
Secure Programming via Libraries

Alejandro Russo
(russo@chalmers.se)

Department of Computer Science and Engineering
Chalmers University of Technology and Göteborg University

SE-412 96 Göteborg
Sweden

Göteborg, 2011

Introduction to Haskell

Introduction to information-flow security

Introduction to Sec

Secure Programming via
Libraries

Escuela de Ciencias Informáticas (ECI) 2011
UBA, Buenos Aires, Argentina

Introduction
Alejandro Russo (russo@chalmers.se)

Secure Programming via Libraries - ECI 2011 2

This Course: What is it?

● Programming language technology
● Type-systems ()
● Monitoring

● Theory and practice
● Haskell
● Python

● Focus on providing security via a library
● Based on recent research results

void main () { return ; }

Secure Programming via Libraries - ECI 2011 3

This Course: Learning Outcomes

● Security policies
● Intended behavior of secure systems

● Identify programming languages concepts useful
to provide security via libraries

● Practical experience with Haskell and Python
● Identify the scope of certain security libraries and

programming language abstractions or concepts
● Some experience on formalization of security

mechanisms
● To prove that they do what they claim!

Secure Programming via Libraries - ECI 2011 4

Organization

● Web page of the course
● http://www.cse.chalmers.se/~russo/eci2011/

● Discussion email list
● http://groups.google.com/group/eci-2011-security?hl=es
● eci-2011-security@googlegroups.com

● 5 Lectures (3hs, 20-25 minutes break)
● Exercises

● Exam in the end of the course
● Describe how is going to be

Secure Programming via Libraries - ECI 2011 5

Secure Programming via
Libraries

Escuela de Ciencias Informáticas (ECI) 2011
UBA, Buenos Aires, Argentina

Overview Haskell
Alejandro Russo (russo@chalmers.se)

Secure Programming via Libraries - ECI 2011 6

Haskell in a Nutshell

● Purely functional language
● Functions are first-class citizens!
● Referential transparency

● Lazy evaluation
– Expressions are evaluated at most once

● Advance type system

int plusone(int x) {return x+1;}

int plusone(int x) {calls++ ;
return x+1;}

Secure Programming via Libraries - ECI 2011 7

Haskell Overview

● Definition of functions

● Hindley-Milner Polymorphism

● Built-in lists

plusone :: Int -> Int
plusone x = x + 1

first :: forall a b. (a,b) -> a
first (x,_) = x

lst1 = [1,2,3,4] lst3 = lst1 ++ lst2
lst2 = 5 : []

Secure Programming via Libraries - ECI 2011 8

Haskell Overview

● User-defined data types

data Nationality = Argentinian | Swedish

f :: Nationality -> String
f Argentinian = "Asado"
f Swedish = "Surströmming"

data Tree a = Leaf | Node a (Tree a) (Tree a)

nodes :: Tree a -> [a]
nodes Leaf = []
nodes (Node a t1 t2) = a : (nodes t1 ++ nodes t2)

Secure Programming via Libraries - ECI 2011 9

Haskell Overview

● Type classes

● What is the type for the function?

● Type classes

bcmp x y = x == y

bcmp :: forall a. (Eq a) => a -> a -> Bool

bcmp :: forall a. a -> a -> Bool

class Eq a where
 (==) :: a -> a -> Bool
 (/=) :: a -> a -> Bool

instance Eq Int where ...
instance Eq Float where ...
instance Eq a => Eq [a] where

Secure Programming via Libraries - ECI 2011 10

Haskell Overview

● Input and Output (IO)

● If computations produce side-effects (IO) is reflected
in the types!
● Distinctive feature of Haskell.
● Very useful for security!

hello :: IO ()
hello = do putStrLn "Hello! What is your name?"
 name <- getLine
 putStrLn $ "Hi, " ++ name ++ "!"

Secure Programming via Libraries - ECI 2011 11

Monads in Haskell

● What is a monad? (Explanation for the masses)
● ADT denoting a computation that produces a value.

– We call values of this special type monadic values or
monadic computations

● Two operations to build complex computations from
simple ones
– return creates monadic computations from simple values

like integers, characters, float, etc.
– bind takes to monadic computations and sequentialize

them. The result of the first computation can be used in the
second one.

● Examples: IO

Secure Programming via Libraries - ECI 2011 12

Monads in Haskell

● Bind
getLine :: IO String putStrLn :: String -> IO ()

c :: IO ()
c = do name <- getLine
 putStrLn $ "Hi, " ++ name ++ "!"

hello :: IO ()
hello = do putStrLn "Hello! What is your name?"
 name <- getLine
 putStrLn $ "Hi, " ++ name ++ "!"

Secure Programming via Libraries - ECI 2011 13

Monads in Haskell

● return

return :: a -> IO a
return 42 :: IO Int

nextPrime :: Int -> Int
nextPrime =

prim :: IO (Int,Int)
prim = do number <- getLine
 let n = toInt number
 return (n, nextPrime n)

Secure Programming via Libraries - ECI 2011 14

Exercise

● Write programs that do the following

*Overview> quiz1
What day were you born?
28
Not interesting.
*Overview>

*Overview> quiz1
What day were you born?
11
It is a prime number!
*Overview>

quiz1 :: IO ()
quiz1 = do putStrLn "What day were you born?"
 (n, np) <- prim
 if n == np
 then putStrLn $ "It is a prime number!"
 else putStrLn $ "Not interesting."

Secure Programming via Libraries - ECI 2011 15

Why Monads?

● Monads represent computations.
● Different kind of monads represent different

kind of computations
● IO monad represents computation with

inputs and outputs
● In this course, we will define a monad to

represent secure computations
● Computations where security is preserved

Secure Programming via Libraries - ECI 2011 16

Secure Programming via
Libraries

Escuela de Ciencias Informáticas (ECI) 2011
UBA, Buenos Aires, Argentina

Information-Flow Security
Alejandro Russo (russo@chalmers.se)

Secure Programming via Libraries - ECI 2011 17

Introduction

● Computer systems usually send,
receive, and store confidential
information

● Computer networks provides benefits
but exposes systems to attacks
(malicious code)

● We want to preserve confidentiality
● End-to-end security policy

Secure Programming via Libraries - ECI 2011 18

End-to-end Security Policies

● Security policies (intended behavior)
that speaks about end-points of the
system

● End-points?
● Inputs and outputs!

● Confidentiality?

Secure Programming via Libraries - ECI 2011 19

Language-based Security
[Kozen 99]

● How to to guarantee and end-to-end
security requirements as confidentiality?

● Language-based security technology
inspects the code of applications to
guarantee security policies.
● Fusion of programming languages

technology and computer security
● Information-flow security

Secure Programming via Libraries - ECI 2011 20

Language-based Information-Flow Security
[Sabelfeld, Myers 03]

● Programming languages techniques to track how data flows
inside programs
● Preserve confidentiality
● Preserve some integrity of data

– Corrupt data does not influence security critical operation

● It can be performed
● Statically

– Type-system [Volpano Smith Irnive 96]
● Dynamically

– Monitor [Volpano 99] [Le Guernic et al. 06]
● Hybrid [Le Guernic et al. 06] [Russo, Sabelfeld 10]

● Comparison between static and dynamic techniques
[Sabelfeld, Russo 09]

Secure Programming via Libraries - ECI 2011 23

Types of Illegal Flows
[Denning, Denning 77]

● Explicit flows

● Implicit flows

l := h

if h>0
 then l:=1
 else l:=2

Secure Programming via Libraries - ECI 2011 24

Covert Channels

● Besides explicit and implicit flows, programs can leak information by
other means

● Not originally designed for that purpose

● It depends on the attacker observational power

● Energy consumption (e.g. Smartcards [Messerges et al])

● External timing

● Arbitrarily precise stopwatch [Agat 00]
● Cache attacks [Jackson et al 06]
● Termination [Askarov et al 08]

● Internal timing

● No precise stopwatch, but rather affecting the behavior of threads
depending on the secret [Russo 08]

Secure Programming via Libraries - ECI 2011 26

Declassification
[Sabelfeld, Sands 07]

● Useful system intentionally release information as
part of its behavior
● Password checker (pwd == input)

● Dimensions and principles of declassification
● What information can be leak?
● When can information be leaked?
● Where in the program is safe to leak information?
● Who can leak information?

● How to be certain that our programs
leak what they are supposed to leak?

Secure Programming via Libraries - ECI 2011 29

Web Security and Information-flow
[OWASP 10]

● Ten most frequent attacks
● A1 – Injection (SQL, OS, etc)

– Information-flow
● A2 – Cross Site Scripting (XSS)

– Information-flow
● A3 – Broken Authentication and Session Management

– Information-flow helps here as well
● A4 – Insecure Direct Object References

– Information-flow
●

● Very hot area at the moment for doing research

Secure Programming via Libraries - ECI 2011 30

Static vs. Dynamic Enforcement for
Information-flow

● Security policy: secrets must no be leaked!

● Termination insensitive non-interference
● Some purely dynamic mechanisms are as secure as

traditional type-systems [Sabelfeld, Russo 09]

● Should we go dynamic or static?

● Several arguments are possible to argue against
[Le Guernic et al, 06] [Shroff et al, 07] [Vogt et al, 07]

● In favor of dynamic monitors

– Permissiveness
– Dynamic code evaluation (eval in JavaScript)

● Web applications permissiveness is very important !

Secure Programming via Libraries - ECI 2011 31

Flow-sensitive and Flow-insensitive Enforcement
for Non-interference [Hunt, Sands 06]

● Traditional enforcements

● Avoid illegal explicit and implicit flows

● Fix sources of secret and public
inputs and outputs

● Flow-insensitive (FI)

● Each variable has a fix security
level during the execution of the program

● Flow-sensitive (FS)

● Variables can change their security level
during execution according to the data
stored at a given time

● More convenient for programmers!

● A program accepted by traditional
FS type-system is also accepted by
traditional FI type-system (rewriting)

v1 v2 v3 ... v40 v50 v60 …

v1 v2 v3 ... v40 v50 v60 …

v1 := h ;
v2 := v1+l ;
v1 := l ;
h := v1 + v2 ;

Secure Programming via Libraries - ECI 2011 32

● Hunt and Sands compare two static enforcements

● FI and FS type-systems

● Flow-insensitive

● FI monitor is as secure as
traditional FI type-sytems

● Monitor accepts more
programs

● Flow-sensitive

● No possible to obtain a sound and more permissive purely dynamic
monitor (than a FS type-system)

● To recover the picture above for FS, static analysis is needed!
● Is it desired to recover the picture above? [Austin, Flanagan 09]

– Open question

Flow-sensitive and Flow-insensitive Enforcement for
Non-interference [Sabelfeld, Russo 09] [Russo, Sabelfeld 10]

 FI type-systems

FI purely dynamic monitors

Secure programs

Secure Programming via Libraries - ECI 2011 33

Information-flow Security
● Active research area

● No more only motivated by military applications

● Web security and information-flow is a hot topic!
● Companies are showing interests on this technology

● During the 70's dynamic techniques were pioneers
● Operating system security

● During the 90's static techniques were dominant
● Language-based security

● During 00's, dynamic techniques are back!
● We can see combination of both

● Exiting times to do research on the area!

Secure Programming via
Libraries

Escuela de Ciencias Informáticas (ECI) 2011
UBA, Buenos Aires, Argentina

Introduction
Alejandro Russo (russo@chalmers.se)

Secure Programming via Libraries - ECI 2011 2

This Course: What is it?

● Programming language technology
● Type-systems ()
● Monitoring

● Theory and practice
● Haskell
● Python

● Focus on providing security via a library
● Based on recent research results

void main () { return ; }

Secure Programming via Libraries - ECI 2011 3

This Course: Learning Outcomes

● Security policies
● Intended behavior of secure systems

● Identify programming languages concepts useful
to provide security via libraries

● Practical experience with Haskell and Python
● Identify the scope of certain security libraries and

programming language abstractions or concepts
● Some experience on formalization of security

mechanisms
● To prove that they do what they claim!

Secure Programming via Libraries - ECI 2011 4

Organization

● Web page of the course
● http://www.cse.chalmers.se/~russo/eci2011/

● Discussion email list
● http://groups.google.com/group/eci-2011-security?hl=es
● eci-2011-security@googlegroups.com

● 5 Lectures (3hs, 20-25 minutes break)
● Exercises

● Exam in the end of the course
● Describe how is going to be

Secure Programming via Libraries - ECI 2011 5

Secure Programming via
Libraries

Escuela de Ciencias Informáticas (ECI) 2011
UBA, Buenos Aires, Argentina

Overview Haskell
Alejandro Russo (russo@chalmers.se)

Secure Programming via Libraries - ECI 2011 6

Haskell in a Nutshell

● Purely functional language
● Functions are first-class citizens!
● Referential transparency

● Lazy evaluation
– Expressions are evaluated at most once

● Advance type system

int plusone(int x) {return x+1;}

int plusone(int x) {calls++ ;
return x+1;}

Secure Programming via Libraries - ECI 2011 7

Haskell Overview

● Definition of functions

● Hindley-Milner Polymorphism

● Built-in lists

plusone :: Int -> Int
plusone x = x + 1

first :: forall a b. (a,b) -> a
first (x,_) = x

lst1 = [1,2,3,4] lst3 = lst1 ++ lst2
lst2 = 5 : []

Secure Programming via Libraries - ECI 2011 8

Haskell Overview

● User-defined data types

data Nationality = Argentinian | Swedish

f :: Nationality -> String
f Argentinian = "Asado"
f Swedish = "Surströmming"

data Tree a = Leaf | Node a (Tree a) (Tree a)

nodes :: Tree a -> [a]
nodes Leaf = []
nodes (Node a t1 t2) = a : (nodes t1 ++ nodes t2)

Secure Programming via Libraries - ECI 2011 9

Haskell Overview

● Type classes

● What is the type for the function?

● Type classes

bcmp x y = x == y

bcmp :: forall a. (Eq a) => a -> a -> Bool

bcmp :: forall a. a -> a -> Bool

class Eq a where
 (==) :: a -> a -> Bool
 (/=) :: a -> a -> Bool

instance Eq Int where ...
instance Eq Float where ...
instance Eq a => Eq [a] where

Secure Programming via Libraries - ECI 2011 10

Haskell Overview

● Input and Output (IO)

● If computations produce side-effects (IO) is reflected
in the types!
● Distinctive feature of Haskell.
● Very useful for security!

hello :: IO ()
hello = do putStrLn "Hello! What is your name?"
 name <- getLine
 putStrLn $ "Hi, " ++ name ++ "!"

Secure Programming via Libraries - ECI 2011 11

Monads in Haskell

● What is a monad? (Explanation for the masses)
● ADT denoting a computation that produces a value.

– We call values of this special type monadic values or
monadic computations

● Two operations to build complex computations from
simple ones
– return creates monadic computations from simple values

like integers, characters, float, etc.
– bind takes to monadic computations and sequentialize

them. The result of the first computation can be used in the
second one.

● Examples: IO

Secure Programming via Libraries - ECI 2011 12

Monads in Haskell

● Bind
getLine :: IO String putStrLn :: String -> IO ()

c :: IO ()
c = do name <- getLine
 putStrLn $ "Hi, " ++ name ++ "!"

hello :: IO ()
hello = do putStrLn "Hello! What is your name?"
 name <- getLine
 putStrLn $ "Hi, " ++ name ++ "!"

Secure Programming via Libraries - ECI 2011 13

Monads in Haskell

● return

return :: a -> IO a
return 42 :: IO Int

nextPrime :: Int -> Int
nextPrime =

prim :: IO (Int,Int)
prim = do number <- getLine
 let n = toInt number
 return (n, nextPrime n)

Secure Programming via Libraries - ECI 2011 14

Exercise

● Write programs that do the following

*Overview> quiz1
What day were you born?
28
Not interesting.
*Overview>

*Overview> quiz1
What day were you born?
11
It is a prime number!
*Overview>

quiz1 :: IO ()
quiz1 = do putStrLn "What day were you born?"
 (n, np) <- prim
 if n == np
 then putStrLn $ "It is a prime number!"
 else putStrLn $ "Not interesting."

Secure Programming via Libraries - ECI 2011 15

Why Monads?

● Monads represent computations.
● Different kind of monads represent different

kind of computations
● IO monad represents computation with

inputs and outputs
● In this course, we will define a monad to

represent secure computations
● Computations where security is preserved

Secure Programming via Libraries - ECI 2011 16

Secure Programming via
Libraries

Escuela de Ciencias Informáticas (ECI) 2011
UBA, Buenos Aires, Argentina

Information-Flow Security
Alejandro Russo (russo@chalmers.se)

Secure Programming via Libraries - ECI 2011 17

Introduction

● Computer systems usually send,
receive, and store confidential
information

● Computer networks provides benefits
but exposes systems to attacks
(malicious code)

● We want to preserve confidentiality
● End-to-end security policy

Secure Programming via Libraries - ECI 2011 18

End-to-end Security Policies

● Security policies (intended behavior)
that speaks about end-points of the
system

● End-points?
● Inputs and outputs!

● Confidentiality?

Secure Programming via Libraries - ECI 2011 19

Language-based Security
[Kozen 99]

● How to to guarantee and end-to-end
security requirements as confidentiality?

● Language-based security technology
inspects the code of applications to
guarantee security policies.
● Fusion of programming languages

technology and computer security
● Information-flow security

Secure Programming via Libraries - ECI 2011 20

Language-based Information-Flow Security
[Sabelfeld, Myers 03]

● Programming languages techniques to track how data flows
inside programs
● Preserve confidentiality
● Preserve some integrity of data

– Corrupt data does not influence security critical operation

● It can be performed
● Statically

– Type-system [Volpano Smith Irnive 96]
● Dynamically

– Monitor [Volpano 99] [Le Guernic et al. 06]
● Hybrid [Le Guernic et al. 06] [Russo, Sabelfeld 10]

● Comparison between static and dynamic techniques
[Sabelfeld, Russo 09]

Secure Programming via Libraries - ECI 2011 23

Types of Illegal Flows
[Denning, Denning 77]

● Explicit flows

● Implicit flows

l := h

if h>0
 then l:=1
 else l:=2

Secure Programming via Libraries - ECI 2011 24

Covert Channels

● Besides explicit and implicit flows, programs can leak information by
other means

● Not originally designed for that purpose

● It depends on the attacker observational power

● Energy consumption (e.g. Smartcards [Messerges et al])

● External timing

● Arbitrarily precise stopwatch [Agat 00]
● Cache attacks [Jackson et al 06]
● Termination [Askarov et al 08]

● Internal timing

● No precise stopwatch, but rather affecting the behavior of threads
depending on the secret [Russo 08]

Secure Programming via Libraries - ECI 2011 26

Declassification
[Sabelfeld, Sands 07]

● Useful system intentionally release information as
part of its behavior
● Password checker (pwd == input)

● Dimensions and principles of declassification
● What information can be leak?
● When can information be leaked?
● Where in the program is safe to leak information?
● Who can leak information?

● How to be certain that our programs
leak what they are supposed to leak?

Secure Programming via Libraries - ECI 2011 29

Web Security and Information-flow
[OWASP 10]

● Ten most frequent attacks
● A1 – Injection (SQL, OS, etc)

– Information-flow
● A2 – Cross Site Scripting (XSS)

– Information-flow
● A3 – Broken Authentication and Session Management

– Information-flow helps here as well
● A4 – Insecure Direct Object References

– Information-flow
●

● Very hot area at the moment for doing research

Secure Programming via Libraries - ECI 2011 30

Static vs. Dynamic Enforcement for
Information-flow

● Security policy: secrets must no be leaked!

● Termination insensitive non-interference
● Some purely dynamic mechanisms are as secure as

traditional type-systems [Sabelfeld, Russo 09]

● Should we go dynamic or static?

● Several arguments are possible to argue against
[Le Guernic et al, 06] [Shroff et al, 07] [Vogt et al, 07]

● In favor of dynamic monitors

– Permissiveness
– Dynamic code evaluation (eval in JavaScript)

● Web applications permissiveness is very important !

Secure Programming via Libraries - ECI 2011 31

Flow-sensitive and Flow-insensitive Enforcement
for Non-interference [Hunt, Sands 06]

● Traditional enforcements

● Avoid illegal explicit and implicit flows

● Fix sources of secret and public
inputs and outputs

● Flow-insensitive (FI)

● Each variable has a fix security
level during the execution of the program

● Flow-sensitive (FS)

● Variables can change their security level
during execution according to the data
stored at a given time

● More convenient for programmers!

● A program accepted by traditional
FS type-system is also accepted by
traditional FI type-system (rewriting)

v1 v2 v3 ... v40 v50 v60 …

v1 v2 v3 ... v40 v50 v60 …

v1 := h ;
v2 := v1+l ;
v1 := l ;
h := v1 + v2 ;

Secure Programming via Libraries - ECI 2011 32

● Hunt and Sands compare two static enforcements

● FI and FS type-systems

● Flow-insensitive

● FI monitor is as secure as
traditional FI type-sytems

● Monitor accepts more
programs

● Flow-sensitive

● No possible to obtain a sound and more permissive purely dynamic
monitor (than a FS type-system)

● To recover the picture above for FS, static analysis is needed!
● Is it desired to recover the picture above? [Austin, Flanagan 09]

– Open question

Flow-sensitive and Flow-insensitive Enforcement for
Non-interference [Sabelfeld, Russo 09] [Russo, Sabelfeld 10]

 FI type-systems

FI purely dynamic monitors

Secure programs

Secure Programming via Libraries - ECI 2011 33

Information-flow Security
● Active research area

● No more only motivated by military applications

● Web security and information-flow is a hot topic!
● Companies are showing interests on this technology

● During the 70's dynamic techniques were pioneers
● Operating system security

● During the 90's static techniques were dominant
● Language-based security

● During 00's, dynamic techniques are back!
● We can see combination of both

● Exiting times to do research on the area!

Secure Programming via
Libraries

Escuela de Ciencias Informáticas (ECI) 2011
UBA, Buenos Aires, Argentina

A library for information-flow in Haskell
Alejandro Russo (russo@chalmers.se)

Secure Programming via Libraries - ECI 2011 2

Encoding information-flow in Haskell
[Li, Zdancewic 06]

● Show that it is possible to guarantee IFC by a
library

● Implementation in Haskell using Arrows
[Hughes 98]

● Arrows? A generalization of
Monads [Wadler 01]

● Pure values only
● No side-effects

● One security label for data
● All secret or all public!

Secure Programming via Libraries - ECI 2011 3

Encoding information-flow in Haskell
[Tsai, Russo, Hughes 07]

● Extend the library by Li and Zdancewic
● More than one security label for data
● Concurrency

● Major changes in the library
● New arrows
● Lack of arrow notation

● Why arrows?
● Li and Zdancewic argue that monads are

not suitable for the design of such a library

Secure Programming via Libraries - ECI 2011 4

A lightweight library for Information-flow in Haskell
[Russo, Claessen, Hughes 08]

● Lightweight
● Approximately 325 lines of code
● Static type-system of Haskell to enforce

non-interference
● Dynamic checks when declassification

occurs
● Use Monads (not Arrows!)

● Programmers are more familiar with
Monads than Arrows

Secure Programming via Libraries - ECI 2011 5

A lightweight library for Information-flow in Haskell
[Russo, Claessen, Hughes 08]

● The library relies on Haskell
● Capabilities to maintain abstraction of data types

– Haskell module system
● Haskell is strongly typed

– We cannot cheat!
● There are extensions of Haskell that break these two

requirements!

● For a full list, please visit the proposal of SafeHaskell
● An extension of Haskell to disallow those dangerous

features than can jeopardize security
● Join work with Prof. Mazieres et al. at Stanford university.

unsafePerformIO :: IO a -> a
unsafeCoerce :: a -> b

Secure Programming via Libraries - ECI 2011 6

Why Haskell?

● Clear separation of pure computations with those with
side-effects

● Every computation with side-effects is encapsulated
into the IO monad

● Side-effects can encode information about secret data

● It is necessary to control them
● It is known where they occur! Just look at the type!

Secure Programming via Libraries - ECI 2011 7

Side-effects and IO

● Just look at the type!

● All bets are off if an IO computation comes from
untrustworthy code
● It is not known the side-effects that it will produce

f1 :: Eq a => a -> [a] -> ([a], Bool)

f2 :: (Show a, Eq a) => Int -> a -> ([a], IO Bool)

f2 n x = (take n (iterate id x),
 do putStrLn "Hi!"
 putStrLn "The arguments of the function are"
 putStrLn $ "x = " ++ show x
 putStrLn $ "n = " ++ show n
 return True)

f1 x xs = (take 10 (cycle xs), elem x xs)

Secure Programming via Libraries - ECI 2011 8

Secure Pure Computations

f :: (Char {- secret -}, Int)
 -> (Char {- secret -}, Int)

f (c, i) = (chr(ord c + i), i)

f (c, i) = (chr(ord c + i), ord c)

f (c, i) = (chr(ord c + 1), i+1)

f (c, i) | c > 65 = (c, 42)
 | otherwise = (c, i)

YES

NO

YES

NO

YES

Secure Programming via Libraries - ECI 2011 9

A Security Monad for Pure
Computations

data Sec s a -- abstract
instance Monad (Sec s)

● Security monad
● It assigns a security level to data
● Once inside the monad, it is not possible to escape!

● We represent security levels by singleton types

H

L

secret :: Sec H Int
secret = ...

known :: Sec L Int
known = ...

Secure Programming via Libraries - ECI 2011 10

Using Sec

f :: (Char {- secret -}, Int)
 -> (Char {- secret -}, Int)

f' :: (Sec H Char, Int)
 -> (Sec H Char, Int)

f (c, i) = (chr(ord c + i), i)

YES

f' (sec_c, i) = (do c <- sec c
 return (chr(ord c + i))
 ,i)

YES

Secure Programming via Libraries - ECI 2011 11

Using Sec

f :: (Char {- secret -}, Int)
 -> (Char {- secret -}, Int)

f' :: (Sec H Char, Int)
 -> (Sec H Char, Int)

f' (sec_c, i) = (do c <- sec c
 return (chr(ord c + i))
 ,do c <- sec c
 return (ord c))

f (c, i) = (chr(ord c + i), ord c) NO

NO

Secure Programming via Libraries - ECI 2011 12

Security Guarantee

Type checks!

Non-interferece

Secure Programming via Libraries - ECI 2011 13

A Security Monad for Pure
Computations

data Sec s a -- abstract
instance Monad (Sec s)

● Security monad
● It assigns a security level to data
● Once inside the monad, it is not possible to escape!

● We represent security levels by singleton types
● What about the security lattice?

H

L

Secure Programming via Libraries - ECI 2011 14

Security Lattice

● We model it using type classes in Haskell
● Constrains to polymorphic types

● Encoding two-point lattice is just provide instances for
that type class

H

L

class Less s s' where
 less :: s -> s' -> ()

instance Less L H where
less _ _ = ()

instance Less L L where
less _ _ = ()

instance Less H H where

less _ _ = ()

Secure Programming via Libraries - ECI 2011 15

Security Monad and
the Security Lattice

● Push up information in the security lattice

● It allows to convert public values into secrets

● What if it is possible to make the following instance?

up :: Less s s' => Sec s a -> Sec s' a

fup :: Sec L Int -> Sec H Char

fup sec_i = do i <- up (sec_i)
 return (chr i)

instance Less H L where
less _ _ = ()

Secure Programming via Libraries - ECI 2011 16

Security Monad and
the Security Lattice

● The library works as long as
● Attackers cannot define method
less for arbitrary instances of the
type class Less

● How to ensure that?
● Mainly by the abstraction power of

Haskell's module system

Secure Programming via Libraries - ECI 2011 17

SecLib.Trustworthy

Arquitecture

module X where

import SecLib.Untrustworthy
import SecLib.LatticeLH

...

SecLib.UntrustworthySecLib.LatticeLH

Secure Programming via Libraries - ECI 2011 18

Importing SecLib.Trustworthy

● SecLib.Trustworthy must not be imported by
untrustworthy code
● Otherwise, no security guarantees are possible

instance Less H L where
less _ _ = ()

Secure Programming via Libraries - ECI 2011 19

Other Assumptions

● The monad Sec s must remain abstract

● Guarantee by the installation of the library

● Sec.hs is not an exposed module

● Use of unsafe Haskell extensions
● StandaloneDeriving

● System.IO.Unsafe

– unsafePerformIO, unsafeIterleaveIO, etc.

● OverlappingInstances

● Check SafeHaskell (work-in-progress)

● A Haskell extension to safely execute
untrusted Haskell code

Secure Programming via Libraries - ECI 2011 20

Security API for Pure Computations

up :: Less s s' => Sec s a -> Sec s' a

data Sec s a -- abstract
instance Monad (Sec s)

module X where

import SecLib.Untrustworthy
import SecLib.LatticeLH

A Library for Light-Weight Information-Flow Security in Haskell

Alejandro Russo Koen Claessen John Hughes
Chalmers University of Technology, Gothenburg, Sweden

{russo,koen,rjmh}@chalmers.se

Abstract
Protecting confidentiality of data has become increasingly im-
portant for computing systems. Information-flow techniques have
been developed over the years to achieve that purpose, leading to
special-purpose languages that guarantee information-flow secu-
rity in programs. However, rather than producing a new language
from scratch, information-flow security can also be provided as a
library. This has been done previously in Haskell using the arrow
framework. In this paper, we show that arrows are not necessary to
design such libraries and that a less general notion, namely mon-
ads, is sufficient to achieve the same goals. We present a monadic
library to provide information-flow security for Haskell programs.
The library introduces mechanisms to protect confidentiality of
data for pure computations, that we then easily, and modularly,
extend to include dealing with side-effects. We also present com-
binators to dynamically enforce different declassification policies
when release of information is required in a controlled manner. It
is possible to enforce policies related to what, by whom, and when
information is released or a combination of them. The well-known
concept of monads together with the light-weight characteristic of
our approach makes the library suitable to build applications where
confidentiality of data is an issue.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.3.3 [Program-
ming Languages]: Language Constructs and Features—Modules,
packages

General Terms Security, Languages

Keywords Information-flow, Declassification, Library, Monad

1. Introduction
Protecting confidentiality of data has become increasingly impor-
tant for computing systems. Often, software is so complex that it
is hard to see if a program can be abused by a malicious person
to gain access to private data. This is important when developing
software oneself, and becomes increasingly more important if one
is forced to trust other people’s code.

Information-flow techniques have been developed over the
years to achieve this kind of protection. For example, as a re-
sult, two main stream compilers, Jif (based on Java) and Flowcaml

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Haskell’08, September 25, 2008, Victoria, BC, Canada.
Copyright c© 2008 ACM 978-1-60558-064-7/08/09. . . $5.00

(based on Ocaml) have been developed to guarantee information-
flow security in programs.

However, it is a very heavy-weight solution to introduce a
new programming language for dealing with information-flow. In
this work, we explore the possibility of expressing restrictions on
information-flow as a library rather than a new language.

We end up with a light-weight monadic approach to the prob-
lem of expressing and ensuring information-flow in Haskell. Code
that exhibits information flows that are disallowed will be ill-typed
and rejected by the type checker. Our approach is general enough
to deal with practical concepts such as secure reading and writ-
ing to files (which can be generalized to capture any informa-
tion exchange with the outside world) and declassification (a prag-
matic way of allowing controlled information leakage (Sabelfeld
and Sands 2005)).

Our library might be used in scenarios where we want to incor-
porate in our programs some code written by outsiders (untrusted
programmers) to access our private information. Such code can be
also allowed to interact with the outside world (for example by ac-
cessing the web). We would like to have a guarantee that the pro-
gram will not send our private data to an attacker. A slightly differ-
ent, but related, scenario is where we ourselves write the possibly
unsafe code, but we want to have the help of the type checker to
find possible security mistakes.

Li and Zdancewic (Li and Zdancewic 2006) have previously
shown how to provide information-flow security also as a library,
but their implementation is based on arrows (Hughes 2000), which
naturally requires programmers to be familiar with arrows when
writing security-related code. In this work, we show that arrows
are not necessary to design such libraries and that a less general
notion, namely monads, is sufficient to achieve very similar goals.

1.1 Motivating example
Consider a machine running Linux with the default installation of
the Shadow Suite (Jackson 1996) responsible to store and manage
users’ passwords. In this machine, file /etc/passwd contains in-
formation regarding users such as user and group ID’s, which are
used by many system programs. This file must remain world read-
able. Otherwise, simple commands as ls -l stop working. Pass-
words are set in the file /etc/shadow, which can only be read and
written by root. From now on, we refer to the passwords stored in
this file as shadow passwords. Programs that verify passwords need
to be run as root. From the security point of view, this requirement
implies that very careful programming practices must be followed
when creating such programs. For instance, if a program running
as root has a shell escape, it is not desirable that such shell es-
cape runs with root privileges. The process to verify a password
usually consists of taking the input provided by the user, applying
some cryptographic algorithms to it, and comparing the result of
that with the user’s information stored in /etc/shadow. Observe
that an attacker can encrypt a dictionary of common passwords of-
fline and then, given some file /etc/shadow, try to guess users’
passwords by checking matches. This attack is known as an offline
dictionary attack and is one of the most common methods for gain-

ing or expanding unauthorized access to systems (Narayanan and
Shmatikov 2005). In order to obtain the content of /etc/shadow,
the attacker needs to obtain root privileges, which is not impossi-
ble to achieve (Local Root Exploit 2008). Given these facts, we can
conclude that there are mainly two security problems with shadow
passwords: programs require having root privileges to verify pass-
words and offline dictionary attacks. We start dealing with these
problems by firstly limiting the access to the password file. With
this in mind, we assume that information stored in /etc/shadow is
only accessible through an API. The following Haskell code shows
an example of such API.

data Spwd = Spwd { uid :: UID, cypher :: Cypher }

getSpwdName :: Name -> IO (Maybe Spwd)
putSpwd :: Spwd -> IO ()

Data type Spwd stores users’ identification number (uid::UID)
and users’ password (cypher :: Cypher). For a simple presentation,
we assume that passwords are stored as plain text and not cyphers.
Function getSpwdName receives a user name and returns his (her)
password if such user exists. Function putSpwd takes a register of
type Spwd and adds it to the shadow password file. This API is
now the only way to have access to shadow passwords. We can still
be more restrictive and require that such API is only called under
root privileges, which is usually the case for Unix-like systems.
Unfortunately, this restriction does not help much since attackers
could obtain unauthorized root access and then steal the passwords.
However, by applying information-flow techniques to the API and
programs that use it, it is possible to guarantee that passwords are
not revealed while making possible to verify them. In other words,
offline dictionary attacks are avoided as well as some requirements
as having root privileges to verify passwords. In Section 3.3, we
show a secure version of this API.

1.2 Contributions
We present a light-weight library for information-flow security in
Haskell. The library is monadic, which we argue is easier to use
than arrows, which were used in previous attempts. The library
has a pure part, but also deals with side-effects, such as the secure
reading and writing of files. The library also provides novel and
powerful means to specify declassification policies.

1.3 Assumptions
In the rest of the paper, we assume that the programming language
we work with is a controlled version of Haskell, where code is di-
vided up into trusted code, written by someone we trust, and un-
trusted code, written by the attacker. There are no restrictions on the
trusted code. However, the untrusted code has certain restrictions;
certain modules are not available to the untrusted programmer. For
example, all modules providing IO functions, including exceptions
(and of course unsafePerformIO) are not allowed. Our library
will reintroduce part of that functionality to the untrusted program-
mer in a controlled, and therefore, secure way.

2. Non-interference for pure computations
Non-interference is a well-known security policy that preserves
confidentiality of data (Cohen 1978; Goguen and Meseguer 1982).
It states that public outcomes of programs do not depend on their
confidential inputs.

In imperative languages, information leaks arise from the pres-
ence of explicit and implicit flows inside of programs (Denning and
Denning 1977). Explicit flows are produced when secret data is
placed explicitly into public locations by an assignment. Implicit
flows, on the other hand, use control constructs in the language in
order to reveal information. In a pure functional language, how-
ever, this distinction becomes less meaningful, since there are no

newtype Sec s a

instance Functor (Sec s)
instance Monad (Sec s)

sec :: a -> Sec s a
open :: Sec s a -> s -> a

Figure 1. The Sec monad

assignments nor control constructs. For example, a conditional (if-
then-else) is just a function as any other function in the language. In
a pure language, all information-flow is explicit; information only
flows from function arguments to function results.

To illustrate information leaks in pure languages, we proceed
assuming that a programmer, potentially malicious, needs to write
a function f :: (Char,Int) -> (Char,Int) where characters
and integers are considered respectively secret and public data. We
assume that attackers can only control public inputs and observe
public results when running programs, and can thus only observe
the second component of the pair returned by function f. For sim-
plicity, we also assume that type Char represents ASCII characters.

If a programmer writes the code

f (c, i) = (chr (ord c + i), i+3)

then the function is non-interferent and preserves the confiden-
tiality of c; the public output of f is independent of the value of c
1. If a programmer instead writes

f (c, i) = (c, ord c)

then information about c is revealed, and the program is not non-
interferent! Attackers might try to write less noticeable information
leaks however. For instance, the code

f (c, i) = (c, if ord c > 31 then 0 else 1)

leaks information about the printability of the character c and
therefore should be disallowed as well.

In this section, we show how monads can be used to avoid leaks
and enforce the non-interference property for pure computations.

2.1 The Sec monad
In order to make security information-flow specific, we are going
to make a distinction at the type level between protected data
and public data. Protected data only lives inside a special monad
(Wadler 1992). This security monad makes sure that only the parts
of the code that have the right to do so are able to look at protected
data.

In larger programs, it becomes necessary to talk about several
security levels or areas. In this case, values are not merely protected
or public, but they can be protected by a certain security level s.

Take a look at Fig. 1, which shows the API of an abstract type,
Sec, which is a functor and a monad. There are two functions
provided on the type Sec; sec is used to protect a value, and
open is used to look at a protected value. However, to look at a
protected value of type Sec s a, one needs to have a value of type
s. Restricting access to values of different such types s by means
of the module system allows fine control over which parts of the
program can look at what data. (For this to work, open needs to be
strict in its second argument.)

For example, if we define a security area H in the following way:

1 Function chr returns an exception when the received argument does
not represent an ASCII code. By observing occurrences of exceptions or
computations that diverge, an attacker can deduce some information about
secrets. However, we only consider programs that terminate successfully.

module Lattice where

data L = L
data H = H

class Less sl sh where
less :: sl -> sh -> ()

instance Less L L where
less _ _ = ()

instance Less L H where
less _ _ = ()

instance Less H H where
less _ _ = ()

Figure 2. Implementation of a two-point lattice

data H = H

then we can model the type of the function f given in the beginning
of this section as follows:

f :: (Sec H Char, Int) -> (Sec H Char, Int)

The first, secure, example of f can be programmed as follows:

f (sc,i) = ((\c -> chr (ord c + i)) ‘fmap‘ sc,i+3)

However, the other two definitions can not be programmed without
making use of H or breaking the type checker.

So, for a part of the program that has no means to create non-
bottom values of a type s, direct access to protected values of
type Sec s a is impossible. However, computations involving
protected data are possible as long as the data stays protected.
This can be formalized by stating that type Sec guarantees a non-
interference property. For any type A, and values a1, a2 :: A, a
function

f :: Sec H A -> Bool

will produce the same result for arguments a1 and a2. See (Russo
et al. 2008a) for more details.

