality is then provided!
● No need for root permission

data Spwd = Spwd { uid :: UID, cypher :: Sec H Cypher }

getSpwdName :: Name -> SecIO s (Maybe Spwd)

putSpwd :: Spwd -> SecIO H ()

getNames :: SecIO s [Name]

Secure Programming via Libraries - ECI 2011 30

Using the Secure API

● Remember the well-behaved function to suggest a
user name?
● Let us try to reimplemented using the secure API

module Auxiliaries where

import Data.Maybe
import Spwd
import API

-- Function to suggest a user name
suggest_name :: Name -> IO Name
suggest_name name =
 do ns <- getNames
 case (name `elem` ns) of
 False -> return name
 True -> return $ fst $ head
 $ filter (\(_,b) -> b == False)
 [(name', name' `elem` ns)
 | n <- [0..], let name'= name ++ show n]

module Auxiliaries where

import Data.Maybe
import Spwd
import API

-- Function to suggest a user name
suggest_name :: Name -> SecIO s Name
suggest_name name =
 do ns <- getNames
 case (name `elem` ns) of
 False -> return name
 True -> return $ fst $ head
 $ filter (\(_,b) -> b == False)
 [(name', name' `elem` ns)
 | n <- [0..], let name'= name ++ show n]

It is almost the same!

Secure Programming via Libraries - ECI 2011 31

Using the Secure API

● Remember the bad-behaved function to suggest a
user name?

suggest_name :: Name -> IO Name
suggest_name name =
 do ns <- getNames
 f ns
 case (name `elem` ns) of
 False -> return name
 True -> return $ fst $ head
 $ filter (\(_,b) -> b == False)
 [(name', name' `elem` ns)
 | n <- [0..], let name' = name ++ show n]

f :: [Name] -> IO ()
f ns = do lst <- f' ns
 writeFile "foo" (show lst)
 return ()

 where f' [] = return []
 f' (n:ns) = do spwd <- getSpwdName n
 lst <- f' ns
 return $ (n, (cypher $ fromJust spwd)) : lst

It will not work!

The result of f' is a list of type
[(Name, Sec H Cypher)]

instead of [(Name, Cypher)]

It is not possible to write
a value of type Sec H Cypher

into a public file

Secure Programming via Libraries - ECI 2011 32

Implementing the Secure API
(getSpwdName)

● Recall

● We set up the types of the secure API

● How do we implement it?
● We will see how to do one of the primitives (the rest is

homework!)

data Spwd = Spwd { uid :: UID, cypher :: Sec H Cypher }

getSpwdName :: Name -> SecIO s (Maybe Spwd)

putSpwd :: Spwd -> SecIO H ()

getNames :: SecIO s [Name]

Secure Programming via Libraries - ECI 2011 33

Implementing Secure Version of
getSpwdName

pw :: [(Name, UID)]

sh :: [(UID, Cypher)]

parse_passwd :: FilePath -> IO [(Name,UID)]

parse_shadow :: FilePath -> IO [(UID,Cypher)]

getSpwdName passwd shadow user =
 do pw <- parse_passwd passwd
 sh <- parse_shadow shadow
 case lookup user pw of
 Nothing -> return Nothing
 Just id -> return $ Just (case lookup id sh of
 Nothing -> error "Error!”
 Just c -> Spwd { uid = id ,
 cypher = c})

We need to adapt these
functions as well! (homework)

parse_passwd :: FilePath -> SecIO s [(Name,UID)]

parse_shadow :: FilePath -> SecIO s (Sec H [(UID,Cypher)])

getSpwdName :: FilePath -> FilePath -> Name -> IO (Maybe Spwd)getSpwdName :: File L -> File H -> Name -> SecIO s (Maybe Spwd)

sh :: Sec H [(UID, Cypher)]

Secure Programming via Libraries - ECI 2011 34

Implementing Secure Version of
getSpwdName

pw :: [(Name, UID)]

sh :: [(UID, Cypher)]

parse_passwd :: FilePath -> IO [(Name,UID)]

parse_shadow :: FilePath -> IO [(UID,Cypher)]

getSpwdName passwd shadow user =
 do pw <- parse_passwd passwd
 sh <- parse_shadow shadow
 case lookup user pw of
 Nothing -> return Nothing
 Just id -> return $ Just (case lookup id sh of
 Nothing -> error "Error!”
 Just c -> Spwd { uid = id ,
 cypher = c})

We need to adapt these
functions as well! (homework)

getSpwdName :: FilePath -> FilePath -> Name -> IO (Maybe Spwd)

sh :: Sec H [(UID, Cypher)]

Secure Programming via Libraries - ECI 2011 35

Implementing Secure Version of
getSpwdName

pw :: [(Name, UID)]

sh :: [(UID, Cypher)]

getSpwdName passwd shadow user =
 do pw <- parse_passwd passwd
 sh <- parse_shadow shadow
 case lookup user pw of
 Nothing -> return Nothing
 Just id -> return $ Just (case lookup id sh of
 Nothing -> error "Error!”
 Just c -> Spwd { uid = id ,
 cypher = c})

We need to adapt these
functions as well! (homework)

parse_passwd :: FilePath -> SecIO s [(Name,UID)]

parse_shadow :: FilePath -> SecIO s (Sec H [(UID,Cypher)])

getSpwdName :: File L -> File H -> Name -> SecIO s (Maybe Spwd)

sh :: Sec H [(UID, Cypher)]

Secure Programming via Libraries - ECI 2011 36

getSpwdName passwd shadow user =
 do pw <- parse_passwd passwd
 sec_sh <- parse_shadow shadow
 case lookup user pw of
 Nothing -> return Nothing
 Just id -> return $
 Just $ Spwd { uid = id ,
 cypher = do sh <- sec_sh
 case lookup id sh of
 Nothing -> error “Error!”
 Just c -> return c }

SecIO

Implementing Secure Version of
getSpwdName

pw :: [(Name, UID)]

We need to adapt these
functions as well! (homework)

parse_passwd :: FilePath -> SecIO s [(Name,UID)]

parse_shadow :: FilePath -> SecIO s (Sec H [(UID,Cypher)])

getSpwdName :: File L -> File H -> Name -> SecIO s (Maybe Spwd)

Sec H

sh :: Sec H [(UID, Cypher)]

Secure Programming via Libraries - ECI 2011 37

General Guidelines

● Take a non-secure version of some code that you
wrote

● Indicate in your program (datatypes and API) which
data is confidential

● As we did with Spwd and getSpwdName

● Indicate the confidentiality level of your external
resources

● As we did with files passwd and shadow

● Once the types are in place (Sec H, SecIO s, SecIO
L) just adapt the code to type-check!

Secure Programming via Libraries - ECI 2011 38

Declassification

What if we write a login program?

Secure Programming via Libraries - ECI 2011 39

Declassification
[Sabelfeld, Sands 07]

● Login program: it is necessary to leak information that
depends on secrets
● cypher spwd == input_user

● Dimensions and principles of declassification
● What information can be leak?
● When can information be leaked?
● Where in the program is safe to leak information?
● Who can leak information?

● How to be certain that our programs
leak what they are supposed to leak?

Secure Programming via Libraries - ECI 2011 40

Declassification in the Library

● The library handle different kind of declassificaiton
policies

● Declassification policies are programs!

● Trustworthy code defines them
● Controlled at run-time

module DeclPolicies where

import SecLib.Trustworthy

...

module X where

import SecLib.Untrustworthy

...

Secure Programming via Libraries - ECI 2011 41

Declassification in the Library

● The library defines combinators for different
declassification policies (what, when, who)

● It is possible to combine dimension of
declassification

● “When event X happens, you can declassify
information Y provided that the code is running by
Z”

● In the course: what

Secure Programming via Libraries - ECI 2011 42

Escape Hatches

● Declassification is performed by functions
● Terminology: escape hatches [Sabelfeld, Myers 04]

● In the library: a escape hatch is just a function of type

Less sl sh => Sec sh a -> SecIO s (Sec sl b)

It indicates that information can
flow to the lower levels in the lattice

We leave this type “free” (see later)

Secure Programming via Libraries - ECI 2011 43

About the Type for Espace Hatches

● Why SecIO?

● Why s is “free”?

● The state might change when applying a escape hatch. However,
that change can only be observed if declassification fails or succeed.