We will later show the implementation of the type Sec and its
associated functions.

2.2 Security lattice
Valid information flows inside of programs are determined by a
lattice on security levels (Denning 1976). Security levels are asso-
ciated to data in order to establish its degree of confidentiality. The
ordering relation in the lattice, writtenv, represents allowed flows.
For instance, l1 v l2 indicates that information at security level l1
can flow into entities of security level l2.

For simplicity, in this paper, we will only use a two-point lattice
with security levels H and L where L v H and H 6v L. Security
levels H and L denote secret (high) and public (low) information,
respectively. The implementation of the lattice is shown in Figure
2. Type class Less encodes the relation v and security levels are
represented as singleton types (Pierce 2004). The role of less is
explained in Section 4. Public information is characterized by the
security level L. Constructor L is then publicly available so that data
at security level L can be observed by anyone, which also includes
attackers.

As explained earlier, attackers must have no access to the con-
structor H. In Section 4, we describe how to achieve such restriction.

Finally, to capture the fact that valid information flows occur
from lower (L) to higher (H) security levels, we introduce the
function

up :: Less sl sh => Sec sl a -> Sec sh a

The function up can be used to turn any protected value into a
protected value at a higher security level. The implementation of
up will be shown later.

3. Non-interference and side-effects
The techniques described in Section 2 do not perform computations
with side-effects. The reason for that is that side-effects involving
confidential data cannot be executed when they are created inside
of the monad Sec s.

Even if we allowed a restricted and secure form of file reading
and writing in the IO-monad, that would still not be enough. For
example, if we, read information from file A, and depending on
the value of a secret, want to write either to a file B or file C,
we would obtain a computation of type IO (Sec H (IO ())). It
is easy to see that these types quickly become unmanagable, and,
more importantly, unusable.

In this section, we show how we can augment our security API
to be able to deal with controlled side-effects while still maintaining
non-interference properties.

In this paper, we concentrate how to provide an API that allows
reading and writing protected data from and to files. For this to
work properly, files need to contain a security level, so that only
data from the right security level can be written to a file. We assume
that the attacker has no way of observing what side-effects were
performed, other than through our API. (The attacker, so to say,
sits within the Haskell program and has no way of getting out2.)

The ideas for reading and writing files can be extended to
deal with many other controlled IO operations, such as creating,
reading and writing secure references, communicating over secure
channels, etc. We will however not deal with the details of such
operations in this paper.

3.1 Secure files
We model all interactions with the outside world by operations for
reading and writing files (Tanenbaum 2001). For that reason, we
decide to include secure file operations in our library. We start by
assigning security levels to files in order to indicate the confiden-
tiality of their contents. More precisely, we introduce the abstract
data type File s. Values of type File s represent names of files
whose contents have security level s. These files are provided by
the trusted programmer. We assume that attackers have no access
to the internal representation of File s. In Section 4, we show how
to guarantee such assumption.

A first try for providing secure file operations is to provide the
following two functions:

readSecIO :: File s -> IO (Sec s String)
writeSecIO :: File s -> Sec s String -> IO ()

These functions do not destroy non-interference, because they do
not open up for extra information-flow between security levels. The
data read from a file with security level s is itself protected with
security level s, and any data of security level s can be written to a
file of security level s.

However, the above functions are not enough to preserve confi-
dentiality of data. Take a look at the following program:

writeToAFile :: Sec H String -> Sec H (IO ())
writeToAFile secs =
(\s -> if length s < 10

then writeSecIO file1 s
else writeSecIO file2 s) ‘fmap‘ secs

2 A situation where the attacker is in league with a hacker who has gotten
access to our system, and can for example read log files, is beyond our
control and the guarantees of our library.

newtype SecIO s a

instance Functor (SecIO s)
instance Monad (SecIO s)

value :: Sec s a -> SecIO s a

readSecIO :: File s’ -> SecIO s (Sec s’ String)
writeSecIO :: File s -> String -> SecIO s ()

plug :: Less sl sh => SecIO sh a -> SecIO sl (Sec sh a)
run :: SecIO s a -> IO (Sec s a)

Figure 3. The SecIO monad

Here, file1, file2 :: File H is assumed to be defined else-
where.

The behavior of the above function is indeed dependent on
the protected data in its argument, as indicated by the result type.
However, only the side-effects of the computation are dependent
on the data, not the result value. Why is this important? Because
we assume that the attacker has no way of observing from within
the program what these side-effects are! (Unless the attacker can
observe the results of the side-effects, namely the change of file
contents in either file1 or file2, but that information can only
be obtained by someone with the appropriate security clearance
anyway.) This assumption is valid for the scenarios described in
Section 1.

In other words, since side-effects cannot be observed from
within a program, we are going to allow the leakage of side-effects.
Our assumption is only true if we restrict the IO actions that the
attacker can perform.

3.2 The SecIO monad
To this end, we introduce a new monad, called SecIO. This monad
is a variant of the regular IO monad that keeps track of the security
level of all data that was used inside it.

Take a look at Fig. 3, which shows the API for an abstract type
SecIO, which is a functor and a monad. Values of type SecIO
s a represent computations that can securely read from any file,
securely write to files of security level s (or higher), and look at
data protected at level s (or lower).

The function value can be used to look at a protected value at
the current security level. The function readSecIO reads protected
data from files at any security level, protecting the result as such.
The function writeSecIO writes data to files of the current security
level.

The function plug is used to import computations with side-
effects at a high level into computations with side-effects at a low
level of security. Observe that only the side-effects are “leaked”,
not the result, which is still appropriately protected by the high se-
curity level. This function is particularly suitable to write programs
that contain loops that depend on public information and perform,
based on secret and public data, side-effects on secret files in each
iteration.

These functions together with the return and bind operations for
SecIO s constitute the basic interface for programmers.

Based on that, more convenient and handy functions can then
be defined. For instance,

s_read :: Less s’ s => File s’ -> SecIO s String
s_read file = do ss <- readSecIO file

value (up ss)

s_write :: Less s’ s =>
File s -> String -> SecIO s’ (Sec s ())

s_write file str = plug (writeSecIO file str)

Observe that s read and s write have simpler types while
practically providing the same functionality as readSecIO and
writeSecIO, respectively.

In the next section, we show how to implement the core part
of our library: the monads Sec s and SecIO s. We continue this
section with an example that shows how these APIs can be used.

3.3 Developing a secure shadow passwords API
As an example of how to apply information-flow mechanisms, we
describe how to adapt the API described in the introduction to
guarantee that neither API’s callers or the API itself reveal shadow
passwords. Specifically, passwords cannot be copied into public
files at all. Hence, offline dictionary attacks are avoided as well
as the requirement of having root privileges to verify passwords.
As mentioned in the introduction, we assume that the contents of
/etc/shadow is only accessible through the API. For simplicity,
we assume that this file is stored in the local file system, which
naturally breaks the assumption we have just mentioned (user root
has access to all the files in the system). However, it is not difficult
to imagine an API that establishes, for example, a connection to
some sort of password server in order to get information regarding
shadow passwords.

We firstly start adapting our library to include the two-point
lattice mentioned in Section 2. We decide to associate security level
H, which represents secret information, to data regarding shadow
passwords. Then, we indicate that file /etc/shadow stores secret
data by writing the following lines

shadowPwds :: File H
shadowPwds = MkFile "/etc/shadow"

We proceed to modify the API to indicate what is the secret data
handled by it. More precisely, we redefine the API as follows:

getSpwdName :: Name -> IO (Maybe (Sec H Spwd))
putSpwd :: Sec H Spwd -> IO ()

where values of type Spwd are now “marked” as secrets 3.
The API’s functions are then adapted, without too much effort, to
meet their new types. In order to manipulate data inside of the
monad Sec H, API’s callers need to import the library in their
code. Since /etc/shadow is the only file with type File H in our
implementation, this is the only place where secrets can be stored
after executing calls to the API. By marking values of type Spwd
as secrets, we restrict how information flows inside of the API
and API’s callers while making possible to operate with them. In
Section 5, we show how to implement a login program using the
adapted API.

4. Implementation of monads Sec and SecIO
In this section, we provide a possible implementation of the APIs
presented in the previous two sections.

In Fig. 4 we show a possible implementation of Sec. Sec is im-
plemented as an identity monad, allowing access to its implemen-
tation through various functions in the obvious way. The presence
of less in the definition of function up includes Less in its typ-
ing constrains. Function unSecType is used for typing purposes
and has no computational meaning. Note the addition of the func-
tion reveal, which can reveal any protected value. This function
is not going to be available to the untrusted code, but the trusted
code might sometimes need it. In particular, the implementation of
SecIO needs it in order to allow the leakage of side-effects.

In Fig. 5 we show a possible implementation of SecIO. It is
implemented as an IO computation that produces a safe result. As

3 Values of type Maybe are not included inside of Sec H since the existence
of passwords is linked to the existence of users in the system, which is
considered public information.

module Sec where

-- Sec
newtype Sec s a = MkSec a

instance Monad (Sec s) where
return x = sec x

MkSec a >>= MkSec k =
MkSec (let MkSec b = k a in b)

sec :: a -> Sec s a
sec x = MkSec x

open :: Sec s a -> s -> a
open (MkSec a) s = s ‘seq‘ a

up :: Less s s’ => Sec s a -> Sec s’ a
up sec_s@(MkSec a) = less s s’ ‘seq‘ sec_s’

where (sec_s’) = MkSec a
s = unSecType sec_s
s’ = unSecType sec_s’

-- For type-checking purposes (not exported).
unSecType :: Sec s a -> s
unSecType _ = undefined

-- only for trusted code!
reveal :: Sec s a -> a
reveal (MkSec a) = a

Figure 4. Implementation of Sec monad

an invariant, the IO part of a value of type SecIO s a should
only contain unobservable (by the attacker) side-effects, such as
the reading from and writing to files.

There are a few things to note about the implementation. Firstly,
the function reveal is used in the implementation of monadic
bind, in order to leak the side-effects from the protected IO com-
putation. Remember that we assume that the performance of side-
effects (reading and writing files) cannot be observed by the at-
tacker. Some leakage of side-effects is unavoidable in any imple-
mentation of the functionality of SecIO. Secondly, the definition of
the type File does not make use of its argument s. This is also un-
avoidable, because it is only by a promise from the trusted program-
mer that certain files belong to certain security levels. Thirdly, func-
tion plug, similarly to function up, includes less and an auxiliary
function (unSecIOType) to properly generate type constraints.

The modules Sec, SecIO, and Lattice can only be used by
trusted programmers. The untrusted programmers only get access
to modules SecLibTypes and SecLib, shown in Fig. 6. They im-
port the three previous modules, but only export the trusted func-
tions. Observe that the type L and its constructor L are exported,
but for H, only the type is exported and not its constructor. Method
less is also not exported. Therefore, functions up and plug are
only called with the instances of Less defined in Lattice.hs.

In order to check that a module is safe with respect to information-
flow, the only thing we have to check is that it does not import
trusted modules, in particular:

• Sec and SecIO

• any module providing exception handling, for example
Control.Monad.Exception,
• any module providing unsafe extensions, for example
System.IO.Unsafe

module SecIO where
import Lattice
import Sec

-- SecIO
newtype SecIO s a = MkSecIO (IO (Sec s a))

instance Monad (SecIO s) where
return x = MkSecIO (return (return x))

MkSecIO m >>= k =
MkSecIO (do sa <- m

let MkSecIO m’ = k (reveal sa)
m’)

-- SecIO functions
value :: Sec s a -> SecIO s a
value sa = MkSecIO (return sa)

run :: SecIO s a -> IO (Sec s a)
run (MkSecIO m) = m

plug :: Less sl sh => SecIO sh a -> SecIO sl (Sec sh a)
plug ss_sh@(MkSecIO m)

= less sl sh ‘seq‘ ss_sl
where

(ss_sl) = MkSecIO (do sha <- m
return (sec sha))

sl = unSecIOType ss_sl
sh = unSecIOType ss_sh

-- For type-checking purposes (not exported).
unSecIOType :: SecIO s a -> s
unSecIOType _ = undefined

-- File IO
data File s = MkFile FilePath

readSecIO :: File s’ -> SecIO s (Sec s’ String)
readSecIO (MkFile file) =
MkSecIO ((sec . sec) ‘fmap‘ readFile file)

writeSecIO :: File s’ -> String -> SecIO s ()
writeSecIO (MkFile file) s =
MkSecIO (sec ‘fmap‘ writeFile file s)

Figure 5. Implementation of SecIO monad

5. Declassification
Non-interference is a security policy that specifies the absence of
information flows from secret to public data. However, real-word
applications release some information as part of their intended be-
havior. Non-interference does not provide means to distinguish be-
tween intended releases of information and those ones produced
by malicious code, programming errors, or vulnerability attacks.
Consequently, it is needed to relax the notion of non-interference
to consider declassification policies or intended ways to leak in-
formation. In this section, we introduce run-time mechanisms to
enforce some declassification policies found in the literature.

Declassification policies have been recently classified in differ-
ent dimensions(Sabelfeld and Sands 2005). Each dimension repre-
sents aspects of declassification. Aspects correspond to what, when,
where, and by whom data is released. In general, type-systems to
enforce different declassification policies include different features,
e.g rewriting rules, type and effects, and external analysis (Myers
and Liskov 2000; Sabelfeld and Myers 2004; Chong and Myers
2004). Encoding these features directly into the Haskell type sys-
tem would considerably increase the complexity of our library. For

module SecLibTypes (L (..), H, Less ()) where
import Lattice

module SecLib
(Sec, open, sec, up

, SecIO, value, plug, run,
, File, readSecIO, writeSecIO, s_read, s_write

)
where

import Sec
import SecIO

Figure 6. Modules to be imported by untrusted code

the sake of simplicity and modularity, we preserve the part of the
library that guarantees non-interference while orthogonally intro-
ducing run-time mechanisms for declassification. More precisely,
declassification policies are encoded as programs which perform
run-time checks at the moment of downgrading information. In
this way, declassification policies can be as flexible and general
as programs! Additionally, we provide functions that automatically
generate declassification policies based on some criteria. We call
such programs declassification combinators. We provide combina-
tors for the dimensions what, when, and who (where can be thought
as a particular case of when). As a result, programmers can com-
bine dimensions by combining applications of these combinators.

5.1 Escape Hatches
In our library, declassification is performed through some special
functions. By borrowing terminology introduced in (Sabelfeld and
Myers 2004), we call these functions “escape hatches” and we
represent them as follows.

type Hatch s s’ a b = Sec s a -> IO (Maybe (Sec s’ b))

Escape hatches are functions that take some data at security
level s, perform some computations with it, and then probably
return a result depending if downgrading of information to secu-
rity level s’ is allowed or not. Arbitrary escape hatches can be
included in the library depending on the declassification policies
needed for the built applications. In fact, escape hatches are just
functions. Types IO and Maybe are present in the definition of
Hatch s s’ a b in order to represent run-time checks and the
fact that declassification may not be possible on some circum-
stances. By placing Maybe outside of monad Sec s’, the fact that
declassification is possible or not is public information and pro-
grams can thus take different actions in each case. Consequently, it
is important to remark that declassification policies should not de-
pend on secret values in order to avoid unintended leaks (we give
examples of such policies later). Otherwise, it would be possible
to reveal information about secrets by inspecting the returned con-
structor (Just or Nothing) when applying escape hatches.

As mentioned in the beginning of the section, we include some
declassification combinators that are responsible for generating
escape hatches. The simplest combinator creates escape hatches
that always succeed when downgrading information. Specifically,
we define the following combinator.

hatch :: Less s’ s => (a -> b) -> Hatch s s’ a b
hatch f = \sa -> return(Just(return(f (reveal sa))))

Basically, hatch takes a function and returns an escape hatch
that applies such function to a value of security level s and returns
the result of that at security level s’ where s’ v s. Observe how
the function reveal is used for declassification.

The idea is that the function hatch is used by trusted code in
order to introduce a controlled amount of leaking to the attacker.
Note that it is possibly dangerous for the trusted code to export a
polymorphic escape hatch to the attacker! A polymorphic function
can often be used to leak an unlimited amount of information, by
for example applying it to lists of data. In general, escape hatches
that are exported should be monomorphic.

5.2 The What dimension
In general, type systems that enforce declassification policies re-
lated to “what” information is released are somehow conservatives
(Sabelfeld and Myers 2004; Askarov and Sabelfeld 2007; Mantel
and Reinhard 2007). The main reason for that is the difficulty to
statically predict how the data to be declassified is manipulated
or changed by programs. Inspired by quantitative information-
theoretical works (Clark et al. 2002), we focus on “how much”
information can be leak instead of determining exactly “what” is
leaked. In this light, we introduce the following declassification
combinator.

ntimes :: Int -> Hatch s s’ a b -> IO (Hatch s s’ a b)
ntimes n f
= do ref <- newIORef n

return (\sa -> do k <- readIORef ref
if k <= 0

then do return Nothing
else do writeIORef ref (k-1)

f sa)

Essentially, ntimes takes a number n and an escape hatch
h, and returns a new escape hatch that produces the same result
as h but that can only be applied at most n times. To achieve
that, the combinator creates the reference ref to the number of
times (n) that the escape hatch (h) can be applied. Every appli-
cation of the escape hatch then checks if the maximum number
of allowed applications has been reached by observing the condi-
tion k <= 0. Additionally, every application of the escape hatch
also reduce the number of possible future applications by execut-
ing writeIORef ref (k-1). The generated escape hatch returns
Nothing if the policy is violated as a manner to avoid leaking
more information than intended. Inspecting if the result of apply-
ing an escape hatch is Nothing or not can be considered as a covert
channels by itself when happening inside of computations related
to confidential data. Fortunately, escape hatches applied inside of
computations depending on secrets are never executed. For in-
stance, if we try to apply an escape hatch inside of some secret com-
putation, it will have the type Sec H (IO (Maybe (Sec L b)))
for some type b. Declassification is performed inside of the IO
monad and it is not possible to extract IO computations from the
monad Sec H unless than another escape hatches is declared to re-
lease IO computations. Therefore, escape hatches must be intro-
duced to release pure values rather than side-effecting computa-
tions, which seems to be the case for most applications.

Note that the function ntimes is safe to be exported to the
attacker, since it only restricts the use of existing hatches.

As an example of how ntimes can be used, we write a login
program that uses the secure shadow password API described in
Section 3.3. It is not possible to write such program without hav-
ing means for declassification. The login program must release
some information about users’ passwords: if access is granted, then
the attacker knows that his input matches the password, otherwise
he knows that it does not. We present the program in Figure 7.
Module Policies introduces declassification policies for our lo-
gin program and states that a shadow password can be compared
by equality at most three times. This module is trusted and must
not be imported by untrusted code. Otherwise, attackers can create
an unrestricted number of escape hatches in order to leak secrets!

module Policies (declassification) where
import SecLibTypes ; import Declassification
import SpwdData

declassification
= ntimes 3 (hatch (\(spwd,c) -> cypher spwd == c))

:: IO (Hatch H L (Spwd, String) Bool)

module Main (main) where
import Policies
import Login

main = do match <- declassification
login match

module Login (login) where
import SecLibTypes ; import SecLib
import SpwdData ; import Spwd
import Maybe

check :: (?match :: Hatch H L (Spwd, Cypher) Bool)
=> Sec H Spwd -> String -> Int -> String

-> IO ()
check spwd pwd n u =

do acc <- ?match ((\s -> (s, pwd)) ‘fmap‘ spwd)
if (public (fromJust acc))

then putStrLn "Launching shell..."
else do putStrLn "Invalid login!"

auth (n-1) u spwd

auth 0 _ spwd = return ()
auth n u spwd = do putStr "Password:"

pwd <- getLine
check spwd pwd n u

login match
= do let ?match = match

putStrLn "Welcome!"
putStr "login:"
u <- getLine
src <- getSpwdName u
case src of

Nothing -> putStrLn "Invalid user!"
Just spwd -> auth 3 u spwd

Figure 7. Secure login program

Module SecLibTypes, described in Section 4, is extended to in-
clude type definitions related to declassification as, for instance,
Hatch s s’ a b. Module Declassification introduces de-
classification combinators (e.g. ntimes). These modules are part
of our trusted base. Module Declassification must not be im-
ported by untrusted code for the same reasons given for module
Policies. Modules SpwdData and Spwd respectively include
the data type declaration of Spwd and the API described in Sec-
tion 3.3. Module Main extracts declassification policies defined in
Policies and pass them to the login function. In general, this
module determines what functions are called from untrusted code
in order to run the program. In this case, it determines that login
must be called to perform the login procedure. Since the module
imports module Policies, it also belongs to the trusted base. The
most interesting module is Login. This module does not belong
to our trusted base and therefore it may contain code written by
possibly malicious programmers. Because declassification policies
can be applied at any part of the untrusted code, we place them into
implicit parameters (Lewis et al. 2000). Implicit parameters can be
thought as some kind of global variables and they are declared by

module Bid (bid) where

obtainBid :: FilePath -> IO Int
obtainBid file = do s <- readFile file

return (read s :: Int)

bid = do putStrLn "Bid system!"
putStrLn "-----------"
putStrLn ""
putStrLn "Obtaining the bids..."
a <- obtainBid "bidA"
-- writeFile "bidB" (show (a+1))
b <- obtainBid "bidB"
putStrLn (if a > b then "A wins!"

else "B wins!")

Figure 8. Insecure bidding system

writing variable names starting with the symbol ?. Module Login
contains three functions: check, auth, and login. Function check
takes the password spwd :: Sec H Spwd stored in the system for
the user u :: String and checks, by applying the escape hatch
placed in ?match, if the user’s input pwd :: String matches the
password stored in the field cypher of spwd. Assuming that is pos-
sible to perform the declassification described by ?match, variable
acc stores if the access is granted or not. We assume that untrusted
code has access to the function public :: Sec L a -> a to ex-
tract the public values from monad Sec L. In the example, public
is applied to values returned by ?match. If the access is denied,
check might give another chance to the user by calling the func-
tion auth. Function auth is responsible to ask the user’s password
and validates it at most n times. Function login asks for the user
name and checks that the user is registered in the system by calling
the function getSpwdName from the secure shadow password API.

Since program in Figure 7 type-checks, it respects the declas-
sification policies defined in module Policies, i.e. the password
can be compared for equality only three times. To illustrate that,
we place our selves in the role of the attacker and modify func-
tion check to call auth n u spwd instead. As a result, it would
be now possible to try as many passwords as the user wants and
thus increasing the amount of information leak by unit of time. Ob-
serve that this situation is particularly dangerous when passwords
have short length as PIN numbers in ATMs. Nevertheless, if we try
to run the modified code, we get the message *** Exception:
Maybe.fromJust: Nothing after the user tries more than three
times to check if the access can be granted or not.

5.3 The When dimension
As a motivating example for handling this dimension, we can
consider the scenario described in (Chong and Myers 2004) of
a sealed auction where each bidder submits a single secret bid
in a sealed envelope. Once all bids are submitted, the envelopes
are opened and the bids are compared. The highest bidder wins.
One security property that is important for this program is that
no bidder knows any of the other bids until all the bids have
been submitted. Program in Figure 8 simulates this process for
two bidders: A and B. We represent envelopes as files. Function
obtainBid opens an envelope and extracts the bid. The rest of the
program is self-explanatory. It is possible to incorrectly implement
the auction protocol by mistake or intentionally. For instance, if we
uncommented the line in Figure 8, the program uses the bid from
user A to make user B the winner. However, no information about
A’s bid must be available until B submits his (her) own bid.

The library introduces the when dimension by associating
events in the system that indicates at which time release of in-

formation may occur. For instance, “releasing a software key may
occur after the payment has been confirmed”. Inspired by (Broberg
and Sands 2006), we implement boolean flags called flow locks 4

that, when open, allow downgrading of information.
Flow locks are introduced by the following combinator.

when :: Hatch s s’ a b ->
IO (Hatch s s’ a b, Open, Close)

when f = do ref <- newIORef False
return (\sa -> do b <- readIORef ref

if b then f sa
else return Nothing

, writeIORef ref True
, writeIORef ref False)

Basically, when takes an escape hatch h and returns a new es-
cape hatch that produces the same result as h but that has associated
a flow lock to it. The combinator creates the reference ref to an
initially close flow lock represented as False. The returned escape
hatch can only be applied when the associated flow lock is open
(i.e. the corresponding boolean flag is set to True). Observe that,
by inspecting the value of b, every application of the escape hatch
checks that the flow lock is open before declassifying information.
The combinator also returns computations to open and close the
lock, which respectively have type Open and Close. These compu-
tations must be only used by trusted code. Otherwise, the attacker
can execute them at any time in the untrusted code and thus ignor-
ing the events that indicate when declassification may occur. Open
and Close are just synonymous type declarations for IO ().

We can then implement a secure bidding system. We firstly de-
fine our security lattice composed by the security levels A, B, and L,
where L v A and L v B. Security levels A and B are respectively as-
sociated to information coming from users A and B, while L denotes
public information. We implement these security levels as singleton
types with constructors A :: A, B :: B, and L::L. The described
security lattice is very simple and therefore we omit details about
its implementation. The secure bidding system is shown in Figure
9. At first glance, it might seem that this implementation is much
more complex than the insecure one. However, the module Bid,
the core of the bidding system, has approximately the same size as
before. The rest of the modules are related to properly setting up
the security level of different resources in the program as well as
the corresponding declassification policies. Module Files declares
the security level A and B for the files that store the bids of users A
and B, respectively. Module Policies defines the escape hatches
ha and hb to release information that belongs to users A and B, re-
spectively. Computations openA and closeA (openB and closeB)
open and close the flow lock associated to hA(hB), respectively. As
mentioned before, the opening and closing of locks are produced
by trusted code. In this case, the opening of locks happens when
bids are read from files. We then place function obtainBid in the
trusted module Main. We also adapt such function to read files at
security level s and return their contents, but opening the flow lock
received as argument. Function main obtains the escape hatches
from declassification and defines trusted function responsi-
ble for opening flow locks. Function obtainBidA (obtainBidB)
reads the bid of user A (B) and opens the lock for releasing the bid
of user B (A). Differently from the insecure version in Figure 8,
function bid receives as arguments escape hatches and functions
to obtain bids. Module Bid is written by the attacker or possibly

4 The notion presented here about flow locks is not exactly the same that is
introduced in Broberg and Sands’s paper. For instance, their work can stati-
cally check if a program respects the declassification policies determined by
the flow locks. Moreover, the state of the locks is not related with the state
of programs at all. We differ from these two points due to the dynamic na-
ture of our approach. However, the intuitive idea of allowing downgrading
of information when locks are open is preserved in our implementation.

module Files (bidAF, bidBF) where
import Sec (secret, File (File)) ; import Lattice

bidAF :: File A
bidAF = MkFile "bidA"

bidBF :: File B
bidBF = MkFile "bidB"

module Policies (declassification) where
import SecLibTypes ; import Declassification

declassification
= do (pA :: Hatch A L Int Int, openA, closeA)

<- when (hatch id)
(pB :: Hatch B L Int Int, openB, closeB)

<- when (hatch id)
return (pA, openA, closeA, pB, openB, closeB)

module Main (main) where
import Policies ; import Files ; import SecLib
import Bid

obtainBid :: File s -> Open -> IO (Sec s Int)
obtainBid file open
= do sec <- run (do r <- s_read file

return (read r :: Int))
open
return sec

main = do (hA, openA, closeA,
hB, openB, closeB) <- declassification
let obtainBidA = obtainBid bidAF openB

obtainBidB = obtainBid bidBF openA
bid hA obtainBidA hB obtainBidB

module Bid (bid) where
import SecLibTypes ; import SecLib

bid hA obtainBidA hB obtainBidB
= do putStrLn "Bid system!"

putStrLn "-----------"
putStrLn ""
putStrLn "Obtaining the bids..."
bidA <- obtainBidA
-- Just cheat <- hA bidA
bidB <- obtainBidB
Just seca <- hA bidA
Just secb <- hB bidB
putStrLn(if (public seca) > (public secb)

then "A wins!"
else "B wins!")

Figure 9. Secure bidding system

malicious programmer. In this module, function bid obtains the
bids to later compare them. In order to compare bids, they need
to be extracted from values of type Sec A Int and Sec B Int
through the escape hatches ha and hb, respectively. It is then not
possible to determine which bid is the highest before obtaining all
for them. For instance, if we uncommented the line in function bid,
we obtain a program that tries to release the bid from user A before
getting the bid for user B, which is clearly a non-desirable behav-
ior for the auction system. However, if we run the program, we
get the message *** Exception: Maybe.fromJust: Nothing
since the flow lock associated to release A’s bid is not open. In order
to open it, we firstly need to get B’s bid!

To illustrate why flow locks may need to be closed, we take the
example on step further by thinking of a bidding system that allows
the users to bid more than once. In this case, function bid is called
several times and flow locks related to hA and hB must be closed
between each call. Otherwise, all the flow locks are open at the
second call of bid, which allows bids to be released at any time. It
is not difficult to imagine this implementation by considering that
function main calls computations closeA and closeB before each
call of bid.

For simplicity, we considered an auction system with only two
users. However, it is possible to use flow locks when more users
are present in the auction. Indeed, we can create escape hatches
that are associated to as many flow locks as users. In order to do
that, we can compose when with itself as many times as users we
have in the system. In this way, the escape hatch obtained in the
end is associated to as many flow locks as users. Then, when a user
submits its bid, his corresponding flow lock is open.

Attackers can still write programs that wrongly implement the
auction system. For instance, we can write a program that makes
user A the winner all the time by just replacing the if-then-else
in Figure 9 by putStrLn "The user A wins!". However, user
A is going to be the winner because the program is not implemented
correctly, but not because the program “cheated” by inspecting B’s
bid. Correctness of programs are stronger properties than those
ones captured by declassification policies.

5.4 The Who dimension
In the Decentralized Label Model (DLM) (Myers and Liskov 1997,
1998, 2000) data is marked with a set of principals who owns the
information. While executing a program, the code is authorized to
act on behalf of some set of principals known as authority. Then,
declassification makes a copy of the released data and marked it
with the same principals as before the downgrading but excluding
those ones appearing in the authority of the code. We do not con-
sider situations where some principals can act on behalf of others.

Similarly to (Li and Zdancewic 2006), we adapt the idea of
DLM to work on a security lattice. Authorities are assigned with
a security level l in the lattice and they are able to declassify data at
that security level. To achieve that, we introduce a declassification
combinator that checks the authority of the code before applying
an escape hatch. As indicated in (Broberg and Sands 2006), DLM
can be expressed using flow locks. Fortunately, our implementation
is also suitable for that. More precisely, we have the following
declassification combinator.

data Authority s = Authority Open Close

who :: Hatch s s’ a b -> IO (Hatch s s’ a b, Authority s)
who f = do (whof, open, close) <- when f

return (whof, Authority open close)

certify :: s -> Authority s -> IO a -> IO a
certify s (Authority open close) io =

s ‘seq‘ (do open ; a <- io ; close ; return a)

Combinator who takes an escape hatch an returns another escape
hatch that is associated with a flow lock. The main idea here is
that the flow lock is open when the code runs under the same
authority as the security level appearing as the argument of the
escape hatch. The mechanisms to open and close the flow lock are
placed inside of the data type Authority s. The constructor of
this data type is not accessible for attackers. Otherwise, they can
avoid the certification process to determine that some piece of code
runs under some authority. Such certification process is carried
out by the function certify. This function takes an element of
security type s, an Authority s, and a computation IO a. In
Section 4, we explain that constructors that belongs to security
levels above the security level of the attacker are not exported. For

Tax OfficeBank

Public

Government

Figure 10. Security lattice

instance, in the two-point lattice considered so far, attackers can
only observe data at security level L, and thus constructor H :: H
is not exported to untrusted modules. This assumption needs to be
relaxed in order to consider this dimension for declassification. To
certify that some code has authority s, we require that such code,
possibly malicious, has only access to the constructors for security
level s and the security level denoting public information. In this
way, it is reflected that code running under authority s can freely
declassify data from security level s as expected in DLM. Function
certify checks that it receives a valid constructor for the security
type s by applying seq to it, and then respectively opens and closes
a flow lock before and after running the IO computation received as
argument. Observe that this function can be freely used by attackers
since it requires to provide the right constructor for some security
level s and only authorities at that level must have it. Therefore,
assignments of authorities to pieces of code must be clearly part of
the trusted code.

As a motivating example for this dimension, we start consider
the security lattice in Figure 10. We have the security levels: Gov-
ernment, Bank, Tax Office, and Public to represent information
related to citizens that is used for such entities. Unless that infor-
mation is made public, banks cannot have access to information
stored in the tax office and vice versa. Government, on the other
hand, can have full access to the information stored at banks and
the tax office, which can be debatable for any real government.
However, we made such assumption to simplify the example and
rather illustrate how functions who and certify can be used. We
implement the security levels Government, Bank, Tax Office, and
Public with the singleton types G, B, T, and L, respectively. The
described security lattice is very simple and therefore we omit de-
tails about its implementation. We assume that the declassification
polices are the followings: banks can declassify the status of their
accounts (i.e. if an account is open or close), the tax office can
release the address of the citizens, and the government can provide
information about new immigrants to the tax office as well as re-
vealing results of financial studies related to the economy of the
country to the banks. Observe that, for instance, it is possible for
the government to declassify some information to a bank, and then
the bank divulges that information to the public by opening or clos-
ing some accounts. In order to avoid that, a more complex security
lattice needs to be encoded. However, for simplicity, we tighten to
the lattice in Figure 10. In Figure 11, we give the skeleton of an ap-
plication that uses these security levels and the mentioned declassi-
fication policies. Module Policies declares declassification poli-
cies constructed by combinator who. Accounts, status of accounts,
citizens, addresses, immigrants, financial studies, and outcomes of
financial studies are represented by data types Account, Status,
Citizen, Address, Immigrant, Study, and Result, respec-
tively. Functions status, address, immigrant, and study have
types Account -> Status, Citizen -> Address, Immigrant
-> Citizen, and Study -> Result, respectively. These func-
tions together with declarations of data types related to the applica-
tion are placed in the module Data. Function declassification

module Policies (declassification) where
import SecLibTypes ; import Declassification
import Data

declassification
= do (hB :: (Hatch B L Account Status),

authBank) <- who (hatch status)
(hT :: (Hatch T L Citizen Address),
authTax) <- who (hatch address)
(hG :: (Hatch G T Immigrant Citizen),
authG) <- who (hatch inmigrants)
(hG’ :: (Hatch G B Study Result),
authG’) <- who (hatch studies)
return ((hB, authBank), (hT, authTax),

(hG, authG), (hG’, authG’))

module Bank (bank) where
import SecLibTypes ; import SecLib
import Data

bank :: B -> (Hatch B L Account Status,
Authority B) -> IO ()

bank = ...

module TaxOffice (taxoffice) where

import SecLibTypes ; import SecLib
import Data

taxoffice
:: T -> (Hatch T L Citizen Address, Authority T)

-> IO ()
taxoffice = ...

module Government (government) where
import SecLibTypes ; import SecLib
import Data

government
:: G -> (Hatch G T Immigrant Citizen,

Authority G) -> (Hatch G B Study Result,
Authority G) -> IO ()

government = ...

module Main (main) where
import Policies ; import Lattice
import Bank ; import TaxOffice ; import Government

main
= do (whohB, whohT, whohG, whohG’)

<- declassification
bank B whohB
taxoffice T whohT
government G whohG whohG’
return ()

Figure 11. Skeleton for an application

implements the declassification policies described before. Mod-
ules Bank, TaxOffice, and Government are untrusted and they
might include malicious code. Functions bank, taxoffice, and
government receive the escape hatches together with values of
type Authority s for some corresponding instances of s. Ob-
serve that bank, taxoffice, and government expects to receive
the constructor for security types B, T, and G, respectively. In other
words, the authority for bank, taxoffice, and government is set
to B, T, and G, respectively. Consequently, it is then possible for
those functions to apply cerfity with escape hatches that release
information at their authority level. Module Main sets the authority

for each of the given functions while providing the corresponding
escape hatches. Observe how constructors B :: B, T :: T, and G
:: G are given to functions bank, taxoffice, and government,
respectively. Malicious code placed in one function only compro-
mises confidential information related to its authority’s security
level. For instance, if function bank contains malicious code, then
confidential information related to the bank may be at risk. How-
ever, if government is compromised, all the information in the
system may be affected. Function government should be carefully
designed, or perhaps other restrictions regarding the application of
the escape hatch must be imposed in this function (see next subsec-
tion). This phenomenon also occurs in DLM when a process running
with the authority of all the principals in the system contains mali-
cious code.

5.5 Combining dimensions
For some application, declassification policies are not so simple as
those ones captured by the dimensions of what, when, and who. For
those scenarios, the user of the library has basically two options.
One one hand, the user can program his own policy, which pro-
vides enough flexibility. However, such flexibility could be danger-
ous when declassification policies are not implemented carefully.
For instance, an escape hatch must not decide if declassification
is possible by inspecting confidential data. Otherwise, attackers
learn information about secrets when applying escape hatches by
inspecting if the returned values are Nothing or not. On the other
hand, users can specify more interesting declassification policies
by combining applications of ntimes, when, and who together. For
instance, we extend the what-policy from the example given in Sec-
tion 5.2 to consider more dimensions as follows.

comb = do h <- ntimes 3
(hatch (\(spwd,c) -> cypher spwd == c))

(h’, open, close) <- when h
(h’’, auth) <- who h’
return (h’’:: Hatch H L (Spwd, String) Bool,

open, close, auth)

Observe how comb defines an escape hatch that releases infor-
mation if it is applied in a piece of code with authority H when some
events that execute open happened and information has not been
previously released more than three times. Other combinations are
also possible. To the best of our knowledge, this is the first imple-
mentation of mechanisms to enforce more than one dimension for
declassification.

6. Related work
Much previous related work addresses non-interference and func-
tional languages consider reduced programming languages (Heintze
and Riecke 1998; Volpano et al. 1996; Volpano and Smith 1997)
or require designing compilers from scratch (Pottier and Simonet
2002; Simonet 2003). Rather than implementing compilers, Li
and Zdancewic (Li and Zdancewic 2006) show how to provide
information-flow security as a library for a real programming lan-
guage. They provide an implementation for Haskell based on ar-
rows combinators(Hughes 2000), which naturally requires pro-
grammers to be familiar with arrows when writing security-related
code. Their library still imposes restrictions on what kind of pro-
grams can be written. In particular, their approach does not gener-
alize naturally in the presence of side-effects or information com-
posed of data with different security levels. To incorporate these
features, the library requires major changes as well as the introduc-
tion of new combinators (Tsai et al. 2007).

In this paper, we show that a less general notion, namely mon-
ads, is enough to provide information-flow security as a library. We
propose a light-weight library (∼ 400 LOC) able to handle side-
effecting computations and that requires programmers to be famil-
iar with monads rather than arrows. Moreover, by just placing data

into corresponding Sec s monads, our library is also able to handle
data composed of elements with different security levels. However,
there exists one restriction in our approach w.r.t. to the arrow ap-
proach. Since our security levels are represented by types, all of
them have to be known statically at compile-time5, whereas in the
arrow approach, they can be constructed at run-time.

Abadi et. al. developed the dependency core calculus (DCC)
(Abadi et al. 1999) based on a hierarchy of monads to guarantee
non-interference. Similarly, Sec constructs a hierarchy of monads
when applied to security levels s. However, DCC uses non-standard
typing rules for its bind operations while our library just provides
instances of the type class Monad. Tse and Zdancewic translate
DCC to System F and show that non-interference can be stated
using the parametricity theorem for F (Tse and Zdancewic 2004).
They also provide an implementation in Haskell for a two-point
lattice. Their implementation encodes each security level as an ab-
stract data type constructed from functions and binding operations
to compose computations with permitted flows. The same kind of
ideas relies behind Sec s, open, and close (see Section 4). Their
implementation requires, at most,O(n2) definitions for binders for
n-points lattices. Since they consider the same non-standard fea-
tures for binders as in DCC, they provide as many definitions for
binders as different type of values produced after composing secure
computations. Moreover, their implementation needs to be com-
piled with the flag -fallow-undecidable-instances in GHC.
On one hand, our library requires, at most, O(n2) instantiations
on the type class Less for n-points lattices, but it does not provide
more than one definition for binders nor requires allowing undecid-
able instances in GHC 6. DCC and Tse and Zdancewic’s approach
do not consider computations with side-effects. Moreover, Tse and
Zdancewic leaves as an open question how to encode more expres-
sive policies, such as declassification, directly in the type system of
Haskell.

Harrison and Hook show how to implement an abstract oper-
ating system called separation kernel (Harrison and Hook 2005).
Programs running under this multi-threading operating system are
non-interferent. To achieve that, the authors rely on properties re-
lated to monad transformers as well as state and resumption mon-
ads. Basically, each thread is represented as an state monad that
have access to the locations related to the thread’s security level
while state monad transformers act as parallel composition. Inter-
leaving and communication between threads is carried out by plug-
ging a resumption monads on top of the parallel composition of all
the threads in the system. Non-interference is then enforced by the
scheduler implementation, which only allow signaling threads at
the same, or higher, security level as the thread that issued the sig-
nal. Different from that, our library enforces non-interference by
typing. The authors also use monads differently than we do since
their goals are constructing secure kernels rather than providing
information-flow security as a library. For instance, we do not use
state monads, state transformers, or resumption monads since we
do not model threads. As a result, our library is simpler and more
suitable to write sequential programs in Haskell. It is stated as a
future work how to extend our library to include concurrency.

Crary et. al. design a monadic calculus for non-interference for
programs with mutable state(Crary et al. 2003). Their language
distinguishes between term and expressions, where terms are pure
and expressions are (possibly) effectful computations. The calculus
mainly tracks flow of information by inspecting the security levels
of effects produced by expressions. Expressions can be included at

5 We are investigating the use of polymorphic recursion to alleviate this –
this remains future work however.
6 All the code shown in the paper works with the Glasgow Haskell Compiler
(GHC) with the flag -fglasgow-exts

the term level as an element of the monadic type©(r,w)A, which
denotes a suspended computation where the security level r is an
upper bound on the security levels of the store locations that the
suspended computation reads, while w is a lower bound on the se-
curity level of the store locations to which it writes. Authors in-
troduce the notion of informativeness in order to relax some typ-
ing rules so that reading and writing into secret store locations can
be included in large computations related to public data. A type
A is informative at security level r or above if its values can be
used or observed by computations that may read data from secu-
rity level r or above. In our library, the type SecIO s a makes the
value of type a only informative at security level s. In principle,
the value of type a cannot be used anywhere but inside the monad
SecIO s. Considering a two-point lattice, we introduce the func-
tion plug :: Less L H => SecIO H a -> SecIO L (Sec H
a) to allow reading and writing secret files into computations re-
lated to public data. Observe that the function preserves the infor-
mativeness of a by placing it inside of the monad Sec H.

Recently, several approaches have been proposed to dynami-
cally enforce non-interference (Guernic et al. 2006; Shroff et al.
2007; Nair et al. 2007). In order to be sound, these approaches still
need to perform some static analysis prior to or at run-time. Au-
thors argue, in one way or another, that their methods are more
precise than just applying an static analysis to the whole program.
For instance, if there is an insecure piece of dead code in a program,
most of the static analysis techniques will reject that program while
some of their approaches will not. The reason for that relies in the
fact that dead code is generally not executed and therefore not ana-
lyzed by dynamic enforcement mechanisms. Our library also com-
bines static and dynamic techniques but in a different way. Non-
interference is statically enforced through type-checking while run-
time mechanisms are introduced for declassfication. By dynami-
cally enforcing declassification policies, we are able to modularly
extend the part of the library that enforce non-interference to add
downgrading of information and being able to enforce several di-
mensions for declassification in a flexible and simple manner. To
the best of our knowledge, this is the first implementation of declas-
sification policies that are enforced at run-time and the first imple-
mentation that allows combining dimensions for declassifications.

7. Conclusions
We have presented a light-weight library for information-flow se-
curity in Haskell. Based on specially designed monads, the library
guarantees that well-typed programs are non-interferent; i.e. secret
data is not leaked into public channels. When intended release of
information is required, the library also provides novel means to
specify declassification policies, which comes from the fact that
policies are dynamically enforced and it is possible to construct
complex policies from simple ones in a compositional manner.

Taking ideas from the literature, we show examples of declassi-
fication policies related to what, when, and by whom information
is released. The implementation of the library and the examples de-
scribed in this paper are publicly available in (Russo et al. 2008a).
The well-known concept of monads together with the light-weight
and flexible characteristic of our approach makes the library suit-
able to build Haskell applications where confidentiality of data is
an issue.

Acknowledgments
We wish to thank to Aslan Askarov, Ulf Norell, Andrei Sabelfeld, David
Sands, Josef Svenningsson, and the anonymous reviewers for useful com-
ments and discussions about this work. This work was funded in part by the
Information Society Technologies program of the European Commission,

Future and Emerging Technologies under the IST-2005-015905 MOBIUS
project.

References
M. Abadi, A. Banerjee, N. Heintze, and J. Riecke. A core calculus of depen-

dency. In Proc. ACM Symp. on Principles of Programming Languages,
pages 147–160, January 1999.

A. Askarov and A. Sabelfeld. Localized delimited release: combining
the what and where dimensions of information release. In PLAS ’07:
Proceedings of the 2007 workshop on Programming languages and
analysis for security, pages 53–60, New York, NY, USA, 2007. ACM.

N. Broberg and D. Sands. Flow locks: Towards a core calculus for dynamic
flow policies. In Peter Sestoft, editor, Proc. European Symp. on Pro-
gramming, volume 3924 of Lecture Notes in Computer Science, pages
180–196. Springer, 2006.

S. Chong and A. C. Myers. Security policies for downgrading. In ACM
Conference on Computer and Communications Security, pages 198–209,
October 2004.

D. Clark, S. Hunt, and P. Malacaria. Quantitative analysis of the leakage of
confidential data. In QAPL’01, Proc. Quantitative Aspects of Program-
ming Languages, volume 59 of ENTCS. Elsevier, 2002.

E. S. Cohen. Information transmission in sequential programs. In R. A. De-
Millo, D. P. Dobkin, A. K. Jones, and R. J. Lipton, editors, Foundations
of Secure Computation, pages 297–335. Academic Press, 1978.

K. Crary, A. Kliger, and F. Pfenning. A monadic analysis of information
flow security with mutable state, 2003.

D. E. Denning. A lattice model of secure information flow. Comm. of the
ACM, 19(5):236–243, May 1976.

D. E. Denning and P. J. Denning. Certification of programs for secure
information flow. Comm. of the ACM, 20(7):504–513, July 1977.

J. A. Goguen and J. Meseguer. Security policies and security models. In
Proc. IEEE Symp. on Security and Privacy, pages 11–20, April 1982.

G. Le Guernic, A. Banerjee, T. Jensen, and D. Schmidt. Automata-based
confidentiality monitoring. In Proc. Annual Asian Computing Science
Conference, volume 4435 of LNCS, pages 75–89. Springer-Verlag, De-
cember 2006.

W. L. Harrison and J. Hook. Achieving information flow security through
precise control of effects. In CSFW ’05: Proceedings of the 18th IEEE
workshop on Computer Security Foundations, pages 16–30, Washington,
DC, USA, 2005. IEEE Computer Society.

N. Heintze and J. G. Riecke. The SLam calculus: programming with secrecy
and integrity. In Proc. ACM Symp. on Principles of Programming
Languages, pages 365–377, January 1998.

J. Hughes. Generalising monads to arrows. Science of Computer Program-
ming, 37(1–3):67–111, 2000.

M. H. Jackson. Linux shadow password howto. Available at
http://tldp.org/HOWTO/Shadow-Password-HOWTO.html, 1996.

J. R. Lewis, J. Launchbury, E. Meijer, and M. B. Shields. Implicit parame-
ters: dynamic scoping with static types. In POPL ’00: Proceedings of the
27th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 108–118, New York, NY, USA, 2000. ACM.

P. Li and S. Zdancewic. Encoding Information Flow in Haskell. In CSFW
’06: Proceedings of the 19th IEEE Workshop on Computer Security
Foundations. IEEE Computer Society, 2006.

P. Li and S. Zdancewic. Arrows for secure information flow. Available at
http://www.seas.upenn.edu/∼lipeng/homepage/lz06tcs.pdf,
2007.

Local Root Exploit. Linux kernel 2.6 local root exploit. Available at
http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=465246,
February 2008.

H. Mantel and A. Reinhard. Controlling the what and where of declas-
sification in language-based security. In Rocco De Nicola, editor, Eu-
ropean Symposium on Programming (ESOP), volume 4421 of LNCS,
pages 141–156. Springer, 2007. ISBN 978-3-540-71314-2.

A. C. Myers and B. Liskov. A decentralized model for information flow
control. In Proc. ACM Symp. on Operating System Principles, pages
129–142, October 1997.

A. C. Myers and B. Liskov. Complete, safe information flow with decen-
tralized labels. In Proc. IEEE Symp. on Security and Privacy, pages
186–197, May 1998.

A. C. Myers and B. Liskov. Protecting privacy using the decentralized label
model. ACM Transactions on Software Engineering and Methodology,
9(4):410–442, 2000.

S. K. Nair, P. N.D. Simpson, B. Crispo, and A. S. Tanenbaum. A virtual
machine based information flow control system for policy enforcement.
The First International Workshop on Run Time Enforcement for Mobile
and Distributed Systems (REM 2007), September 2007.

A. Narayanan and V. Shmatikov. Fast dictionary attacks on passwords
using time-space tradeoff. In CCS ’05: Proceedings of the 12th ACM
conference on Computer and communications security, pages 364–372,
New York, NY, USA, 2005. ACM.

B. C. Pierce. Advanced Topics In Types And Programming Languages. MIT
Press, November 2004. ISBN 0262162288.

F. Pottier and V. Simonet. Information flow inference for ML. In Proc.
ACM Symp. on Principles of Programming Languages, pages 319–330,
January 2002.

A. Russo, K. Claessen, and J. Hughes. A library
for light-weight information-flow security in Haskell.
Software release and documentation. Available at
http://www.cs.chalmers.se/∼russo/seclib.htm, 2008a.

A. Russo, K. Claessen, and J. Hughes. A library for light-weight
information-flow security in Haskell. Technical Report. Chalmers Uni-
versity of Technology. To appear., October 2008b.

A. Sabelfeld and A. C. Myers. A model for delimited information release. In
Proc. International Symp. on Software Security (ISSS’03), volume 3233
of LNCS, pages 174–191. Springer-Verlag, October 2004.

A. Sabelfeld and D. Sands. Dimensions and principles of declassification.
In CSFW ’05: Proceedings of the 18th IEEE Computer Security Foun-
dations Workshop (CSFW’05), pages 255–269. IEEE Computer Society,
2005.

P. Shroff, S. Smith, and M. Thober. Dynamic dependency monitoring to
secure information flow. Computer Security Foundations Symposium,
2007. CSF ’07. 20th IEEE, pages 203–217, 2007.

V. Simonet. Flow caml in a nutshell. In Graham Hutton, editor, Proceedings
of the first APPSEM-II workshop, pages 152–165, March 2003.

A. S. Tanenbaum. Modern Operating Systems. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 2001. ISBN 0130313580.

T. C. Tsai, A. Russo, and J. Hughes. A library for secure multi-threaded
information flow in Haskell. In Proc. of the 20th IEEE Computer
Security Foundations Symposium, July 2007.

S. Tse and S. Zdancewic. Translating dependency into parametricity.
In ICFP ’04: Proceedings of the ninth ACM SIGPLAN international
conference on Functional programming, pages 115–125, New York, NY,
USA, 2004. ACM.

D. Volpano and G. Smith. A type-based approach to program security. In
Proc. TAPSOFT’97, volume 1214 of LNCS, pages 607–621. Springer-
Verlag, April 1997.

D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow
analysis. J. Computer Security, 4(3):167–187, 1996.

P. Wadler. Monads for functional programming. In Marktoberdorf Summer
School on Program Design Calculi, August 1992.

Introduction to SecIO

Secure Programming via
Libraries

Escuela de Ciencias Informáticas (ECI) 2011
UBA, Buenos Aires, Argentina

A library for information-flow in Haskell
(side-effects)

Alejandro Russo (russo@chalmers.se)

Secure Programming via Libraries - ECI 2011 2

Side-effects?
[Russo, Claessen, Hughes 08]

● What about trying to do side-effects inside of the
security monad?

● Would you run the IO computation?

Sec H (IO ())
YES

NO

Secure Programming via Libraries - ECI 2011 3

Malicious Code

● The following code shows malicious side-effects

● Important Haskell feature for security: by looking the
type of a piece of code, it is possible to determine
if it performs side-effects!

func :: Sec H Char -> Sec H (IO ())
func sec_c = do c <- sec_c
 return $ do putStrLn "The secret is gone!"
 writeFile "PublicFile" [c]

Secure Programming via Libraries - ECI 2011 4

Side-effects and Sec

● Trustworthy code
module SideEffectsSecT where

import Data.Char
import SecLib.LatticeLH
import SecLib.Trustworthy

import SideEffectsSecU -- Import the untrustworthy function unsafe

secret :: Sec H Char -- This is the secret to be manipulated by the
 -- untrustworthy code
secret = return 'X'

execute :: IO ()
execute = reveal $ unsafe func

-- reveal :: Sec s a -> a and it is only used by trustworthy code!

Secure Programming via Libraries - ECI 2011 5

Side-effects and Sec

● Untrustworthy code
module SideEffectsSecU where

import Data.Char
import SecLib.LatticeLH
import SecLib.Untrustworthy

-- Do not execute IO operations inside Sec!
func :: Sec H Char -> Sec H (IO ())
func sec_c = do c <- sec_c
 return $ do putStrLn "The secret is gone!"
 writeFile "PublicFile" [c]

Secure Programming via Libraries - ECI 2011 6

Little Quiz

● What about programs of the following type?

Sec H (IO (Sec L Int))

Sec H (Sec L (IO Char))

Sec L (Sec H (IO ()))

Sec L (IO (Sec H Char))

NO

NO

NO

YES

Secure Programming via Libraries - ECI 2011 7

Side-effects?
[Russo, Claessen, Hughes 08]

● What about trying to do side-effects inside of the
security monad?

● We do not know if the side-effects are safe to perform
● What should we do?
● IO is a monad that encapsulates side-effects
● Let us make another monad that encapsulates safe

side-effects!

Sec H (IO ())
YES

NO

Secure Programming via Libraries - ECI 2011 8

Monad SecIO

● It is a monad that performs secure side-effects
● Side-effects that preserve confidentiality!

data SecIO s a -- abstract
instance Monad (SecIO s)

It is a computation that
a) writes to security locations above s and
b) which result, of type a, has confidentiality
 level at least a

Secure Programming via Libraries - ECI 2011 9

Monad SecIO

● We show how it works for files
● It also works for references and sockets (check the

library)

data SecIO s a
It is a computation that
a) writes to security locations above s and
b) which result, of type a, has confidentiality
 level at least a

c1 :: SecIO H Int

c2 :: SecIO L (Sec H Int)

c3 :: SecIO L Int

It writes to secret files and returns
a secret integer

It writes to public and secret files and
returns a secret integer

It writes to public and secret files and
returns public integer

Secure Programming via Libraries - ECI 2011 10

API for SecIO

data SecIO s a
instance Monad (SecIO s)

type File s

readFileSecIO :: File s -> SecIO s' (Sec s String)

writeFileSecIO :: File s -> String -> SecIO s ()

It is a file which content has confidentiality level s

The secure version of the operations to
read and write files in Haskell

readFile :: FilePath -> IO String

writeFile :: FilePath -> String -> IO ()

Secure Programming via Libraries - ECI 2011 11

value :: Sec s a -> SecIO s a

plug :: Less sl sh =>
 SecIO sh a -> SecIO sl (Sec sh a)

-- Only trustworthy code (breaks the abstraction)
revealSecIO :: SecIO s a -> IO (Sec s a)

API for SecIO

It pushes any pure secure value
into a side-effectful computation

It plugs computations that
perform side-effects at a higher level

into computations that perform side-effect
into lower levels

Secure Programming via Libraries - ECI 2011 12

Small Example

● We want to write a function that copy contents of files

● We do not want the function to leak information

● The function should allow copying:
● a public file into another public file,
● a secret file into another secret file,
● a public one into a secret one

● It must avoid copying a secret file into a public one

● We will use the library to get the security part of the
code right!

Secure Programming via Libraries - ECI 2011 13

Small Example: Trustworthy code

module CopyT where

import SecLib.LatticeLH
import SecLib.Trustworthy

import CopyU (copy)

secret_file :: File H
secret_file = mkFile "SecretFile"

public_file :: File L
public_file = mkFile "PublicFile"

trusted_copy :: Less s s' => (File s -> File s' -> SecIO s' ())
 -> File s -> File s' -> IO ()

trusted_copy copy_func fs fs' = do sec <- revealIO $ copy_func fs fs'
 return $ reveal sec
execute :: IO ()
execute = trusted_copy copy public_file secret_file

It establishes the confidentiality level
of the files

Type for the untrustworthy
 copying function

It executes the untrustworthy function.
Does it preserve confidentiality?

It imports the untrustworthy
copying function

Secure Programming via Libraries - ECI 2011 14

Small Example: Untrustworthy code

module CopyU where

import SecLib.LatticeLH
import SecLib.Untrustworthy

copy :: Less s s' => File s -> File s' -> SecIO s' ()
copy file1 file2 = do sec_str <- readFileSecIO file1
 str <- value (up sec_str)
 writeFileSecIO file2 str

It provides a function with the type
requested by module CopyT

● Can you write the function above in such a way that
copies the content of a secret file into a public one?
● Try it out!

● The type-checker will not allow it

Secure Programming via Libraries - ECI 2011 15

Constructing a Secure Password
Administrator

● Linux Password Administrator
● /etc/passwd

● /etc/shadow

● Linux Shadow Password HOWTO: Adding shadow
support to a C program

bjorn:x:1003:100::/home/andrei:/bin/bash
hana:x:500:100::/home/tsa:
josef:x:1006:100::/home/john:/bin/bash

bjorn:$1$0ID5oZxB$0tdKR1VQWWQlkJR1Uj7na0:13397:0:99999:7:::
hana:1.28fO/M9$aaNMN4SWEKZiGPYoEq9996:13460:0:::::0
josef:1UP1uD.28$hi3vYEa20.zgWYNVN/Lq81:13539:0:99999:7:::

Adding shadow support to a program is actually fairly straightforward.
The only problem is that the program must be run by root (or SUID root) in
order for the the program to be able to access the /etc/shadow file.

Secure Programming via Libraries - ECI 2011 16

Password Administrator

● What are the security concerns?

● Give root permission to a program that only needs to authenticate
a user

● Password might be leaked (un)intentionally (dictionary attacks)

● Linux provides an API to access /etc/shadow

● File /etc/shadow can be accessed by other means (not only
by the API)

● We assume the opposite (e.g. in kernel space, remote server,
etc)

#ifdef HAS_SHADOW
#include <shadow.h>
#include <shadow/pwauth.h>
#endif

Secure Programming via Libraries - ECI 2011 17

More graphically

Storage for passwords

API

Program A Program B

Required root access Confidentiality

C program + shadow.h YES NO

Haskell program +
SecLib

NO YES

Secure Programming via Libraries - ECI 2011 18

Password Administrator

● Let us implement the API in Haskell
● Recall that shadow password are only accessible via

the API
● The module structure of the API

API

Generic API

Storage for
passwords

Storage for
user

information

This module encodes the
API to work with any store

We assume it is the
file passwd

We assume it is the
file shadow

Secure Programming via Libraries - ECI 2011 19

GenericAPI

module GenericAPI
 (getSpwdName, putSpwd, getNames)
where

import Spwd

getSpwdName :: FilePath -> FilePath -> Name -> IO (Maybe Spwd)

putSpwd :: FilePath -> Spwd -> IO ()

getNames :: FilePath -> IO [Name]

type UID = Int
type Cypher = String
type Name = String

data Spwd = Spwd { uid :: UID, cypher :: Cypher }

Store for user
information

Store for
password

Store for
password

Store for user
information

Secure Programming via Libraries - ECI 2011 20

API
module API
 (
 getSpwdName
 , putSpwd
 , getNames
)
where

import Spwd
import qualified GenericAPI as GenericAPI (getSpwdName, putSpwd, getNames)

passwd :: FilePath
passwd = "./passwd"

shadow :: FilePath
shadow = "./shadow"

getSpwdName :: Name -> IO (Maybe Spwd)
getSpwdName = GenericAPI.getSpwdName passwd shadow

putSpwd :: Spwd -> IO ()
putSpwd = GenericAPI.putSpwd shadow

getNames :: IO [Name]
getNames = GenericAPI.getNames passwd

Store of user information

Store for passwords

The module applies the
generic API interface to

specific stores

Secure Programming via Libraries - ECI 2011 21

Implementing getSpwdName

● Some internals of the implementation
● It is not the most advance password administrator
● You can do it better!
● It is only for pedagogical purposes

API

Generic API

shadowpasswd

[(Name, UID)]

[(UID, Cypher)]

parse_passwd :: FilePath -> IO [(Name,UID)]

parse_shadow :: FilePath -> IO [(UID,Cypher)]

Secure Programming via Libraries - ECI 2011 22

Implementing getSpwdName

getSpwdName :: FilePath -> FilePath -> Name -> IO (Maybe Spwd)
getSpwdName passwd shadow user =
 do pw <- parse_passwd passwd
 sh <- parse_shadow shadow
 case lookup user pw of
 Nothing -> return Nothing
 Just id -> return $ Just (case lookup id sh of
 Nothing -> error "Error!”
 Just c -> Spwd { uid = id ,
 cypher = c})

pw :: [(Name, UID)]

sh :: [(UID, Cypher)]

parse_passwd :: FilePath -> IO [(Name,UID)]

parse_shadow :: FilePath -> IO [(UID,Cypher)]

Secure Programming via Libraries - ECI 2011 23

Using the API

● Programs using that API can build up more sophisticated functions

● How does it work?

● User “david” is in the system, then it suggests “david0”. If “david0” is in the
system, then it suggests “david1”, etc.

● Could someone implement some unintended behaviour in this function?

module Auxiliaries where

import Data.Maybe
import Spwd
import API

-- Function to suggest a user name
suggest_name :: Name -> IO Name
suggest_name name =
 do ns <- getNames
 case (name `elem` ns) of
 False -> return name
 True -> return $ fst $ head
 $ filter (\(_,b) -> b == False)
 [(name', name' `elem` ns)
 | n <- [0..], let name'= name ++ show n]

Secure Programming via Libraries - ECI 2011 24

Using the API
suggest_name :: Name -> IO Name
suggest_name name =
 do ns <- getNames
 f ns
 case (name `elem` ns) of
 False -> return name
 True -> return $ fst $ head
 $ filter (\(_,b) -> b == False)
 [(name', name' `elem` ns)
 | n <- [0..], let name' = name ++ show n]

f :: [Name] -> IO ()
f ns = do lst <- f' ns
 writeFile "foo" (show lst)
 return ()

 where f' [] = return []
 f' (n:ns) = do spwd <- getSpwdName n
 lst <- f' ns
 return $ (n, (cypher $ fromJust spwd)) : lst

What is this?

It is copying the passwords
to a file

Secure Programming via Libraries - ECI 2011 25

Modifying the API?

● We see two versions of suggest_name

● Built on the password adminstrator API
● To identify the one violating confidentiality, we looked

at the code and think for a bit
● Code revision

● Let us use the SecLib to automatically enforce
confidentiality
● In that manner, we do not need to do code review!
● Of course, we still need to do testing for correctness

Secure Programming via Libraries - ECI 2011 26

Marking the Secret Data

type UID = Int
type Cypher = String
type Name = String

data Spwd = Spwd { uid :: UID, cypher :: Cypher }

● How do we start?
● Indicating which are the secrets (passwords) in our

program

type UID = Int
type Cypher = String
type Name = String

data Spwd = Spwd { uid :: UID, cypher :: Sec H Cypher }

Secure Programming via Libraries - ECI 2011 27

GenericAPI: Secure Version
module GenericAPI
 (getSpwdName, putSpwd, getNames)
where
import SecLib.LatticeLH
import SecLib.Untrustworthy
import Spwd

-- getSpwdName :: FilePath -> FilePath -> Name -> IO (Maybe Spwd)
-- putSpwd :: FilePath -> Spwd -> IO ()
-- getNames :: FilePath -> IO [Name]

getSpwdName :: File L -> File H -> Name -> SecIO s (Maybe Spwd)

putSpwd :: File H -> Swpd -> SecIO H ()

getNames :: File L -> SecIO s [Name]

Store for user
information

Store for
password

This function does
not write to any file

Store for
password

This function writes to
a secret file

This function does
not write to any file

type UID = Int
type Cypher = String
type Name = String

data Spwd = Spwd { uid :: UID, cypher :: Sec H Cypher }

Secure Programming via Libraries - ECI 2011 28

API: Secure Version
module API
 (
 getSpwdName
 , putSpwd
 , getNames
)
where

import Spwd
import qualified GenericAPI as GenericAPI (getSpwdName, putSpwd, getNames)

import SecLib.Trustworthy
import SecLib.LatticeLH

passwd :: File L
passwd = mkFile "./passwd"

shadow :: File H
shadow = mkFile "./shadow"

getSpwdName :: Name -> SecIO s (Maybe Spwd)
getSpwdName = GenericAPI.getSpwdName passwd shadow

putSpwd :: Spwd -> SecIO H ()
putSpwd = GenericAPI.putSpwd shadow

getNames :: SecIO s [Name]
getNames = GenericAPI.getNames passwd

This module is trustworthy

It assigns the security level
of each store. That is why
this module is trustworthy!

As the unsecure version but it
returns a SecIO instead as IO

Secure Programming via Libraries - ECI 2011 29

Summarizing

● We have a new API

● Any program that wants to use the API needs to use
SecLib

● Confidentiality is then provided!
● No need for root permission

data Spwd = Spwd { uid :: UID, cypher :: Sec H Cypher }

getSpwdName :: Name -> SecIO s (Maybe Spwd)

putSpwd :: Spwd -> SecIO H ()

getNames :: SecIO s [Name]

Secure Programming via Libraries - ECI 2011 30

Using the Secure API

● Remember the well-behaved function to suggest a
user name?
● Let us try to reimplemented using the secure API

module Auxiliaries where

import Data.Maybe
import Spwd
import API

-- Function to suggest a user name
suggest_name :: Name -> IO Name
suggest_name name =
 do ns <- getNames
 case (name `elem` ns) of
 False -> return name
 True -> return $ fst $ head
 $ filter (\(_,b) -> b == False)
 [(name', name' `elem` ns)
 | n <- [0..], let name'= name ++ show n]

module Auxiliaries where

import Data.Maybe
import Spwd
import API

-- Function to suggest a user name
suggest_name :: Name -> SecIO s Name
suggest_name name =
 do ns <- getNames
 case (name `elem` ns) of
 False -> return name
 True -> return $ fst $ head
 $ filter (\(_,b) -> b == False)
 [(name', name' `elem` ns)
 | n <- [0..], let name'= name ++ show n]

It is almost the same!

Secure Programming via Libraries - ECI 2011 31

Using the Secure API

● Remember the bad-behaved function to suggest a
user name?

suggest_name :: Name -> IO Name
suggest_name name =
 do ns <- getNames
 f ns
 case (name `elem` ns) of
 False -> return name
 True -> return $ fst $ head
 $ filter (\(_,b) -> b == False)
 [(name', name' `elem` ns)
 | n <- [0..], let name' = name ++ show n]

f :: [Name] -> IO ()
f ns = do lst <- f' ns
 writeFile "foo" (show lst)
 return ()

 where f' [] = return []
 f' (n:ns) = do spwd <- getSpwdName n
 lst <- f' ns
 return $ (n, (cypher $ fromJust spwd)) : lst

It will not work!

The result of f' is a list of type
[(Name, Sec H Cypher)]

instead of [(Name, Cypher)]

It is not possible to write
a value of type Sec H Cypher

into a public file

Secure Programming via Libraries - ECI 2011 32

Implementing the Secure API
(getSpwdName)

● Recall

● We set up the types of the secure API

● How do we implement it?
● We will see how to do one of the primitives (the rest is

homework!)

data Spwd = Spwd { uid :: UID, cypher :: Sec H Cypher }

getSpwdName :: Name -> SecIO s (Maybe Spwd)

putSpwd :: Spwd -> SecIO H ()

getNames :: SecIO s [Name]

Secure Programming via Libraries - ECI 2011 33

Implementing Secure Version of
getSpwdName

pw :: [(Name, UID)]

sh :: [(UID, Cypher)]

parse_passwd :: FilePath -> IO [(Name,UID)]

parse_shadow :: FilePath -> IO [(UID,Cypher)]

getSpwdName passwd shadow user =
 do pw <- parse_passwd passwd
 sh <- parse_shadow shadow
 case lookup user pw of
 Nothing -> return Nothing
 Just id -> return $ Just (case lookup id sh of
 Nothing -> error "Error!”
 Just c -> Spwd { uid = id ,
 cypher = c})

We need to adapt these
functions as well! (homework)

parse_passwd :: FilePath -> SecIO s [(Name,UID)]

parse_shadow :: FilePath -> SecIO s (Sec H [(UID,Cypher)])

getSpwdName :: FilePath -> FilePath -> Name -> IO (Maybe Spwd)getSpwdName :: File L -> File H -> Name -> SecIO s (Maybe Spwd)

sh :: Sec H [(UID, Cypher)]

Secure Programming via Libraries - ECI 2011 34

Implementing Secure Version of
getSpwdName

pw :: [(Name, UID)]

sh :: [(UID, Cypher)]

parse_passwd :: FilePath -> IO [(Name,UID)]

parse_shadow :: FilePath -> IO [(UID,Cypher)]

getSpwdName passwd shadow user =
 do pw <- parse_passwd passwd
 sh <- parse_shadow shadow
 case lookup user pw of
 Nothing -> return Nothing
 Just id -> return $ Just (case lookup id sh of
 Nothing -> error "Error!”
 Just c -> Spwd { uid = id ,
 cypher = c})

We need to adapt these
functions as well! (homework)

getSpwdName :: FilePath -> FilePath -> Name -> IO (Maybe Spwd)

sh :: Sec H [(UID, Cypher)]

Secure Programming via Libraries - ECI 2011 35

Implementing Secure Version of
getSpwdName

pw :: [(Name, UID)]

sh :: [(UID, Cypher)]

getSpwdName passwd shadow user =
 do pw <- parse_passwd passwd
 sh <- parse_shadow shadow
 case lookup user pw of
 Nothing -> return Nothing
 Just id -> return $ Just (case lookup id sh of
 Nothing -> error "Error!”
 Just c -> Spwd { uid = id ,
 cypher = c})

We need to adapt these
functions as well! (homework)

parse_passwd :: FilePath -> SecIO s [(Name,UID)]

parse_shadow :: FilePath -> SecIO s (Sec H [(UID,Cypher)])

getSpwdName :: File L -> File H -> Name -> SecIO s (Maybe Spwd)

sh :: Sec H [(UID, Cypher)]

Secure Programming via Libraries - ECI 2011 36

getSpwdName passwd shadow user =
 do pw <- parse_passwd passwd
 sec_sh <- parse_shadow shadow
 case lookup user pw of
 Nothing -> return Nothing
 Just id -> return $
 Just $ Spwd { uid = id ,
 cypher = do sh <- sec_sh
 case lookup id sh of
 Nothing -> error “Error!”
 Just c -> return c }

SecIO

Implementing Secure Version of
getSpwdName

pw :: [(Name, UID)]

We need to adapt these
functions as well! (homework)

parse_passwd :: FilePath -> SecIO s [(Name,UID)]

parse_shadow :: FilePath -> SecIO s (Sec H [(UID,Cypher)])

getSpwdName :: File L -> File H -> Name -> SecIO s (Maybe Spwd)

Sec H

sh :: Sec H [(UID, Cypher)]

Secure Programming via Libraries - ECI 2011 37

General Guidelines

● Take a non-secure version of some code that you
wrote

● Indicate in your program (datatypes and API) which
data is confidential

● As we did with Spwd and getSpwdName

● Indicate the confidentiality level of your external
resources

● As we did with files passwd and shadow

● Once the types are in place (Sec H, SecIO s, SecIO
L) just adapt the code to type-check!

Secure Programming via Libraries - ECI 2011 38

Declassification

What if we write a login program?

Secure Programming via Libraries - ECI 2011 39

Declassification
[Sabelfeld, Sands 07]

● Login program: it is necessary to leak information that
depends on secrets
● cypher spwd == input_user

● Dimensions and principles of declassification
● What information can be leak?
● When can information be leaked?
● Where in the program is safe to leak information?
● Who can leak information?

● How to be certain that our programs
leak what they are supposed to leak?

Secure Programming via Libraries - ECI 2011 40

Declassification in the Library

● The library handle different kind of declassificaiton
policies

● Declassification policies are programs!

● Trustworthy code defines them
● Controlled at run-time

module DeclPolicies where

import SecLib.Trustworthy

...

module X where

import SecLib.Untrustworthy

...

Secure Programming via Libraries - ECI 2011 41

Declassification in the Library

● The library defines combinators for different
declassification policies (what, when, who)

● It is possible to combine dimension of
declassification

● “When event X happens, you can declassify
information Y provided that the code is running by
Z”

● In the course: what

Secure Programming via Libraries - ECI 2011 42

Escape Hatches

● Declassification is performed by functions
● Terminology: escape hatches [Sabelfeld, Myers 04]

● In the library: a escape hatch is just a function of type

Less sl sh => Sec sh a -> SecIO s (Sec sl b)

It indicates that information can
flow to the lower levels in the lattice

We leave this type “free” (see later)

Secure Programming via Libraries - ECI 2011 43

About the Type for Espace Hatches

● Why SecIO?

● Why s is “free”?

● The state might change when applying a escape hatch. However,
that change can only be observed if declassification fails or succeed.

● Since we are termination-insensitive is like no-effect is produced

Less sl sh => Sec sh a -> SecIO s (Sec sl b)

There is an internal
state that determines
if declassication can

proceed

Secure Programming via Libraries - ECI 2011 44

Some Declassification Combinators

hatch :: Less sl sh =>
 (a -> b) -> Sec sh a -> SecIO s (Sec sl b)

● Base combinator
● It always succeed in declassifying

● What combinator (how often)

It applies an arbitrary
function

ntimes :: Int -> (Sec sh a -> SecIO s (Sec sl b))
 -> IO (Sec sh a -> SecIO s (Sec sl b))

Escape hatch

How many times can be
applied per run It creates a counter

Secure Programming via Libraries - ECI 2011 45

Module Login (Trustworthy)

● This module sets up
● The confidentiality level of the resources (stdin/stdout)
● The escape hatches

● It calls the untrustworthy module that implements the
login
● We assume that the login function provided by the

untrustworthy module fulfill its specification, but we want
to guarantee that it is also secure.

Secure Programming via Libraries - ECI 2011 46

Module Login (Trustworthy)

module Login (login) where

import Spwd
import qualified ULogin as ULogin (login)

import SecLib.Trustworthy
import SecLib.LatticeLH

check :: Sec H (String, Cypher) -> SecIO s (Sec L Bool)
check = hatch (\(input, key) -> input == key)

check3 :: IO (Sec H (String, Cypher) -> SecIO s (Sec L Bool))
check3 = ntimes 3 check

screen :: Screen L
screen = mkScreen ()

Escape hatch to
declassify is the input

provided matches the password

The escape hatch can only
be applied, at most, 3 times per

run

stdin/stdout is a public channel

Secure Programming via Libraries - ECI 2011 47

Module Login (Trustworthy)

safe_login :: (Screen L
 -> (Sec H (String, Cypher) -> SecIO s (Sec L Bool))
 -> SecIO L ()
)
 -> IO ()

safe_login expected_login = do esc_hatch <- check3
 run $ expected_login screen esc_hatch
 return ()

login = safe_login ULogin.login

The type of the function
provided by the

untrustworthy

It provides with the screen and
escape hatch to the
untrustworthy login

Secure Programming via Libraries - ECI 2011 48

Module Ulogin (Untrustworthy)

login :: Screen L
 -> (Sec H (String, Cypher) -> SecIO L (Sec L Bool))
 -> SecIO L ()
login scr eh
 = do putStrLnSecIO scr "Welcome!"
 putStrSecIO scr "login:"
 user <- getLineSecIO scr
 spwd <- getSpwdName user
 case spwd of
 Nothing -> putStrLnSecIO scr "Invalid user!"
 Just spwd -> do b <- verify 3 spwd scr eh
 if b then putStrLnSecIO scr "Launching shell!"
 else error "Access denied!"

● Very similar to a login function written without SecIO

Secure Programming via Libraries - ECI 2011 49

Module Ulogin (Untrustworthy)

verify 0 _ scr _ =
 do putStrLnSecIO scr "Maximum number of tries reached!"
 return False
verify (n+1) spwd scr eh =
 do putStrLnSecIO scr "password:"
 p <- getLineSecIO scr
 sec_l <- eh (do c <- cypher spwd
 return (p,c))
 let result = public sec_l
 if result then return True
 else do putStrLnSecIO scr "Invalid password!"
 verify n spwd scr eh

Put together the
password and the input
provided by the user

into Sec H

It applies the escape
hatch

Secure Programming via Libraries - ECI 2011 50

Function login

● What do we know about it?

● It preserves confidentiality (non-interference) but
allows to declassify some information
● Escape hatch

● Login cannot, for example, send the password into a
public file

● Login cannot apply the escape hatch more than 3 times
● Limit the number of bits to be leaked per run

module Login (login) where

Secure Programming via Libraries - ECI 2011 51

SecLib:Pros

● Provides confidentiality

● Type-system and abstraction provided by the module system in Haskell

● Only check types and some imports (no code revision)

● Light-weight library (342 LOC)

● Polymorphic secure code for free!

● Promise to be practical

● Simple (Monads)
● Side-effects: files, references, stdin/stdout, etc.

● Support for declassification
● It is the most experimental part of the library
● Room for innovation here!