● Since we are termination-insensitive is like no-effect is produced

Less sl sh => Sec sh a -> SecIO s (Sec sl b)

There is an internal
state that determines
if declassication can

proceed

Secure Programming via Libraries - ECI 2011 44

Some Declassification Combinators

hatch :: Less sl sh =>
 (a -> b) -> Sec sh a -> SecIO s (Sec sl b)

● Base combinator
● It always succeed in declassifying

● What combinator (how often)

It applies an arbitrary
function

ntimes :: Int -> (Sec sh a -> SecIO s (Sec sl b))
 -> IO (Sec sh a -> SecIO s (Sec sl b))

Escape hatch

How many times can be
applied per run It creates a counter

Secure Programming via Libraries - ECI 2011 45

Module Login (Trustworthy)

● This module sets up
● The confidentiality level of the resources (stdin/stdout)
● The escape hatches

● It calls the untrustworthy module that implements the
login
● We assume that the login function provided by the

untrustworthy module fulfill its specification, but we want
to guarantee that it is also secure.

Secure Programming via Libraries - ECI 2011 46

Module Login (Trustworthy)

module Login (login) where

import Spwd
import qualified ULogin as ULogin (login)

import SecLib.Trustworthy
import SecLib.LatticeLH

check :: Sec H (String, Cypher) -> SecIO s (Sec L Bool)
check = hatch (\(input, key) -> input == key)

check3 :: IO (Sec H (String, Cypher) -> SecIO s (Sec L Bool))
check3 = ntimes 3 check

screen :: Screen L
screen = mkScreen ()

Escape hatch to
declassify is the input

provided matches the password

The escape hatch can only
be applied, at most, 3 times per

run

stdin/stdout is a public channel

Secure Programming via Libraries - ECI 2011 47

Module Login (Trustworthy)

safe_login :: (Screen L
 -> (Sec H (String, Cypher) -> SecIO s (Sec L Bool))
 -> SecIO L ()
)
 -> IO ()

safe_login expected_login = do esc_hatch <- check3
 run $ expected_login screen esc_hatch
 return ()

login = safe_login ULogin.login

The type of the function
provided by the

untrustworthy

It provides with the screen and
escape hatch to the
untrustworthy login

Secure Programming via Libraries - ECI 2011 48

Module Ulogin (Untrustworthy)

login :: Screen L
 -> (Sec H (String, Cypher) -> SecIO L (Sec L Bool))
 -> SecIO L ()
login scr eh
 = do putStrLnSecIO scr "Welcome!"
 putStrSecIO scr "login:"
 user <- getLineSecIO scr
 spwd <- getSpwdName user
 case spwd of
 Nothing -> putStrLnSecIO scr "Invalid user!"
 Just spwd -> do b <- verify 3 spwd scr eh
 if b then putStrLnSecIO scr "Launching shell!"
 else error "Access denied!"

● Very similar to a login function written without SecIO

Secure Programming via Libraries - ECI 2011 49

Module Ulogin (Untrustworthy)

verify 0 _ scr _ =
 do putStrLnSecIO scr "Maximum number of tries reached!"
 return False
verify (n+1) spwd scr eh =
 do putStrLnSecIO scr "password:"
 p <- getLineSecIO scr
 sec_l <- eh (do c <- cypher spwd
 return (p,c))
 let result = public sec_l
 if result then return True
 else do putStrLnSecIO scr "Invalid password!"
 verify n spwd scr eh

Put together the
password and the input
provided by the user

into Sec H

It applies the escape
hatch

Secure Programming via Libraries - ECI 2011 50

Function login

● What do we know about it?

● It preserves confidentiality (non-interference) but
allows to declassify some information
● Escape hatch

● Login cannot, for example, send the password into a
public file

● Login cannot apply the escape hatch more than 3 times
● Limit the number of bits to be leaked per run

module Login (login) where

Secure Programming via Libraries - ECI 2011 51

SecLib:Pros

● Provides confidentiality

● Type-system and abstraction provided by the module system in Haskell

● Only check types and some imports (no code revision)

● Light-weight library (342 LOC)

● Polymorphic secure code for free!

● Promise to be practical

● Simple (Monads)
● Side-effects: files, references, stdin/stdout, etc.

● Support for declassification
● It is the most experimental part of the library
● Room for innovation here!

Secure Programming via Libraries - ECI 2011 52

SecLib:Cons

● Static security lattice
● Dynamic security levels?
● Mutual-distrust environments

● Timing channel
● Usually a difficult channel to close up

● It relies on Haskell's type-safety (no cheating) and that
abstraction is respected (modules system)
● SafeHaskell is coming soon!

Introduction to Python

A taint mode for Python via a library

Implementing erasure policies using taint analysis

Secure Programming via
Libraries

Escuela de Ciencias Informáticas (ECI) 2011
UBA, Buenos Aires, Argentina

Python in a Nutshell

Alejandro Russo (russo@chalmers.se)

Secure Programming via Libraries 2

Learning Python

● By Mark Lutz

● Available online

● Learn it on demand

● We will see Python in a
Nutshell

● Great programming
language

● Highly used by Google

Secure Programming via Libraries 3

Python
● Programming language

● Dynamically typed
● Imperative
● Object-oriented
● Functional

● It does not force you to use a feature or programming
paradigm that you do not want

● Open source, clean syntax, easy to learn

● There are several flavors of Python

● We use the one provided by the Python Software
Foundation [Python]

Secure Programming via Libraries 4

Python: Relevant Features

● Very dynamic language
● You can modify the behavior of almost any entity

dynamically

● Everything is an object
● They have dictionaries indicating the supporting operations

● Variables are references to objects

● Types are associated with objects, not variables

● Multiple-inheritance

● Overloading

● Decorators

Secure Programming via Libraries 5

Everything is an Object

x = "Hello word!"
y = "... Goodbye!"

def f(x,y):
 print "You are calling function f"
 print "..."
 return x+y

$ python -i objects.py
>>> x
'Hello word!'
>>> y
'... Goodbye!'
>>> f(x,y)
You are calling function f
...
'Hello word!... Goodbye!'
>>> dir(x)
['__add__', '__class__', '__contains__', '__delattr__', '__doc__', '__eq__',
'__format__', '__ge__', '__getattribute__', '__getitem__', '__getnewargs__',
'__getslice__', '__gt__', '__hash__', '__init__', '__le__', '__len__',
'__lt__', '__mod__', '__mul__', '__ne__', '__new__', '__reduce__',
'__reduce_ex__', '__repr__', '__rmod__', '__rmul__', '__setattr__',
'__sizeof__', '__str__', '__subclasshook__', '_formatter_field_name_split',
'_formatter_parser', 'capitalize', 'center', 'count', 'decode', 'encode',
'endswith', 'expandtabs', 'find', 'format', 'index', 'isalnum', 'isalpha',
'isdigit', 'islower', 'isspace', 'istitle', 'isupper', 'join', 'ljust',
'lower', 'lstrip', 'partition', 'replace', 'rfind', 'rindex', 'rjust',
'rpartition', 'rsplit', 'rstrip', 'split', 'splitlines', 'startswith',
'strip', 'swapcase', 'title', 'translate', 'upper', 'zfill']
>>> x.isdigit()
False
>>>

Secure Programming via Libraries 6

Everything is an Object

x = "Hello word!"
y = "... Goodbye!"

def f(x,y):
 print "You are calling function f"
 print "..."
 return x+y

>>> dir(f)
['__call__', '__class__', '__closure__', '__code__', '__defaults__',
'__delattr__', '__dict__', '__doc__', '__format__', '__get__',
'__getattribute__', '__globals__', '__hash__', '__init__', '__module__',
'__name__', '__new__', '__reduce__', '__reduce_ex__', '__repr__',
'__setattr__', '__sizeof__', '__str__', '__subclasshook__', 'func_closure',
'func_code', 'func_defaults', 'func_dict', 'func_doc', 'func_globals',
'func_name']
>>> f.__call__("Buenos ", "Aires")
You are calling function f
...
'Buenos Aires'
>>>

Secure Programming via Libraries 7

Variables are References

x = "Hello word!"
y = x
print "x is: ", x
print "y is: ", y
x = "... Goodbye!"
print 'After x = "... Goodbye!"'
print "x is: ", x
print "y is: ", y

$ python -i references.py
x is: Hello word!
y is: Hello word!
After x = "... Goodbye!"
x is: ... Goodbye!
y is: Hello word!
>>>

Secure Programming via Libraries 8

Types and Variables

x = "Hello word!"

y = 3

def f(x):
 return x

$ python -i types.py
>>> x.__class__
<type 'str'>
>>> y.__class__
<type 'int'>
>>> f.__class__
<type 'function'>
>>> x
'Hello word!'
>>> y
3
>>> x = y
>>> x.__class__
<type 'int'>
>>> x
3
>>>

Secure Programming via Libraries 9

Classes (classic style)

class Klass:
 def setdata(self, value):
 self.data=value
 def display(self):
 print self.data

python -i classes.py
>>> obj = Klass()
>>> dir(obj)
['__doc__', '__module__', 'display', 'setdata']
>>> obj.setdata(42)
>>> dir(obj)
['__doc__', '__module__', 'data', 'display', 'setdata']
>>> obj.display()
42
>>> type(obj)
<type 'instance'>
>>>