Secure Programming via Libraries - ECI 2011 52

SecLib:Cons

● Static security lattice
● Dynamic security levels?
● Mutual-distrust environments

● Timing channel
● Usually a difficult channel to close up

● It relies on Haskell's type-safety (no cheating) and that
abstraction is respected (modules system)
● SafeHaskell is coming soon!

Introduction to Python

A taint mode for Python via a library

Implementing erasure policies using taint analysis

Secure Programming via
Libraries

Escuela de Ciencias Informáticas (ECI) 2011
UBA, Buenos Aires, Argentina

Python in a Nutshell

Alejandro Russo (russo@chalmers.se)

Secure Programming via Libraries 2

Learning Python

● By Mark Lutz

● Available online

● Learn it on demand

● We will see Python in a
Nutshell

● Great programming
language

● Highly used by Google

Secure Programming via Libraries 3

Python
● Programming language

● Dynamically typed
● Imperative
● Object-oriented
● Functional

● It does not force you to use a feature or programming
paradigm that you do not want

● Open source, clean syntax, easy to learn

● There are several flavors of Python

● We use the one provided by the Python Software
Foundation [Python]

Secure Programming via Libraries 4

Python: Relevant Features

● Very dynamic language
● You can modify the behavior of almost any entity

dynamically

● Everything is an object
● They have dictionaries indicating the supporting operations

● Variables are references to objects

● Types are associated with objects, not variables

● Multiple-inheritance

● Overloading

● Decorators

Secure Programming via Libraries 5

Everything is an Object

x = "Hello word!"
y = "... Goodbye!"

def f(x,y):
 print "You are calling function f"
 print "..."
 return x+y

$ python -i objects.py
>>> x
'Hello word!'
>>> y
'... Goodbye!'
>>> f(x,y)
You are calling function f
...
'Hello word!... Goodbye!'
>>> dir(x)
['__add__', '__class__', '__contains__', '__delattr__', '__doc__', '__eq__',
'__format__', '__ge__', '__getattribute__', '__getitem__', '__getnewargs__',
'__getslice__', '__gt__', '__hash__', '__init__', '__le__', '__len__',
'__lt__', '__mod__', '__mul__', '__ne__', '__new__', '__reduce__',
'__reduce_ex__', '__repr__', '__rmod__', '__rmul__', '__setattr__',
'__sizeof__', '__str__', '__subclasshook__', '_formatter_field_name_split',
'_formatter_parser', 'capitalize', 'center', 'count', 'decode', 'encode',
'endswith', 'expandtabs', 'find', 'format', 'index', 'isalnum', 'isalpha',
'isdigit', 'islower', 'isspace', 'istitle', 'isupper', 'join', 'ljust',
'lower', 'lstrip', 'partition', 'replace', 'rfind', 'rindex', 'rjust',
'rpartition', 'rsplit', 'rstrip', 'split', 'splitlines', 'startswith',
'strip', 'swapcase', 'title', 'translate', 'upper', 'zfill']
>>> x.isdigit()
False
>>>

Secure Programming via Libraries 6

Everything is an Object

x = "Hello word!"
y = "... Goodbye!"

def f(x,y):
 print "You are calling function f"
 print "..."
 return x+y

>>> dir(f)
['__call__', '__class__', '__closure__', '__code__', '__defaults__',
'__delattr__', '__dict__', '__doc__', '__format__', '__get__',
'__getattribute__', '__globals__', '__hash__', '__init__', '__module__',
'__name__', '__new__', '__reduce__', '__reduce_ex__', '__repr__',
'__setattr__', '__sizeof__', '__str__', '__subclasshook__', 'func_closure',
'func_code', 'func_defaults', 'func_dict', 'func_doc', 'func_globals',
'func_name']
>>> f.__call__("Buenos ", "Aires")
You are calling function f
...
'Buenos Aires'
>>>

Secure Programming via Libraries 7

Variables are References

x = "Hello word!"
y = x
print "x is: ", x
print "y is: ", y
x = "... Goodbye!"
print 'After x = "... Goodbye!"'
print "x is: ", x
print "y is: ", y

$ python -i references.py
x is: Hello word!
y is: Hello word!
After x = "... Goodbye!"
x is: ... Goodbye!
y is: Hello word!
>>>

Secure Programming via Libraries 8

Types and Variables

x = "Hello word!"

y = 3

def f(x):
 return x

$ python -i types.py
>>> x.__class__
<type 'str'>
>>> y.__class__
<type 'int'>
>>> f.__class__
<type 'function'>
>>> x
'Hello word!'
>>> y
3
>>> x = y
>>> x.__class__
<type 'int'>
>>> x
3
>>>

Secure Programming via Libraries 9

Classes (classic style)

class Klass:
 def setdata(self, value):
 self.data=value
 def display(self):
 print self.data

python -i classes.py
>>> obj = Klass()
>>> dir(obj)
['__doc__', '__module__', 'display', 'setdata']
>>> obj.setdata(42)
>>> dir(obj)
['__doc__', '__module__', 'data', 'display', 'setdata']
>>> obj.display()
42
>>> type(obj)
<type 'instance'>
>>>

Secure Programming via Libraries 10

Classes (new-style)

class Klass1(object):
 def setdata(self, value):
 self.data=value
 def display(self):
 print self.data python -i classes.py

>>> obj = Klass1()
>>> dir(obj)
['__class__', '__delattr__', '__dict__', '__doc__', '__format__',
'__getattribute__', '__hash__', '__init__', '__module__', '__new__',
'__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__',
'__str__', '__subclasshook__', '__weakref__', 'display', 'setdata']
>>> obj.setdata(42)
>>> dir(obj)
['__class__', '__delattr__', '__dict__', '__doc__', '__format__',
'__getattribute__', '__hash__', '__init__', '__module__', '__new__',
'__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__',
'__str__', '__subclasshook__', '__weakref__', 'data', 'display',
'setdata']
>>> obj.display()
42
>>> type(obj)
<class '__main__.Klass1'>
>>>

Unify types and classes. It also
add some support for

meta-programming

Secure Programming via Libraries 11

Inheritance

class Klass2(Klass1):
 def display(self):
 print "Current value = %s"%self.data

python -i classes.py
>>> obj = Klass2()
>>> obj.setdata(42)
>>> obj.display()
Current value = 42
>>>

It supports multiple-inheritance. For that,
it uses the C3 Method Resolution algorithm

Secure Programming via Libraries 12

Overloading
class X:
 def __init__(self, n):
 self.n = n

 def __add__(self, other):
 print "Doing some addition?"
 return (self.n + other)

python -i overload.py
>>> number = X(42)
>>> number+10
Doing some addition?
52
>>> __add__(self, 10)

number + 10

Special functions
that are not intended to

be called directly

Methods of the form __X__ can be
seen as special hooks

Secure Programming via Libraries 13

Dynamic Dispatch

● What happen when combining Inheritance and
Overloading?

python -i overload.py
>>> number = Y(42)
>>> number + 10
It is in fact an addition!
52
>>>

class Y(X):
 def __add__(self, other):
 print "It is in fact an addition!"
 return (self.n + other)

At this point, Python decides to
call the most specific class

Secure Programming via Libraries 14

Decorators

● It allows to insert code (wrappers) into functions and
classes definitions

● It allows to modularly augment functionality

● From a functional perspective, they are just high order
functions! (with some differences)

Secure Programming via Libraries 15

High Order Functions

def debug(func):
 def inner (*args):
 for a in args:
 print "The received arguments are:"
 print a

 result = func (*args)
 print "The result is:" , result

 return inner

def id(x):
 return x

python -i decorators.py
>>> id(1)
1
>>> id_debug = debug(id)
>>> id_debug(1)
The received arguments are:
1
The result is: 1
>>>

Secure Programming via Libraries 16

Decorators
def debug(func):
 def inner (*args):
 for a in args:
 print "The received arguments are:"
 print a

 result = func(*args)
 print "The result is:", result

 return inner

@debug
def id(x):
 return x

python -i decorators2.py
>>> id(1)
The received arguments are:
1
The result is: 1
>>>

Decorator

This is equivalent to:
def id(x):
 return x

id = debug(id)

Secure Programming via Libraries 17

More about Python?

● It is lot of fun
programming with it

● If you are functional
programmer, you will
probably use Python
differently from regular
Python programmers

● Great opportunity to take
functional programming
results into Python!

Secure Programming via
Libraries

Escuela de Ciencias Informáticas (ECI) 2011
UBA, Buenos Aires, Argentina

A Taint Mode for Python via a Library
Alejandro Russo (russo@chalmers.se)

Secure Programming via Libraries 2

OWASP TOP 10
[OWASP 2010]

● A1: Injection

● A2: Cross-Site Scripting (XSS)

● A3: Broken Authentication and Session Management

● A4: Insecure Direct Object References

● A5: Cross-Site Request Forgery (CSRF)

● A6: Security Misconfiguration

● A7: Insecure Cryptographic Storage

● A8: Failure to Restrict URL Access

● A9: Insufficient Transport Layer Protection

● A10: Unvalidated Redirects and Forwards

Most of these attacks
can be formulated

as an informatoin-flow
problem!

Secure Programming via Libraries 3

The Top Two Problems

● A1: Injection

● A2: Cross-Site Scripting (XSS)

● They have something in common:

● Attackers goal: craft input data
to gain some control over certain
security critical operations

● The attacker does not write the code

● Different assumption from when
we study monads and security in Haskell

Secure Programming via Libraries 4

Consequences of Improper Input
Validation

● Impersonate (sessions ID stored in cookies)
● Compromise confidential data

● Access to information stored on databases
behind web applications

● Denial of service attacks
● Data destruction

Attackers goal: craft input data to gain
some control over certain operations

Secure Programming via Libraries 7

Monitors

PHP

Ruby

Python

Perl
Java

+ Less false alarm than SA
- Overhead
- Modification of the interpreter

Taint Analysis as a Library
[Conti Russo 10]

Closest related work
[Kozlov, Petukhov 07]
- Modify interpreter
- Only strings
- Binary tainted attribute
+ NO changes in code

Secure Programming via Libraries 8

Taint Analysis

● Mark untrusted inputs, sanitizations functions
and sensitive sinks.

● Propagate taint information
● Untainting data when sanitized
● Detect when tainted data reaches sensitive

sinks

Secure Programming via Libraries 9

Taint Propagation

a # tainted
b # clean
c = a + b # now c is tainted too

a * 8
a[3:10]
“is %s clean?” % a
a.upper()

Secure Programming via Libraries 10

Taint Analysis and Information-Flow

● Remember the type of illegal flows (first lecture) ?

● Explicit flows

● Implicit flows

l := h

if h>0
 then l:=1
 else l:=2

Secure Programming via Libraries 11

Taint Analysis and Information-Flow

● Taint analysis propagates information on assignments
● Explicit flows

● Taint analysis can then be seen as an information-flow
tracking mechanism for explicit flows

● Taint analysis tends to ignore implicit flows

a # tainted
b # clean
c = a + b # now c is tainted too

a # tainted boolean
b # clean boolean
if a:
 b = true
else:
 b = false

Observe that a tainted bit
has been copied into a

untainted one!

Secure Programming via Libraries 12

Taint Analysis and Information-Flow

● Taint analysis can be effectively circumvented using implicit flow

● This is specifically dangerous when the attacker has full control over the code

● We consider that the attacker craft input data in order to exploit
vulnerabilities, not code!

● Is this reasonable?

● Scenarios where the code is non-malicious

● Programmers might forget to perform some sanitization (simple error or
omission)

● Taint analysis certainly helps to discover vulnerabilities!

● How dangerous are implicit flows in non-malicious code?

● We argue that it is harmless (more unnatural and evolved code)
 [Russo, Sabelfeld, Li 09]

Secure Programming via Libraries 13

Taint Analysis

● Is it sound taint analysis? (if it does not trigger any
alarm, the program is safe)
● No! (remember implicit flows)

● Is it complete taint analysis? (every secure program
passes the analysis)
● No! (as many other analysis). (Exercise?)

● Why is it so popular then?
● It helps to detect vulnerabilities without too much effort
● A taint analysis is as good as vulnerabilities that it

might discover

Secure Programming via Libraries 14

Taint Analysis

● Mark untrusted inputs, sanitizations functions
and sensitive sinks.

● Propagate taint information
● Untainting data when sanitized
● Detect when tainted data reaches sensitive

sinks

API of the library

Task of the library
to perform these

three steps

Secure Programming via Libraries 16

Taint Mode in Python (API)

from web import input
input = untrusted(input)

@untrusted
def user_function():
 ...

● Sources of tainted data
Tainted data from such
sources is associated

with every tag

Secure Programming via Libraries 17

Taint Mode in Python (API)
from taintmode import *

@untrusted
def from_outside():
 s = raw_input('Give me some input:')
 return s

print 20*'*'
print 'XSS :', XSS
print 'SQLI :', SQLI
print 'OSI :', OSI
print 'II :', II
print 20*'*'

i = from_outside()

print
print 'String:',i
print 'Is it tainted? ', tainted(i)
print 'Tags:', i.taints

Import the library

Tags handle by the
library (customizable)

Check if a value is
tainted

Attribute of tainted
values

Secure Programming via Libraries 18

Taint Mode in Python (API)

db.select = ssink(SQLI)(db.select)

@ssink(OSI)
def user_function(cmd):
 ...

● Sensitive sinks

Secure Programming via Libraries 19

Taint Mode in Python (API)
from taintmode import *

@untrusted
def from_outside():
 s = raw_input('Give me some input:')
 return s

@ssink(OSI)
def shell_cmd(s):
 # Here, we call some shell command using s
 return

i = from_outside()

shell_cmd(i)

Secure Programming via Libraries 20

Taint Mode in Python (API)

sanitize = cleaner(SQLI)(sanitize)

@cleaner(OSI)
def user_function(cmd):
 ...

● Sanitization functions

Secure Programming via Libraries 21

Taint Mode in Python (API)
from taintmode import *

@untrusted
def from_outside():
 s = raw_input('Give me some input:')
 return s

@ssink(OSI)
def shell_cmd(s):
 # Here, we call some shell command using s
 return

@cleaner(OSI)
def no_osi(s):
 return '' # Here, it sanatizes the data

i = from_outside()

clean_i = no_osi(i)
shell_cmd(clean_i)

Secure Programming via Libraries 23

Why Python?

● Taint propagation is the most interesting part
● Dynamic dispatch mechanisms of Python +

subclasses
● Mark code (usability)

● Decorators
● Expressiveness (not only strings)

● Dynamic features of Python

Secure Programming via Libraries 24

Customization of the Library

● The user can indicate which functions should
propagate taint information.

● And on which types taint analysis must be performed.

● Given these information, the library automatically
generate the taint-aware built-in types and functions

Secure Programming via Libraries 25

How does the library work?

len = propagate_func(len)
ord = propagate_func(ord)
chr = propagate_func(chr)

STR = taint_class(str)
UNICODE = taint_class(unicode)
INT = taint_class(int)
FLOAT = taint_class(float)

● Taint-aware classes

● Taint-aware functions

It works with
built-in types

It makes functions aware
of taint information in
order to propagate it

Secure Programming via Libraries 26

How does the library work?

STR = taint_class(str)

“a”
XSS, SQLI

taints

str

STR

Automatic built-in types
methods overloading

c = a.upper()
STR = STR.upper

c = a + b
STR = STR + str
STR = STR.__add__

Automatic built-in functions
overloading

 len = propagate_func(len)
c = len(a)

INT = len(STR)

Secure Programming via Libraries 27

Code for taint_class

def taint_class(klass, methods=None):
 ...
 class tklass(klass):
 ...

 d = klass.__dict__
 for name, attr in [(m, d[m]) for m in methods]:
 if inspect.ismethod(attr) or inspect.ismethoddescriptor(attr):
 setattr(tklass, name, propagate_method(attr))

It takes a class
and returns

another class

The new class
have the same
method names

The methods
propagate taint

information

Secure Programming via Libraries 28

Code for propagate_method

def propagate_method(method):
 def inner(self, *args, **kwargs):
 r = method(self, *args, **kwargs)
 t = set()
 for a in args:
 collect_tags(a, t)
 for v in kwargs.values():
 collect_tags(v, t)
 t.update(self.taints)
 return taint_aware(r, t)
 return inner

It is a function that
returns another

function

It is important that
STR is a subclass

of str

It collects
the tags found

in the arguments

The collected tags
are associated
with the result

It collects the tags
found in the string

that calls the
method

Secure Programming via Libraries 29

Example
from taintmode import *

x = taint('Buenos Aires', XSS)
print 'Tags for x: ', x.taints

y = taint('Buenos', OSI)
print 'Tags for y: ', y.taints

i1 = x.find('Aires')
print 'Tags for the position of Aires:', i1.taints
i2 = x.find(y)
print 'Tags for the position of Buenos:', i2.taints

It will show only
the tags from x

It will show only
the tags from x

and y

Secure Programming via Libraries 31

Guarantees provided by the analysis?

● Papers presenting taint analysis often lack a
formalization of the security condition (policy) enforced

● An exception is the paper by [Volpano 99]
● Notion of weak secrecy
● Intuitively, if the taint analysis passed, then the program

satisfies weak secrecy
● What is weak secrecy?

Secure Programming via Libraries 32

Secure Programming via Libraries 33

Taint analysis and Weak Secrecy

● It would be possible to prove, for a simplified language,
that if a program “passes” taint analysis, then it
satisfies weak secrecy
● Soundness

● Not every program satisfying weak secrecy will “pass”
the taint analysis (which one? Exercise!)
● Completeness

Secure Programming via Libraries 34

● Weak secrecy [Volpano 99]

● Formal semantics of Python [Smeding 09]

● Combine both and provide formal guarantees?

● An interesting direction for future work

Formalization of the Library

Secure Programming via Libraries 35

Final Remarks

● It is possible to provide a taint analysis library for Python in just
(450 LOC)

● No need to modify the interpreter

● The library is based essentially on Python dynamic features
● Subclasses
● Dynamic dispatch

● Dynamic creation of classes (taint_class)

● We also use some convenient programming language concepts

● High-order functions (propagate_method)

● Decorators
● Introspection mechanisms for reporting errors

Secure Programming via
Libraries

Escuela de Ciencias Informáticas (ECI) 2011
UBA, Buenos Aires, Argentina

Implementing Erasure Policies using
Taint Analysis

Alejandro Russo (russo@chalmers.se)

Secure Programming via Libraries 2

What is Erasure?

● A property of systems that require sensitive
information to complete their tasks

● Intuitively:

● A user owns some sensitive data
● The system takes user's input and processes it
● After the task is completed, user's input and any

derived data must be removed from the system

Secure Programming via Libraries 3

Language-based Erasure
[Chong, Myers 05]

● Consider programs where

● No I/O involved
● Each memory location is equipped with a policy

● Erasure policies:

● A conditional expression that raises the security
level to an higher one

● Erasure: a system is erasing if the memory location
policies are not violated during execution

● Enforcement: no mechanism is described

Secure Programming via Libraries 4

Just forget it
[Hunt, Sands 08]

● Programs in a simple I/O imperative language

● Erasure policies are embedded in the language by a
dedicated command
input x from a in C erasing to b

● A program is erasing if its behavior after the erasure
command does not depend on the input received

● Connection with information-flow
● A type system guarantees a static enforcement, but it

works only for that toy language

● Interesting theoretical result

Secure Programming via Libraries 5

Ingredients for Erasure

● There are several design options to consider

● How to characterize an erasing system?

● One way is to define policies on its observable
behavior [Hunt, Sands 08]

● When, and under which conditions, should erasure
take place?

● Need for an erasure policy language
● How to enforce the erasure policies?

We propose a Python library attempts to answer these
questions

Secure Programming via Libraries 6

The Erasure Library in a Nutshell
[Del Tedesco, Russo, Sands 10]

● It deals with interactive systems

● It enforces erasure by preventing differences in the
observable behavior of the system

● It takes into account complex policies

● Policies may involve time, or can be triggered by
updates in runtime values

● Python features make it possible to include the
library in a program with minor modifications

● It uses taint analysis to track derivate data from data
that need to be erased

Secure Programming via Libraries 7

The Erasure Library

● We have a system with I/O.

● What is the purpose of our library?

I
N
P
U
T

O
U
T
P
U
T

Secure Programming via Libraries 8

● We have a system with I/O

● The library provides wrappers and internal structures
to enforce erasure policies

The Erasure Library

Denote entry points for
erasure-aware information
(sensitive data)

Track the propagation of
erasure-aware data inside the
system.
Implementing the concrete
data removal operation

Specify which
output actions
we need to
“observe”

Secure Programming via Libraries 9

API: Indicating Erasure-aware Data

● Usually systems collect sensitive data from the outside
through auxiliary functions

● The library exports erasure_source to make such
functions erasure-aware

def aux():
 …
 input
 …
 return val

val

@erasure_source
def aux():
 …
 input
 …
 return val

val

Secure Programming via Libraries 10

API: Erasing information

● When information is no longer needed, it can be removed

● Derived information has to be removed as well!

● Taint analysis keeps track of derived information
● The library performs erasure by the erasure primitive

def function(val):
 …
 #code that needs val
 …
 erasure(val)
 …
 #code that no longer needs val
 …

Data may flow to
function from other
parts of the system

Before erasure:
val has its original
value

After erasure:
val and all its
related info are
erased!

Secure Programming via Libraries 11

API: Retaining Bits of Sensitive Data

● Sometimes it is necessary to retain portions of sensitive data

● Think about last digits of CC numbers in bills

● The library prevents those bits being retain (remembered) by
providing primitive retain

def function(cc):
 …
 sr=getSafePortion(cc)
 …

@retain
def getSafePortion(cc):
 ccsafe=cc[-4:]
 return ccsafe

An erasure-aware
value is provided

Regardless of
retain, cc is
still erasure-
aware

ccsafe
(therefore
sr) is no
longer
controlled
by the
library

Secure Programming via Libraries 12

Example

from erasure import erasure_source, erasure, retain
@erasure_source
def inputFromUser():
 x=raw_input()
 return x

@retain
def transform(st):
 return st[-4:]
def main():
 print "Please input your credit card number"
 cc=inputFromUser()
 last4=transform(cc)
 print "CC is [", cc,"]","derived info is [", last4, "]"
 print "Calling erasure"
 erasure(cc)
 print "CC is [", cc,"]","derived info is [", last4, "]"

Data return by this
function is erasure-aware

Imports the
library

The last four characters
of the input is not

erasure-aware anymore

Erase data

Secure Programming via Libraries 13

Which policies do we support?

● The primitive erasure has to be called explicitly by
the programmer: it is part of the program!

● It means that policies are as expressive as the
programming language!

sensitive_val=raw_input()
ans=raw_input("Do you want to erase?")
if ans=="Yes":
 erasure(sensitive_val)

Secure Programming via Libraries 14

Is it everything that we need?

● The policies we can implement with the given API are
triggered when erasure is executed

● There are other policies that programmers might need
and are erasure-specific:

● “Erase sensitive_val in 5 days”

● “Erase sensitive_val if a low privileged user is
trying to get the data”

● Previous primitives allow to express those policies, but
in an unnatural style. It is better to have an explicit
notion for them (lazy erasure)

Secure Programming via Libraries 15

What is lazy erasure about?

● What we want to do is to enforce a “just in time”
erasure mechanism

● It is an extension to:

● Policy language
● Enforcing technique

● lazy_erasure associates objects to policies

● erasure_escape annotate functions that may
transmit erasure-aware data outside the system in
order to check their policies and eventually erase them
before it is too late

Secure Programming via Libraries 16

Lazy API: lazy_erasure

● lazy_erasure is meant to create an erasure contract
that will be used during an “observable action”

● It does not remove the data, but it allows the
controlling system to keep track of its propagation

def function(val):
 …
 #code that needs val
 …
 lazy_erasure(val)
 …
 #code that still uses val
 …

As it happened in
the previous
example, val is an
erasure-aware
value

Here val and all its
related info are still
available

Secure Programming via Libraries 17

Lazy API: triggering the policies
● We need to make the system “observationally independent”

on the sensitive data

● erasure_escape annotates output operations in such a
way that erasure-aware data will be erased if their policy
evaluates to true

def printer(val):
 …
 print val
 …

@erasure_escape
def printer(val):
 …
 print val
 …

either
val

or the
empty value

Secure Programming via Libraries 18

Example
from erasure import erasure_source, lazy_erasure, erasure_escape
import time
from datetime import datetime, timedelta

@erasure_source
def inputFromUser():
 x=raw_input()
 return x

def fiveseconds_policy(time):
 return (datetime.today()-time>timedelta(seconds=5))

@erasure_escape
def erasure_channel(a):
 print "The input you provided was [", a, "]"

def main():
 print "Please input your credit card number"
 cc=inputFromUser()
 lazy_erasure(cc,fiveseconds_policy)
 while(1):
 erasure_channel(cc)
 time.sleep(1)

The lazy erasure policies
are functions on the

timestamp of the input data

Observable channel

Secure Programming via Libraries 19

Recall The Erasure Library

Denote entry points for
erasure-aware information
(sensitive data)

Track the propagation of
erasure-aware data inside the
system.
Implementing the concrete
data removal operation

Specify which
output actions
we need to
“observe”

Secure Programming via Libraries 20

● We need to keep track of dependencies among erasure-
aware values

● This means we need to identify them uniquely

● The blackboard keeps track of identities

Who is implemented?

Id1 → val1
Id2 → val2

@erasure_source
def aux():
 …
 input
 …
 return val

Id1 → val1
Id2 → val2
Id3 → val

@erasure_source
def aux():
 …
 input
 …
 return val

val

Bookkeeping from
previous operations

New information
triggers a
blackboard
modification

● Identities are time stamps: unique in our sequential
implementation and support time-based policies!

Secure Programming via Libraries 21

● It is the controller (it has two goals)

Who is ?

Id1 → v1
Id2 → v2

def f():
 …
 v3=v1.m(v2)
 …

Id1 → v1, v3
Id2 → v2, v3

def g():
 …
 erasure(v3)
 …

def g():
 …
 erasure(v3)
 …

Id1 → v1, v3
Id2 → v2, v3

def f():
 …
 v3=v1.m(v2)
 …

v1
v3=v1.m(v2)

v2
v3

TRACKING

unwrapping
delegation

wrapping

v3

ERASE

To erase:
Id1
id2

v1.erase()
v2.erase()
v3.erase()

dependencies
lookup

erasure

Secure Programming via Libraries 22

Future work

● On the theoretical side:
● Which formal guarantees can we prove for our

primitives?
● On the practical side:

● How does the library fit with large existing applications?
● How do the controller's storage interactions impact on

performance?

Secure Programming via Libraries 23

● Erasure is a property that should be enforced on all
systems dealing with sensitive data

● We provided a Python library to get this result for
existing code

● The whole library is based on a technique similar to
the library for taint-analysis in Python

● Therefore, it can be applied mostly transparently to
existing code

● The approach seems really flexible and promising

Conclusion

A Taint Mode for Python via a Library

Juan José Conti1 and Alejandro Russo2

1 Universidad Tecnológica Nacional, Facultad Regional Santa Fe, Argentina
2 Chalmers University of Technology, Sweden

Abstract. Vulnerabilities in web applications present threats to on-line systems.
SQL injection and cross-site scripting attacks are among the most common threats
found nowadays. These attacks are often result of improper or none input valida-
tion. To help discover such vulnerabilities, popular web scripting languages like
Perl, Ruby, PHP, and Python perform taint analysis. Such analysis is often im-
plemented as an execution monitor, where the interpreter needs to be adapted to
provide a taint mode. However, modifying interpreters might be a major task in its
own right. In fact, it is very probably that new releases of interpreters require to be
adapted to provide a taint mode. Differently from previous approaches, we show
how to provide taint analysis for Python via a library written entirely in Python,
and thus avoiding modifications in the interpreter. The concepts of classes, dec-
orators and dynamic dispatch makes our solution lightweight, easy to use, and
particularly neat. With minimal or none effort, the library can be adapted to work
with different Python interpreters.

1 Introduction

Over the past years, there has been a significant increase on the number of activities
performed on-line. Users can do almost everything using a web browser (e.g. watching
videos, listening to music, banking, booking flights, planing trips, etc). Considering the
size of Internet and its number of users, web applications are probably among the most
used pieces of software nowadays. Despite its wide use, web applications suffer from
vulnerabilities that permit attackers to steal confidential data, break integrity of systems,
and affect availability of services. When development of web applications is done with
little or no security in mind, the presence of security holes increases dramatically. Web-
based vulnerabilities have already outplaced those of all other platforms [4] and there
are no reasons to think that this tendency has changed [12].

According to OWASP [32], cross-site scripting (XSS) and SQL injection (SQLI) at-
tacks are among the most common vulnerabilities on web applications. Although these
attacks are classified differently, they are produced by the same reason: user supplied
data is sent to sensitive sinks without a proper sanitation. For example, when a SQL
query is constructed using an unsanitize string provided by a user, SQL injection at-
tacks are likely to occur. To harden applications against these attacks, the implemen-
tations of some popular web scripting languages perform taint analysis in a form of
execution monitors [23, 2]. In that manner, not only run interpreters code, but they also
perform security checks. Taint analysis can also be provided through static analysis
[15, 16]. Nevertheless, execution monitors usually produce less false alarms than tradi-
tional static techniques [28]. In particular, static techniques cannot deal with dynamic

1

code evaluation without being too conservative. Most of the modern web scripting lan-
guages are capable to dynamically execute code. In this paper, we focus on dynamic
techniques.

Taint analysis is an automatic approach to find vulnerabilities. Intuitively, taint anal-
ysis restricts how tainted or untrustworthy data flow inside programs. Specifically, it
constrains data to be untainted (trustworthy) or previously sanitized when reaching sen-
sitive sinks. Perl was the first scripting language to provide taint analysis as an special
mode of the interpreter called taint mode [6]. Similar to Perl, some interpreters for
Ruby [30], PHP [22], and recently Python [17] have been carefully modified to provide
taint modes. Adapting interpreters to incorporate taint analysis present two major draw-
backs that directly impact on the adoption of this technology. Firstly, incorporating taint
analysis into an interpreter might be a major task in its own right. Secondly, it is very
probably that it is necessary to repeatedly adapt an interpreter at every new version or
release of it.

1import s y s
2import os
3

4u s e r m a i l = s y s . a rgv [1]
5f i l e = s y s . a rgv [2]
6

7cmd = ’mail -s "Requested file" ’
8+ u s e r m a i l + ’ < ’ + f i l e
9os . sys tem (cmd)

Fig. 1. Code for email.py

Rather than modifying interpreters,
we present how to provide a taint
mode for Python via a library writ-
ten entirely in Python. Python is
spreading fast inside web develop-
ment [1]. Besides its successful use,
Python presents some programming
languages abstractions that makes
possible to provide a taint mode via a
library. For example, Python decora-
tors [20] are a non-invasive and simple
manner to declare sources of tainted
data, sensitive sinks, and sanitation functions. Python’s object-oriented and dynamic
typing mechanisms allows the execution of the taint analysis with almost no modifica-
tions in the source code.

The library provides a general method to enhance Python’s built-in classes with
tainted values. In general, taint analysis tends to only consider strings or characters [23,
22, 14, 17, 13, 29]. In contrast, our library can be easily adapted to consider different
built-in classes and thus providing a taint analysis for a wider set of data types. By
only considering tainted strings, the library provides a similar analysis than in [17], but
without modifying the Python interpreter. To the best of our knowledge, a library for
taint analysis has not been considered before.

1.1 A motivating example

We present an example to motivate the use of taint analysis in order to discover and
repair vulnerabilities. The example considers an scenario of a web application where
users can send their remotely stored files by email. Figure 1 shows the simple module
email.py that is responsible to perform such task. For simplicity, the code takes the
user input from the command line (lines 4 and 5) rather than from the web server.
Figure 2 shows some invocations to the module from the shell prompt. Line 1 shows a
request from Alice to send her own file reportJanuary.xls to her email address

2

1 py thon e m a i l . py al ice@domain . se . / r e p o r t J a n u a r y . x l s
2 py thon e m a i l . py d e v i l @ e v i l . com ’/etc/passwd’
3 py thon e m a i l . py d e v i l @ e v i l . com ’/etc/passwd ; rm -rf / ’

Fig. 2. Different invocations for email.py

alice@domain.se. In this case, Alice’s input produces a behavior which matches
the intention of the module. In contrast, lines 2 and 3 show how attackers can provide
particular inputs to exploit unintended or unforeseen behaviors of email.py. Line 2
exploits the fact that email.pywas written assuming that users only request their own
files. Observe how devil@evil.com gets information regarding users accounts by
receiving the file /etc/passwd. Line 3 goes an step further and injects the command
rm -rf / after sending the email. These attacks demonstrate how, what was intended
to be a simple email client, can become a web-based file browser or a terminal. To avoid
these vulnerabilities, applications need to rigorously check for malicious data provided
by users or any other untrustworthy source. Taint analysis helps to detect when data is
not sanitize before it is used on security critical operations. In Section 2.2, we show
how to harden email.py in order to reject the vulnerabilities shown in Figure 1.

The paper is organized as follows. Section 2 outlines the library API. Section 3
describes the most important implementation details of our approach. Section 4 covers
related work. Section 5 provides some concluding remarks.

2 A library for taint analysis

i f t == ’a’ : u = ’a’
e l s e : u = ’’

Fig. 3. An implicit flow

On most situations, taint analysis propagates taint
information on assignments. Intuitively, when the
right-hand side of an assignment uses a tainted value,
the variable appearing on the left-hand side becomes
tainted. Taint analysis can be seen as an information-
flow tracking mechanism for integrity [27]. In fact, taint analysis is just a mechanism to
track explicit flows, i.e. direct flows of information from one variable to another. Taint
analysis tends to ignore implicit flows [11], i.e. flows through the control-flow con-
structs of the language. Figure 3 presents an implicit flow. Variables t and u are tainted
and untainted, respectively. Observe that variable u is untainted after the execution of
the branch since an untainted value (’a’ or ’’) is assigned to it. Yet, the value of the
tainted variable t is copied into the untainted variable u when t == ’a’. It is not
difficult to imagine programs that circumvent the taint analysis by copying the content
of tainted strings into untainted ones by using implicit flows[26].

In scenarios where attackers has full control over the code (e.g. when the code is
potentially malicious), implicit flows present an effective way to circumvent the taint
analysis. In this case, the attackers’ goal is to craft the code and input data in order
to circumvent security mechanisms. There is a large body of literature on the area of
language-based security regarding how to track implicit flows [27].

3

1 v = t a i n t (d)
2

3 web . i n p u t = u n t r u s t e d (web . i n p u t)
4

5 @unt rus t ed
6 def f (. . .) :
7 . . .
8

9 c l a s s MyProtocol (L i n e O n l y R e c e i v e r) :
10 @ u n t r u s t e d a r g s ([1])
11 def l i n e R e c e i v e d (s e l f , l i n e) :
12 . . .

13 e v a l = s s i n k (T) (e v a l)
14

15 @ssink (T)
16 def f (. . .) :
17 . . .
18

19 w = c l e a n e r (T) (wash)
20

21 @cleaner (T)
22 def f (. . .) :
23 . . .

Fig. 4. API for taint analysis

There exists scenarios where the code is non-malicious, i.e. written without malice.
Despite the good intentions and experience of programmers, the code might still contain
vulnerabilities as the ones described in Section 1.1. The attackers’ goal consists on craft
input data in order to exploit vulnerabilities and/or corrupt data. In this scenario, taint
analysis certainly helps to discover vulnerabilities. How dangerous are implicit flows
in non-malicious code? We argue that they are frequently harmless [26]. The reason
for that relies on that non-malicious programmers need to write a more involved, and
rather unnatural, code in order to, for instance, copy tainted strings into untainted ones.
In contrast, to produce explicit flows, programmers simply need to forget a call to some
sanitization function. For the rest of the paper, we consider scenarios where the analyzed
code is non-malicious.

2.1 Using the library

The library is essentially a series of functions to mark what are the sources of untrust-
worthy data, sensitive sinks, and sanitation functions. Figure 4 illustrates how the API
works. Symbol ... is a place holder for code that is not relevant to explain the pur-
pose of the API. We assume that v is a variable, d is an string or integer, and f is a
user-defined function. Symbol T represents a tag. By default, tags can take values XSS,
SQLI, OSI (Operating System Injection), and II (Interpreter Injection). These val-
ues are used to indicate specific vulnerabilities that could be exploited by tainted data.
For instance, tainted data associated with tag SQLI is likely to exploit SQL injection
vulnerabilities. Function taint is used to taint values. For example, line 1 taints vari-
able d. The call to untrusted(web.input) establishes that the results produced
by web.input are tainted. Line 5 shows how untrusted can be used to mark the
values returned by function f as untrustworthy. Observe the use of the decorator syntax
(@untrusted). Function untrusted args is used to indicate which functions’
arguments must be tainted. This primitive is particularly useful when programming
frameworks require to redefine some methods in order to get information from external
sources. As an example, Twisted[3], a framework to develop network applications, calls

4

method lineReceived from the class LineOnlyReceiver every time that an
string is received from the network. Lines 9–12 extend the class LineOnlyReceiver
and implement the method lineReceived. Line 10 taints the data that Twisted takes
from the network. Functions taint, untrusted, and untrusted args associate
all the tags to the tainted values. After all, untrustworthy data might exploit any kind of
vulnerability. Line 13 marks eval as a sensitive sink. If eval receives a tainted data with
the tag T, a possible vulnerability T is reported. Line 15 shows how to use ssink with
the decorator syntax. Line 19 shows how cleaner establishes that function wash san-
itizes data with tag T. As a result of that, function w removes tag T from tainted values.
Line 21 shows the use of cleaner with the decorator syntax. Sensitive sinks and san-
itization functions can be associated with more than one kind of vulnerabilities by just
nesting decorators, i.e. ssink(OSI)(ssink(II)(critical operation)).

2.2 Hardening email.py

1import s y s
2import os
3from t a i n t m o d e import ∗
4from s a n i t i z e import ∗
5

6os . sys tem = s s i n k (OSI) (os . sys tem)
7s u s e r m a i l = c l e a n e r (OSI) (s u s e r m a i l)
8s f i l e = c l e a n e r (OSI) (s f i l e)
9

10u s e r m a i l = t a i n t (s y s . a rgv [1])
11f i l e = t a i n t (s y s . a rgv [2])
12# u s e r m a i l = s u s e r m a i l (u s e r m a i l)
13# f i l e = s f i l e (f i l e)
14cmd = ’mail -s "Requested file" ’
15+ u s e r m a i l + ’ < ’ + f i l e
16os . sys tem (cmd)

Fig. 5. Secure version of module email.py

We revise the example in Sec-
tion 1.1. Figure 5 shows the se-
cure version of the code given in
Figure 1. Line 3 imports the li-
brary API. Line 4 imports some
sanitization functions. Line 6
marks command os.system
(capable to run arbitrary shell
instructions) as a sensitive sink
to OSI attacks. Tainted val-
ues reaching that sink must not
contain the tag OSI. Lines 7
and 8 establish that functions
s usermail and s file san-
itize data in order to avoid
OSI attacks. Lines 10 and 11
mark user input as untrustwor-
thy. When executing the pro-
gram, the taint analysis raises an alarm on line 16. The reason for that is that variable
cmd is tainted with the tag OSI. Indeed, cmd is constructed from the untrustworthy val-
ues usermail and file. If we uncomment the lines where sanitization takes place
(lines 12 and 13), the program runs normally, i.e. no alarms are reported. Observe that
the main part of the code (lines 14–16) are the same than in Figure 1.

3 Implementation

In this section we present the details of our implementation. Due to lack of space,
we show the most interesting parts. The full implementation of the library is publicly
available at [10].

5

1 def t a i n t c l a s s (k l a s s , methods) :
2 c l a s s t k l a s s (k l a s s) :
3 def n e w (c l s , ∗ a rgs , ∗∗ kwargs) :
4 s e l f = s u p e r (t k l a s s , c l s) . n e w (c l s , ∗ a rgs , ∗∗ kwargs)
5 s e l f . t a i n t s = s e t ()
6 re turn s e l f
7 d = k l a s s . d i c t
8 f o r name , a t t r in [(m, d [m]) f o r m in methods] :
9 i f i n s p e c t . i s m e th o d (a t t r) or

10 i n s p e c t . i s m e t h o d d e s c r i p t o r (a t t r) :
11 s e t a t t r (t k l a s s , name , p r o p a g a t e m e t h o d (a t t r))
12 i f ’__add__’ in methods and ’__radd__’ not in methods :
13 s e t a t t r (t k l a s s , ’__radd__’ ,
14 lambda s e l f , o t h e r : t k l a s s . a d d (t k l a s s (o t h e r) ,
15 s e l f))
16 re turn t k l a s s

Fig. 6. Function to generate taint-aware classes

One of the core part of the library deals with how to keep track of taint information
for built-in classes. The library defines subclasses of built-in classes in order to indicate
if values are tainted or not. An object of these subclasses posses an attribute to indicate
a set of tags associated to it. Objects are considered untainted when the set of tags is
empty. We refer to these subclasses as taint-aware classes. In addition, the methods
inherited from the built-in classes are redefined in order to propagate taint information.
More specifically, methods that belong to taint-aware classes return objects with the
union of tags found in their arguments and the object calling the method. In Python,
the dynamic dispatch mechanism guarantees that, for instance, the concatenations of
untainted and tainted strings is performed with calls to methods of taint-aware classes,
which properly propagates taint information.

3.1 Generating taint-aware classes

1def p r o p a g a t e m e t h o d (method) :
2def i n n e r (s e l f , ∗ a rgs , ∗∗ kwargs) :
3r = method (s e l f , ∗ a rgs , ∗∗ kwargs)
4t = s e t ()
5f o r a in a r g s :
6c o l l e c t t a g s (a , t)
7f o r v in kwargs . v a l u e s () :
8c o l l e c t t a g s (v , t)
9t . u p d a t e (s e l f . t a i n t s)
10re turn t a i n t a w a r e (r , t)
11re turn i n n e r

Fig. 7. Propagation of taint information

Figure 6 presents a function
to generate taint-aware classes.
The function takes a built-in
class (klass) and a list of
its methods (methods) where
taint propagation must be per-
formed. Line 2 defines the
name of the taint-aware class
tklass. Objects of tklass
are associated to the empty set
of tags when created (lines 3–
6). Attribute taints is intro-
duced to indicate the tags re-

6

lated to tainted values. Using Python’s introspection features, variable d contains,
among other things, the list of methods for the built-in class (line 7). For each method in
the built-in class and in methods (lines 8–10), the code adds to tklass a method that
has the same name and computes the same results but also propagates taint information
(line 11). Function propagate method is explained below. Lines 12–15 set method
radd to taint-aware classes when built-in classes do not include that method but
add . Method radd is called to implement the binary operations with reflected

(swapped) operands3. For instance, to evaluate the expression x+y, where x is a built-in
string and y is a taint-aware string, Python calls radd from y and thus executing
y. radd (x). In that manner, the taint information of y is propagated to the ex-
pression. Otherwise, the method x. add (y) is called instead, which results in an
untainted string. Finally, the taint-aware class is returned (line 16).

The implementation of propagate method is shown in Figure 7. The function
takes a method and returns another method that computes the same results but prop-
agates taint information. Line 3 calls the method received as argument and stores the
results in r. Lines 4–9 collect the tags from the current object and the method’s argu-
ments into t. Variable r might refer to an object of a built-in class and therefore not
include the attribute taints. For that reason, function taint aware is designed to
transform objects from built-in classes into taint-aware ones. For example, if r refers
to a list of objects of the class str, function taint aware returns a list of objects of
the taint-aware class derived from str. Function taint aware is essentially imple-
mented as a structural mapping on list, tuples, sets, and dictionaries. The library does
not taint built-in containers, but rather their elements. This is a design decision based
on the assumption that non-malicious code does not exploit containers to circumvent
the taint analysis (e.g. by encoding the value of tainted integers into the length of lists).

STR = t a i n t c l a s s (s t r , s t r m e t h o d s)
INT = t a i n t c l a s s (i n t , i n t m e t h o d s)

Fig. 8. Taint-aware classes for strings and integers

Otherwise, the implementation of the
library can be easily adapted. Line 11
returns the taint-aware version of r
with the tags collected in t.

To illustrate how to use function
taint class, Figure 8 produces
taint-aware classes for strings and integers, where str methods and int methods
are lists of methods for the classes str and int, respectively. Observe how the code
presented in Figures 6 and 7 is general enough to be applied to several built-in classes.

3.2 Decorators

1def u n t r u s t e d (f) :
2def i n n e r (∗ a rgs , ∗∗ kwargs) :
3r = f (∗ a rgs , ∗∗ kwargs)
4re turn t a i n t a w a r e (r , TAGS)
5re turn i n n e r

Fig. 9. Code for untrusted

Except for taint, the rest of
the API is implemented as dec-
orators. In our library, decora-
tors are high order functions
[7], i.e. functions that take
functions as arguments and re-
turn functions. Figure 9 shows

3 The built-in class for strings implements all the reflected versions of its operators but add .

7

the code for untrusted. Function f, given as an argument, is the function that re-
turns untrustworthy results (line 1). Intuitively, function untrusted returns a func-
tion (inner) that calls function f (line 3) and taints the values returned by it (line 4).
Symbol TAGS is the set of all the tags used by the library. Readers should refer to [10]
for the implementation details about the rest of the API.

3.3 Taint-aware functions

1def p r o p a g a t e f u n c (o r i g i n a l) :
2def i n n e r (∗ a rgs , ∗∗ kwargs) :
3t = s e t ()
4f o r a in a r g s :
5c o l l e c t t a g s (a , t)
6f o r v in kwargs . v a l u e s () :
7c o l l e c t t a g s (v , t)
8r = o r i g i n a l (∗ a rgs ,∗∗ kwargs)
9i f t == s e t ([]) :
10re turn r
11re turn t a i n t a w a r e (r , t)
12re turn i n n e r

Fig. 10. Propagation of taint information among possibly
different taint-aware objects

Several dynamic taint analy-
sis [23, 22, 16, 17, 13, 29] do
not propagate taint information
when results different from
strings are computed from
tainted values. (e.g. the length
of a tainted string is usually an
untainted integer). This design
decision might affect the abil-
ities of taint analysis to detect
vulnerabilities. For instance,
taint analysis might miss dan-
gerous patterns when programs
encode strings as lists of num-
bers. A common workaround
to this problem is to mark functions that perform encodings of strings as sensitive sinks.
In that manner, sanitization must occur before strings are represented in another format.
Nevertheless, this approach is unsatisfactory: the intrinsic meaning of sensitive sinks
may be lost. Sensitive sinks are security critical operations rather than functions that
perform encodings of strings. Our library provides means to start breaching this gap.

l e n = p r o p a g a t e f u n c (l e n)
o rd = p r o p a g a t e f u n c (ord)
c h r = p r o p a g a t e f u n c (c h r)

Fig. 11. Taint-aware functions for strings and integers

Figure 10 presents a gen-
eral function that allows to
define operations that return
tainted values when their argu-
ments involve taint-aware ob-
jects. As a result, it is possible
to define functions that, for instance, take tainted strings and return tainted integers. We
classify this kind of functions as taint-aware.

Similar to the code shown in Figure 7, propagate func is a high order function.
It takes function f and returns another function (inner) able to propagate taint infor-
mation from the arguments to the results. Lines 3–7 collect tags from the arguments.
If the set of collected tags is empty, there are no tainted values involved and therefore
no taint propagation is performed (lines 9–10). Otherwise, a taint-aware version of the
results is returned with the tags collected in the arguments (line 11).

To illustrate the use of propagate func, Figure 11 shows some taint-aware func-
tions for strings and integers. We redefine the standard functions to compute lengths of
lists (len), the ASCII code of a character (chr), and its inverse (ord). As a result,
len(taint(’string’)) returns the tainted integer 6. It is up to the users of the

8

library to decide which functions must be taint-aware depending on the scenario. The
library only provides redefinition of standard functions like the ones shown in Figure
11.

3.4 Scope of the library

In Figure 6, the method to automatically produce taint-aware classes does not work
with booleans. The reason for that is that class bool cannot be subclassed in Python
4. Consequently, our library cannot handle tainted boolean values. We argue that this
shortcoming does not restrict the usability of the library for two reasons. Firstly, dif-
ferent from previous approaches [23, 22, 16, 17, 13, 29], the library can provide taint
analysis for several built-in types rather than just strings. Secondly, we consider that
booleans are typically used on guards. Since the library already ignores implicit flows,
the possibilities to find vulnerabilities are not drastically reduced by disregarding taint
information on booleans.

When generating the taint-aware class STR (Figure 8), we found some problems
when dealing with some methods from the class str. Python interpreter raises excep-
tions when methods nonzero , reduce , and reduce ex are redefined.
Moreover, when methods new , init , getattribute , and repr are
redefined by function taint class, an infinite recursion is produced when calling
any of them. As for STR, the generation of the taint-aware class INT exposes the same
behavior, i.e. the methods mentioned before produce the same problems. We argue that
this restriction does not drastically impact on the capabilities to detect vulnerabilities.
Methods new is called when creating objects. In Figure 6, taint-aware classes de-
fine this method on line 3. Method init is called when initializing objects. Python
invokes this method after an object is created and programs do not usually called it ex-
plicitly. Method getattribute is used to access any attribute on a class. This
method is automatically inherited from klass and it works as expected for taint-
aware classes. Method nonzero is called when objects need to be converted into a
boolean value. As mentioned before, the analysis ignores taint information of data that
is typically used on guards. Method repr pretty prints objects on the screen. In
principle, developers should be careful to not use calls to repr in order to convert
tainted objects into untainted ones. However, this method is typically used for debug-
ging 5. Methods reduce and reduce ex are used by Pickle 6 to serialize
strings. Given these facts, the argument method in function taint class estab-
lishes the methods to be redefined on taint-aware classes (Figure 6). This argument is
also useful when the built-in classes might vary among different Python interpreters.
It is future work to automatically determine the lists of methods to be redefined for
different built-in classes and different versions of Python.

It is up to the users of the library to decide which built-in classes and functions must
be taint-aware. This attitude comes from the need of being flexible and not affecting

4 http://docs.python.org/library/functions.html#bool
5 http://docs.python.org/reference/datamodel.html
6 An special Python module

9

performance unless it is necessary. Why users interested on taint analysis for strings
should accept run-time overheads due to tainted integers?

It is important to remark that the library only tracks taint information in the source
code being developed. As a consequence, taint information could be lost if, for example,
taint values are given to external libraries (or libraries written in other languages) that
are not taint-aware. One way to tackle this problem is to augment the library functions
to be taint-aware by applying propagate func to them.

As a future work, we will explore if it is possible to automatically define taint-
aware functions based on the built-in functions (found in the interpreter) and taint-aware
classes in order to increase the number of taint-aware functions provided by the library.
At the moment, the library provides taint-aware classes for strings, integers, floats, and
unicode as well as some taint-aware functions (e.g. len, chr, and ord).

4 Related Work

A considerable amount of literature has been published on taint analysis. Readers can
refer to [8] for a description of how this technique has been applied on different re-
search areas. In this section, we focus on analyses developed for popular web scripting
languages.

Perl [23] was the first scripting language to include taint analysis as a native feature
of the interpreter. Perl taint mode marks strings originated from outside a program as
tainted (i.e. inputs from users, environment variables, and files). Sanitization is done by
using regular expressions. Writing to files, executing shell commands, and sending in-
formation over the network are considered sensitive sinks. Differently, our library gives
freedom to developers to classify the sources of tainted data, sanitization functions, and
sensitive sinks. Similar to Perl, Ruby [30] provides support for taint analysis. Ruby’s
taint mode, however, performs analysis at the level of objects rather than only strings.
Both, Perl and Ruby, utilize dynamic techniques for their analyses.

Several taint analysis have been developed for the popular scripting language PHP.
Aiming to avoid any user intervention, authors in [15] combine static and dynamic
techniques to automatically repair vulnerabilities in PHP code. They propose to use
static analysis (type-system) in order to insert some predetermined sanitization func-
tions when tainted values reach sensitive sinks. Observe that the semantic of programs
might be changed when inserting calls to sanitization functions, which constitutes the
dynamic part of the analysis in [15]. Our approach, on the other hand, does not im-
plement a type-system and only reports vulnerabilities, i.e. it is up to developers to
decide where, and how, sanitization procedures must be called. In [22], Nguyen-Toung
et al. adapt the PHP interpreter to provide a dynamic taint analysis at the level of char-
acters, which the authors call precise tainting. They argue that precise tainting gains
precision over traditional taint analyses for strings. Authors need to manually exploit,
when feasible, semantics definitions of functions in order to accurately keep track of
tainted characters. Our approach, on the other hand, uses the same mechanism to han-
dle tainted values independently of the nature of a given function. Consequently, we are
able to automatically extend our analysis to different set of data types but without being
as precise as Nguyen-Toung et al.’ work. It is worth seeing studies indicating how much

10

precision (i.e. less false alarms) it is obtained with precise tainting in practice. Similarly
to Nguyen-Toung et al.’s work, Futoransky [13] et al. provide a precise dynamic taint
analysis for PHP. Pietraszek and Berghe [24] modify the PHP runtime environment to
assign metadata to user-provided input as well as to provide metadata-preserving string
operations. Security critical operations are also instrumented to evaluate, when taken
strings as input, the risk of executing such operations based on the assigned metadata.
Jovanovic et al. [16] propose to combine a traditional data flow and alias analysis to
increase the precision of their static taint analysis for PHP. They observe a 50% rate of
false alarms (i.e. one false alarm for each vulnerability). The works in [5, 21] combine
static and dynamic techniques. The static techniques are used to reduce the number of
program variables where taint information must be tracked at run-time.

A taint analysis for Java [14] instruments the class java.lang.String as well
as classes that present untrustworthy sources and sensitive sinks. The instrumentation
of java.lang.String is done offline, while other classes are instrumented online.
The authors mention that a custom class loader in the JVM is needed in order to per-
form online instrumentation. Another taint analysis for Java [31], called TAJ, focus
on scalability and performance requirements for industry-level applications. To achieve
industrial demands, TAJ uses static tecniques for pointer analysis, call-graph construc-
tion, and slicing. Similarly, the authors in [19] propose an static analysis for Java that
focus on achieving precision and scalability.

A series of work [18, 9, 25] propose to provide information-flow security via a
library in Haskell. These libraries handle explicit and implicit flows and programmers
need to write programs with an special-purpose API. Similar to other taint analysis, our
library does not contemplate implicit flows and programs do not need to be written with
an special-purpose API.

Among the closest related work, we can mention [17] and [29]. In [17], authors
modify the Python interpreter to provide a dynamic taint analysis. More specifically,
the representation of the class str is extended to include a boolean flag to indicate if
a string is tainted. We provide a similar analysis but without modifying the interpreter.
The work by Seo and Lam [29], called InvisiType, aims to enforce safety checks without
modifying the analyzed code. Similar to our assumptions, their approach is designed to
work with non-malicious code. InvisiType is more general than our approach. In fact,
authors show how InvisiType can provide taint analysis and access control checks for
Python programs. However, InvisiType relies on several modifications in the Python in-
terpreter in order to perform the security checks at the right places. For example, when
native methods are called, the run-time environment firstly calls the special purpose
method nativecall . As a manner to specifying policies, the approach provides
the class InvisiType that defines special purposes methods to get support from the
run-time system (e.g. nativecall is one of those methods). Subclasses of this
class represent security policies. The approach relies on multiple inheritance to ex-
tend existing classes with security checks. To include or remove security checks from
objects, programs need to explicitly call functions promote and demote. Being less in-
vasive, our library uses decorators instead of explicit function calls to taint and untaint
data. Our approach does not require multiple inheritance.

11

5 Conclusions

We propose a taint mode for Python via a library entirely written in Python. We show
that no modifications in the interpreter are needed. Different from traditional taint anal-
ysis, our library is able to keep track of tainted values for several built-in classes. Addi-
tionally, the library provide means to define functions that propagate taint information
(e.g. the length of a tainted string produces a tainted integer). The library consists on
around 300 LOC. To apply taint analysis in programs, it is only needed to indicate
the sources of untrustworthy data, sensitive sinks, and sanitization functions. The li-
brary uses decorators as a noninvasive approach to mark source code. Python’s object
classes and dynamic dispatch mechanism allow the analysis to be executed with almost
no modifications in the code. As a future work, we plan to use the library to harden
frameworks for web development and evaluate the capabilities of our library to detect
vulnerabilities in popular web applications.

Acknowledgments Thanks are due to Arnar Birgisson for interesting discussions. This work
was funded by the Swedish research agencies VR and SSF, and the scholarship program for
graduated students from the Universidad Tecnológica Nacional, Facultad Regional Santa Fe.

References

[1] List of Python software. http://en.wikipedia.org/wiki/List_of_Python_
software.

[2] The Ruby programming language. http://www.ruby-lang.org.
[3] The Twisted programming framework. http://twistedmatrix.com.
[4] M. Andrews. Guest Editor’s Introduction: The State of Web Security. IEEE Security and

Privacy, 4(4):14–15, 2006.
[5] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vigna.

Saner: Composing static and dynamic analysis to validate sanitization in web applications.
In Proceedings of the 2008 IEEE Symposium on Security and Privacy, Washington, DC,
USA, 2008. IEEE Computer Society.

[6] S. Bekman and E. Cholet. Practical mod perl. O’Reilly and Associates, 2003.
[7] R. Bird and P. Wadler. An introduction to functional programming. Prentice Hall Interna-

tional (UK) Ltd., 1988.
[8] W. Chang, B. Streiff, and C. Lin. Efficient and extensible security enforcement using dy-

namic data flow analysis. In Proceedings of the 15th ACM Conference on Computer and
Communications security, New York, NY, USA, 2008. ACM.

[9] T. chung Tsai, A. Russo, and J. Hughes. A library for secure multi-threaded information
flow in Haskell. Computer Security Foundations Symposium, IEEE, 0:187–202, 2007.

[10] J. J. Conti and A. Russo. A Taint Mode for Python via a Library. Software release. http:
//www.cse.chalmers.se/˜russo/juanjo.htm, Apr. 2010.

[11] D. E. Denning and P. J. Denning. Certification of programs for secure information flow.
Comm. of the ACM, 20(7):504–513, July 1977.

[12] Federal Aviation Administration (US). Review of Web Applications Security and Intru-
sion Detection in Air Traffic Control Systems. http://www.oig.dot.gov/sites/
dot/files/pdfdocs/ATC_Web_Report.pdf, June 2009. Note: thousands of vul-
nerabilities were discovered.

12

[13] A. Futoransky, E. Gutesman, and A. Waissbein. A dynamic technique for enhancing the
security and privacy of web applications. In Black Hat USA Briefings, Aug. 2007.

[14] V. Haldar, D. Chandra, and M. Franz. Dynamic Taint Propagation for Java. In Proceedings
of the 21st Annual Computer Security Applications Conference, pages 303–311, 2005.

[15] Y. Huang, F. Yu, C. Hang, C. Tsai, D. Lee, and S. Kuo. Securing web application code by
static analysis and runtime protection. In Proceedings of the 13th International Conference
on World Wide Web, pages 40–52. ACM, 2004.

[16] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A Static Analysis Tool for Detecting Web Ap-
plication Vulnerabilities (Short Paper). In 2006 IEEE Symposium on Security and Privacy,
pages 258–263. IEEE Computer Society, 2006.

[17] D. Kozlov and A. Petukhov. Implementation of Tainted Mode approach to finding secu-
rity vulnerabilities for Python technology. In Proc. of Young Researchers’ Colloquium on
Software Engineering (SYRCoSE), June 2007.

[18] P. Li and S. Zdancewic. Encoding information flow in Haskell. Computer Security Foun-
dations Workshop, IEEE, 0:16, 2006.

[19] V. B. Livshits and M. S. Lam. Finding security vulnerabilities in Java applications with
static analysis. In Proceedings of the 14th Conference on USENIX Security Symposium,
Berkeley, CA, USA, 2005. USENIX Association.

[20] M. Lutz and D. Ascher. Learning Python. O’Reilly & Associates, Inc., 1999.
[21] M. Monga, R. Paleari, and E. Passerini. A hybrid analysis framework for detecting web

application vulnerabilities. In IWSESS ’09: Proceedings of the 2009 ICSE Workshop on
Software Engineering for Secure Systems, pages 25–32, Washington, DC, USA, 2009. IEEE
Computer Society.

[22] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and D. Evans. Automatically Hard-
ening Web Applications Using Precise Tainting. In In 20th IFIP International Information
Security Conference, pages 372–382, 2005.

[23] Perl. The Perl programming language. http://www.perl.org/.
[24] T. Pietraszek, C. V. Berghe, C. V, and E. Berghe. Defending against injection attacks

through context-sensitive string evaluation. In Recent Advances in Intrusion Detection
(RAID), 2005.

[25] A. Russo, K. Claessen, and J. Hughes. A library for light-weight information-flow security
in Haskell. In Proceedings of the first ACM SIGPLAN Symposium on Haskell, pages 13–24.
ACM, 2008.

[26] A. Russo, A. Sabelfeld, and K. Li. Implicit flows in malicious and nonmalicious code. 2009
Marktoberdorf Summer School (IOS Press), 2009.

[27] A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE J. Selected
Areas in Communications, 21(1):5–19, Jan. 2003.

[28] A. Sabelfeld and A. Russo. From dynamic to static and back: Riding the roller coaster
of information-flow control research. In Proc. Andrei Ershov International Conference on
Perspectives of System Informatics, LNCS. Springer-Verlag, June 2009.

[29] J. Seo and M. S. Lam. InvisiType: Object-Oriented Security Policies. In 17th Annual
Network and Distributed System Security Symposium. Internet Society (ISOC), Feb. 2010.

[30] D. Thomas, C. Fowler, and A. Hunt. Programming Ruby. The Pragmatic Programmer’s
Guide. Pragmatic Programmers, 2004.

[31] O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan, and O. Weisman. TAJ: effective taint analysis
of web applications. In M. Hind and A. Diwan, editors, Proc. ACM SIGPLAN Conference
on Programming language Design and Implementation, pages 87–97. ACM Press, 2009.

[32] A. van der Stock, J. Williams, and D. Wichers. OWASP Top 10 2007. http://www.
owasp.org/index.php/Top_10_2007, 2007.

13

1

Implementing Erasure Policies
Using Taint Analysis

Filippo Del Tedesco, Alejandro Russo, and David Sands

Chalmers University of Technology, Göteborg, Sweden
{tedesco,russo,dave}@chalmers.se

Abstract. Security or privacy-critical applications often require access to sensi-
tive information in order to function. But in accordance with the principle of least
privilege – or perhaps simply for legal compliance – such applications should
not retain said information once it has served its purpose. In such scenarios, the
timely disposal of data is known as an information erasure policy. This paper
studies software-level information erasure policies for the data manipulated by
programs. The paper presents a new approach to the enforcement of such policies.
We adapt ideas from dynamic taint analysis to track how sensitive data sources
propagate through a program and erase them on demand. The method is imple-
mented for Python as a library, with no modifications to the runtime system. The
library is easy to use, and allows programmers to indicate information-erasure
policies with only minor modifications to their code.

1 Introduction
Sensitive or personal information is routinely required by computer systems for various
legitimate tasks: online credit card transaction may handle a card number and related
verification data, or a biometric-based authentication system may process a fingerprint.
Such systems often operate under informal constraints concerning the handling of sen-
sitive data: once the data has served its purpose, it must not be retained by the system.

The notion of erasure studied in this paper is much higher-level than the system-
level and physical notions of data erasure which might involve, e.g. ensuring that caches
are flushed and that hard-drives are overwritten sufficiently often to eradicate magnetic
traces of data. The approach to program-based high-level erasure stems from the work
of Chong and Myers [3]. That work and its subsequent developments deal with a notion
of erasure which is relative to a multilevel security lattice [7]. For the purpose of this
paper, we will not consider this extra dimension – so we view data as either available
or erased.

In this paper, we present a new approach to the enforcement of information-erasure
policies on programs which adapts concepts from dynamic taint analysis.

Language-based Erasure Our approach for information-erasure has several key fea-
tures: it is a purely dynamic mechanism, it is based on taint analysis, and it is realised
completely as a Python library. To see the benefits of these features, it is useful to con-
sider previous work on erasure in the context of a simple erasure scenario (one which
we will further elaborate upon in Section 3): a fingerprint-activated left-luggage locker
of the kind that is increasingly common at US airports and amusement parks. When

2 Filippo Del Tedesco, Alejandro Russo, and David Sands

depositing a bag, a fingerprint scan is recorded. The locker can only be opened with the
same fingerprint that locked it. From a privacy perspective, there is a clear motivation
for an erasure policy: the fingerprint (and any information derived from it) should be
erased once a locker has been reopened.

Hunt and Sands [12] described the first approach to the enforcement of Chong-
Myers-style erasure properties, reemphasizing two key features missing from [3]: the
ability to associate erasure policies with IO (clearly needed in our erasure scenario),
and a way to verify that a program correctly erases data by a purely static analysis
(a type system). There are two key limitations in Hunt and Sands’s approach. Firstly,
in order to obtain a clean semantic model, the authors consider a restricted form of
erasure policy which is specified in the code in the form: “the value received at this
input statement must be erased by the end of the code block which follows it”. This
is suitable for the simple locker scenario (which is problematic for other reasons) but
unsuitable for more complex conditional policies of the kind discussed by Chong and
Myers. Secondly, the idea is only elaborated for a toy language. Scaling up to a real
language is a nontrivial task for such a static analysis, and would require, among other
things, a full alias analysis.

Chong and Myers [5] independently considered the problem of enforcing erasure
policies and developed a hybrid static-dynamic approach. In their approach, data is
associated with conditional erasure properties which state that data must be erased at
the point when some (in principle arbitrary) condition becomes true. An implementation
extending the Jif system uses a simple form of condition variables for this purpose [4].
To support such rich policies, they assume a combination of a static analysis and a
runtime monitor. The static analysis ensures that all program variables are labeled with
consistent policies. For example, if variable x is copied to y and x’s policy says that
it should be erased at some condition c, then the policy for y should be at least as
demanding. It is then the job of the run-time system to detect when conditions become
true, and implement the erasure on the behalf of the programmer (by overwriting all
variables with a dummy value).

Neither of these approaches can satisfactorily handle the simple locker scenario
(and certainly not the more complex variants we will consider later in this paper). The
approach described in [5, 4] does not consider input at all, but only one-time erasure of
variables – although this is arguably not a fundamental limitation. More fundamentally,
both approaches use a semantic notion of erasure which is based on a strict information-
flow property. In the locker scenario described previously, there is a small amount of
information which is inevitably “retained” by the system, namely the fact that the finger-
print used to unlock the container matches the one used to lock it. This requirement can-
not be easily captured by [5, 12] since no retention of information is allowed. Observe
that the retained information is not enough to recover the fingerprint which produced it,
and therefore we can consider the system as an erasing one. It is not difficult to imagine
more complex scenarios (e.g. billing services) that need to retain portions of sensitive
information to complete their task, but the amount of retained data is not enough to
consider their behavior as a violation of some required erasure policies. Although the
Chong-Myers approach includes declassification, declassification is not what is needed
here, but an erasure dual: we need the ability to selectively ignore that some informa-

Erasure Policies - Taint Analysis 3

tion is remembered by the system. This feature might be called delimited retention, as
it resembles the delimited release [21] property that some non-interferent system may
exhibit.

Overview In the remainder of this paper we outline our alternative approach. We adopt
the idea of dynamic taint tracking which is familiar from languages like Perl [1] and a
number of recent pragmatic information-flow analysis tools [10, 13, 14, 8, 22]: a specific
piece of data which is scheduled for erasure is labeled (“tainted”). As computation
proceeds, the labels are tracked through the system (“taint propagation”). When it is
time to erase the data, we can locate all the places to which the data has propagated and
thereby erase all of them.

By performing a dynamic analysis, we obtain a system that is able to deal with com-
plex conditional-erasure conditions. Taint analysis does not track all information flows;
in particular the information flows which result purely from control-flow are not cap-
tured. This makes the approach unsuitable for malicious code (the approach presented
in [16] could be integrated with our library in order to tackle such flows). However,
when implicit information flows [7] are ignored, then the need for yet-more-complex
delimited retention policies used at branching instructions seems to be unnecessary. In
principle, it could be possible to encode any delimited retention policy using implicit
flows at the price of writing complex and unnatural code, which supports the idea to
explicitly include mechanisms for delimited retention.

We are able to implement erasure enforcement for Python, an existing widely-used
programming language, simply by providing a library, with no modification of the lan-
guage runtime system and no special purpose compiler needed. Python’s dynamic dis-
patch mechanism is mainly responsible to facilitate the implementation of our approach
as a library. It could be then possible to implement our enforcement for other program-
ming languages with similar dynamic features as Python.

The programmer interface to the library does not require the program to be written
in a particular style or using particular data structures, so in principle, it can be applied
to existing code with minimal modifications.

The API for the library is particularly simple (Section 2) and its implementation
builds on two well-known techniques from object-oriented programming and security,
namely delegation [15] (Section 2.1) and taint analysis (Section 2.3). To use the library
the programmer must identify erasure sources – in the case of the simple locker exam-
ple, it is the input function which returns the fingerprint. Then, the programmer must
mark in the code the point at which a given value must be erased. This allows the library
to trace the origins of a given value and erase all its destination values (Section 2.4).

Section 3 illustrates the use of the library with an extended example based on the
locker scenario, but with more involved policies.

In addition, we explore a new lazy form of erasure (Section 4). This form of erasure
is triggered “just in time” at the points where data would otherwise escape the system
and observably break the intended erasure policy. The advantage of lazy erasure is that
it is able to easily express rich conditional-erasure policies, including those involving
time constraints (e.g. “erase credit card numbers more than one week old”). Additional
related work is described in Section 5.

4 Filippo Del Tedesco, Alejandro Russo, and David Sands

2 The Erasure Library
This section presents the library to introduce information erasure policies into pro-
grams. Both its source code and the examples we are using in this paper are publicly
available at http://www.cse.chalmers.se/˜russo/erasure.

The library API essentially consists of three functions:
erasure_source(f) is used to mark that values produced by function f might

be erased. Henceforth, we will say that such values are erasure-aware. In the locker
scenario, suppose that the function responsible to perform the scan of a fingerprint
and return its value is getFingerprint. Then, the programmer might declare (prior
to any computation): getFingerprint=erasure_source(getFingerprint). The
instruction above can be interpreted as t=erasure_source(getFingerprint);
getFingerprint=t, where t is a temporal variable. As an alternative, if the code for
the definition of getFingerprint() is available, Python’s decorator syntax can be
used to obtain the same effect:
@erasure_source
def getFingerprint() :
body of definition ...

erasure(v) erases all erasure-aware data which was directly used in the computa-
tion of value v. The effect is to overwrite the data with a default value. For example, if a
locker is locked with a fingerprint stored in a variable of the same name, then the code
for the locked state might be:
while locked
tryprint=getFingerprint() # get attempt
locked=not(match(tryprint,fingerprint)) # unlock?
erasure(tryprint) # erase attempt

erasure(fingerprint) # now unlock

A simple variant erasure() erases all erasure-aware data (strings and numbers), and
any data computed from them.
retain(f) provides an escape-hatch for erasure. It declares that the result of func-

tion f does not need to be erased. We say that f is a retainer. It corresponds to declaring
an escape hatch in delimited release, or a sanitisation function in a taint analysis. In the
example above, we might declare match as a retainer: match=retain(match).

We illustrate the effect of the library with the Python commands executed in an
interactive session1 in the left hand display of Figure 1. Here, the symbol >>> is the
interpreter prompt, and raw_input is the built-in function that reads a line from the
standard input.

In the session to the left, line 1 gets the string ’A’ as an input and stores it in variable
x. Then, variable x is used in two elements of list y. Naturally, when printing the list,
we can observe that the second element is x and the third one is some data derived from
x, i.e. x concatenated with itself.

Now, let us consider a replay of this session in which the programmer wants to
delete the information related to the input x after list y is printed once, which consti-

1 We use Python 2.7 for this work. However, our techniques can also be applied to previous
releases.

Erasure Policies - Taint Analysis 5

1 >>> x=raw_input()
2 A
3 >>> y=[’E’,x, x+x]
4 >>> y
5 [’E’,’A’,’AA’]

1 >>> from erasure import *
2 >>> raw_input=erasure_source(raw_input)
3 >>> x=raw_input()
4 A
5 >>> y=[’E’,x,x+x]
6 >>> y
7 [’E’,’A’,’AA’]
8 >>> erasure(x)
9 >>> y
10 [’E’,’’,’’]

Fig. 1. Examples of interactive sessions, without and with erasure

tutes an information erasure policy. To achieve that, the programmer needs to import our
library, indicate that function raw_input returns erase-aware values, and call function
erasure before printing the list for the second time. This revised session is illustrated
on the right of Figure 1. Observe that erasure removes data related to x. It is worth
noting that the core part of the program has not drastically changed in order to intro-
duce an information erasure policy. The next subsections provide some insights into the
implementation of the library.

2.1 Delegation

1 >>> x=Erasure(’A’)
2 >>> type(x)
3 <type ’instance’>
4 >>> x
5 ’A’
6 >>> y=x+x
7 >>> type(y)
8 <type ’instance’>
9 >>> y

10 ’AA’
11 >>> x.erase()
12 >>> y.erase()
13 >>> (x,y)
14 (’’, ’’)

Fig. 2. Mutable strings

In Python, numbers and strings are immutable. Conse-
quently, values of that type cannot be changed in-place af-
ter their creation. For instance, every string operation is de-
fined to produce a new string as a result. Having immutable
strings goes against the nature of erasure, since removing
information stored in a string implies in-place overwriting
of its contents by, for instance, the empty string. By using
a coding pattern usually known as delegation, the library
carefully implements a mechanisms that allows the value
of a string to be changed as shown by lines 7 and 10 in
Figure 1.

Delegation is a composite-based structure that man-
ages a wrapped object and propagates method calls to it. In
our library, it is implemented by the class Erasure, which
wraps an immutable object. Most of the method calls on
that class are forwarded to the wrapped object. The for-

warding mechanism assures that the results of method calls are also wrapped by the
class Erasure. By doing so, the only reference to the wrapped immutable object is by
a field on the class Erasure. As a result, it is possible to encode mutable strings by
simply using delegation. To illustrate how it works, we present an example in Figure 2.
Line 1 creates an object of the class Erasure that contains the immutable string ’A’.
Observe that line 3 indicates that it is indeed an object and not a string. Line 6 calls the
concatenation method on the object x, which is forwarded to the concatenation method
of the string ’A’. The result of that, the immutable string ’AA’, is wrapped by a new ob-
ject of the class Erasure and stored in y. Class Erasure provides the method erase

6 Filippo Del Tedesco, Alejandro Russo, and David Sands

to perform the concrete action of overwriting, with a default value, the class field where
the immutable object is stored (see Lines 11–12). Consequently, the wrapped objects
have now become the empty strings. The previous immutable objects, ’A’ and ’AA’,
are no longer referenced and thus will be garbage collected on due course. Program-
mers are not supposed to deal with the class Erasure directly (observe that it is not
in the interface of the library). Determining what data must be wrapped by the class
Erasure is tightly connected to what information must be erasure-aware. The next two
subsections describe the internal use of Erasure by the different mechanisms of the
library.

2.2 The primitive erasure_source

Erasure policies are expected to be only applied on a data source (i.e. an input) [12].
In fact, it does not make too much sense to erase information known at compile-time
(e.g. global constants, function declarations, etc). In this light, the library provides the
primitive erasure_source to indicate those sources of erase-aware values. More tech-
nically, the argument of erasure_source is a function, and the effect is to wrap, by
using the class Erasure, the immutable values returned by it. As an example, we have
the sequence of commands in Figure 3.

1 >>> from erasure import *
2 >>> raw_input=erasure_source(raw_input)
3 >>> x=raw_input()
4 A
5 >>> type(x)
6 <type ’instance’>

Fig. 3. Example of using erasure_source

Note that lines 1–3 are the
same as the ones in Figure 1.
In this case, the string ’A’, re-
turned by calling raw_input,
is wrapped into an object of
the class Erasure. As shown
in Figure 1, users might want
to delete a given input value as

well as information computed from it. Therefore, the library must be able to automat-
ically call the method erase on a given input as well as any piece of data computed
from it. In order to do that, the library keeps track of how erasure-aware values flow
inside programs by using taint analysis.

2.3 Taint analysis

Taint analysis is an automatic approach to find vulnerabilities in applications. Intu-
itively, taint analysis keeps track how tainted (untrustworthy) data flow inside programs
in order to constrain data to be untainted (trustworthy), or sanitised, when reaching
sensitive sinks (i.e. security critical operations). Perl was the first scripting language to
provide taint analysis as a special mode of the interpreter called taint mode [2]. Similar
to Perl, some interpreters for Ruby [24], PHP [17], and Python [14] have been care-
fully modified to provide taint modes. Rather than modifying the interpreter, Conti and
Russo [6] show how to provide a taint mode via a library in Python.

There is a clear connection between the use of taint analysis for finding vulnerabili-
ties and the problem of implementing an erasure policy. In taint analysis, data computed
from untrustworthy values is tainted. In our library, data that is computed from erasure-
aware values is erasure-aware. With this in mind, and inspired by Conti and Russo’s
work, we implement a mechanism to perform taint propagation, i.e. how to mark as

Erasure Policies - Taint Analysis 7

erasure-aware data that is computed from other erasure-aware values. From now on, we
use taint and erasure-aware as interchangeable terms.

Let us consider tainting and taint propagation in the following example, which is an
extended version of the listing in Figure 1:

1 >>> raw_input=erasure_source(raw_input)
2 >>> x=raw_input()
3 A
4 >>> x.tstamps
5 set([datetime.datetime(2010, 7, 3, 14, 13, 49, 21585)])
6 >>> y=raw_input()
7 B
8 >>> y.tstamps
9 set([datetime.datetime(2010, 7, 3, 14, 13, 56, 324137)])

10 >>> z=x+y
11 >>> z.tstamps
12 set([datetime.datetime(2010, 7, 3, 14, 13, 49, 21585), datetime.

datetime(2010, 7, 3, 14, 13, 56, 324137)])

As mentioned previously, erasure policies intrinsically refer to some input in the
program. Consequently, to enforce erasure policies, it is necessary to identify specific
inputs. Our library associates a timestamp to each input, representing the date and time
at which the data was provided. Timestamps are stored in the attribute tstamps of the
class Erasure. Thus, the assignment f=erasure_source(f) makes the result of f
erasure aware, and in addition it ensures that each value produced by f is (uniquely)
timestamped. Line 5 shows the timestamps corresponding to the input that variable x

depends on. The content of x.tstamps is the date and time when the input in line 3
was provided (2010–7–3 at 14:13:49 and some microseconds).