Secure Programming via Libraries 10

Classes (new-style)

class Klass1(object):
 def setdata(self, value):
 self.data=value
 def display(self):
 print self.data python -i classes.py

>>> obj = Klass1()
>>> dir(obj)
['__class__', '__delattr__', '__dict__', '__doc__', '__format__',
'__getattribute__', '__hash__', '__init__', '__module__', '__new__',
'__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__',
'__str__', '__subclasshook__', '__weakref__', 'display', 'setdata']
>>> obj.setdata(42)
>>> dir(obj)
['__class__', '__delattr__', '__dict__', '__doc__', '__format__',
'__getattribute__', '__hash__', '__init__', '__module__', '__new__',
'__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__',
'__str__', '__subclasshook__', '__weakref__', 'data', 'display',
'setdata']
>>> obj.display()
42
>>> type(obj)
<class '__main__.Klass1'>
>>>

Unify types and classes. It also
add some support for

meta-programming

Secure Programming via Libraries 11

Inheritance

class Klass2(Klass1):
 def display(self):
 print "Current value = %s"%self.data

python -i classes.py
>>> obj = Klass2()
>>> obj.setdata(42)
>>> obj.display()
Current value = 42
>>>

It supports multiple-inheritance. For that,
it uses the C3 Method Resolution algorithm

Secure Programming via Libraries 12

Overloading
class X:
 def __init__(self, n):
 self.n = n

 def __add__(self, other):
 print "Doing some addition?"
 return (self.n + other)

python -i overload.py
>>> number = X(42)
>>> number+10
Doing some addition?
52
>>> __add__(self, 10)

number + 10

Special functions
that are not intended to

be called directly

Methods of the form __X__ can be
seen as special hooks

Secure Programming via Libraries 13

Dynamic Dispatch

● What happen when combining Inheritance and
Overloading?

python -i overload.py
>>> number = Y(42)
>>> number + 10
It is in fact an addition!
52
>>>

class Y(X):
 def __add__(self, other):
 print "It is in fact an addition!"
 return (self.n + other)

At this point, Python decides to
call the most specific class

Secure Programming via Libraries 14

Decorators

● It allows to insert code (wrappers) into functions and
classes definitions

● It allows to modularly augment functionality

● From a functional perspective, they are just high order
functions! (with some differences)

Secure Programming via Libraries 15

High Order Functions

def debug(func):
 def inner (*args):
 for a in args:
 print "The received arguments are:"
 print a

 result = func (*args)
 print "The result is:" , result

 return inner

def id(x):
 return x

python -i decorators.py
>>> id(1)
1
>>> id_debug = debug(id)
>>> id_debug(1)
The received arguments are:
1
The result is: 1
>>>

Secure Programming via Libraries 16

Decorators
def debug(func):
 def inner (*args):
 for a in args:
 print "The received arguments are:"
 print a

 result = func(*args)
 print "The result is:", result

 return inner

@debug
def id(x):
 return x

python -i decorators2.py
>>> id(1)
The received arguments are:
1
The result is: 1
>>>

Decorator

This is equivalent to:
def id(x):
 return x

id = debug(id)

Secure Programming via Libraries 17

More about Python?

● It is lot of fun
programming with it

● If you are functional
programmer, you will
probably use Python
differently from regular
Python programmers

● Great opportunity to take
functional programming
results into Python!

Secure Programming via
Libraries

Escuela de Ciencias Informáticas (ECI) 2011
UBA, Buenos Aires, Argentina

A Taint Mode for Python via a Library
Alejandro Russo (russo@chalmers.se)

Secure Programming via Libraries 2

OWASP TOP 10
[OWASP 2010]

● A1: Injection

● A2: Cross-Site Scripting (XSS)

● A3: Broken Authentication and Session Management

● A4: Insecure Direct Object References

● A5: Cross-Site Request Forgery (CSRF)

● A6: Security Misconfiguration

● A7: Insecure Cryptographic Storage

● A8: Failure to Restrict URL Access

● A9: Insufficient Transport Layer Protection

● A10: Unvalidated Redirects and Forwards

Most of these attacks
can be formulated

as an informatoin-flow
problem!

Secure Programming via Libraries 3

The Top Two Problems

● A1: Injection

● A2: Cross-Site Scripting (XSS)

● They have something in common:

● Attackers goal: craft input data
to gain some control over certain
security critical operations

● The attacker does not write the code

● Different assumption from when
we study monads and security in Haskell

Secure Programming via Libraries 4

Consequences of Improper Input
Validation

● Impersonate (sessions ID stored in cookies)
● Compromise confidential data

● Access to information stored on databases
behind web applications

● Denial of service attacks
● Data destruction

Attackers goal: craft input data to gain
some control over certain operations

Secure Programming via Libraries 7

Monitors

PHP

Ruby

Python

Perl
Java

+ Less false alarm than SA
- Overhead
- Modification of the interpreter

Taint Analysis as a Library
[Conti Russo 10]

Closest related work
[Kozlov, Petukhov 07]
- Modify interpreter
- Only strings
- Binary tainted attribute
+ NO changes in code

Secure Programming via Libraries 8

Taint Analysis

● Mark untrusted inputs, sanitizations functions
and sensitive sinks.

● Propagate taint information
● Untainting data when sanitized
● Detect when tainted data reaches sensitive

sinks

Secure Programming via Libraries 9

Taint Propagation

a # tainted
b # clean
c = a + b # now c is tainted too

a * 8
a[3:10]
“is %s clean?” % a
a.upper()

Secure Programming via Libraries 10

Taint Analysis and Information-Flow

● Remember the type of illegal flows (first lecture) ?

● Explicit flows

● Implicit flows

l := h

if h>0
 then l:=1
 else l:=2

Secure Programming via Libraries 11

Taint Analysis and Information-Flow

● Taint analysis propagates information on assignments
● Explicit flows

● Taint analysis can then be seen as an information-flow
tracking mechanism for explicit flows

● Taint analysis tends to ignore implicit flows

a # tainted
b # clean
c = a + b # now c is tainted too

a # tainted boolean
b # clean boolean
if a:
 b = true
else:
 b = false

Observe that a tainted bit
has been copied into a

untainted one!

Secure Programming via Libraries 12

Taint Analysis and Information-Flow

● Taint analysis can be effectively circumvented using implicit flow

● This is specifically dangerous when the attacker has full control over the code

● We consider that the attacker craft input data in order to exploit
vulnerabilities, not code!

● Is this reasonable?

● Scenarios where the code is non-malicious

● Programmers might forget to perform some sanitization (simple error or
omission)

● Taint analysis certainly helps to discover vulnerabilities!

● How dangerous are implicit flows in non-malicious code?

● We argue that it is harmless (more unnatural and evolved code)
 [Russo, Sabelfeld, Li 09]

Secure Programming via Libraries 13

Taint Analysis

● Is it sound taint analysis? (if it does not trigger any
alarm, the program is safe)
● No! (remember implicit flows)

● Is it complete taint analysis? (every secure program
passes the analysis)
● No! (as many other analysis). (Exercise?)

● Why is it so popular then?
● It helps to detect vulnerabilities without too much effort
● A taint analysis is as good as vulnerabilities that it

might discover

Secure Programming via Libraries 14

Taint Analysis

● Mark untrusted inputs, sanitizations functions
and sensitive sinks.

● Propagate taint information
● Untainting data when sanitized
● Detect when tainted data reaches sensitive

sinks

API of the library

Task of the library
to perform these

three steps

Secure Programming via Libraries 16

Taint Mode in Python (API)

from web import input
input = untrusted(input)

@untrusted
def user_function():
 ...

● Sources of tainted data
Tainted data from such
sources is associated

with every tag

Secure Programming via Libraries 17

Taint Mode in Python (API)
from taintmode import *

@untrusted
def from_outside():
 s = raw_input('Give me some input:')
 return s

print 20*'*'
print 'XSS :', XSS
print 'SQLI :', SQLI
print 'OSI :', OSI
print 'II :', II
print 20*'*'

i = from_outside()

print
print 'String:',i
print 'Is it tainted? ', tainted(i)
print 'Tags:', i.taints

Import the library

Tags handle by the
library (customizable)

Check if a value is
tainted

Attribute of tainted
values

Secure Programming via Libraries 18

Taint Mode in Python (API)

db.select = ssink(SQLI)(db.select)

@ssink(OSI)
def user_function(cmd):
 ...

● Sensitive sinks

Secure Programming via Libraries 19

Taint Mode in Python (API)
from taintmode import *

@untrusted
def from_outside():
 s = raw_input('Give me some input:')
 return s

@ssink(OSI)
def shell_cmd(s):
 # Here, we call some shell command using s
 return

i = from_outside()

shell_cmd(i)

Secure Programming via Libraries 20

Taint Mode in Python (API)

sanitize = cleaner(SQLI)(sanitize)

@cleaner(OSI)
def user_function(cmd):
 ...

● Sanitization functions

Secure Programming via Libraries 21

Taint Mode in Python (API)
from taintmode import *

@untrusted
def from_outside():
 s = raw_input('Give me some input:')
 return s

@ssink(OSI)
def shell_cmd(s):
 # Here, we call some shell command using s
 return

@cleaner(OSI)
def no_osi(s):
 return '' # Here, it sanatizes the data

i = from_outside()

clean_i = no_osi(i)
shell_cmd(clean_i)

Secure Programming via Libraries 23

Why Python?

● Taint propagation is the most interesting part
● Dynamic dispatch mechanisms of Python +

subclasses
● Mark code (usability)

● Decorators
● Expressiveness (not only strings)

● Dynamic features of Python

Secure Programming via Libraries 24

Customization of the Library

● The user can indicate which functions should
propagate taint information.

● And on which types taint analysis must be performed.

● Given these information, the library automatically
generate the taint-aware built-in types and functions

Secure Programming via Libraries 25

How does the library work?

len = propagate_func(len)
ord = propagate_func(ord)
chr = propagate_func(chr)

STR = taint_class(str)
UNICODE = taint_class(unicode)
INT = taint_class(int)
FLOAT = taint_class(float)

● Taint-aware classes

● Taint-aware functions

It works with
built-in types

It makes functions aware
of taint information in
order to propagate it

Secure Programming via Libraries 26

How does the library work?

STR = taint_class(str)

“a”
XSS, SQLI

taints

str

STR

Automatic built-in types
methods overloading

c = a.upper()
STR = STR.upper

c = a + b
STR = STR + str
STR = STR.__add__

Automatic built-in functions
overloading

 len = propagate_func(len)
c = len(a)

INT = len(STR)

Secure Programming via Libraries 27

Code for taint_class

def taint_class(klass, methods=None):
 ...
 class tklass(klass):
 ...

 d = klass.__dict__
 for name, attr in [(m, d[m]) for m in methods]:
 if inspect.ismethod(attr) or inspect.ismethoddescriptor(attr):
 setattr(tklass, name, propagate_method(attr))

It takes a class
and returns

another class

The new class
have the same
method names

The methods
propagate taint

information

Secure Programming via Libraries 28

Code for propagate_method

def propagate_method(method):
 def inner(self, *args, **kwargs):
 r = method(self, *args, **kwargs)
 t = set()
 for a in args:
 collect_tags(a, t)
 for v in kwargs.values():
 collect_tags(v, t)
 t.update(self.taints)
 return taint_aware(r, t)
 return inner

It is a function that
returns another

function

It is important that
STR is a subclass

of str

It collects
the tags found

in the arguments

The collected tags
are associated
with the result

It collects the tags
found in the string

that calls the
method

Secure Programming via Libraries 29

Example
from taintmode import *

x = taint('Buenos Aires', XSS)
print 'Tags for x: ', x.taints

y = taint('Buenos', OSI)
print 'Tags for y: ', y.taints

i1 = x.find('Aires')
print 'Tags for the position of Aires:', i1.taints
i2 = x.find(y)
print 'Tags for the position of Buenos:', i2.taints

It will show only
the tags from x

It will show only
the tags from x

and y

Secure Programming via Libraries 31

Guarantees provided by the analysis?

● Papers presenting taint analysis often lack a
formalization of the security condition (policy) enforced

● An exception is the paper by [Volpano 99]
● Notion of weak secrecy
● Intuitively, if the taint analysis passed, then the program

satisfies weak secrecy
● What is weak secrecy?

Secure Programming via Libraries 32

Secure Programming via Libraries 33

Taint analysis and Weak Secrecy

● It would be possible to prove, for a simplified language,
that if a program “passes” taint analysis, then it
satisfies weak secrecy
● Soundness

● Not every program satisfying weak secrecy will “pass”
the taint analysis (which one? Exercise!)
● Completeness

Secure Programming via Libraries 34

● Weak secrecy [Volpano 99]

● Formal semantics of Python [Smeding 09]

● Combine both and provide formal guarantees?

● An interesting direction for future work

Formalization of the Library

Secure Programming via Libraries 35

Final Remarks

● It is possible to provide a taint analysis library for Python in just
(450 LOC)

● No need to modify the interpreter

● The library is based essentially on Python dynamic features
● Subclasses
● Dynamic dispatch

● Dynamic creation of classes (taint_class)

● We also use some convenient programming language concepts

● High-order functions (propagate_method)

● Decorators
● Introspection mechanisms for reporting errors

Secure Programming via
Libraries

Escuela de Ciencias Informáticas (ECI) 2011
UBA, Buenos Aires, Argentina

Implementing Erasure Policies using
Taint Analysis

Alejandro Russo (russo@chalmers.se)

Secure Programming via Libraries 2

What is Erasure?

● A property of systems that require sensitive
information to complete their tasks

● Intuitively:

● A user owns some sensitive data
● The system takes user's input and processes it
● After the task is completed, user's input and any

derived data must be removed from the system

Secure Programming via Libraries 3

Language-based Erasure
[Chong, Myers 05]

● Consider programs where

● No I/O involved
● Each memory location is equipped with a policy

● Erasure policies:

● A conditional expression that raises the security
level to an higher one

● Erasure: a system is erasing if the memory location
policies are not violated during execution

● Enforcement: no mechanism is described

Secure Programming via Libraries 4

Just forget it
[Hunt, Sands 08]

● Programs in a simple I/O imperative language

● Erasure policies are embedded in the language by a
dedicated command
input x from a in C erasing to b

● A program is erasing if its behavior after the erasure
command does not depend on the input received

● Connection with information-flow
● A type system guarantees a static enforcement, but it

works only for that toy language

● Interesting theoretical result

Secure Programming via Libraries 5

Ingredients for Erasure

● There are several design options to consider

● How to characterize an erasing system?

● One way is to define policies on its observable
behavior [Hunt, Sands 08]

● When, and under which conditions, should erasure
take place?

● Need for an erasure policy language
● How to enforce the erasure policies?

We propose a Python library attempts to answer these
questions

Secure Programming via Libraries 6

The Erasure Library in a Nutshell
[Del Tedesco, Russo, Sands 10]

● It deals with interactive systems

● It enforces erasure by preventing differences in the
observable behavior of the system

● It takes into account complex policies

● Policies may involve time, or can be triggered by
updates in runtime values

● Python features make it possible to include the
library in a program with minor modifications

● It uses taint analysis to track derivate data from data
that need to be erased

Secure Programming via Libraries 7

The Erasure Library

● We have a system with I/O.

● What is the purpose of our library?

I
N
P
U
T

O
U
T
P
U
T

Secure Programming via Libraries 8

● We have a system with I/O

● The library provides wrappers and internal structures
to enforce erasure policies

The Erasure Library

Denote entry points for
erasure-aware information
(sensitive data)

Track the propagation of
erasure-aware data inside the
system.
Implementing the concrete
data removal operation

Specify which
output actions
we need to
“observe”

Secure Programming via Libraries 9

API: Indicating Erasure-aware Data

● Usually systems collect sensitive data from the outside
through auxiliary functions

● The library exports erasure_source to make such
functions erasure-aware

def aux():
 …
 input
 …
 return val

val

@erasure_source
def aux():
 …
 input
 …
 return val

val

Secure Programming via Libraries 10

API: Erasing information

● When information is no longer needed, it can be removed

● Derived information has to be removed as well!

● Taint analysis keeps track of derived information
● The library performs erasure by the erasure primitive

def function(val):
 …
 #code that needs val
 …
 erasure(val)
 …
 #code that no longer needs val
 …

Data may flow to
function from other
parts of the system

Before erasure:
val has its original
value

After erasure:
val and all its
related info are
erased!

Secure Programming via Libraries 11

API: Retaining Bits of Sensitive Data

● Sometimes it is necessary to retain portions of sensitive data

● Think about last digits of CC numbers in bills

● The library prevents those bits being retain (remembered) by
providing primitive retain

def function(cc):
 …
 sr=getSafePortion(cc)
 …

@retain
def getSafePortion(cc):
 ccsafe=cc[-4:]
 return ccsafe

An erasure-aware
value is provided

Regardless of
retain, cc is
still erasure-
aware

ccsafe
(therefore
sr) is no
longer
controlled
by the
library

Secure Programming via Libraries 12

Example

from erasure import erasure_source, erasure, retain
@erasure_source
def inputFromUser():
 x=raw_input()
 return x

@retain
def transform(st):
 return st[-4:]
def main():
 print "Please input your credit card number"
 cc=inputFromUser()
 last4=transform(cc)
 print "CC is [", cc,"]","derived info is [", last4, "]"
 print "Calling erasure"
 erasure(cc)
 print "CC is [", cc,"]","derived info is [", last4, "]"

Data return by this
function is erasure-aware

Imports the
library

The last four characters
of the input is not

erasure-aware anymore

Erase data

Secure Programming via Libraries 13

Which policies do we support?