When erasure-aware values are involved in computations, taint information (i.e.
timestamps) gets propagated. More specifically, newly created erasure-aware objects
are associated to the set of timestamps obtained by merging the timestamps found in the
different objects involved in the computation. Taint propagation is implemented inside
the delegation mechanism of the class Erasure and it is performed after forwarding
method calls for a given object.

Line 10 combines two inputs (x and y) in order to create a new value, which is
stored in z. Line 11–12 illustrates that taint propagation is performed and that the set of
timestamps associated to z are those corresponding to the inputs x and y. At this point,
the reader might wonder why timestamps are used rather than a simple input-event
counter. By using timestamps, we will be able to program temporal erasure policies
(Section 4).

Explicit and implicit flows On most situations, taint analysis propagates taint informa-
tion on assignments. Intuitively, when the right-hand side of an assignment uses tainted
values, the variable appearing on the left-hand side becomes tainted. In fact, taint anal-
ysis is just a mechanism to track explicit flows, i.e. direct flows of information from one
variable to another. Taint analysis tends to ignore implicit flows [7], i.e. flows through
the control-flow constructs of the language.

8 Filippo Del Tedesco, Alejandro Russo, and David Sands

1 if x == ’A’: isA=True
2 else: isA=False
3 erasure(x)

Fig. 4. An implicit flow

Figure 4 presents an implicit flow where vari-
able x is erasure-aware. Observe that variable isA is
not erasure-aware. In fact, it is built from untainted
Boolean constants. Although the value of x is erased
(Line 3), information about x is still present in the pro-

gram, i.e. the program knows if x referred to ’A’. It is not difficult to imagine programs
that circumvent the taint analysis by copying the content of erasure-aware strings into
regular strings by using implicit flows[19]. In scenarios where attackers have full con-
trol over the code (e.g. when the code is potentially malicious), implicit flows present an
effective way to circumvent the taint analysis. There is a large body of literature on the
area of language-based security regarding how to track implicit flows [20]. In this work,
we only track explicit flows, and thus our method is only useful for code which is writ-
ten without malice. Despite the good intentions and experience of programmers, some
pieces of code might not perform erasure of information as expected. For example, a
programmer might forget to overwrite a variable that is used to temporarily store some
sensitive information. In this case, taint analysis certainly helps to repair such errors
or omissions. How much information are implicit flows able to retain in non-malicious
code? As it has been argued for taint analysis [19], we argue that implicit flows are un-
likely to account for a large volume of unintended data retention. The reason is that data
retention relies on the non-malicious programmer writing more involved and rather un-
natural code in order to, for instance, copy tainted (erasure-aware) strings into untainted
ones [19]. In contrast, to produce explicit flows, programmers simply need to forget to
remove the content of a variable.

2.4 Erasing data

The taint analysis described above allows the library to determine, given a value, which
erasure-aware inputs were used to create it. These inputs are identified by a set of time-
stamps. To perform erasure, however, the library must take these timestamps and track
down all primitive values which are built from those inputs (c.f. line 8 in Figure 1).
To track which erasure-aware values depend on which inputs, the library internally
maintains a dependency table. It is the interaction of taint analysis and this table what
determines one of the differences between our approach and [6]. The table maps each
timestamp to the set of (references to) erasure-aware values – i.e. objects of the class
Erasure. If timestamp t is mapped to objects a and b, it means that the only values
in the program created by the input value provided at time t are a and b. The de-
pendency table is extended each time an erasure-aware input value is generated. It is
updated when erasure-aware values are formed from already existing ones. Primitive
erasure_source and the taint propagation mechanism are responsible for properly
updating the dependency table. Primitive erasure(v), which performs the actual era-
sure of data, can be then easily implemented. More precisely, calling erasure(v)

triggers the method erase (recall Figure 2) on all the objects which depend on the
timestamps associated to v. As a result, erasure-aware values derived from the same
inputs as v are erased from the program. Similarly, calling erasure() triggers the
method erase on every object in the dependency table.

Erasure Policies - Taint Analysis 9

1 def lockerSystem():
2 while(True):
3 print ’Welcome to the locker system’
4 fingerprint=getFingerprint()
5 ts=datetime.today()
6 if fingerprint in ADM:
7 log.add(’MEMORY DUMP -->’+fingerprint+’: ’+str(ts))
8 dump(log.getLog())
9 else:

10 suspect=local_police.check(fingerprint)
11 h = hash(fingerprint)
12 if locker.isFree():
13 key = h
14 locker.occupied()
15 print ’Please, do not forget to retrive your goods’
16 log.add(’LOCKED -->’+fingerprint+’: ’+str(ts))
17 else:
18 if key == h:
19 locker.free()
20 print ’Thanks for using the service’
21 log.add(’UNLOCKED -->’+fingerprint+’: ’+str(ts))
22 else:
23 print ’You are not the right owner’
24 log.add(’INVALID ACCESS -->’+fingerprint+’: ’+str(ts))

Fig. 5. Locker system

3 Extended Example

To give a fuller illustration of the capabilities of our approach, we add some extra func-
tionalities to the locker system described previously that are likely to be found in a
real implementation. Firstly, the system is able to keep track of events in a log that a
group of special users, called administrators, can fetch using their fingerprints. Sec-
ondly, since such lockers are typically found in security-critical public infrastructures,
we anticipate that there will be communication with some external authority in order
to cross-check the input fingerprints with the ones contained in special records (terror-
ist suspects, wanted criminals etc.). For simplicity, and without loosing generality, we
consider a system connected to just a single locker rather than several ones.

The code in Figure 5 shows an implementation of the locker system. As before,
function getFingerprint reads a fingerprint. Function datetime.today returns a
timestamp representing the current date and time. Object log implements logging fa-
cilities. Method log.add inserts a line into the log and method log.getLog provides
the log back inside a container.

When the fingerprint matches one of the administrator’s fingerprints stored in the
container ADM, the dump function is executed using log.getLog as argument, and
the log is output (lines 7-8). Object local_police represents a connection to the ex-
ternal authority. Method local_police.check cross-checks the fingerprint given as
an argument against a database of suspects.

10 Filippo Del Tedesco, Alejandro Russo, and David Sands

In all other cases (i.e. for locking and opening purposes), the locker only needs a
hash of the fingerprint, which is assigned to variable h. The object locker represents
the state of the locker, which is initially “free” and could become “occupied” during the
execution. If the fingerprint does not belong to an administrator, the locker is tested with
the isFree method. If the answer is positive, the user can store luggage; the hash is
then saved in key and the locker state is set to occupied (lines 13-16). Otherwise,
the locker is full and it is released only if the current hash matches with the one used to
lock it. In this case the method free makes the locker available for the next user (lines
19-21).

When it comes to logging, it is crucial to define what we want and is allowed to
log. The program logs four different responses corresponding to the system usage:
’LOCKED’, ’UNLOCKED’, ’INVALID ACCESS’, and ’MEMORY DUMP’. Naturally, it
is important to register the actions performed by the systems as well as the time when
they occur. Clearly, information erasure emerges as a desirable property when it comes
to handle fingerprints. On one hand, fingerprints corresponding to regular users must be
removed from the system (including from its log) after they are used for the intended pur-
pose, which constitutes the information erasure policy of the locker system (observe the
hash of the fingerprint is stored in the system for the authentication purpose, and for the
purposes of this example is considered to be OK to store). Fingerprints corresponding to
suspects, on the other hand, can be logged as evidence in case of a police investigation.
In order to give credit for his or her work, fingerprints from administrators can also be
logged. In other words, fingerprints from regular users must be erased after using them,
while fingerprints from suspects and administrators can remain in the system. The code
shown in Figure 5 does not fulfill the information erasure policy described before. It
actually logs the fingerprints of any user, which violates citizens privacy. Although it
is relatively simple to detect the violation of the information erasure policy in this ex-
ample, the same task could be very challenging in a more complex system where there
could be multiple sources of sensitive information in several thousands lines of codes.

1 from erasure import erasure_source, retain, erasure
2

3 # Erasure-aware sources
4 getFingerprint=erasure_source(getFingerprint)
5

6 # Retention statement
7 hash=retain(hash)
8

9 def lockerSystem():
10 ...
11 suspect=local_police.check(fingerprint)
12 h = hash(fingerprint)
13 if not(suspect):
14 erasure(fingerprint)
15 ...

Fig. 6. Locker system patched to fulfill the erasure policy regarding fingerprints
Figure 6 shows how programmers can use the library to make the code fulfill the

erasure policy regarding fingerprints. Line 1 imports our library. Line 4 identifies that

Erasure Policies - Taint Analysis 11

fingerprints are subjected to erasure policies, i.e. they are erasure-aware values. Line 7
states that hash is properly written, namely its outputs cannot be related to its input,
and therefore they are not considered to violate any erasure policy. Then, the implemen-
tation of function lockerSystem is only changed to call erasure when the user of
the locker is not a suspect (lines 13-14). The rest of the code remains unchanged.

4 Lazy Erasure
The notion of erasure presented in the previous section is very intuitive. To remove all
erasure-aware inputs used to compute a given value v, it is enough to call erasure(v).
When calling erasure, the library immediately triggers the mechanism to perform
erasure over the current state of the program. Due to that fact, we call the mechanism
implemented by the API in Section 2 eager erasure2.

Eager erasure does not easily capture some classes of erasure policies without ma-
jor encoding overhead, which might drastically modify the code of the program. In
particular, let us consider conditional policies that cannot be immediately decided, e.g.
a certain value can only remain in the system for a period of time, after which it has
to be erased. Clearly, it is not possible to trigger the erasure mechanism straight away,
but the need for erasure has to be remembered in the system and triggered at the right
time. To deal with such policies without any additional major runtime infrastructure, the
library provides lazy erasure as a mechanism to perform erasure at the latest possible
moment, i.e. when needed.

Lazy erasure deletes information “just in time” at the points where data would other-
wise escape the system and observably break the intended erasure policy. Programmers
only need to state what is supposed to be erased and it is up to the library to trigger
the erasure mechanisms at certain output points, i.e. when information is leaving the
system.

4.1 The Lazy Erasure API

Lazy erasure adds some additional functions to the API of the library. The other primi-
tives such as erasure_source have the same semantics as before.
erasure_escape(f) This function is used syntactically in the same manner as
erasure_source – i.e. as a function wrapper. It is used to identify the functions which
are to be considered as “outputs” for the system. These are the functions where an era-
sure policy could be observable violated – for example writing to a file or communicat-
ing with the outside world in some other manner. The lazy erasure policies are enforced
by inspecting the arguments to the functions which have been wrapped by the primitive
erasure_escape.
lazy_erasure(v,p) Primitive lazy_erasure introduces an erasure policy into

the program, but does not perform any actual erasure of information. It receives as ar-
guments a value v and a policy function p. The policy function (henceforth an erasure
policy) is a function from timestamps (i.e. timestamps of inputs) to Boolean values.

2 In functional languages, eager and lazy evaluation are commonly used terms to indicate when
evaluation is performed. We use the same terminology for erasure of data rather than evaluation
of terms.

12 Filippo Del Tedesco, Alejandro Russo, and David Sands

1 from datetime import datetime, timedelta
2 from erasure import *
3

4 getFingerprint=erasure_source(getFingerprint)
5

6 hash=retain(hash)
7

8 dump=erasure_escape(dump)
9

10 lazy_erasure(fivedays_policy)
11

12 def lockerSystem():
13 ...

Fig. 7. Locker system with a lazy erasure policy

Internally, a policy can use any of the program state, together with the timestamp ar-
gument (representing the timestamp of the value to be erased) to make judgment on
whether the value should be erased or not. Thus, declaring lazy_erasure(v,p) in-
dicates that any input values (and values computed from them) which were used in the
creation of v should be erased if policy p holds for their timestamps. Erasure is then
enforced at the output functions indicated by erasure_escape.

Two abbreviations are supported: lazy_erasure(v), which is equivalent to
lazy_erasure(v,(lambda t:True)) and thus unconditionally enforces erasure at
the erasure-escape points, and lazy_erasure(p), which is an abbreviation for calling
lazy_erasure with the policy p applied to every erasure-aware value in the system.

4.2 Lazy Erasure Examples

To illustrate how lazy erasure works, we start by encoding a temporal erasure policy that
allows to only keep fingerprints (administrators and suspects’ ones) for a limited time
of five days. The following piece of code implements the condition for such a policy:

1 def fivedays_policy(time):
2 return (datetime.today()-time)>timedelta(days=5)

Policy fivedays_policy takes a timestamp as input and returns whether the times-
tamp is more than five days old. In Figure 7, we show how to apply the policy in our
locker system. Line 8 indicates that before extracting the log from the system, erasure
must be performed. Line 10 introduces the erasure policy fivedays_policy into the
system. As a result, dumping the log triggers erasure on each of its entries which are
older than 5 days.

Lazy erasure is particularly useful to express policies that cannot be immediately de-
cided when input data enters the system. To illustrate this, we extend the locker scenario
a bit further. A common experience with network connections is the loss of connectiv-
ity. To handle this situation properly, we introduce the constant ’no_connection’
to be returned by method local_police.check when the connection with the po-
lice department cannot be established. Enforcing an erasure policy that depends on the
connection to the police department is not as simple as the policies considered previ-
ously. On one hand, we would like to have in the log the fingerprints which got the

Erasure Policies - Taint Analysis 13

1 def lockerSystem():
2 global police_mode
3 police_mode=False
4 ...
5 if fingerprint in ADM:
6 log.add(’MEMORY DUMP -->’+fingerprint+’: ’+str(ts))
7 if fingerprint==’police’:
8 police_mode=True
9 dump(log.getLog())

10 police_mode=False
11 else:
12 suspect=local_police.check(fingerprint)
13 h = hash(fingerprint)
14 if suspect==False:
15 lazy_erasure(fingerprint)
16 elif r==’no_connection’:
17 lazy_erasure(fingerprint,role_policy)
18 else:
19 pass
20 ...

Fig. 8. lockerSystem reimplemented for lazy erasure

’no_connection’ answer since they could belong to suspects. On the other hand,
fingerprints that got the ’no_connection’ answer and do not belong to suspects must
be erased in order to avoid violating users privacy when administrators dump the log.

As a trade-off between preserving fingerprints of suspects and privacy of regular
citizens is represented by the enforcement of an erasure policy which depends on the
person doing the dumping of the log. If a police agent is included in the set of ad-
ministrators, then he or she can dump the log if necessary. Since a police agent rep-
resents the public authority, the agent has full access to the fingerprints stored in the
log. Therefore, all the entries are included in the log, including those ones with the
’no_connection’ answer. In contrast, if the dumper is a regular administrator, the
entries with ’no_connection’ are removed from the log. In this way, suspect-related
data may get lost but privacy is not compromised. Clearly, the erasure policy is more
involved than the ones that we have been considered so far. However, we show that it
can be easily encoded by our library.

1 def role_policy(time):
2 global police_mode
3 return not(police_mode)

Fig. 9. Example of a lazy policy based on roles.

We start by introducing the Boolean
global variable police_mode to repre-
sent when a police agent is dumping the
log. Then, the function lockerSystem

has to signal whether the person dumping
the log is the police agent. Figure 8 shows

an extension to lockerSystem. In line 3, police_mode is initially set to False. Im-
mediately before dumping the log (line 9), the administrator identity is checked. If it
is a police agent, police_mode is set to True (line 8). The state is then reset at line
10. If the person dumping the log is a regular administrator, the value of police_mode
does not change. Observe that line 17 associates the erasure policy role_policy to

14 Filippo Del Tedesco, Alejandro Russo, and David Sands

those fingerprints received when the connection to the policy department cannot be es-
tablished. Consequently, the erasure of the fingerprint depends on the value returned by
the policy at the time of dumping the log. Figure 9 defines role_policy. This policy
only returns true when the dumping is done by a regular administrator (line 3). As a
consequence, those fingerprints associated with ’no_connection’ are erased imme-
diately before dumping the log provided that police_mode is false.

5 Related Work
As we have already explained in the introduction, application level erasure has been
studied in [3] and [12]. A simpler form of erasure for Java bytecode is discussed in
[11]. In [23], the counterpart of erasing systems (according to the definition given in
[12]) has been explored, providing some insights into the obligations of a user who
interacts with a system which promises erasure. These works all deal with an attacker
model where an attacker can in the worst case inject arbitrary code into the system
at a point in time at which erasure is supposed to have occurred. At lower levels of
abstraction, for example [9], conditions and techniques to guarantee physical erasure
on storage devices are considered. The need for physical erasure comes from a much
stronger attacker model where the attacker is not hindered by any abstraction layers.
An end-to-end view linking the high-level application level and the low level physical
views should be possible, but it has not been previously considered.

To the best of our knowledge, JifE [4] is the only system currently implementing
application-level erasure. This is based on the Jif compiler which deals with a subset
of Java extended with security labels. Unlike the very general model on which it is
based [5], the only conditions allowed in JifE’s conditional erasure policies are a special
class of Boolean condition variables. The implementation ensures that whenever such a
condition variable changes, any necessary erasures are triggered. It would be simple to
mimic this style of implementation (modulo implicit flows) using our primitives.

Erasure can be also related to usage control, since it is based on the idea of chang-
ing the way data is handled in the system after a certain moment. In [18], the authors
present a model to reason on usage control, based on obligations the data receiver has
to enforce through some mechanisms. The model is very general, and erasure can be
described as an obligation (actually it is explicitly mentioned as a data owner require-
ment), but its purpose does not correspond to our approach, which deals with techniques
to implement that obligation. The work in [26] extends access control with temporal and
times-consuming features, leading to what they call TUCON (Times-based Usage Con-
trol) model. This approach allows to reason with policies that deal with the period of
time in which a given object is available. Although it would not be very natural (policies
here seem to be more user-oriented), it should be also possible to reason about erasure in
this framework as well; similar considerations about implementation holds in this case
as well. However, concepts from the usage control literature could provide inspiration
for a study of the enforcement of a wider class of usage policies at code level.

6 Conclusions and Future Work
We have presented a library-approach to enforce erasure policies. The library transpar-
ently adds taint tracking to data sources, making it easy to use and permitting program-
mers to indicate information-erasure policies with only minor modifications to their

Erasure Policies - Taint Analysis 15

code. To the best of our knowledge, this is the first implementation of a library that con-
nects taint analysis and information-erasure policies. From our limited experience, the
imperfections of taint analysis (the inability to track implicit flows) serve to keep the
policy specifications simple, and enable us to handle examples for which existing ap-
proaches would not be sufficiently expressive. We have also introduced the concept of
lazy erasure – an observational form of erasure which supports richer erasure policies,
including temporal policies, with a simple implementation.

There are a number of directions for further work. One challenge ahead is how to
deal with permanent storage like databases or file systems when specifying erasure poli-
cies. Policies like “user information must be erased when his or her account is closed”
are out of scope in the existing approaches [3, 12], where erasure is performed on inter-
nal data structures. User information, on the other hand, is usually placed in databases
(e.g. web application) or file systems (e.g. Unix-like operating systems). We believe that
it is possible to extend the interfaces for accessing files and databases in order to store
data as well as erasure information (timestamps). Those interfaces usually involve han-
dling objects and thus the library needs to be extended to consider them. To achieve that,
we could threat objects as just mere containers and apply similar tainting techniques as
the ones used for dictionaries. Another important aspect is the evaluation of the over-
heads caused by the library – in particular, how taint propagation and updates in the
dependency table impact on performance. It would also be interesting to evaluate how
precise tainting [17, 8] could be exploited to obtain more precision when erasing data.
Precise tainting associates taint information to characters rather than to whole strings.
In our library, if an small part of an string contains some information that should be
erased, then the whole string is deleted. By using precise tainting, it would be possible,
in principle, to only delete those pieces of the string containing the information to erase.
Precise tainting usually requires to fully understand the semantics of each function that
manipulates erasure-aware values. As for most approaches to dynamic taint analysis,
our approach ignores implicit flows. As a consequence programs might retain informa-
tion indirectly via their control constructs. Rather than fixing this problem, a reasonable
alternative might be to bound it. Inspired by preserving confidentiality, the work in [16]
develops a mechanism to obtain bounds on the information leaked by implicit-flows.
We believe that it is feasible to adapt such mechanism to obtain bounds on the infor-
mation retained by control constructs. On the theoretical side, it could be important to
describe precisely the security condition that taint analysis is enforcing in the presence
of delimited retention policies. In fact, to the best of our knowledge, the work by [25] is
the only one that presents a security condition for taint analysis using formal semantics.

References
1. The Perl programming language. http://www.perl.org/
2. Bekman, S., Cholet, E.: Practical mod perl. O’Reilly and Associates (2003)
3. Chong, S., Myers, A.C.: Language-based information erasure. In: Proc. IEEE Computer Se-

curity Foundations Workshop. pp. 241–254 (Jun 2005)
4. Chong, S.: Expressive and Enforceable Information Security Policies. Ph.D. thesis, Cornell

University (Aug 2008)
5. Chong, S., Myers, A.C.: End-to-end enforcement of erasure and declassification. In: CSF

’08: Proceedings of the 2008 21st IEEE Computer Security Foundations Symposium. pp.
98–111. IEEE Computer Society, Washington, DC, USA (2008)

16 Filippo Del Tedesco, Alejandro Russo, and David Sands

6. Conti, J.J., Russo, A.: A taint mode for python via a library. OWASP AppSec Research 2010
(2010)

7. Denning, D.E., Denning, P.J.: Certification of programs for secure information flow. Comm.
of the ACM 20(7), 504–513 (Jul 1977)

8. Futoransky, A., Gutesman, E., Waissbein, A.: A dynamic technique for enhancing the secu-
rity and privacy of web applications. In: Black Hat USA Briefings (Aug 2007)

9. Gutmann, P.: Data remanence in semiconductor devices. In: SSYM’01: Proceedings of the
10th conference on USENIX Security Symposium. pp. 4–4. USENIX Association, Berkeley,
CA, USA (2001)

10. Haldar, V., Chandra, D., Franz, M.: Dynamic Taint Propagation for Java. In: Proceedings of
the 21st Annual Computer Security Applications Conference. pp. 303–311 (2005)

11. Hansen, R.R., Probst, C.W.: Non-interference and erasure policies for java card bytecode.
In: 6th International Workshop on Issues in the Theory of Security (WITS ’06) (2006)

12. Hunt, S., Sands, D.: Just forget it – the semantics and enforcement of information erasure. In:
Programming Languages and Systems. 17th European Symposium on Programming, ESOP
2008. pp. 239–253. No. 4960 in LNCS, Springer Verlag (2008)

13. Jovanovic, N., Kruegel, C., Kirda, E.: Pixy: A Static Analysis Tool for Detecting Web Ap-
plication Vulnerabilities (Short Paper). In: 2006 IEEE Symposium on Security and Privacy.
pp. 258–263. IEEE Computer Society (2006)

14. Kozlov, D., Petukhov, A.: Implementation of Tainted Mode approach to finding security vul-
nerabilities for Python technology. In: Proc. of Young Researchers’ Colloquium on Software
Engineering (SYRCoSE) (Jun 2007)

15. Lutz, M.: Learning Python. O’Reilly & Associates, Inc., Sebastopol, CA, USA (2003)
16. Newsome, J., McCamant, S., Song, D.: Measuring channel capacity to distinguish undue

influence. In: PLAS ’09: Proceedings of the ACM SIGPLAN Fourth Workshop on Program-
ming Languages and Analysis for Security. pp. 73–85. ACM (2009)

17. Nguyen-Tuong, A., Guarnieri, S., Greene, D., Shirley, J., Evans, D.: Automatically Hard-
ening Web Applications Using Precise Tainting. In: In 20th IFIP International Information
Security Conference. pp. 372–382 (2005)

18. Pretschner, A., Hilty, M., Basin, D., Schaefer, C., Walter, T.: Mechanisms for usage control.
In: ASIACCS ’08: Proceedings of the 2008 ACM symposium on Information, computer and
communications security. pp. 240–244. ACM, New York, NY, USA (2008)

19. Russo, A., Sabelfeld, A., Li, K.: Implicit flows in malicious and nonmalicious code. 2009
Marktoberdorf Summer School (IOS Press) (2009)

20. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Selected Ar-
eas in Communications 21(1), 5–19 (Jan 2003)

21. Sabelfeld, A., Myers, A.C.: A model for delimited information release. In: Proc. International
Symp. on Software Security (ISSS’03). LNCS, vol. 3233, pp. 174–191. Springer-Verlag (Oct
2004)

22. Seo, J., Lam, M.S.: InvisiType: Object-Oriented Security Policies. In: 17th Annual Network
and Distributed System Security Symposium. Internet Society (ISOC) (Feb 2010)

23. Tedesco, F.D., Sands, D.: A user model for information erasure. In: SecCo’09, 7th Interna-
tional Workshop on Security Issues in Concurrency. Electronic Proceedings in Theoretical
Computer Science (2009), to appear

24. Thomas, D., Fowler, C., Hunt, A.: Programming Ruby. The Pragmatic Programmer’s Guide.
Pragmatic Programmers (2004)

25. Volpano, D.: Safety versus secrecy. In: Proc. Symp. on Static Analysis. LNCS, vol. 1694, pp.
303–311. Springer-Verlag (Sep 1999)

26. Zhao, B., Sandhu, R., Zhang, X., Qin, X.: Towards a times-based usage control model. In:
Proceedings of the 21st annual IFIP WG 11.3 working conference on Data and applications
security. pp. 227–242. Springer-Verlag, Berlin, Heidelberg (2007)

Disjunction Category Labels

LIO: a monad for dynamically tracking

information-flow

Secure Programming via
Libraries

Escuela de Ciencias Informáticas (ECI) 2011
UBA, Buenos Aires, Argentina

Disjunction Category Labels

Alejandro Russo (russo@chalmers.se)

Secure Programming via Libraries 2

Motivation

● It is usually common to consider the simple two-point
lattice to represent confidential and public information
● Information flows from public to secret

● In scenarios of mutual distrust, things are a little bit
more complicated

● Let us see a concrete scenario

Secure Programming via Libraries 9

Disjunction Category Labels
[Stefan, Russo, Mazieres] (work-in-progress)

● For short: DCLabels

● It is a label system to express restrictions on data
which allows to reflect the concern of multiple parties

● Principal
● Source or authority (e.g., Alice, Bob, and Charly)

● Disjunction Category (just category)
● Set of principals
● Each principal is said to own the category

● Categories are associated to data

Secure Programming via Libraries 10

 or

Secure Programming via Libraries 12

integrity

Secure Programming via Libraries 15 Secure Programming via Libraries 18

Secure Programming via Libraries 21

● We do not always know all the principals in the system

– Principals can come and go

Secure Programming via Libraries 22

Join and Meet Operations

● It is possible to define the join and meet operations
and proof their correctness
● The authors of DLM [Myers, Liskov 98] have not proved

this formally
– “The formula for meet is sound, but unlike the formula for

join, it does not always produce the most restrictive label
for all possible extensions P'”

– “The result is that label inference must be conservative in
some cases, which does not seem to be a significant
problem”

Secure Programming via Libraries 23

● These operations might introduce categories which are
redundant

Secure Programming via Libraries 24

confidentiality but it also holds for integrity

Secure Programming via Libraries 34

A Library for DCLabels in Haskell

● It is in a experimental phase
● Remember that it is work-in-progress!

● I adapted the library for this course

● In the future, you might refer to the official release

● Check the webpage of the course to get the installation
instructions

Secure Programming via Libraries 35

Creating DCLabels

module Labels where

import DCLabel.Safe
import DCLabel.PrettyShow

c1 = "Alice" .\/. "Bob"

l1 = "Alice" .\/. "Bob" ./\. "Carla"

l2 = "Alice" ./\. "Carla"

dc1 = newDC l1 l2

dc2 = newDC "Deain" "Alice"

It can use DCLabels
without the capability
to create privileges

Categories
(disjunctions)

Labels
(conjunctions of

disjunctions)

DCLabels

Secure Programming via Libraries 36

>

>

>

>

*ExamplesDCLabels> canflowto bottom dc1
True

Secure Programming via Libraries 37

Privileges

import DCLabel.Core
import DCLabel.PrettyShow
import DCLabel.NanoEDSL

l1 = "Alice" .\/. "Bob" ./\. "Carla"

l2 = "Alice" ./\. "Carla"

dc1 = newDC l1 l2

dc2 = newDC "Deain" "Alice"

pr = createPrivTCB (newDC ("Alice" ./\. "Carla"))

Only trusted code
can create privileges

Creation

Secure Programming via Libraries 38

Privileges

*ExamplesDCLabels> pShow dc1
<{["Alice" \/ "Bob"] /\ ["Carla"]} , {["Alice"] /\ ["Carla"]}>
*ExamplesDCLabels> pShow dc2
<{["Deain"]} , {["Alice"]}>
*ExamplesDCLabels> canflowto dc1 dc2
False

*ExamplesDCLabels> pShow $ priv pr
{["Alice"] /\ ["Carla"]}
*ExamplesDCLabels> canflowto_p pr dc1 dc2
True

Secrecy category
of dc1 cannot be

fullfiled by dc2

Now it is possible
given privileges

Secure Programming via Libraries 39

Final Remarks

● Label system for mutual distrust scenarios (DCLabels)
● Conjunction of categories
● Categories are disjunction of principals

● It allows to express the interest of different parties

● Precisely compute join and meet

● Work-in-progress
● Comparison with DLM (we have a precise meet)

● More systems need to be built using DCLabels

Secure Programming via
Libraries

Escuela de Ciencias Informáticas (ECI) 2011
UBA, Buenos Aires, Argentina

LIO: a monad for dynamically tracking
information-flow

Alejandro Russo (russo@chalmers.se)

Secure Programming via Libraries 2

Motivation

● Mass used systems often
present dynamic features
● Facebook

– Users come and go
– People make (and get rid

of) “friends”
– New applications are

created everyday
● Android

– New applications are
installed in your phone

– New features are added
with updates

Secure Programming via Libraries 3

Motivation

● One of the main motivations is permissiveness
● To secure as many programs as possible

● Therefore, we need technology that is able to
● provide confidentiality and integrity guarantees
● adapt security policies at run-time
● express the interest of different parties involved in a

computer system

Secure Programming via Libraries 4

LIO
[Stefan, Russo, Mitchell, Mazieres 11]

● It is a monad that provides:
● Information-flow control dynamically

– It is know that dynamic method are more permissive
[Sabelfeld, Russo 09] but equally secure as traditional static
ones

● Some for of discretionary access control

– It helps to deal with covert channels
– Information-flow control is not perfect!

● It is implemented as a library in Haskell

● It has recently accepted for the Haskell Symposium
2011, Tokyo, Japan.

Secure Programming via Libraries 5

SecIO vs LIO

● They share the concepts about how to use monads in order to
provide information-flow security

● SecIO provides information-flow security statically, while LIO
does it dynamically

● LIO is more permissive than SecIO

● SecIO is simpler than LIO

● LIO provides information-flow control and a form of discretionary
access control, while SecIO only provides the former

● SecIO provides an specific monad for pure values (Sec), while
LIO does not

● LIO can still manipulate pure values

Secure Programming via Libraries 6

Tracking information-flow dynamically

● LIO can perform side-effects or just compute with pure
values

● LIO takes ideas from the operating systems into
language-based security

● LIO protects every value in lexical scope by a single, and
mutable, current label

● Part of the state of the LIO monad

● It implements a notion of floating label for the current label
● The current label “floats” above the label of the data

observed so far

Secure Programming via Libraries 7

Floating Current Label

program
 = do xs <- code1
 ys <- code2
 let z = [(e1,e2)| e1 <- xs, e2 <- ys]
 return z

Program written
using LIO There is a current label

at any point of the computation

lbl

We assume that
it is initially low

It is low

It is high

Secure Programming via Libraries 8

Floating Current Label

program
 = do xs <- code1
 ys <- code2
 let z = [(e1,e2)| e1 <- xs, e2 <- ys]
 return z

Program written
using LIO There is a current label

at any point of the computation

lbl

It continues low

It is low

It is high

xs

 ys

After this line, no public
data can be affected

(no write-down)

program' =
 do result <- program

It cannot write
to public data

Secure Programming via Libraries 9

Discretionary Access Control

● LIO also provides a form of discretionary access
control

● LIO has a notion of current clearance

● Part of the state of LIO

● It imposes an upper bound in the current floating-label

● Therefore, it restricts data access and manipulation
● One manner to deal with covert channels (time, energy

consumption, etc)
● One manner to assure that some confidential data is not

copied to be accessed in the future

Secure Programming via Libraries 10

Clearance

program
 = do xs <- code1
 ys <- code2
 let z = [(e1,e2)| e1 <- xs, e2 <- ys]
 return z

Program written
using LIO There is a current clearance

at any point of the computation

lbl

It is low, i.e.
the piece of code

cannot access
secret data

It is low

It is high

xs

 ys

clr The label must float
above the level ys,

but clr does not allowed

The program finishes its
execution here!

Secure Programming via Libraries 11

Architecture

● Similar to the one for SecIO

● We have trustworthy and untrustworthy modules

● Depending on the type of the module, we import
different modules from the library LIO

Untrustworthy moduleTrustworthy module

Trustworthy module
It requests some service from

the untrusted module and
provides the data for that

It export some services
that required security

policies

Secure Programming via Libraries 12

API: label and unlabel

● Given a label l (between the current label and the clearance)
and a value of type a, it returns a value protected by l

● In other words, it assigns the security level described by l to the
value of type a

label :: (Label l) => l -> a -> LIO l s (Labeled l a)

We ignore this parameter

public :: LIO DCLabel () (Labeled DCLabel String)
public = label lbot "PublicData"

secret :: LIO DCLabel () (Labeled DCLabel String)
secret = label ltop "SecretData"

bob :: LIO DCLabel () (Labeled DCLabel String)
bob = label (newDC ("Alice" .\/. "Bob") "Bob") "BobData"

lbot is bottom in DCLabels

ltop is top in DCLabels

Using DCLabels!

It does not modify the current label and clearance!

Secure Programming via Libraries 13

API: label and unlabel

● Given a labeled value of type a with security level l, it returns
the value of type a and raises the current label (clearance
permitting) to the join of the current label (lbl) and l

● Observe that after executing unlabel, the value of type a can
be involved in computations and therefore the current label
should float about it!

unlabel :: (Label l) => Labeled l a -> LIO l s a

We ignore this parameter

computation = do l_sec_str <- secret
 sec_str <- unlabel l_sec_str
 return sec_str ++ sec_str

:: Labeled DCLabel String
We cannot compute with the string!

lbl

clr

We want to
compute with the

string

sec_str

Secure Programming via Libraries 14

Example (trustworthy code)

module ExampleUnLabelT where

import DCLabel.PrettyShow
import LIO.DCLabel
import LIO.TCB

import ExampleUnLabelU (computation)

public :: LIO DCLabel () (Labeled DCLabel String)
public = label lbot "PublicData"

secret :: LIO DCLabel () (Labeled DCLabel String)
secret = label ltop "SecretData"

execute = do (result, label) <- evalLIO (computation public secret) ()
 putStrLn $ "The result is: " ++ result
 putStrLn $ "With the label: " ++ prettyShow label

Only to be imported
by trustworthy code!

It imports the service
from the untrustworthy

code

It provides some data
to the service and

executes it!

Secure Programming via Libraries 15

Example (untrustworthy code)

module ExampleUnLabelU where

import LIO.DCLabel
import LIO.LIO

computation p s = do l_public_string <- p
 l _secret_string <- s
 public _string <- unlabel l_public_string
 secret _string <- unlabel l_secret_string
 return $ public_string ++ secret_string

To be imported by
untrustworthy code!

After this point, any
subsequent computation
cannot write to public files

Secure Programming via Libraries 16

API: toLabeled

● This primitive avoids creeping of the current label

● Otherwise, after we read a secret, we cannot do any
other computation that involves writing to public data

● It is similar to the primitive plug (from SecIO)

● Given a label l (between the current label and the
clearance) , and a computation m, it executes m and
returns its result in a value protected by Labeled
without raising the current label

● Computation m cannot read data about level l

toLabeled :: (Label l) => l -> LIO l s a -> LIO l s (Labeled l a)

We ignore this parameter

Secure Programming via Libraries 17

Example (trustworthy code)

module ExampleToLabeledT where

import DCLabel.PrettyShow
import LIO.DCLabel
import LIO.TCB

import ExampleToLabeledU (computation')

public :: LIO DCLabel () (Labeled DCLabel String)
public = label lbot "PublicData"

secret :: LIO DCLabel () (Labeled DCLabel String)
secret = label ltop "SecretData"

execute = do (result, label) <- evalLIO (computation' public secret) ()
 putStrLn $ "The result is: " ++ show result
 putStrLn $ "With the label: " ++ prettyShow label

The same as before
but using a service

provided by computation'

Remember that
this executes label

Secure Programming via Libraries 18

Example (untrustworthy code)

module ExampleToLabeledU where

import LIO.DCLabel
import LIO.LIO

computation p s = do l_public_string <- p
 l_secret_string <- s
 public_string <- unlabel l_public_string
 secret_string <- unlabel l_secret_string
 return $ public_string ++ secret_string

computation' p s = do _ <- computation p s
 l_public_string <- p
 public_string <- unlabel l_public_string
 return public_string

lbl

clr

At this point, computatoin p
wants to create a Labeled value

with label lbot.However,
it cannot do it due to

the current label

Secure Programming via Libraries 19

Example (untrustworthy code)

module ExampleToLabeledU where

import LIO.DCLabel
import LIO.LIO

computation p s = do l_public_string <- p
 l_secret_string <- s
 public_string <- unlabel l_public_string
 secret_string <- unlabel l_secret_string
 return $ public_string ++ secret_string

computation' p s = do _ <- toLabeled ltop (computation p s)
 l_public_string <- p
 public_string <- unlabel l_public_string
 return public_string

lbl

clr

It is not raised when
executing toLabeled

The current label is
raised when computing
computation as before

Secure Programming via Libraries 20

API: labelOf

● It just returns the label of a Labeled value

● The labels are public information in the sense that they
can be examined any time

labelOf :: (Label l) => Labeled l a -> l

Secure Programming via Libraries 21

Example (trustworthy code)

import DCLabel.PrettyShow
import LIO.DCLabel
import LIO.TCB

import ExampleLabelOfU (computation)

public :: LIO DCLabel () (Labeled DCLabel String)
public = label lbot "PublicData"

secret :: LIO DCLabel () (Labeled DCLabel String)
secret = label ltop "SecretData"

execute = do (result, label) <- evalLIO (computation secret) ()
 putStrLn $ "The result is: " ++ show result
 putStrLn $ "With the label: " ++ prettyShow label

It will return
0 if the argument
receive is secret
and 1 otherwise

It will return
0 if the argument
receive is secret
and 1 otherwise

Secure Programming via Libraries 22

Example (untrustworthy code)

module ExampleLabelOfU where

import LIO.DCLabel
import LIO.LIO

computation c = do labeled <- c
 l <- return $ labelOf labeled
 if l == lbot then return 1
 else return 0

Secure Programming via Libraries 23

API: References

● Given a label l (between the current label and the
clearance) , it creates a reference to a value of type a
protected by l

newLIORef :: (Label l) => l -> a -> LIO l s (LIORef l a)

We ignore this parameter

readLIORef :: (Label l) => LIORef l a -> LIO l s a

● It reads the content of the reference and, similar to
unlabeled, raises the current label (clearance
permitting) to the join of the current label (lbl) and l

Secure Programming via Libraries 24

API: References

● It writes a value of type a into a given reference as
long as, similar to label, the label of the reference is
between the current label and the clearance.

writeLIORef :: (Label l) => LIORef l a -> a -> LIO l s ()

We ignore this parameter

Secure Programming via Libraries 25

Example (trustworthy code)

module ExampleRefsT where

import LIO.LIORef
import DCLabel.PrettyShow
import LIO.DCLabel
import LIO.TCB

import ExampleRefsU (computation)

public :: LIO DCLabel () (LIORef DCLabel String)
public = newLIORef lbot "PublicData"

secret :: LIO DCLabel () (LIORef DCLabel String)
secret = newLIORef ltop "SecretData"

execute = do (result, label) <- evalLIO (computation public secret) ()
 putStrLn $ "The result is: " ++ show result
 putStrLn $ "With the label: " ++ prettyShow label

It is almost the same code as
module ExampleToLabeledT

References

We use references
instead of Labeled

values

Secure Programming via Libraries 26

Example (untrustworthy code)

module ExampleRefsU where

import LIO.LIORef
import LIO.DCLabel
import LIO.LIO

computation p s = do ref_l <- p
 ref_s <- s
 s <- readLIORef ref_s
 writeLIORef ref_l s
 return ()

It reads the content,
then the current

label is set to ltop

It fails to perform
the writing!