● The primitive erasure has to be called explicitly by
the programmer: it is part of the program!

● It means that policies are as expressive as the
programming language!

sensitive_val=raw_input()
ans=raw_input("Do you want to erase?")
if ans=="Yes":
 erasure(sensitive_val)

Secure Programming via Libraries 14

Is it everything that we need?

● The policies we can implement with the given API are
triggered when erasure is executed

● There are other policies that programmers might need
and are erasure-specific:

● “Erase sensitive_val in 5 days”

● “Erase sensitive_val if a low privileged user is
trying to get the data”

● Previous primitives allow to express those policies, but
in an unnatural style. It is better to have an explicit
notion for them (lazy erasure)

Secure Programming via Libraries 15

What is lazy erasure about?

● What we want to do is to enforce a “just in time”
erasure mechanism

● It is an extension to:

● Policy language
● Enforcing technique

● lazy_erasure associates objects to policies

● erasure_escape annotate functions that may
transmit erasure-aware data outside the system in
order to check their policies and eventually erase them
before it is too late

Secure Programming via Libraries 16

Lazy API: lazy_erasure

● lazy_erasure is meant to create an erasure contract
that will be used during an “observable action”

● It does not remove the data, but it allows the
controlling system to keep track of its propagation

def function(val):
 …
 #code that needs val
 …
 lazy_erasure(val)
 …
 #code that still uses val
 …

As it happened in
the previous
example, val is an
erasure-aware
value

Here val and all its
related info are still
available

Secure Programming via Libraries 17

Lazy API: triggering the policies
● We need to make the system “observationally independent”

on the sensitive data

● erasure_escape annotates output operations in such a
way that erasure-aware data will be erased if their policy
evaluates to true

def printer(val):
 …
 print val
 …

@erasure_escape
def printer(val):
 …
 print val
 …

either
val

or the
empty value

Secure Programming via Libraries 18

Example
from erasure import erasure_source, lazy_erasure, erasure_escape
import time
from datetime import datetime, timedelta

@erasure_source
def inputFromUser():
 x=raw_input()
 return x

def fiveseconds_policy(time):
 return (datetime.today()-time>timedelta(seconds=5))

@erasure_escape
def erasure_channel(a):
 print "The input you provided was [", a, "]"

def main():
 print "Please input your credit card number"
 cc=inputFromUser()
 lazy_erasure(cc,fiveseconds_policy)
 while(1):
 erasure_channel(cc)
 time.sleep(1)

The lazy erasure policies
are functions on the

timestamp of the input data

Observable channel

Secure Programming via Libraries 19

Recall The Erasure Library

Denote entry points for
erasure-aware information
(sensitive data)

Track the propagation of
erasure-aware data inside the
system.
Implementing the concrete
data removal operation

Specify which
output actions
we need to
“observe”

Secure Programming via Libraries 20

● We need to keep track of dependencies among erasure-
aware values

● This means we need to identify them uniquely

● The blackboard keeps track of identities

Who is implemented?

Id1 → val1
Id2 → val2

@erasure_source
def aux():
 …
 input
 …
 return val

Id1 → val1
Id2 → val2
Id3 → val

@erasure_source
def aux():
 …
 input
 …
 return val

val

Bookkeeping from
previous operations

New information
triggers a
blackboard
modification

● Identities are time stamps: unique in our sequential
implementation and support time-based policies!

Secure Programming via Libraries 21

● It is the controller (it has two goals)

Who is ?

Id1 → v1
Id2 → v2

def f():
 …
 v3=v1.m(v2)
 …

Id1 → v1, v3
Id2 → v2, v3

def g():
 …
 erasure(v3)
 …

def g():
 …
 erasure(v3)
 …

Id1 → v1, v3
Id2 → v2, v3

def f():
 …
 v3=v1.m(v2)
 …

v1
v3=v1.m(v2)

v2
v3

TRACKING

unwrapping
delegation

wrapping

v3

ERASE

To erase:
Id1
id2

v1.erase()
v2.erase()
v3.erase()

dependencies
lookup

erasure

Secure Programming via Libraries 22

Future work

● On the theoretical side:
● Which formal guarantees can we prove for our

primitives?
● On the practical side:

● How does the library fit with large existing applications?
● How do the controller's storage interactions impact on

performance?

Secure Programming via Libraries 23

● Erasure is a property that should be enforced on all
systems dealing with sensitive data

● We provided a Python library to get this result for
existing code

● The whole library is based on a technique similar to
the library for taint-analysis in Python

● Therefore, it can be applied mostly transparently to
existing code

● The approach seems really flexible and promising

Conclusion

Disjunction Category Labels

LIO: a monad for dynamically tracking

information-flow

Secure Programming via
Libraries

Escuela de Ciencias Informáticas (ECI) 2011
UBA, Buenos Aires, Argentina

Disjunction Category Labels

Alejandro Russo (russo@chalmers.se)

Secure Programming via Libraries 2

Motivation

● It is usually common to consider the simple two-point
lattice to represent confidential and public information
● Information flows from public to secret

● In scenarios of mutual distrust, things are a little bit
more complicated

● Let us see a concrete scenario

Secure Programming via Libraries 9

Disjunction Category Labels
[Stefan, Russo, Mazieres] (work-in-progress)

● For short: DCLabels

● It is a label system to express restrictions on data
which allows to reflect the concern of multiple parties

● Principal
● Source or authority (e.g., Alice, Bob, and Charly)

● Disjunction Category (just category)
● Set of principals
● Each principal is said to own the category

● Categories are associated to data

Secure Programming via Libraries 10

 or

Secure Programming via Libraries 12

integrity

Secure Programming via Libraries 15 Secure Programming via Libraries 18

Secure Programming via Libraries 21

● We do not always know all the principals in the system

– Principals can come and go

Secure Programming via Libraries 22

Join and Meet Operations

● It is possible to define the join and meet operations
and proof their correctness
● The authors of DLM [Myers, Liskov 98] have not proved

this formally
– “The formula for meet is sound, but unlike the formula for

join, it does not always produce the most restrictive label
for all possible extensions P'”

– “The result is that label inference must be conservative in
some cases, which does not seem to be a significant
problem”

Secure Programming via Libraries 23

● These operations might introduce categories which are
redundant

Secure Programming via Libraries 24

confidentiality but it also holds for integrity

Secure Programming via Libraries 34

A Library for DCLabels in Haskell

● It is in a experimental phase
● Remember that it is work-in-progress!

● I adapted the library for this course

● In the future, you might refer to the official release

● Check the webpage of the course to get the installation
instructions

Secure Programming via Libraries 35

Creating DCLabels

module Labels where

import DCLabel.Safe
import DCLabel.PrettyShow

c1 = "Alice" .\/. "Bob"

l1 = "Alice" .\/. "Bob" ./\. "Carla"

l2 = "Alice" ./\. "Carla"

dc1 = newDC l1 l2

dc2 = newDC "Deain" "Alice"

It can use DCLabels
without the capability
to create privileges

Categories
(disjunctions)

Labels
(conjunctions of

disjunctions)

DCLabels

Secure Programming via Libraries 36

>

>

>

>

*ExamplesDCLabels> canflowto bottom dc1
True

Secure Programming via Libraries 37

Privileges

import DCLabel.Core
import DCLabel.PrettyShow
import DCLabel.NanoEDSL

l1 = "Alice" .\/. "Bob" ./\. "Carla"

l2 = "Alice" ./\. "Carla"

dc1 = newDC l1 l2

dc2 = newDC "Deain" "Alice"

pr = createPrivTCB (newDC ("Alice" ./\. "Carla"))

Only trusted code
can create privileges

Creation

Secure Programming via Libraries 38

Privileges

*ExamplesDCLabels> pShow dc1
<{["Alice" \/ "Bob"] /\ ["Carla"]} , {["Alice"] /\ ["Carla"]}>
*ExamplesDCLabels> pShow dc2
<{["Deain"]} , {["Alice"]}>
*ExamplesDCLabels> canflowto dc1 dc2
False

*ExamplesDCLabels> pShow $ priv pr
{["Alice"] /\ ["Carla"]}
*ExamplesDCLabels> canflowto_p pr dc1 dc2
True

Secrecy category
of dc1 cannot be

fullfiled by dc2

Now it is possible
given privileges

Secure Programming via Libraries 39

Final Remarks

● Label system for mutual distrust scenarios (DCLabels)
● Conjunction of categories
● Categories are disjunction of principals

● It allows to express the interest of different parties

● Precisely compute join and meet

● Work-in-progress
● Comparison with DLM (we have a precise meet)

● More systems need to be built using DCLabels

Secure Programming via
Libraries

Escuela de Ciencias Informáticas (ECI) 2011
UBA, Buenos Aires, Argentina

LIO: a monad for dynamically tracking
information-flow

Alejandro Russo (russo@chalmers.se)

Secure Programming via Libraries 2

Motivation

● Mass used systems often
present dynamic features
● Facebook

– Users come and go
– People make (and get rid

of) “friends”
– New applications are

created everyday
● Android

– New applications are
installed in your phone

– New features are added
with updates

Secure Programming via Libraries 3

Motivation

● One of the main motivations is permissiveness
● To secure as many programs as possible

● Therefore, we need technology that is able to
● provide confidentiality and integrity guarantees
● adapt security policies at run-time
● express the interest of different parties involved in a

computer system

Secure Programming via Libraries 4

LIO
[Stefan, Russo, Mitchell, Mazieres 11]

● It is a monad that provides:
● Information-flow control dynamically

– It is know that dynamic method are more permissive
[Sabelfeld, Russo 09] but equally secure as traditional static
ones

● Some for of discretionary access control

– It helps to deal with covert channels
– Information-flow control is not perfect!

● It is implemented as a library in Haskell

● It has recently accepted for the Haskell Symposium
2011, Tokyo, Japan.

Secure Programming via Libraries 5

SecIO vs LIO

● They share the concepts about how to use monads in order to
provide information-flow security

● SecIO provides information-flow security statically, while LIO
does it dynamically

● LIO is more permissive than SecIO

● SecIO is simpler than LIO

● LIO provides information-flow control and a form of discretionary
access control, while SecIO only provides the former

● SecIO provides an specific monad for pure values (Sec), while
LIO does not

● LIO can still manipulate pure values

Secure Programming via Libraries 6

Tracking information-flow dynamically

● LIO can perform side-effects or just compute with pure
values

● LIO takes ideas from the operating systems into
language-based security

● LIO protects every value in lexical scope by a single, and
mutable, current label

● Part of the state of the LIO monad

● It implements a notion of floating label for the current label
● The current label “floats” above the label of the data

observed so far

Secure Programming via Libraries 7

Floating Current Label

program
 = do xs <- code1
 ys <- code2
 let z = [(e1,e2)| e1 <- xs, e2 <- ys]
 return z

Program written
using LIO There is a current label

at any point of the computation

lbl

We assume that
it is initially low

It is low

It is high

Secure Programming via Libraries 8

Floating Current Label

program
 = do xs <- code1
 ys <- code2
 let z = [(e1,e2)| e1 <- xs, e2 <- ys]
 return z

Program written
using LIO There is a current label

at any point of the computation

lbl

It continues low

It is low

It is high

xs

 ys

After this line, no public
data can be affected

(no write-down)

program' =
 do result <- program

It cannot write
to public data

Secure Programming via Libraries 9

Discretionary Access Control

● LIO also provides a form of discretionary access
control

● LIO has a notion of current clearance

● Part of the state of LIO

● It imposes an upper bound in the current floating-label

● Therefore, it restricts data access and manipulation
● One manner to deal with covert channels (time, energy

consumption, etc)
● One manner to assure that some confidential data is not

copied to be accessed in the future

Secure Programming via Libraries 10

Clearance

program
 = do xs <- code1
 ys <- code2
 let z = [(e1,e2)| e1 <- xs, e2 <- ys]
 return z

Program written
using LIO There is a current clearance

at any point of the computation

lbl

It is low, i.e.
the piece of code

cannot access
secret data

It is low

It is high

xs

 ys

clr The label must float
above the level ys,

but clr does not allowed

The program finishes its
execution here!

Secure Programming via Libraries 11

Architecture

● Similar to the one for SecIO

● We have trustworthy and untrustworthy modules

● Depending on the type of the module, we import
different modules from the library LIO

Untrustworthy moduleTrustworthy module

Trustworthy module
It requests some service from

the untrusted module and
provides the data for that

It export some services
that required security

policies

Secure Programming via Libraries 12

API: label and unlabel

● Given a label l (between the current label and the clearance)
and a value of type a, it returns a value protected by l

● In other words, it assigns the security level described by l to the
value of type a

label :: (Label l) => l -> a -> LIO l s (Labeled l a)

We ignore this parameter

public :: LIO DCLabel () (Labeled DCLabel String)
public = label lbot "PublicData"

secret :: LIO DCLabel () (Labeled DCLabel String)
secret = label ltop "SecretData"

bob :: LIO DCLabel () (Labeled DCLabel String)
bob = label (newDC ("Alice" .\/. "Bob") "Bob") "BobData"

lbot is bottom in DCLabels

ltop is top in DCLabels

Using DCLabels!

It does not modify the current label and clearance!

Secure Programming via Libraries 13

API: label and unlabel

● Given a labeled value of type a with security level l, it returns
the value of type a and raises the current label (clearance
permitting) to the join of the current label (lbl) and l

● Observe that after executing unlabel, the value of type a can
be involved in computations and therefore the current label
should float about it!

unlabel :: (Label l) => Labeled l a -> LIO l s a

We ignore this parameter

computation = do l_sec_str <- secret
 sec_str <- unlabel l_sec_str
 return sec_str ++ sec_str

:: Labeled DCLabel String
We cannot compute with the string!

lbl

clr

We want to
compute with the

string

sec_str

Secure Programming via Libraries 14

Example (trustworthy code)

module ExampleUnLabelT where

import DCLabel.PrettyShow
import LIO.DCLabel
import LIO.TCB

import ExampleUnLabelU (computation)

public :: LIO DCLabel () (Labeled DCLabel String)
public = label lbot "PublicData"

secret :: LIO DCLabel () (Labeled DCLabel String)
secret = label ltop "SecretData"

execute = do (result, label) <- evalLIO (computation public secret) ()
 putStrLn $ "The result is: " ++ result
 putStrLn $ "With the label: " ++ prettyShow label

Only to be imported
by trustworthy code!

It imports the service
from the untrustworthy

code

It provides some data
to the service and

executes it!

Secure Programming via Libraries 15

Example (untrustworthy code)

module ExampleUnLabelU where

import LIO.DCLabel
import LIO.LIO

computation p s = do l_public_string <- p
 l _secret_string <- s
 public _string <- unlabel l_public_string
 secret _string <- unlabel l_secret_string
 return $ public_string ++ secret_string

To be imported by
untrustworthy code!

After this point, any
subsequent computation
cannot write to public files

Secure Programming via Libraries 16

API: toLabeled

● This primitive avoids creeping of the current label

● Otherwise, after we read a secret, we cannot do any
other computation that involves writing to public data

● It is similar to the primitive plug (from SecIO)

● Given a label l (between the current label and the
clearance) , and a computation m, it executes m and
returns its result in a value protected by Labeled
without raising the current label

● Computation m cannot read data about level l

toLabeled :: (Label l) => l -> LIO l s a -> LIO l s (Labeled l a)

We ignore this parameter

Secure Programming via Libraries 17

Example (trustworthy code)

module ExampleToLabeledT where

import DCLabel.PrettyShow
import LIO.DCLabel
import LIO.TCB

import ExampleToLabeledU (computation')

public :: LIO DCLabel () (Labeled DCLabel String)
public = label lbot "PublicData"

secret :: LIO DCLabel () (Labeled DCLabel String)
secret = label ltop "SecretData"

execute = do (result, label) <- evalLIO (computation' public secret) ()
 putStrLn $ "The result is: " ++ show result
 putStrLn $ "With the label: " ++ prettyShow label

The same as before
but using a service

provided by computation'