Secure Programming via Libraries 27

Final Remarks

● We present a library for dynamically tracking information-flow
● More permissive than previous static approaches
● It also provides some form of discretionary access control

● Covert channels
● Simple to use and parametric on the label system being used

● You can use DCLabels!
● As SecIO, the correcness of the library relies on type safety
and module abstraction

● SafeHaskell is coming for GHC 7.2

Flexible Dynamic Information Flow Control in Haskell

Deian Stefan1 Alejandro Russo2 John C. Mitchell1 David Mazières1

(1) Stanford University, Stanford, CA, USA
(2) Chalmers University of Technology, Gothenburg, Sweden
{deian,mitchell}@cs.stanford.edu russo@chalmers.se

Abstract
We describe a new, dynamic, floating-label approach to language-
based information flow control, and present an implementation in
Haskell. A labeled IO monad, LIO, keeps track of a current label
and permits restricted access to IO functionality, while ensuring
that the current label exceeds the labels of all data observed and
restricts what can be modified. Unlike other language-based work,
LIO also bounds the current label with a current clearance that pro-
vides a form of discretionary access control. In addition, programs
may encapsulate and pass around the results of computations with
different labels. We give precise semantics and prove confidential-
ity and integrity properties of the system.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.3.3 [Program-
ming Languages]: Language Constructs and Features—Modules,
packages

General Terms Security, Languages, Design

Keywords Information flow control, Monad, Library

1. Introduction
Complex software systems are often composed of modules with
different provenance, trustworthiness, and functional requirements.
A central security design principle is the principle of least privilege,
which says that each component should be given only the privileges
it needs for its intended purpose. In particular, it is important to dif-
ferentially regulate access to sensitive data in each section of code.
This minimizes the trusted computing base for each overall func-
tion of the system and limits the downside risk if any component is
either maliciously designed or compromised.

Information flow control (IFC) tracks the flow of sensitive data
through a system and prohibits code from operating on data in vio-
lation of security policy. Significant research, development, and ex-
perimental effort has been devoted to static information flow mech-
anisms. Static analysis has a number of benefits, including reduced
run-time overhead, fewer run-time failures, and robustness against
implicit flows [10]. However, static analysis does not work well in
environments where new classes of users and new kinds of data
are encountered at run-time. In order to address the needs of such
systems, we describe a new, dynamic, floating-label approach to
language-based information flow control and present an implemen-
tation in Haskell.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Haskell’11, September 22, 2011, Tokyo, Japan.
Copyright c© 2011 ACM 978-1-4503-0860-1/11/09. . . $10.00

Our approach uses a Labeled type constructor to protect values
by associating them with labels. However, the labels themselves
are typed values manipulated at run-time, and can thus be created
dynamically based on other data such as a username. Conceptually,
at each point in the computation, the evaluation context has a
current label. We use a labeled IO monad, LIO, to keep track of
the current label and permit restricted access to IO functionality
(such as a labeled file system), while ensuring that the current
label accurately represents an upper bound the labels of all data
observed or modified. Unlike other language-based work, LIO also
bounds the current label with a current clearance. The clearance of
a region of code may be set in advance to impose an upper bound
on the floating current label within that region. This restricts data
access, limits the amount of code that could manipulate sensitive
data, and reduces opportunities to exploit covert channels. Finally,
we introduce an operator, toLabeled, that allows the result of a
computation that would have raised the current label instead to be
encapsulated within the Labeled type.

The main features of our system can be understood using the ex-
ample of an online conference review system, called λChair. In this
system, which we describe more fully later in the paper, authenti-
cated users can read any paper and can normally read any review.
This reflects the normal practice in conference reviewing, for exam-
ple, where every member of the program committee can see sub-
missions, their reviews, and participate in related discussion. Users
can be added dynamically and assigned to review specific papers.
In addition, as an illustration of the power of the labeling system,
integrity labels are used to make sure that only assigned reviewers
can write reviews for any given paper. Conversely, confidentiality
labels are used to manage conflicts of interest. Users with a conflict
of interest on a specific paper lack the privileges, represented by
confidentiality labels, to read a review. As conflicts of interest are
identified, confidentiality labels on the papers may change dynam-
ically and become more restrictive. It is also possible to remove
conflicts of interest dynamically, if desired. A subtlety that we have
found advantageous is that reviewers with a conflict of interest can
potentially refer to reviews (by having a name that is bound to a re-
view) but cannot perform specific operations simply because they
can refer to them. As we have structured our online conference re-
view system, the actual display of a conflict-of-interest review is a
prohibited operation.

The main contributions of this paper include:
◮ We propose a new design point for IFC systems in which most

values in lexical scope are protected by a single, mutable, cur-
rent label, yet one can also encapsulate and pass around the re-
sults of computations with different labels. Label encapsulation
is explicitly reflected by types in a way that prevents implicit
flows.

◮ We prove information flow and integrity properties of our de-
sign and describe LIO, an implementation of the new model in

Haskell. LIO, which can be implemented entirely as a library
(based on type safety), demonstrating both the applicability and
simplicity of the approach.

◮ Unlike other language-based work, our model provides a no-
tion of clearance that imposes an upper bound on the program
label, thus providing a form of discretionary access control on
portions of the code.
IFC originated with military applications [5, 11] that label data

and processes with sensitivity security levels. The associated label-
checking algorithms then prevent a Trojan horse reading classified
data, for example, from leaking the data into less classified files. In
operating systems, IFC is generally enforced at the kernel bound-
ary, allowing a small amount of trusted code to impose a flexible
security policy on a much larger body of supporting software. Ex-
tending the core concepts of IFC to a broader range of situations
involving mutually distrustful parties that mix their code and data,
Myers and Liskov [28] subsequently introduced a decentralized la-
bel model (DLM) that has been the basis of much subsequent OS
and language-based work. Unfortunately, despite its attractiveness,
the DLM is not widely used to protect data in web applications,
for example. In the operating systems domain, most of the past
DLM-inspired work has relied exclusively on dynamic enforce-
ment [21, 37, 39]. This is due to the dynamic nature of operat-
ing systems, which must support a changing set of users, evolving
policies, and dynamically loaded code. But it is often inconvenient
to establish security domains by arranging software according to
course-grained kernel abstractions like processes and files. More-
over, adopting a new OS presents an even bigger barrier to deploy-
ment than adopting a new compiler. LIO uses the type system to
enforce abstraction statically, but checks the values of labels dy-
namically. Thanks to the flexibility of dynamic checking, the li-
brary implements an IFC mechanism that is more permissive than
previous static approaches [26, 30, 32] but providing similar secu-
rity guarantees [34]. Though purely language-based, LIO explores
a new design point centered on floating labels that draw on past OS
work. Both the code and technical details omitted in this paper can
be found at http://www.scs.stanford.edu/~deian/lio.

2. Security Library
In this section, we give an overview of the information flow control
approach used in our dynamic enforcement library for Haskell.

2.1 Labels and IFC
The goal of information flow control is to track and control
the propagation of information according to a security policy. A
well-known policy addressed in almost every IFC system is non-
interference: publicly-readable program results must not depend
on secret inputs. This policy preserves confidentiality of sensitive
data [15].

To enforce information flow restrictions corresponding to secu-
rity policies such as non-interference, every piece of data is asso-
ciated with a label, including the labels themselves. Labels form
a lattice [9] with partial order ⊑ (pronounced “can flow to”) gov-
erning the allowed flows. A lattice can be as simple as a few secu-
rity levels. For instance, the three labels L, M, and H, respectively
denoting unclassified, secret and top secret levels, form the lattice
L ⊑ M ⊑ H. An IFC system such as our LIO library prohibits a
computation running with security level M from reading top secret
data (labeled H) or writing to public channels (labeled L). Dual to
such confidentially policies are integrity policies [6], which use the
partial order on labels to enforce restrictions on writes.

Our library is polymorphic in the label type, allowing different
types of labels to be used. Custom label formats can be created by
defining basic label operations: the can flow to label comparison
(⊑), a function computing the join of two labels (⊔), and a function

computing the meet of two labels (⊓). Concretely, label types are
instances of the Label type class:

class (Eq l) ⇒ Label l where
leq :: l → l → Bool -- Can flow to (⊑)
lub :: l → l → l -- Join (⊔)
glb :: l → l → l -- Meet (⊓)

For any two labels L1 and L2, the join has the property that Li ⊑
(L1 ⊔ L2), i = 1, 2, while the meet has the property that (L1 ⊓
L2) ⊑ Li, i = 1, 2. In this section we present examples using the
simple three-point lattice introduced above, or a generic/abstract
label format; Section 3 details DC labels, a new, practical label
format used to implement λChair.

Compared to existing systems, LIO is a language-based floating-
label system, inspired by IFC operating systems [39, 40]. In a
floating-label system, the label of a computation can rise to ac-
commodate reading sensitive data (similar to the program counter
(pc) of more traditional language-based systems [33]). Specifically,
in a floating-label system, a computation C with label LC wish-
ing to observe an object labeled LR must raise its label to the join,
LC ⊔LR, of the two labels. Consider, for instance, a simple λChair
review system computation executing on behalf of a user, Clarice,
with label LC that retrieves and prints a review labeled LR, as
identified by R:

readReview R = do -- LC

rv ← retrieveReview R -- LC ⊔ LR

printLabeledCh rv -- LC ⊔ LR

The computation label (initially LC) is shown in the comments, on
the right. Internally, the retrieveReview function is used to retrieve
the review contents rv, raising the computation label to LC⊔LR to
reflect the observation of confidential data. This directly highlights
the notion of a “floating-label”: a computation’s label effectively
“floats above” the labels of all objects it observes. Moreover, this
implies that a computation cannot write below its label; doing so
could potentially result in writing secret data to public channels.

To illustrate the way floating labels restrict data writes, con-
sider the action following the review retrieval: printLabeledCh rv.
The trusted printLabeledCh function returns an action that writes
the review content rv to an output channel, permitting the output
channel label LO . The output channel label LO is dynamically
set according to the user executing the computation. Specifically,
LO is carefully set as to allow for printing out all but the conflict-
ing reviews. For example, if Clarice is in conflict with review R
then LO is set such that LR 6⊑ LO . Since the computation la-
bel directly corresponds to the labels of the data it has observed,
printLabeledCh simply checks that the computation label flows
to the output channel. In the example above, the trusted function
checks that LC ⊔ LR ⊑ LO before printing to (standard) output
channel O.

As already mentioned, in contrast to other language-based sys-
tems, LIO also associates a clearance with each computation. This
clearance sets an upper bound on the current floating label within
some region of code. For example, code executing with a secret (M)
clearance can never raise its label to read top secret data (labeled
H). The notion of clearance can also prevent Clarice from retrieving
(and not just printing) the contents of a conflicting review R by set-
ting the computation’s clearance to LP such that LR 6⊑ LP . When
the action retrieveReview R attempts to raise the current label to
LC ⊔ LR to retrieve the review contents, the dynamic check will
fail because LC ⊔ LR 6⊑ LP . For flexibility, the output channel
label can simply be LO = ⊤, allowing any information that can be
retrieved to be written to the output channel.

Additionally, clearance can be used to prevent Clarice from
using termination as a covert channel. For example, the following
code can be used to leak conflicting-review information:

leakingRetriveReview r = do
rv ← retrieveReview r
if rv == "Paper..."
then forever (return rv)
else return rv

However, using clearance, we prevent such leaks by setting the
clearance and review labels in such manner that retrieveReview
fails when raising the computation label to retrieve conflicting
reviews.

2.2 Library Interface
LIO is a termination-insensitive [2] and flow-sensitive [20] IFC
library that dynamically enforces information flow restrictions. At
a high level, LIO defines a monad called LIO, intended to be used
in place of IO. The library furthermore contains a collection of LIO
actions, many of them similar to IO actions from standard Haskell
libraries, except that they contain label checks that enforce IFC.
For instance, LIO provides file operations like those of the standard
library, but confining the application to a dedicated portion of the
file system where a label is stored along with each file.

To implement the notion of floating label bounded by a clear-
ance, our library provides LIO as a state monad that uses IO as
the underlying base monad and it is parametrized by the type of
labels. The state consists of a current label Lcur, i.e., the computa-
tion’s floating label, and a current clearance Ccur, which is an upper
bound on Lcur, i.e.,Lcur⊑Ccur. Specifically, the (slightly simplified)
LIO monad can be defined as:

newtype Label l ⇒ LIO l a = LIO (StateT (l, l) IO a)

where the state corresponds to the (Lcur, Ccur) pair. To allow for the
execution of LIO actions, our library provides a function (evalLIO)
that takes an LIO action and returns an IO action which, when ex-
ecuted, will return the result of the IFC-secured computation. It is
important to note that untrusted LIO code cannot execute IO com-
putations by binding IO actions with LIO ones (to bypass IFC re-
strictions), and thus effectively limits evalLIO to trusted code. Ad-
ditionally, using evalLIO, (trusted) programmers can easily, though
cautiously, enforce IFC in parts of an otherwise IFC-unaware pro-
gram.

The current label provides means for associating a label with
every piece of data. Hence, rather than individually labeling def-
initions and bindings, all symbols in scope are protected by Lcur
(when a single LIO action is executed). Moreover, the only way to
read or modify differently labeled data is to execute actions that
internally access restricted symbols and appropriately validate and
adjust the current label (or clearance).

However, in many practical situations, it is essential to be able to
manipulate differently-labeled data without monotonically increas-
ing the current label. For this purpose, the library additionally pro-
vides a Labeled type for labeling values with a label other than Lcur.
A Labeled, polymorphic in the label type, protects an immutable
value with a specified label (irrespective of the current label). This
is particularly useful as it allows a computation to delay raising
its current label until necessary. For example, an alternative ap-
proach to the above retrieveReview (called retrieveReviewAlt)
retrieves the review, encapsulates it as a Labeled value, and returns
the Labeled review, leaving the current label unmodified. This ap-
proach delays the creeping of current label until the review con-
tent, as encapsulated by Labeled, is actually needed, for instance,
by printLabeledCh.

We note that LIO can be used to protect pure values in a similar
fashion as Labeled. However, the protection provided by Labeled

allows for serializing labeled values and straight forward inspec-
tion by trusted code (which should be allowed to ignore the pro-
tecting label). Unlike LIO, Labeled is not a monad. Otherwise, the

monad instance would allow a computation to arbitrarily manipu-
late labeled values without any notion of the current label or clear-
ance, and thus possibly violate the restriction that LIO computa-
tions should not handle values below their label and above their
clearance. Moreover, such instance would require a definition for a
default label necessary when lifting a value with return. Instead,
our library provides several functions that allows for the creation
and usage of labeled values within LIO. Specifically, we provide
(among other) the following functions:
◮ label :: Label l ⇒l → a → LIO l (Labeled l a)

Given a label l such that Lcur ⊑ l ⊑ Ccur and a value v, the
action label l v returns a labeled value that protects v with l.

◮ unlabel :: Label l ⇒Labeled l a →LIO l a

Conversely, the action unlabel lv raises the current label
(clearance permitting) to the join of lv’s label and the current
label, returning the value with the label removed. Note that the
new current label is at least as high as lv’s label, thus protecting
the confidentiality of the value.

◮ toLabeled :: Label l ⇒l → LIO l a →LIO l (Labeled l a)

Given a label l such that Lcur ⊑ l ⊑ Ccur and an LIO action m,
toLabeled l m executes m without raising Lcur. However, in-
stead of returning the result directly, the function returns the
result of m encapsulated in a Labeled with label l. To preserve
confidentiality (see Section 4 for further details), action m must
not read any values with a label above l. We can implement
toLabeled as follows:

toLabeled l m = do
(L′

cur, C′
cur) ← get -- Save context

res ← m -- Execute action
(Lcur, _) ← get -- Get inner context
unless (Lcur ⊑ l) fail -- Check IFC violation
put (L′

cur, C′
cur) -- Restore context

lRes ← label l res -- Encapsulate result
return lRes -- Return result

In monadic terms, toLabeled is an environment-oriented action
that provides a different context for a temporary bind thread,
while unlabel is a state-oriented action that affects the current
bind thread.

◮ labelOf :: Label l ⇒Labeled l a →l

If lv is a labeled value with label l and value v, labelOf lv

returns l.
The formal semantics of these functions are given in Section 4 (see
Figure 4); in this section, we illustrate their functionality and use
through examples.

Consider the previous example of readReview. The internal
function retrieveReview takes a review identifier R and returns the
review contents. This implies that, internally, retrieveReview has
access to a list of reviews. These reviews are individually protected
by a label, where the addition of a new review to the system can be
implemented as:

addReview R LR rv = do
r ← label LR rv
addToReviewList R r

where the addToReviewList simply adds the Labeled review to
the internal list. The implementation of retrieveReview directly
follows:

retrieveReview R = do -- Lcur = LC

r ← getFromReviewList R -- Lcur = LC

rv ← unlabel r -- Lcur = LC ⊔ LR

return rv -- Lcur = LC ⊔ LR

where the getFromReviewList retrieves the Labeled review from
the internal list and unlabel removes the protecting label, and
raises the current label to reflect the read.

We previously alluded to an alternative implementation of
retrieveReview which, instead, returns the labeled review content
while keeping the current label the same. As getFromReviewList

is a trusted function and not directly available to untrusted users,
such as Clarice, retrieveReviewAlt can be implemented in terms
of toLabeled and retrieveReview:

retrieveReviewAlt R = do -- Lcur = LC

r ← toLabeled (LC ⊔ LR) $ do -- Lcur = LC

rv ← retrieveReview R -- Lcur = LC ⊔ LR

return rv -- Lcur = LC ⊔ LR

return r -- Lcur = LC

Note that although the current label within the inner computation is
raised, the outer computation’s label does not change—instead the
review content is protected by (LC ⊔ LR). Hence, only when the
review content is actually needed, unlabel can be used to retrieve
the content and raise the computation’s label accordingly:

readReviewAlt R = do -- Lcur = LC

r ← retrieveReviewAlt R -- Lcur = LC

-- Perform other computations -- Lcur = L′
C

rv ← unlabel r -- Lcur = L′
C ⊔ LR

printLabeledCh rv -- Lcur = L′
C ⊔ LR

Our library also provides labeled alternatives to IORefs and
files. Specifically, we provide labeled references Ref l a that are
created with newRef, read with readRef, and written to with
writeRef. When creating or writing to a reference with label LR,
it must be the case that Lcur ⊑ LR ⊑ Ccur, while reading raises
Lcur to Lcur ⊔ LR ⊑ Ccur. The rules for file operations follow
identically, however writing to a file also implies observation (since
the write can fail) and so the current label is raised in both cases.
Finally, though beyond the scope of this paper, the library provides
support for privileges. Privileges allow LIO code to operate under
a more permissive ⊑ relation, but still more restricting than simply
allowing the execution of arbitrary IO actions.

3. λChair
To demonstrate the flexibility of our dynamic information flow
library, we present λChair, a simple API (built on the examples of
Section 2) for implementing secure conference reviewing systems.
In general, a conference reviewing system should support various
features (and security policies) that a program committee can use
in the review process; minimally, it should support:
◮ Paper submission: ability to add new papers to the system.
◮ User creation: ability to dynamically add new reviewers.
◮ User login: a means for authenticating users.
◮ Review delegation: ability to assign reviewers to papers.
◮ Paper reading: means for reading papers.
◮ Review writing: means for writing reviews.
◮ Review reading: means for reading reviews.
◮ Conflict establishment: ability to restrict specific users from

reading conflicting reviews.
Even for such a minimal system, a number of security concerns
must be addressed. First, only users assigned to a paper may write
the corresponding reviews. Second, information from the review of
one paper should not leak into a different paper’s review. Third,
a reviewer should not be permitted to modify the review of a pa-
per that she/he is not assigned to review. And, fourth, users should
not received any information regarding papers for which they have
conflicts. We establish these four policies as non-interference poli-
cies for the confidentiality and integrity of reviews. We note that,
although enforcing additional security properties is desirable, these
four policies are sufficient when implementing a minimalistic and
fair review system.

λChair’s API provides the aforementioned security policies by
applying information flow control. Following the examples of Sec-
tion 2, we take the approach of enforcing IFC when writing to
output channels, and thus the security for the above policies cor-
respond to that of non-interference, i.e., secret data is not leaked
into less secret channels/reviews. We do, however, note that the al-
ternative, clearance restricting approach of Section 2, can be imple-
mented and thus enforce the security policies by confinement rather
than non-interference (see Section 5). Before delving into the de-
tails of the λChair, we first introduce the specific label format used
in the implementation.

3.1 DC Labels
λChair is implemented using Disjunction-Category (DC) labels, a
new label format especially suitable for systems with mutually dis-
trusting parties. DC labels can be used to express a conjunction
of restrictions on data, which allows for the construction of poli-
cies that reflect the concern of multiple parties. Such policies are
expressed by leveraging the notions of principals and Disjunction
Categories (henceforth just categories).

A principal is a string representation of a source of authority
such as a user, a group, a role, etc. To ensure egalitarian protection
mechanisms, any code is free to create principals.

A category is an information-flow restriction specifying the set
of principals that own it. Each category is denoted as a disjunction
of its owners; for example, the category owned by principals P1 and
P2 is written as [P1 ∨ P2]. Additionally, categories are qualified to
be secrecy or integrity categories. A secrecy category restricts who
can read, receive, or propagate information; an integrity category
specifies who can modify a piece of data.

A DC label L = 〈S, I〉 is a set S of secrecy categories and
a set I of integrity categories. All categories must be satisfied
in order to allow information to flow and thus we write each
set as a conjunction of categories. For example, the DC label
〈{[P1 ∨ P2] ∧ [P2 ∨ P3]} , {[P4]}〉 has two secrecy categories and
a single integrity category. Data with a DC label L1 can be prop-
agated to an endpoint having a DC label L2 if the restrictions
imposed by L1 are uphold by L2. We formalize this notion using
the ⊑-relationship as follows.

Definition 1 (Can flow to). Given any two DC labels L1 =
〈S1, I1〉 and L2 = 〈S2, I2〉, and interpreting each principal as
a Boolean variable named according to the content of the string
itself, we have

∀c1 ∈ S1.∃c2 ∈ S2 : c2 ⇒ c1 ∀c2 ∈ I2.∃c1 ∈ I1 : c1 ⇒ c2

〈S1, I1〉 ⊑ 〈S2, I2〉
,

where ⇒ denotes Boolean implication.

From now on, when we refer to a principal P , it can be in-
terpreted as a string or Boolean variable depending on the con-
text. As an example of the use of ⊑-relationship, the DC label
〈{[P1 ∨ P2] ∧ [P2 ∨ P3]} , {[P4]}〉 ⊑ 〈{[P1] ∧ [P3]} , {[P4 ∨ P6]}〉
since P1 ⇒ P1∨P2, P3 ⇒ P2∨P3, and P4 ⇒ P4∨P6. Intuitively,
the higher we move in the ⊑-relationship, the more restrictive the
secrecy category becomes, while the integrity category, on the other
hand, changes into a more permissive one. Additionally, we note
that if a label contains a category that is implied by another, the
latter is extraneous, as it has no effect on the value of the label, and
can be safely removed.

The join and meet for labels L1 = 〈S1, I1〉 and L2 = 〈S2, I2〉
are respectively defined as follows:

L1 ⊔ L2 = 〈reduce(S1 ∧ S2), reduce(I1 ∨ I2)〉
L1 ⊓ L2 = 〈reduce(S1 ∨ S2), reduce(I1 ∧ I2)〉

Here, reduce removes any extraneous categories from a given set
and ∧ and ∨ denote the conjunction and disjunction of two cate-
gory sets viewed as Boolean formulas of principals in conjunctive
normal form.

In the context of the well-known DLM [28], a DC label se-
crecy category of the form [P1 ∨ P2 ∨ · · · ∨ Pn] can be in-
terpreted as the (slightly modified) DLM label component/policy
{P1, P2, . . . , Pn : P1, P2, . . . , Pn}, where principals P1, . . . , Pn

are both the owners and readers. Although a DLM component con-
sists of a single owner, which does not need to be part of the reader
list, a DC label component (category) consists of multiple owners
which are also the (only) readers. Using this slightly modified no-
tion of a label component, a DLM label (set of components) loosely
corresponds to our notion of a label (conjunction of disjunctions).
Readers interested in the formal semantics of DC labels and the
comparison with DLM can refer to http://www.scs.stanford.
edu/~deian/dclabel for further details.

3.2 DC Labels in λChair
In this section we describe the data structures and the role of DC
labels (from now on just labels) in λChair.

λChair provides an API to build review systems for the func-
tionalities described in Section 3. Intuitively, the API just sup-
plies administrators and reviewers with functions for querying re-
view entries and modifying user accounts. Technically speaking,
λChair runs over an underlying state monad that stores informa-
tion regarding reviews and users.

Review entries A review entry is defined as a record consisting of
a paper id, a reference to the corresponding paper, and a reference
to the shared review ‘notebook’. Specifically, a review entry is
defined as

data ReviewEnt = ReviewEnt { paperId :: Id
, paper :: DCRef Paper
, review :: DCRef Review }

where DCRef is a labeled reference using DC labels. In other words,
type DCRef a = Ref DCLabel a. Note that this differs from the
examples of Section 2, in which the reviews were simply Labeled

types.

Reading and writing papers Upon logging in, users are allowed
to read and print out any paper by providing the paper id. The label
of the reference paper in the ith-review entry is set to 〈{} , {[Pi]}〉.
Observe that the secrecy categories is empty (we interpret the
empty category as the true Boolean value), thus allowing any func-
tion (without other integrity categories in its label) to read the pa-
per by reading the reference content, i.e., the paper. This label does,
however, restrict the modification of the paper to code running in
a process that owns the integrity category Pi and can therefore run
with the category [Pi] in the integrity set of its current label. Only
a trusted administrator is allowed to own such principals. Conse-
quently, reviewers’ code cannot modify the paper because their cur-
rent label (assigned by the trusted login procedure) never includes
Pi in their integrity set.

Reading and writing reviews Similarly, reviewers’ code is al-
lowed to access any reviews written to any reference review. How-
ever, once a review has been read, its contents must not be written
to another paper’s review. We fulfill this requirement by identify-
ing, using labels, when a given piece of code reads a certain review.
More specifically, we label the reference review in the ith-review
entry as 〈{[Ri]} , {[Ri]}〉. As a consequence, when a function
wishes to read the review for entry i, it must raise its current label
as to include category [Ri] in its secrecy and integrity sets (clear-
ance permitted). Once a process has been tainted as such, it will not
be able to modify the contents of another paper’s review since the
integrity category [Ri] will cause the current label’s integrity set to

contain Ri in every category and (Ri ∨ C) 6⇒ Rj for any C and
i 6= j. Consider, for instance, a reviewer’s code that has the current
label set (by the trusted login procedure) to 〈{[Ri]} , {[Ri]}〉, i.e.,
in the process of reviewing paper Pi. If the code reads another re-
view with label Lj = 〈{[Rj]} , {[Rj]}〉, the current label is then
updated to L = 〈{[Ri] ∧ [Rj]} , {[Ri ∨ Rj]}〉, which clearly im-
plies that L 6⊑ Lj . The integrity category [Ri] restricts the modi-
fication of the review to processes that own Ri. In this case, how-
ever, the process running reviewers’ code, assigned to review paper
i, contains, at least initially, category [Ri] in the integrity set of its
current label.

Users A reviewer is defined as a record consisting of a unique
user name, password (used for authentication), and two disjoint
sets of paper ids (in our implementation these are simple lists).
One set corresponds to the user’s conflicting papers, the second
set corresponds to the papers the user has been assigned to review.
Concretely, we define a user as follows:

data User = User { name :: Name
, password :: Password
, conflicts :: [Id]
, assignments :: [Id] }

A user is authenticated using the name and password creden-
tials. Upon logging in, the code of the reviewer assigned to pa-
pers 1, . . . , n is executed with the current label initially set to
〈{} , {[R1] ∧ · · · ∧ [Rn]}〉, where Ri is the principal correspond-
ing to review entry i. The current clearance is set to 〈ALL, {}〉. The
special category set ALL (denoting the conjunction of all possible
categories) in the clearance allows the executing code to (raise its
current label and) read any data, while the integrity categories in the
current label allow the process to only write to assigned reviews.
Note, however, that in our case all reviewers append their review to
the same review “notebook” and thus a write implies a read. Hence,
to allow a reviewer to effectively perform a write-only operation,
the process must execute the append function using toLabeled.
We note the user is exposed to a function that appends to the re-
view rather than directly writing to it, because multiple users are
assigned to review the same paper and one should not be allowed
to overwrite the work of another (using privileges a more elegant
solution can easily be implemented).

Conflicts Following the readReview examples of Section 2, we
restrict the reading, or more specifically, printing of a review to
those reviewers in conflict with the paper. Although every user is
allowed to retrieve a review, they cannot observe the result unless
they write it to an output channel (in our simple example this
corresponds to the standard output). Hence, code running on behalf
of a user (determined after logging in) can only write to the output
channel (using printLabelCh) if the current label L can flow to
the output channel label Lo. Using the set of conflicting paper
ids, for every user, we dynamically assign the output channel label
Lo = 〈So, {}〉, where So = {[R1] ∧ · · · ∧ [Rn] ∧ [Rn+1 ∨
CONFLICT] ∧ · · · ∧ [RN ∨ CONFLICT]} and Ri where i = n +
1, . . . , N are the principals corresponding to all the review entries
in the system (at the point of the print) that the authenticated
user conflicts with. Here, CONFLICT corresponds to a principal
that none of the users own (similar to Pi used in the labels of
paper references). For each conflicting paper i, we create a category
[Ri ∨ CONFLICT]. To observe the properties of this label, consider
the case when executing code reads a conflicting paper Ri. In this
situation, the current label is raised to L = 〈{[Ri] ∧ · · · } , {· · · }〉,
and subsequently when attempting to write to the output channel, it
is the case that L 6⊑ Lo. For L ⊑ Lo to hold true, there must be a
category in Lo that implies [Ri]. However, due to the conflict, the
only category containing Ri in the channel label’s secrecy category
is [Ri ∨ CONFLICT] (and clearly [Ri ∨ CONFLICT] 6⇒ [Ri]), which

asserts that conflicting data cannot flow to the output channel.
We further highlight that the channel label permits non-conflicting
reviews j to be observed by including the corresponding category
[Rj] without principal CONFLICT.

3.3 Implementation
In this section we present the API provided by λChair. As the
main goal of λChair is to demonstrate the flexibility and power
of our dynamic information flow library, we do not extend our
example to a full-fledged system; the API can, however, be used
to build relatively complex review systems. Below, we present the
details of the λChair functions, which return actions in the RevLIO

monad. This monad is a State monad defined using the State monad
transformer with LIO as the base monad, and a state consisting
of the system users, review entries, and name of the user that the
executing code is running on behalf of.

System administrator interface A λChair administrator is pro-
vided with several functions that dynamically change the system
state. Of these, we detail the most interesting cases below.
◮ addPaper :: Paper →RevLIO Id

Given a paper, it creates a new review entry for the paper and
return the paper id. Internally, addPaper uses a function similar
to addReview of Section 2.

◮ addUser :: Name →Password →RevLIO ()

Given a unique user name and password, it adds the new user.
◮ addAssignment ::Name →Id → RevLIO ()

Given a user name and paper id, it assigns the user to review the
corresponding paper. The user must not already be in conflict
with the paper.

◮ addConflict :: Name →Id → RevLIO ()

Given a user name and paper id, it marks the user as being in
conflict with the paper. As above, it must be the case that the
user is not already assigned to review the paper.

◮ asUser :: Name →RevLIO () →RevLIO ()

Given a user name, and user-constructed piece of code, it firsts
authenticates the user and then executes the provided code with
the current label and clearance of the user as described in Sec-
tion 3.2. After the code is executed, the current label and clear-
ance are restored and any information flow violations are re-
ported.

Reviewer interface The reviewer, or user, composes an untrusted
RevLIO computation (or action) that the trusted code executes using
asUser. Such actions may be composed using the following inter-
face:
◮ findPaper :: String →RevLIO Id

Given a paper title, it returns its paper id, or fails if the paper is
not found.

◮ readPaper :: Id → RevLIO Paper

Given a paper id, the function returns an action which, when
executed, returns the paper content.

◮ readReview :: Id → RevLIO ()

Given a paper id, the function returns an action which, when ex-
ecuted, prints the review to the standard output. Its implementa-
tion is similar to the example of Section 2, except operating on
references.

◮ appendToReview ::Id→Content→RevLIO ()

Given a paper id and a review content, the function returns an
action which, when executed, appends the supplied content to
the review entry. Since there is no direct observation of the
current review content, and to avoid label creep, the function,
internally, uses toLabeled.

An IFC violation results in an exception (not-catchable by un-
trusted code) being thrown (in the semantics presented in Section 4,

Figure 1 An example of code using λChair API.

module Admin where

import Alice
import Bob

main = evalRevLIO $ do
-- Adding users to system
addUser "Alice" "password"
-- Adding papers to system
p1 ← addPaper "Flexible Dynamic..."
p2 ← addPaper "A Static..."
-- Assign reviewers
addAssignment "Alice" p1
addAssignment "Alice" p2

-- Executing Alice’s code
asUser "Alice" $ aliceCode

-- Adding new users to system
addUser "Bob" "password"
-- Assign reviewers and conflicts
addAssignment "Bob" p2
addConflict "Bob" p1

-- Executing Bob’s code
asUser "Bob" $ bobCode

module AliceCode where

aliceCode = do
p1 ← findPaper "Flexible Dynamic..."
p2 ← findPaper "A Static..."
readPaper p1
appendToReview p1 "Interesting work!"
readPaper p2
readReview p2
appendToReview p2 "What about adding new users?"
return ()

module BobCode where

bobCode = do
p1 ← findPaper "Flexible Dynamic..."
p2 ← findPaper "A Static..."
appendToReview p2 "Hmm, IFC.."
readReview p1 -- IFC violation attempt
return ()

the program gets “stuck”). Figure 1 shows a simple example us-
ing the λChair API. In this example, Alice is assigned to review
two papers. She does so by reading each paper (for the second, she
also reads the existing reviews) and appending to the shared review.
Bob, on the other hand, is added to the system after Alice’s code
is executed. Bob first writes a review for paper 2 and then attempts
to violate IFC by trying to read (and write to the output channel)
the reviews of paper 1. Though his review is appended to the cor-
rect paper, the review of the first paper is suppressed. We finally
note that although the example is quite simple, it illustrates the use
of the λChair primitives that may be used to implement a usable
paper review system.

Figure 2 Formal syntax for terms, expressions, and types.

Label: l

Address: a

Term: v ::= true | false | () | l | a | x | λx.e | (e, e)
| fix e | Lb v e | (e)LIO | •

Expression: e ::= v | e e | πi e | if e then e else e

| let x = e in e | return e | e >>= e

| label e e | unlabel e | toLabeled e e

| newRef e e | readRef e | writeRef e e

| lowerClr e | getLabel | getClearance
| labelOf e | labelOfRef e

Type: τ ::= Bool | () | τ → τ | (τ, τ)
| ℓ | Labeled ℓ τ | LIO ℓ τ | Ref ℓ τ

Store: φ :Address → Labeled ℓ τ

4. Formal Semantics for LIO
This section formalizes our library for a simple call-by-name1

λ-calculus extended with Booleans, unit values, pairs, recursion,
references, and the monadic operations for LIO. Figure 2 provides
the formal syntax of the considered language. Syntactic categories
v, e, and τ represent terms, expressions, and types, respectively.
Terms are side-effect free while expressions denote (possible) side-
effecting computations.

In the syntax category v, symbol true and false represent
Boolean values. Symbol () represents the unit value. Symbol ℓ de-
notes security labels. Symbol a represent memory addresses in a
given store. Terms include variables (x), functions (λx.e), tuples
(e, e), and recursive functions (fix e). Three special syntax nodes
are added to this category: Lb v e, (e)LIO, and •. Node Lb v e de-
notes the run-time representation of a labeled value. Similarly, node
(e)LIO denotes the run-time representation of a monadic LIO com-
putation. Node • represents an erased term (explained in Section
5). None of these special nodes appear in programs written by users
and they are merely introduced for technical reasons.

Expressions are composed of values (v), function applications
(e e), pair projections (πi e), conditional branches (if e then e
else e), and local definitions (let x = e in e). Additionally,
expressions may involve operations related to monadic computa-
tions in the LIO monad. More precisely, return e and e >>= e
represent the monadic return and bind operations. Monadic opera-
tions related to the manipulation of labeled values inside the LIO
monad are given by label, unlabel, and toLabeled. Expression
label e1 e2 creates a labeled value that guards e2 with label e1.
Expression unlabel e acquires the content of the labeled value
e while in a LIO computation. Expression toLabeled e1 e2 cre-
ates a labeled value, with label e1, of the result obtained by eval-
uating the LIO computation e2. Non-proper morphisms related to
creating, reading, and writing of references are respectively cap-
tured by expressions newRef, readRef, and writeRef. Expres-
sion lowerClr e allows lowering of the current clearance to e. Ex-
pressions getLabel and getClearance return the current label
and current clearance of an LIO computation. Finally, expressions
labelOf e and labelOfRef e respectively obtain the security la-
bel of labeled values and references.