Remember that
this executes label

Secure Programming via Libraries 18

Example (untrustworthy code)

module ExampleToLabeledU where

import LIO.DCLabel
import LIO.LIO

computation p s = do l_public_string <- p
 l_secret_string <- s
 public_string <- unlabel l_public_string
 secret_string <- unlabel l_secret_string
 return $ public_string ++ secret_string

computation' p s = do _ <- computation p s
 l_public_string <- p
 public_string <- unlabel l_public_string
 return public_string

lbl

clr

At this point, computatoin p
wants to create a Labeled value

with label lbot.However,
it cannot do it due to

the current label

Secure Programming via Libraries 19

Example (untrustworthy code)

module ExampleToLabeledU where

import LIO.DCLabel
import LIO.LIO

computation p s = do l_public_string <- p
 l_secret_string <- s
 public_string <- unlabel l_public_string
 secret_string <- unlabel l_secret_string
 return $ public_string ++ secret_string

computation' p s = do _ <- toLabeled ltop (computation p s)
 l_public_string <- p
 public_string <- unlabel l_public_string
 return public_string

lbl

clr

It is not raised when
executing toLabeled

The current label is
raised when computing
computation as before

Secure Programming via Libraries 20

API: labelOf

● It just returns the label of a Labeled value

● The labels are public information in the sense that they
can be examined any time

labelOf :: (Label l) => Labeled l a -> l

Secure Programming via Libraries 21

Example (trustworthy code)

import DCLabel.PrettyShow
import LIO.DCLabel
import LIO.TCB

import ExampleLabelOfU (computation)

public :: LIO DCLabel () (Labeled DCLabel String)
public = label lbot "PublicData"

secret :: LIO DCLabel () (Labeled DCLabel String)
secret = label ltop "SecretData"

execute = do (result, label) <- evalLIO (computation secret) ()
 putStrLn $ "The result is: " ++ show result
 putStrLn $ "With the label: " ++ prettyShow label

It will return
0 if the argument
receive is secret
and 1 otherwise

It will return
0 if the argument
receive is secret
and 1 otherwise

Secure Programming via Libraries 22

Example (untrustworthy code)

module ExampleLabelOfU where

import LIO.DCLabel
import LIO.LIO

computation c = do labeled <- c
 l <- return $ labelOf labeled
 if l == lbot then return 1
 else return 0

Secure Programming via Libraries 23

API: References

● Given a label l (between the current label and the
clearance) , it creates a reference to a value of type a
protected by l

newLIORef :: (Label l) => l -> a -> LIO l s (LIORef l a)

We ignore this parameter

readLIORef :: (Label l) => LIORef l a -> LIO l s a

● It reads the content of the reference and, similar to
unlabeled, raises the current label (clearance
permitting) to the join of the current label (lbl) and l

Secure Programming via Libraries 24

API: References

● It writes a value of type a into a given reference as
long as, similar to label, the label of the reference is
between the current label and the clearance.

writeLIORef :: (Label l) => LIORef l a -> a -> LIO l s ()

We ignore this parameter

Secure Programming via Libraries 25

Example (trustworthy code)

module ExampleRefsT where

import LIO.LIORef
import DCLabel.PrettyShow
import LIO.DCLabel
import LIO.TCB

import ExampleRefsU (computation)

public :: LIO DCLabel () (LIORef DCLabel String)
public = newLIORef lbot "PublicData"

secret :: LIO DCLabel () (LIORef DCLabel String)
secret = newLIORef ltop "SecretData"

execute = do (result, label) <- evalLIO (computation public secret) ()
 putStrLn $ "The result is: " ++ show result
 putStrLn $ "With the label: " ++ prettyShow label

It is almost the same code as
module ExampleToLabeledT

References

We use references
instead of Labeled

values

Secure Programming via Libraries 26

Example (untrustworthy code)

module ExampleRefsU where

import LIO.LIORef
import LIO.DCLabel
import LIO.LIO

computation p s = do ref_l <- p
 ref_s <- s
 s <- readLIORef ref_s
 writeLIORef ref_l s
 return ()

It reads the content,
then the current

label is set to ltop

It fails to perform
the writing!

Secure Programming via Libraries 27

Final Remarks

● We present a library for dynamically tracking information-flow
● More permissive than previous static approaches
● It also provides some form of discretionary access control

● Covert channels
● Simple to use and parametric on the label system being used

● You can use DCLabels!
● As SecIO, the correcness of the library relies on type safety
and module abstraction

● SafeHaskell is coming for GHC 7.2

Soundness of LIO

Secure Multi-Execution in Haskell

Secure Programming via
Libraries

Escuela de Ciencias Informáticas (ECI) 2011
UBA, Buenos Aires, Argentina

Soundness of LIO

Alejandro Russo (russo@chalmers.se)

Secure Programming via Libraries - ECI 2011 2

Soudness for LIO
[Stefan, Russo, Mitchell, Mazieres 11]

● Formalizes the non-interference guarantee
provided by LIO

● For the proof, we consider a core and simple and
functional language
● Why not full Haskell?
● λ-calculus extended with boolean values, pairs,

recursion, monadic operations, references
● We formally prove that the concept of monads

works to guarantee non-interference

Secure Programming via Libraries - ECI 2011 3

Proof Technique

● Similar technique as the one used by Li and
Zdancewic [Li, Zdancewic 10]

● Programs are expressions
● Main idea is simple:

● If a program, that involves secret and
public information, computes a public
result, then the same public result can be
obtained by a program that consists on
the original one where the secret data
has been erased!

Secure Programming via Libraries - ECI 2011 5

The Language

Secure Programming via Libraries - ECI 2011 8

Secure Programming via Libraries - ECI 2011 9

The Semantics

Secure Programming via Libraries - ECI 2011 10

Operational Semantics

● It describes how a valid program is interpreted as a
sequence of computational steps [Winskel]

● We describe the steps via evaluation contexts

● Evaluation contexts
● An evaluation contexts is just a term with a “hole”
● is the substitution of into the hole
● Intuitively, if a term is being evaluated where

– is the context
– is the part of the term being evaluated

Secure Programming via Libraries - ECI 2011 11

Evaluation Example

Reduction
rules

Expression to
evaluate

Expressed in terms of
evaluation contexts

Reduction step

Secure Programming via Libraries - ECI 2011 12

Operational Semantics for LIO

● LIO computations have state
● Current label, clearance, and an store for references

Reduction step

State of the
LIO computation

Current label Current clearance Store

Secure Programming via Libraries - ECI 2011 13

Operational Semantics for LIO

It evaluates to the
internal representation

It respects the current
label and clearance

● The security checks are done in the semantics
● Dynamic approach

If the security checks are not fulfilled,
the execution gets “stuck”.

In practice, it could be an uncaught
exception, etc.

Secure Programming via Libraries - ECI 2011 14

Operational Semantics for LIO

It extracts the value e and
returns itA Labeled value which

contents is e

It sets a new current label

It is the join of the current label
and the label that protects e

Clearance is respected

Secure Programming via Libraries - ECI 2011 15

Operational Semantics for LIO

It executes the LIO computation e

The label of the result is among
the current label and clearance

The label of the result of computing e

The current label after executing e
should be below l

Observe that this state has
(only) the same current label and
clearance values as when starting

executing e

Secure Programming via Libraries - ECI 2011 16

Operational Semantics for LIO

It returns a memory location

The allocated memory location
is “new”

The store in the state gets
modified

Secure Programming via Libraries - ECI 2011 17

Operational Semantics for LIO

● You have seen a few rules

● Check the paper for the rest of them
[Stefan, Russo, Mitchell, Mazieres 11]

● You should be able to understand them after the
lecture

Secure Programming via Libraries - ECI 2011 18

The Types

Secure Programming via Libraries - ECI 2011 20

Typing rules

● They indicate how to perform type-checking
● Rules are usually syntax-directed rules

● An expression type-checks if we can construct a type
derivation (application of the typing rules)

Type system
(very simple)

What is the
type?

Here you have the
type derivation!

Secure Programming via Libraries - ECI 2011 21

Interesting typing rules

Special syntax node:
it represents term erasure

Special syntax node: internal
representation LIO computations

Special syntax node: internal
representation of Labeled values

● The rest of the typing rules are just like the ones
implemented in Haskell

Secure Programming via Libraries - ECI 2011 22

So far

● We have seen
● The language
● Semantics
● Types

● What is coming now?
● Combine all of them (and some other techniques) in

order to prove non-interference in programs written
using LIO

Secure Programming via Libraries - ECI 2011 23

Soundness

Secure Programming via Libraries - ECI 2011 25

The Erasure Function

● Function
● It is responsible for performing term erasure
● It is often applied homomorphically

● Intuitively, the function removes values and
expressions that are not below

● is the attacker level

Secure Programming via Libraries - ECI 2011 26

The Erasure Function

It removes labeled
values where the

label Is not below L

Idempotent

It propagates the
application of the

erasure function to
the labeled values

stored by references

Erasure in
configurations

(technical reasons)

Secure Programming via Libraries - ECI 2011 28

A new evaluation relationship

● Expressions under this evaluation relationship are
evaluated as before

● It guarantees that confidential data (above L) is erased
as soon as it is created

Secure Programming via Libraries - ECI 2011 29

Simulation

● This is the main idea behind the proof

Secure Programming via Libraries - ECI 2011 30

Preliminaries

● In order to prove the simulation, it is necessary to
show several auxiliary results
● You can read it from the paper

● The proof consists on establishing the simulation in
two phases
● For expressions that do not execute any toLabeled

● For expressions that execute n-toLabeled

● Why is that?
● The semantics for toLabeled uses big-step semantics

Secure Programming via Libraries - ECI 2011 31

Establishing the simulation

Subject reductoin

Subject reductoin

Secure Programming via Libraries - ECI 2011 32

Establishing the simulation

● The proof going on case analysis on the expression
being evaluated
● Recall that evaluation is performed using evaluation

contexts

Secure Programming via Libraries - ECI 2011 33

Establishing the simulation

It applies the definition
in a left-to-right manner

It just applies
the definition

Idempotent
erasure function

It applies the
definition in a

right-to-left manner

Secure Programming via Libraries - ECI 2011 34

Establishing the simulation

It applies the definition
in a left-to-right manner

It just applies
the definition

Idempotent
erasure function

It applies the
definition in a

right-to-left manner

Secure Programming via Libraries - ECI 2011 35

Establishing the simulation

● The proof is on induction on

● The base case is Lemma 1

Secure Programming via Libraries - ECI 2011 36

Establishing the simulation

● The proof is on induction on the number of
toLabeled being executed

● Base case is Lemma 2

● For the inductive case, we rewrite the big-step
semantics into no toLabeled  k toLabeled

 k toLabeled

Secure Programming via Libraries - ECI 2011 37

Non-interference

● Having the simulation established

● We proceed with a formulation of the theorem that
proves non-interference

● The formulation is “standard”

● It requires a notion of low-equivalence

● It captures the observational power of the attacker

● If we run the program twice but with the same public
input, the same public output must be observed

Secure Programming via Libraries - ECI 2011 38

Low-equivalence

The public
data is the same

The public
output is the same

Secure Programming via Libraries - ECI 2011 39

Low-equivalence

● We considered labeled values as the input and output
of programs

● Intuitively, two expressions are low-equivalent if the
are equal, modulo labeled values whose labels are
above L

If the label is not below L, then
the content of labeled values it is

not important

Secure Programming via Libraries - ECI 2011 40

Low-equivalence

● We define low-equivalence between stores as well

● Intuitively, two stores are low-equivalent if the stored
labeled values below L are the same

Both stores contains the
same public labeled values

The public labeled values
are low-equivalent

Secure Programming via Libraries - ECI 2011 41

Low-equivalence

● We now define low-equivalence for configurations
● It essentially means to have low-equivalence in the

store and the expression to be evaluated when the
current label is below L

Secure Programming via Libraries - ECI 2011 42

Non-interference

Secure Programming via Libraries - ECI 2011 44

Proof Sketch

● We will use our simulation

● We asumme (you can prove it) that

Secure Programming via Libraries - ECI 2011 45

Proof Sketch II

● By our simulation, we know that
By the simulation

Secure Programming via Libraries - ECI 2011 46

Proof Sketch III

● We expand it

● A little bit more

Erase function
goes inside the
configuration

Secure Programming via Libraries - ECI 2011 47

Proof Sketch IV

● We know that is deterministic

● Then,

● Which means,

These are the same
configurations

By equality and
definition of

erasure function

By definition of
erasure function

Remember
what we

assume in the
begining

Secure Programming via Libraries - ECI 2011 49

Proof Sketch VI

● Now, we have that

● We still need to prove

● From the simulation, we had

● Which implies that

Secure Programming via Libraries - ECI 2011 50

Proof Sketch VII

● So, having

● We can prove

● by just case analysis if and applying the
definition of low-equivalence for configurations

Secure Programming via Libraries - ECI 2011 51

Final Remarks

● We formalize the ideas behind LIO
● Language: simple call-by-name lambda-calculus

● Semantics
● Security checks

● Types (not very interesting)

● Simulation

● Low-equivalence

● Non-interference theorem

Secure Programming via
Libraries

Escuela de Ciencias Informáticas (ECI) 2011
UBA, Buenos Aires, Argentina

Secure Multi-Execution in Haskell
Alejandro Russo (russo@chalmers.se)

Secure Programming via Libraries - ECI 2011 2

Enforcement for non-interference

●It is usually given as
●Type-system
 [Volpano Smith Irnive 96]

●Monitor
[Volpano 99][Le Guernic et al. 06]

●Monitors are more permissive than
traditional type-systems
[Sabelfeld, Russo 09]

●Inspection of the code is necessary

Secure Programming via Libraries - ECI 2011 4

Secure Multi-Execution
[Devriese, Piessens 10]

● Execute the program once for each security level.

● Outputs are only produced in the execution linked to their
security level

● Inputs are replaced by default inputs in executions linked to
security levels lower than the security level of the input

● The high execution reuses inputs obtained in the low execution

Secure Programming via Libraries - ECI 2011 5

Guarantees?

● Executed program satisfies non-interference
● No explicit and implicit flows

● The secure multi-execution produces the same results

● Otherwise, the semantics changes to preserve security

Secure Programming via Libraries - ECI 2011 8

Monad ME

● It models the IO operations in a pure manner
[Swierstra,Altenkirch 06]

data ME a = Return a
 | Write FilePath String (ME a)
 | Read FilePath (String -> ME a)

writeFile :: FilePath -> String -> ME ()
writeFile file s = Write file s (return ())

readFile :: FilePath -> ME String
readFile file = Read file return

Interpreter for ME
run :: Level -> ChanMatrix -> ME a -> IO a
run l _ (Return a) = return a
run l c (Write file o t)
 | level file == l = do IO.writeFile file o
 run l c t
 | otherwise = run l c t
run l c (Read file f)
 | level file == l = do x <- IO.readFile file
 broadcast c l file x
 run l c (f x)
 | sless (level file) l = do x <- reuseInput c l file
 run l c (f x)
 | otherwise = run l c (f (defvalue file))

defvalue :: FilePath -> String

Secure Programming via Libraries - ECI 2011 12

Example Scenario

● The financial company wants to preserve the
confidentiality of their clients
● Amount of every loan is secret

● The cost of credit is public information
● It can be used for statistics

● Implement a calculator that computes the
interested obtained as well as the costs of
credit
● Be sure that confidentiality is preserved

Secure Programming via Libraries - ECI 2011 13

Security Policy

level :: FilePath -> Level
level "Client" = H
level "Client-Terms" = L
level "Client-Interest" = H
level "Client-Statistics" = L
level file = error $ "File " ++ file ++
 " has no security level"

defvalue :: FilePath -> String
defvalue "Client" = "0 % 1"
defvalue "Client-Interest" = "0 % 1"
defvalue f = error "No default value for " ++ f

Secure Programming via Libraries - ECI 2011 14

Example: Code
data CreditTerms = CT { discount :: Rational,
 ddays :: Rational,
 net :: Rational }
 deriving Read

calculator :: ME ()
calculator =
 do loanStr <- readFile "Client"
 termsStr <- readFile "Client-Terms"
 let loan = read loanStr
 terms = read termsStr
 interest = loan - loan * (1 - discount terms / 100)
 disct = discount terms / (100 - discount terms)
 ccost = disct * 360/(net terms - ddays terms)
 writeFile "Client-Interest" (show interest)
 writeFile "Client-Statistics" (show ccost)

● It looks like if it was implemented using IO

● However, it uses the monad ME

● Does it work?

Secure Programming via Libraries - ECI 2011 15

Example: Malicious Code
data CreditTerms = CT { discount :: Rational,
 ddays :: Rational,
 net :: Rational }
 deriving Read

calculator :: ME ()
calculator =
 do loanStr <- readFile "Client"
 termsStr <- readFile "Client-Terms"
 let loan = read loanStr
 terms = read termsStr
 interest = loan - loan * (1 - discount terms / 100)
 disct = discount terms / (100 - discount terms)
 ccost = disct * 360/(net terms - ddays terms)
 writeFile "Client-Interest" (show interest)
 writeFile "Client-Statistics" (show loan)

● Secure Multi-Execution avoids the leak!

● Does it work?

Secure Programming via Libraries - ECI 2011 16

Future Work

● Take Secure Multi-Execution in Haskell to a library
● Easy map different IO actions into monad ME
● Not only IO actions related to file operations

– References
– Sockets
– Etc

● Declassification
● Challenging subject
● Difficult to enforce without braking the black-box

approach
● Open question

Secure Programming via Libraries - ECI 2011 17

Final Remarks

● The first approach to consider secure multi-
execution in Functional Programming

● Core part of Secure Multi-Execution
(interpreter) fits in one slide

● Implementation is available on request
● Approximately 130 lines of code

● Challenges
● Secure Multi-Execution as a library
● Declassification