We consider standard types for Booleans (Bool), unit (()),
pairs (τ, τ), and function (τ → τ) values. Type ℓ describes se-

1 For clarity, we use a call-by-name instead of call-by-need calculus; exten-
sion to the latter is straight forward, as shown in [23].

curity labels. Type Labeled ℓ τ describes labeled values of type τ
where the label is of type ℓ. Type LIO ℓ τ represents monadic LIO
computations, with a result type τ and the security labels of type ℓ.
Type Ref ℓ τ describes labeled references, with labels of type ℓ, to
values of type τ .

Figure 3 Typing rules for terms.

⊢ l : ℓ
Γ(a) = Labeled ℓ τ

Γ ⊢ a : Ref ℓ τ

Γ ⊢ e1 : ℓ Γ ⊢ e2 : τ

Γ ⊢ Lb e1 e2 : Labeled ℓ τ

Γ ⊢ e : τ

Γ ⊢ (e)LIO : LIO ℓ τ
Γ ⊢ • : τ

The typing judgments have standard form Γ ⊢ e : τ , such
that expression e has type τ assuming the typing environment Γ;
we use Γ for both variable and store typings. The typing rules for
several terms are shown in Figure 3; the typing for the remaining
terms and expressions are standard and we therefore do not describe
them any further. We, however, note that, different from previous
work [12, 32], we do not require to use any of the sophisticated
features of Haskell’s type-system, a direct consequence of our
dynamic approach.

The LIO monad presented in Section 2 is implemented as a State
monad. To simplify the formalization and description of expres-
sions, without loss of generality, we make the state of the monad
part of a run-time environment. More precisely, for a given LIO
computation, the symbol Σ denotes a run-time environment that
contains the current label, written Σ.lbl, the current clearance,
written Σ.clr, and store, written Σ.φ. A run-time environment Σ
and LIO computation form a configuration 〈Σ, e〉. Given a config-
uration 〈Σ, e〉, the current label, clearance, and store when starting
evaluation e is given by Σ.lbl, Σ.clr, and Σ.φ, respectively.

The relation 〈Σ, e〉 −→ 〈Σ′, e′〉 represents a single evaluation
step from expression e, under the run-time environment Σ, to
expression e′ and run-time environment Σ′. We say that e reduces
to e′ in one step. We define such relation in terms of a structured
operational semantics via evaluation contexts [14].

The reduction rules for the core simply-typed λ-calculus are
standard and therefore omitted. We note that substitution ([e1/x] e2)
is defined in the usual way: homomorphic on all operators and re-
naming bound names to avoid captures. Figure 4 presents the eval-
uation contexts and non-standard reduction rules for our language.
These rules guarantee that programs written using our approach
fulfill non-interference, i.e., confidential information is not leaked,
and confinement, i.e., a computation cannot access data above the
clearance.

The main contribution of our language are the primitives label,
unlabel, and toLabeled. Rule (LAB) generates a labeled value
if and only if the label is between the current label and clearance of
the LIO computation and thus guaranteeing containment properties
(see Section 5). Rule (UNLAB) provides a method for accessing
the content e of a labeled value Lb l e in LIO computations. When
the content of a labeled value is “retrieved” and used in a LIO
computation, the current label is raised (Σ′ = Σ[lbl 7→ l′],
where l′ = Σ.lbl ⊔ l), capturing the fact that the remaining
computation might depend on e. Rule (TOLAB) deserves some
attention. We write −→∗ for the reflexive and transitive closure of
−→. Expression toLabeled l e is used to execute the provided
LIO computation e until completion (〈Σ, e〉 −→∗ 〈Σ′, (v)LIO〉)
and wraps its result v into a labeled value with label l. Observe
that the label l needs to be an upper bound on the current label
for the evaluation of computation e (Σ′.lbl ⊑ l). Specifying
label l is responsibility of the programmer. The reason for this is
due to the fact that security labels are protected by the current

Figure 4 Semantics for non-standard constructs.

E ::= [·] | Lb E e | E e | πi E | if E then e else e

| return E | E >>= e

| label E e | unlabel E | toLabeled E e

| newRef E e | readRef E | writeRef E e

| lowerClr E | labelOf E | labelOfRef E

〈Σ, E[return v]〉 −→ 〈Σ, E[(v)LIO]〉
〈Σ, E[(v)LIO >>= e2]〉 −→ 〈Σ, E[e2 v]〉
(LAB)

Σ.lbl ⊑ l ⊑ Σ.clr

〈Σ, E[label l e]〉 −→ 〈Σ, E[return (Lb l e)]〉
(UNLAB)
l′ = Σ.lbl ⊔ l l′ ⊑ Σ.clr Σ′ = Σ[lbl 7→ l′]

〈Σ, E[unlabel (Lb l e)]〉 −→ 〈Σ′, E[return e]〉
(TOLAB)

Σ.lbl ⊑ l ⊑ Σ.clr 〈Σ, e〉 −→∗ 〈Σ′, (v)LIO〉
Σ′.lbl ⊑ l Σ′′ = Σ′[lbl 7→ Σ.lbl, clr 7→ Σ.clr]

〈Σ, E[toLabeled l e]〉 −→ 〈Σ′′, E[label l v]〉
(NREF)
Σ.lbl ⊑ l ⊑ Σ.clr Σ′ = Σ.φ[a 7→ Lb l e]

〈Σ, E[newRef l e]〉 −→ 〈Σ′, E[return a]〉 a fresh

(RREF)
Σ.φ(a) = Lb l e

l′ = Σ.lbl ⊔ l l′ ⊑ Σ.clr Σ′ = Σ[lbl 7→ l′]

〈Σ, E[readRef a]〉 −→ 〈Σ′, E[return e]〉
(WREF)

Σ.φ(a) = Lb l e
Σ.lbl ⊑ l ⊑ Σ.clr Σ′ = Σ.φ[a 7→ Lb l e′]

〈Σ, E[writeRef a e′]〉 −→ 〈Σ′, E[return ()]〉
(LWCLR)
Σ.lbl ⊑ l ⊑ Σ.clr Σ′ = Σ[clr 7→ l]

〈Σ, E[lowerClr l]〉 −→ 〈Σ′, E[return ()]〉
(CLAB)

l = Σ.lbl

〈Σ, E[getLabel]〉 −→ 〈Σ, E[return l]〉
(CCLR)

l = Σ.clr

〈Σ, E[getClearance]〉 −→ 〈Σ, E[return l]〉
(GLAB)

〈Σ, E[labelOf (Lb l e)]〉 −→ 〈Σ, E[l]〉
(GLABR)

e = Σ.φ(a)

〈Σ, E[labelOfRef a]〉 −→ 〈Σ, E[labelOf e]〉

label, effectively making them public information accessible to
any computation within scope (see rules (GLAB) and (GLABR)).
As a consequence, if toLabeled did not require an upper bound
on the data to be observed within e, labels can be used to leak
information. Recall that the current label and clearance of a given
LIO computation can be changed dynamically. To illustrate this
point, consider a computation whose current label is l0, taking two
(confidential) labeled values as arguments, with respective labels l1
and l2 such that li 6⊑ l0, i = 1, 2.

leak lV1 lV2 = do

lV3 ← toLabeled’ $ do
v1 ← unlabel lV1 -- Lcur = l1
if v1 then return True

else unlabel lV2 -- Lcur = l2
return (labelOf lV3)

Therefore, if the returned value is l1 or l2 (remember that labels
are public information), information is directly leaked! To close this
channel, programmers should provide an upper bound of the cur-
rent label obtained when e finishes computing. Since our approach
is dynamic, flow-sensitive, and sound, this may require non-trivial,
and possibly complicated, static analysis in order to automatically
determine the label for each call of toLabeled [31].

By using big-step semantics instead of an evaluation context of
the form toLabeled l E, rule (TOLAB) does not need to rely on
the use of trusted primitives or a stack for (saving and) restoring the
current label and clearance when executing toLabeled.

When creating a reference, newRef l e produces a labeled value
that guards e with label l (Lb l e) and stores it in the memory store
(Σ′ = Σ.φ[a 7→ Lb l e]). The result of this operation is the memory
address a (return a). Observe that references are created only if
the reference’s label (l) is between the current label and clearance
label of the LIO monad (Σ.lbl ⊑ l ⊑ Σ.clr). The restriction
l ⊑ Σ.clr is to assure that programs cannot manipulate or access
data beyond their clearance (see Section 5). Rule (RREF) obtains
the content e of a labeled value Lb l e stored in the address a.
This rule raises the current label to the security level l′ (Σ′ =
Σ[lbl 7→ l′] where l′ = Σ.lbl ⊔ l). As in the previous rule,
(RREF) enforces that the result of reading a reference is below the
clearance (l′ ⊑ Σ.clr). Rule (WREF) updates the memory store
with a new value for the reference (Σ′ = Σ.φ[a 7→ Lb l e′]) as long
as the label of the reference is above the current label and it does
not exceed the clearance (Σ.lbl ⊑ l ⊑ Σ.clr). If considering
Σ.lbl as a dynamic version of the pc the restriction that the label
of the reference must be above the current label (Σ.lbl ⊑ l) is
similar to the one imposed by [30].

Rule (LWCLR) allows a computation to lower the current clear-
ance to l. This operation is particularly useful when trying to con-
tain the access to some data as well as the effects produced by com-
putations executed by toLabeled. Rules (CLAB) and (CCLR) ob-
tain the current label and clearance from the run-time environment.
Finally, rules (GLAB) and (GLABR) return the labels of labeled
values and references. Observe that, regardless of the current label
and clearance of the run-time environment, these two rules always
succeed, effectively making labels public data.

5. Soundness
In this section we show that LIO computations satisfy two secu-
rity policies: non-interference and containment. Non-interference
shows that secrets are not leaked, while containment establishes
that certain piece of code cannot manipulate or have access to cer-
tain data. The latter policy is similar to the containment policies
presented in [4, 24].

5.1 Non-interference
As in [26, 32], we prove the non-interference property by using the
technique of term erasure. Intuitively, data at security levels where
the attacker cannot observe information can be safely rewritten to
the syntax node •. For the rest of the paper, we assume that the at-
tacker can observe data up to security level L. The syntactic term •,
denoting an erased expression, may be associated to any type (re-
call Figure 3). Function εL is responsible for performing the rewrit-
ing for data at security level not lower than L. In most of the cases,
the erasure function is simply applied homomorphically (e.g.,
εL(if E then e else e′) = if εL(E) then εL(e) else εL(e

′)).
In the case of data constructors it is simply the identity function.

Figure 5 Erasure function for several terms, memory store and
configurations.

εL(l) = l εL(a) = a

εL(Lb l e) =

{
Lb l • l 6⊑ L
Lb l εL(e) otherwise

εL(Σ.φ) = {(x, εL(Σ.φ(x)) : x ∈ dom(Σ.φ)}
εL(Σ) = Σ[φ 7→ εL(Σ.φ)]

εL(〈Σ, e〉) =
{

〈εL(Σ), •〉 Σ.lbl 6⊑ L
〈εL(Σ), εL(e)〉 otherwise

The two interesting cases for this function are when εL is applied
to a labeled value or a given configuration. In such cases, term
erasing could indeed modify the behavior of the program. Figure
5 shows the definition of εL for several terms and configurations.
A labeled value is erased if the label assigned to it is above L
(εL(Lb l e) = Lb l •, if l 6⊑ L). Similarly, the computation per-
formed in a certain configuration is erased if the current label is
above L (εL(〈Σ, e〉) = 〈εL(Σ), •〉 if Σ.lbl 6⊑ L).

Following the definition of the erasure function, we introduce a
new evaluation relation −→L as follows:

〈Σ, e〉 −→ 〈Σ′, e′〉
〈Σ, e〉 −→L εL(〈Σ′, e′〉)

Expressions under this relationship are evaluated in the same way
as before, with the exception that, after one evaluation step, the
erasure function is applied to the resulting configuration, i.e., run-
time environment and expression. In that manner, the relation −→L

guarantees that confidential data, i.e., data not below level L, is
erased as soon as it is created. We write −→∗

L for the reflexive and
transitive closure of −→L.

〈Σ, e〉 −−−−−→∗ 〈Σ′, e′〉
yεL

yεL

εL(〈Σ, e〉) −−−−−→∗
L εL(〈Σ′, e′〉)

Figure 1. Simulation between
−→∗ and −→∗

L.

Most results that prove
non-interference pursue
the goal of establishing
a relationship between
−→∗ and −→∗

L through
the erasure function, as
highlighted in Figure 1.
Informally, the diagram
establishes that erasing all
secret data, i.e., data not
below L, and then taking
evaluation steps in −→L is the same as taking steps in −→ and then
erasing all the secret values in the resulting configuration. Observe
that if information from some level above L is leaked by e, then
erasing all secret data and then taking evaluation steps in −→L

might not be the same as taking steps in −→ and then erasing all
the secret values in the resulting configuration.

For simplicity, we assume that the space address of the memory
store is split into different security levels and that allocation is
deterministic. In that manner, the address returned when creating
a reference with level l depends only on the references with level
l already in the store. These assumptions are valid in our language
since, similar to traditional references in Haskell, we do not provide
any mechanisms for deallocation or inspection of addresses in the
API. However, when memory allocation is an observable channel,
the library could be adapted in order to deal with non-opaque
pointers [17].

We start by showing that the evaluation relationship −→ and
−→L are deterministic. We note that e = e′ means syntactic
equality between expressions e and e′. Equality between run-time

environments, written Σ = Σ′, is defined as the point-wise equality
between mappings Σ and Σ′.

Proposition 1 (Determinacy of −→).

◮ For any expression e and run-time environment Σ such that
〈Σ, e〉 −→ 〈Σ′, e′′〉, there is a unique term e′ and unique
evaluation context E such that e = E[e′].

◮ If 〈Σ, e〉 −→ 〈Σ′, e′〉 and 〈Σ, e〉 −→ 〈Σ′′, e′′〉, then e′ = e′′

and Σ′ = Σ′′.
Proof. By induction on expressions and evaluation contexts.
Proposition 2 (Determinacy of −→L). If 〈Σ, e〉 −→L 〈Σ′, e′〉
and 〈Σ, e〉 −→L 〈Σ′′, e′′〉, then e′ = e′′ and Σ′ = Σ′′.
Proof. From Proposition 1 and definition of εL.

The following proposition shows that the erasure function is ho-
momorphic to the application of evaluation contexts and substitu-
tion as well as that it is idempotent.

Proposition 3 (Properties of erasure function).

1. εL(E[e]) = εL(E)[εL(e)]
2. εL([e2/x]e1) = [εL(e2)/x]εL(e1)
3. εL(εL(e)) = εL(e)
4. εL(εL(E)) = εL(E)
5. εL(εL(Σ)) = εL(Σ)
6. εL(εL(〈Σ, e〉)) = εL(〈Σ, e〉)

Proof. From the definition of εL and by induction on expressions
and evaluation contexts.

The next lemma establishes a simulation between −→ and
−→L for expressions that do not execute toLabeled.

Lemma 1 (Single-step simulation without toLabeled). If Γ ⊢ e :
τ and 〈Σ, e〉 −→ 〈Σ′, e′〉 where toLabeled is not executed, then
Γ ⊢ e′ : τ and εL(〈Σ, e〉) −→L εL(〈Σ′, e′〉).
Proof. Subject reduction holds by showing that a reduction step
does not change the types of references in the store Σ.φ and then
applying induction on the typing derivations. The simulation holds
by simple case analysis on e.

Using this lemma, we then show that the simulation is preserved
when performing several evaluation steps.

Lemma 2 (Simulation for expressions not executing toLabeled).
If Γ ⊢ e : τ , 〈Σ, e〉 −→∗ 〈Σ′, e′〉 where there are no executions of
toLabeled, then Γ ⊢ e′ : τ and εL(〈Σ, e〉) −→∗

L εL(〈Σ′, e′〉).
Proof. By induction on −→ and applying Lemma 1.

The reason for highlighting the distinction between expressions
executing toLabeled and those not executing it is due to the fact
that the evaluation of toLabeled involves big-step semantics (re-
call rule (TOLAB) in Figure 4). However, the next lemma shows the
simulation between −→∗ and −→∗

L for any expression e, and it is
proved by simple induction on the number of executed toLabeled.

Lemma 3 (Simulation). If Γ ⊢ e : τ and 〈Σ, e〉 −→∗ 〈Σ′, e′〉 then
εL(〈Σ, e〉) −→∗

L εL(〈Σ′, e′〉).
Proof. By induction on the number of executed toLabeled and
applying Lemma 2 for the base case.

Figure 6 L-equivalence for expressions.

e ≈L e′ l ⊑ L

Lb l e ≈L Lb l e′
l 6⊑ L

Lb l e ≈L Lb l e′

We define L-equivalence between expressions. Intuitively, two
expressions are L-equivalent if they are syntactically equal, modulo

labeled values whose labels are above L. We use ≈L to represent
L-equivalence for expressions. Figure 6 shows the definition for
labeled values. Considering the simple lattice: L ⊑ M ⊑ H and an
attacker at level L, it holds that Lb H 8 ≈L Lb H 9, but it does not
hold that Lb L 2 ≈L Lb L 3 or Lb H 8 ≈L Lb M 8. Recall that labels
are protected by the current label, and thus (usually) observable by
an attacker — unlike the expressions they protect, labels must be
the same even if they are above L. The rest of ≈L is defined as syn-
tactic equality between constants (e.g., true ≈L true) or homo-
morphisms (e.g., if e then e1 else e2 ≈L if e′ then e′1 else e

′
2

if e ≈L e′, e1 ≈L e′1, and e2 ≈L e′2).
Since our language encompasses side-effecting expressions,

it is also necessary to define L-equivalence between memory
stores. Specifically, we say that two run-time environments are
L-equivalent if an attacker at level L cannot distinguish them:

Definition 2 (L-equivalence for stores).

l ⊑ L ∨ l′ ⊑ L ∀a.Σ.φ(a) = Lb l e ≈L Σ′.φ(a) = Lb l′ e′

Σ.φ ≈L Σ′.φ

Note that the L-equivalence ignores the store references with labels
above L. Similarly, we define L-equivalence for configurations.

Definition 3 (L-equivalence for configurations).

e ≈L e′ Σ.φ ≈L Σ′.φ
Σ.lbl = Σ′.lbl Σ.clr = Σ′.clr Σ.lbl ⊑ L

〈Σ, e〉 ≈L 〈Σ′, e′〉

Σ.φ ≈L Σ′.φ Σ.lbl 6⊑ L Σ′.lbl 6⊑ L

〈Σ, e〉 ≈L 〈Σ′, e′〉
In the above definition, it is worth remarking that we do not

require ≈L for expressions when the current label is not below L.
This omission comes from the fact that e and e′ would be reduced
to • when applying our simulation between −→∗ and −→∗

L (recall
Figure 5).

The next theorem shows the non-interference policy. It essen-
tially states that given two inputs with possibly secret information,
the result of the computation is indistinguishable to an attacker. In
other words, there is no information-flow from confidential data to
outputs observable by the attacker.

Theorem 1 (Non-interference). Given a computation e (with no •,
()LIO, or Lb) where Γ ⊢ e : Labeled ℓ τ → LIO ℓ (Labeled ℓ τ ′),
environments Σ1 and Σ2 where Σ1.φ = Σ2.φ = ∅, security label
l, an attacker at level L such that l ⊑ L, then

∀e1e2.(Γ ⊢ ei : Labeled ℓ τ)i=1,2

∧ (ei = Lb l e′i)i=1,2 ∧ 〈Σ1, e1〉 ≈L 〈Σ2, e2〉
∧ 〈Σ1, e e1〉 −→∗ 〈Σ′

1, (Lb l1 e′′1)
LIO〉

∧ 〈Σ2, e e2〉 −→∗ 〈Σ′
2, (Lb l2 e′′2)

LIO〉
⇒ 〈Σ′

1, Lb l1 e′′1〉 ≈L 〈Σ′
2, Lb l2 e′′2〉

Observe that even though we assume that the input labeled values
e1 and e2 are observable by the attacker (l ⊑ L), they might
contain confidential data. For instance, e1 could be of the form
Lb l (Lb l′ true) where l′ 6⊑ L.

Proof. The L-equivalence (and, thus, the proof) directly follows by
Lemma 3 and determinacy of −→L.

5.2 Confinement
In this section we present the formal guarantees that LIO computa-
tions cannot modify data below their current label and manipulate
information above their current clearance. These kind of properties
are similar to the ones found in [4, 24].

We start by proving that the current label of a LIO computation
does not decrease.

Proposition 4 (Monotonicity of the current label). If Γ ⊢ e : τ
and 〈Σ, e〉 −→∗ 〈Σ′, e′〉, then Σ.lbl ⊑ Σ′.lbl.

Similarly, we show that the current clearance of a LIO computation
never increases.

Proposition 5 (Monotonicity of the current clearance). If Γ ⊢ e : τ
and 〈Σ, e〉 −→∗ 〈Σ′, e′〉, then Σ′.clr ⊑ Σ.clr.

Proposition 4 and 5 are crucial to assert that once a LIO com-
putation reads confidential data, it cannot lower its current label to
leak it. Similarly, a computation should not be able to arbitrarily in-
crease its clearance; doing so would allow it to read any data with
no access restrictions.

Before delving into the containment theorems, we first define a
store modifier that removes all store elements with a label above a
given label l:

(Σ.φ)↓l = Σ.φ \ {(a, Lb l′ e) : a ∈ dom (Σ.φ) ∧ l ⊑ l′}
(Σ.φ)↓l

In other words, this retains all the labeled references with a label
below l, usually the current label.

The first theorem states that LIO computations cannot create
labeled values, new locations or modify memory cells below their
current label (no-write down).

Theorem 2 (Containment imposed by the current label). Given
labels l, lc, and lv , a computation e (with no •, ()LIO, or Lb) where
Γ ⊢ e : Labeled ℓ τ → LIO ℓ (Labeled ℓ τ), environment
Σ[lbl 7→ l, clr 7→ lc] such that l ⊑ lc, and l 6⊑ lv .

Γ ⊢ e1 : Labeled ℓ τ

∧ e1 = Lb lv e′1 ∧ 〈Σ, e e1〉 −→∗ 〈Σ′, (Lb lv e′′1)
LIO〉

⇒ (Σ.φ)↓l = (Σ′.φ)↓l ∧ e′1 = e′′1

Proof. The proof follows directly from Proposition 4, definition of
the store modifier and induction on −→∗.

The theorem simply states that the computation cannot allocate or
modify the store below l. Moreover the computation should only
be able to return a labeled value below its current label that was
provided as input, or by capture.

Dual to Theorem 2, the next theorem captures the fact that
LIO computations cannot compute on labeled values above their
clearance. In other words, LIO computations cannot create, read,
and write references or read and create contents for labeled val-
ues above the clearance (recall that references store labeled val-
ues). Again, we first define a store modifier; in this case, one that
removes all store elements below a given clearance as follows:

(Σ.φ)↑l = Σ.φ \ {(a, Lb l′ e) : a ∈ dom (Σ.φ) ∧ l′ ⊑ l}
(Σ.φ)↑l

In other words, this retains all the labeled references with a label
above l, usually the current clearance.

Theorem 3 (Containment imposed by clearance). Given labels
l, lc, and lv , a computation e (with no •, ()LIO, or Lb) where
Γ ⊢ e : Labeled ℓ τ → LIO ℓ (Labeled ℓ τ), environment
Σ[lbl 7→ l, clr 7→ lc] such that l ⊑ lc and lv 6⊑ lc,

Γ ⊢ e1 : Labeled ℓ τ

∧ e1 = Lb lv e′1 ∧ 〈Σ, e e1〉 −→∗ 〈Σ′, (Lb lv e′′1)
LIO〉

⇒ (Σ.φ)↑lc = (Σ′.φ)↑lc ∧ e′1 = e′′1

Proof. Directly from Proposition 5, definition of the store modifier
and induction on −→∗.

6. Related Work
Heintze and Riecke [18] consider security for lambda-calculus
where lambda-terms are explicitly annotated with security labels,
for a type-system that guarantees non-interference. One of the
key aspects of their work consists of an operator which raises the
security annotation of a term in a similar manner to our raise of the
current label when manipulating labeled values. Similar ideas of
floating labels have been used by many operating systems, dating
back to the High-Water-Mark security model [22] of the ADEPT-
50 in the late 1960s. Asbestos [13] first combined floating labels
with the Decentralized label model [28].

Abadi et al. [1] develop the dependency core calculus (DCC)
based on a hierarchy of monads to guarantee non-interference. In
their calculus, they define a monadic type that “protects” (the con-
fidentiality of) side-effect-free values at different security levels.
Though not a monad, our Labeled type similarly protects pure
values at various security levels. To manipulate such values, DCC
uses a non-standard typing rule for the bind operator; the essence of
this operator, in a dynamic setting with side-effectful computations,
is captured in our library through the interaction of of Labeled,
unlabel, and LIO.

Tse and Zdancewic [36] translate DCC to System F and show
that non-interference can be stated using the parametricity the-
orem for System F. The authors also provide a Haskell imple-
mentation for a two-point lattice. Their implementation encodes
each security level as an abstract data type constructed from func-
tions and binding operations to compose computations with per-
mitted flows. Since they consider the same non-standard features
for the bind operation as in DCC, they provide as many defini-
tions for bind as different type of values produced by it. More-
over, their implementation needs to be compiled with the flag
-fallow-undecidable-instances, in GHC. Our work, in con-
trast, defines only one bind operation for LIO, without the need for
such compiler extensions.

Harrison and Hook show how to implement an abstract oper-
ating system called separation kernel [16]. Programs running un-
der this multi-threading operating system satisfy non-interference.
To achieve this, the authors rely on the state monad to represent
threads, monad transformers to present parallel composition, and
the resumption monad to achieve communication between threads.
Non-interference is then enforced by the scheduler implementation,
which only allow signaling threads at the same, or higher, security
level as the thread that issued the signal. The authors use mon-
ads differently from us; their goal is to construct secure kernels
rather than provide information-flow security as a library. Our li-
brary is simpler and more suitable for writing sequential programs
in Haskell. Extending our library to include concurrency is stated
as a future work.

Crary et al. [8] design a monadic calculus for non-interference
for programs with mutable state. Similar to our work, their lan-
guage distinguishes between term and expressions, where terms are
pure and expressions are (possibly) effectful computations. Their
calculus mainly tracks information flow by statically approximat-
ing the security levels of effects produced by expressions. Com-
pared to their work, we only need to make approximations of the
side-effects of a given computation when using toLabeled; the
state of LIO keeps track of the dynamic security level upper bound
of observed data. Overall, our dynamic approach is more flexible
and permissive than their proposed type-system.

Pottier and Simonet [30, 35] designed FlowCaml, a compiler to
enforce non-interference for OCaml programs. Rather than imple-
menting a compiler from scratch, and more similar to our approach,
the seminal work by Li and Zdancewic [25] presents an implemen-
tation of information-flow security as a library, in Haskell, using a
generalization of monads called Arrows [19]. Extending their work,

Tsai et al. [7] further consider side-effects and concurrency. Con-
tributing to library-based approaches, Russo et al. [32] eliminate
the need for Arrows by showing an IFC library based solely on
monads. Their library defines monadic types to track information-
flow in pure and side-effectful computations. Compared to our dy-
namic IFC library, Russo et al.’s library is slightly less permis-
sive and leverages Haskell’s type-system to statically enforce non-
interference. However, we note that our library has similar (though
dynamic) functions provided by their SecIO library; similar to
unlabel, they provide a function that maps pure labeled values
into side-effectful computations; similar to toLabeled, they pro-
vide a function that allows reading/writing secret files into compu-
tations related to public data.

Recently, Morgenstern et al. [27] encoded an authorization-
and IFC-aware programming language in Agda. Their encoding,
however, does not consider computations with side-effects. More
closely related, Devriese and Piessens [12] used monad transform-
ers and parametrized monads [3] to enforce non-interference, both
dynamically and statically. However, their work focuses on modu-
larity (separating IFC enforcement from underlying user API), us-
ing type-class level tricks that make it difficult to understand errors
triggered by insecurities. Moreover, compared to our work, where
programmers write standard Haskell code, their work requires one
to firstly encode programs as values of a specific type.

Compared to other language-based works, LIO uses the notion
of clearance. Bell and La Padula [5] formalized clearance as a
bound on the current label of a particular users’ processes. In the
1980s, clearance became a requirement for high-assurance secure
systems purchased by the US Department of Defense [11]. More
recently, HiStar [39] re-cast clearance as a bound on the label of
any resource created by the process (where raising a process’s label
is but one means of creating a something with a higher label). We
adopt HiStar’s more stringent notion of clearance, which prevents
software from copying data it cannot read and facilitates bounding
the time during which possibly untrustworthy software can exploit
covert channels.

7. Conclusion
We propose a new design point for IFC systems in which most
values in lexical scope are protected by a single, mutable, current
label, yet one can also encapsulate and pass around the results of
computations with different labels. Unlike other language-based
work, our model provides a notion of clearance that imposes an
upper bound on the program label, thus providing a form of discre-
tionary access control on portions of the code.

We prove information flow and integrity properties of our de-
sign and describe LIO, an implementation of the new model in
Haskell. LIO, which can be implemented entirely as a library
(based on type safety), demonstrates both the applicability and
simplicity of the approach. Our non-interference theorem proves
the conventional property that lower-level results do not depend on
higher-level inputs – the label system prevents inappropriate flow
of information. We also prove containment theorems that show
the effect of clearance on the behavior of code. In effect, lower-
ing the clearance imposes a discretionary form of access control
by preventing subsequent code (within that scope) from accessing
higher-level information.

As an illustration of the benefits and expressive power of this
system, we describe a reviewing system that uses LIO labels to
manage integrity and confidentiality in an environment where users
and labels are added dynamically. Although we have use LIO for
the λChair API and even built a relatively large web-framework
that securely integrates untrusted third-party applications, we be-
lieve that changes in the constructs are likely to occur as the lan-

guage matures. This further supports our library-based approach to
language-based security.

An interesting future work consists on extending our library
to handle concurrency. Enforcement mechanisms for sequential
programs do not generalize naturally to multithreaded programs.
In this light, it is hardly surprising that Jif [29], the mainstream
IFC compiler, lack support for multithreading. Due to the monadic
structure of LIO programs, we believe it is possible to extend our
library to consider concurrency, that addresses termination [2] and
internal-timing leaks [38].

Acknowledgments
We thank Alex Aiken and the anonymous reviewers for their in-
sightful comments. This work was funded by DARPA (CRASH and
PROCEED), NSF (including a Cybertrust award and the TRUST
Center), the Air Force Office of Scientific Research, the Office of
Naval Research, and the Swedish research agency VR.

References
[1] M. Abadi, A. Banerjee, N. Heintze, and J. Riecke. A Core Calculus

of Dependency. In Proc. ACM Symp. on Principles of Programming
Languages, pages 147–160, Jan. 1999.

[2] A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands. Termination-
insensitive noninterference leaks more than just a bit. In Proc. of the
13th European Symp. on Research in Computer Security, pages 333–
348. Springer-Verlag, 2008.

[3] R. Atkey. Parameterised notions of computation. In Workshop
on mathematically structured functional programming, ed. Conor
McBride and Tarmo Uustalu. Electronic Workshops in Computing,
British Computer Society, pages 31–45, 2006.

[4] A. Banerjee and D. Naumann. Stack-based access control and secure
information flow. Journal of Functional Programming, 15(02):131–
177, 2005.

[5] D. E. Bell and L. L. Padula. Secure computer system: Unified exposi-
tion and multics interpretation. Technical Report MTR-2997, Rev. 1,
MITRE Corp., Bedford, MA, March 1976.

[6] K. J. Biba. Integrity considerations for secure computer systems. ESD-
TR-76-372, 1977.

[7] T. chung Tsai, A. Russo, and J. Hughes. A library for secure multi-
threaded information flow in Haskell, July 2007.

[8] K. Crary, A. Kliger, and F. Pfenning. A monadic analysis of informa-
tion flow security with mutable state. Journal of Functional Program-
ming, 15:249–291, March 2005.

[9] D. E. Denning. A lattice model of secure information flow. Commu-
nications of the ACM, 19(5):236–243, May 1976.

[10] D. E. Denning and P. J. Denning. Certification of programs for secure
information flow. Communications of the ACM, 20(7):504–513, 1977.

[11] Trusted Computer System Evaluation Criteria (Orange Book). Depart-
ment of Defense, DoD 5200.28-STD edition, December 1985.

[12] D. Devriese and F. Piessens. Information flow enforcement in monadic
libraries. In Proc. of the 7th ACM SIGPLAN Workshop on Types in
Language Design and Implementation, New York, NY, USA, 2011.
ACM.

[13] P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey, D. Ziegler,
E. Kohler, D. Mazières, F. Kaashoek, and R. Morris. Labels and event
processes in the Asbestos operating system, October 2005.

[14] M. Felleisen. The theory and practice of first-class prompts. In
Proc. of the 15th ACM SIGPLAN-SIGACT Symp. on Principles of
programming languages, pages 180–190. ACM, 1988.

[15] J. Goguen and J. Meseguer. Security policies and security models,
April 1982.

[16] W. L. Harrison. Achieving information flow security through precise
control of effects. In In 18th IEEE Computer Security Foundations
Workshop, pages 16–30. IEEE Computer Society, 2005.

[17] D. Hedin and D. Sands. Noninterference in the presence of non-
opaque pointers. In Proc. of the 19th IEEE Computer Security Foun-

dations Workshop. IEEE Computer Society Press, 2006.
[18] N. Heintze and J. G. Riecke. The SLam calculus: programming

with secrecy and integrity. In Proc. ACM Symp. on Principles of
Programming Languages, pages 365–377, Jan. 1998.

[19] J. Hughes. Generalising monads to arrows. Science of Computer
Programming, 37(1–3):67–111, 2000.

[20] S. Hunt and D. Sands. On flow-sensitive security types. In Conference
record of the 33rd ACM SIGPLAN-SIGACT Symp. on Principles of
programming languages, POPL ’06, pages 79–90. ACM, 2006.

[21] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek, E. Kohler,
and R. Morris. Information flow control for standard OS abstractions,
October 2007.

[22] C. E. Landwehr. Formal models for computer security. Computing
Survels, 13(3):247–278, September 1981.

[23] J. Launchbury. A natural semantics for lazy evaluation. In Proc. of the
20th ACM SIGPLAN-SIGACT Symp. on Principles of programming
languages, pages 144–154. ACM, 1993.

[24] X. Leroy and F. Rouaix. Security properties of typed applets. In
Proc. of the 25th ACM SIGPLAN-SIGACT Symp. on Principles of
programming languages, pages 391–403. ACM, 1998.

[25] P. Li and S. Zdancewic. Encoding Information Flow in Haskell. In
CSFW ’06: Proc. of the 19th IEEE Workshop on Computer Security
Foundations. IEEE Computer Society, 2006.

[26] P. Li and S. Zdancewic. Arrows for secure information flow. Theoret-
ical Computer Science, 411(19):1974–1994, 2010.

[27] J. Morgenstern and D. R. Licata. Security-typed programming within
dependently typed programming. In Proc. of the 15th ACM SIG-
PLAN International Conference on Functional Programming, ICFP
’10. ACM, 2010.

[28] A. C. Myers and B. Liskov. A decentralized model for information
flow control. In Proc. of the 16th ACM Symp. on Operating Systems
Principles, pages 129–142, 1997.

[29] A. C. Myers and B. Liskov. Protecting privacy using the decentral-
ized label model. ACM Trans. on Computer Systems, 9(4):410–442,
October 2000.

[30] F. Pottier and V. Simonet. Information flow inference for ML. In
Proc. ACM Symp. on Principles of Programming Languages, pages
319–330, Jan. 2002.

[31] A. Russo and A. Sabelfeld. Dynamic vs. static flow-sensitive security
analysis. In Proc. of the 2010 23rd IEEE Computer Security Founda-
tions Symp., CSF ’10, pages 186–199. IEEE Computer Society, 2010.

[32] A. Russo, K. Claessen, and J. Hughes. A library for light-weight
information-flow security in Haskell, 2008.

[33] A. Sabelfeld and A. C. Myers. Language-based information-flow
security. IEEE Journal on Selected Areas in Communications, 21(1),
January 2003.

[34] A. Sabelfeld and A. Russo. From dynamic to static and back: Riding
the roller coaster of information-flow control research. In Proc. Andrei
Ershov International Conference on Perspectives of System Informat-
ics, June 2009.

[35] V. Simonet. The Flow Caml system. Software release. Located at
http://cristal.inria.fr/~simonet/soft/flowcaml/, July
2003.

[36] S. Tse and S. Zdancewic. Translating dependency into parametricity.
In Proc. of the Ninth ACM SIGPLAN International Conference on
Functional Programming. ACM, 2004.

[37] S. VanDeBogart, P. Efstathopoulos, E. Kohler, M. Krohn, C. Frey,
D. Ziegler, F. Kaashoek, R. Morris, and D. Mazières. Labels and event
processes in the Asbestos operating system. ACM Trans. on Computer
Systems, 25(4):11:1–43, December 2007. A version appeared in Proc.
of the 20th ACM Symp. on Operating System Principles, 2005.

[38] D. Volpano and G. Smith. Probabilistic noninterference in a concur-
rent language. J. Computer Security, 7(2–3), Nov. 1999.

[39] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières. Making
information flow explicit in HiStar, November 2006.

[40] N. Zeldovich, S. Boyd-Wickizer, and D. Mazières. Securing dis-
tributed systems with information flow control, April 2008.

Soundness of LIO

Secure Multi-Execution in Haskell

Secure Programming via
Libraries

Escuela de Ciencias Informáticas (ECI) 2011
UBA, Buenos Aires, Argentina

Soundness of LIO

Alejandro Russo (russo@chalmers.se)

Secure Programming via Libraries - ECI 2011 2

Soudness for LIO
[Stefan, Russo, Mitchell, Mazieres 11]

● Formalizes the non-interference guarantee
provided by LIO

● For the proof, we consider a core and simple and
functional language
● Why not full Haskell?
● λ-calculus extended with boolean values, pairs,

recursion, monadic operations, references
● We formally prove that the concept of monads

works to guarantee non-interference

Secure Programming via Libraries - ECI 2011 3

Proof Technique

● Similar technique as the one used by Li and
Zdancewic [Li, Zdancewic 10]

● Programs are expressions
● Main idea is simple:

● If a program, that involves secret and
public information, computes a public
result, then the same public result can be
obtained by a program that consists on
the original one where the secret data
has been erased!

Secure Programming via Libraries - ECI 2011 5

The Language

Secure Programming via Libraries - ECI 2011 8

Secure Programming via Libraries - ECI 2011 9

The Semantics

Secure Programming via Libraries - ECI 2011 10

Operational Semantics

● It describes how a valid program is interpreted as a
sequence of computational steps [Winskel]

● We describe the steps via evaluation contexts

● Evaluation contexts
● An evaluation contexts is just a term with a “hole”
● is the substitution of into the hole
● Intuitively, if a term is being evaluated where

– is the context
– is the part of the term being evaluated

Secure Programming via Libraries - ECI 2011 11

Evaluation Example

Reduction
rules

Expression to
evaluate

Expressed in terms of
evaluation contexts

Reduction step

Secure Programming via Libraries - ECI 2011 12

Operational Semantics for LIO

● LIO computations have state
● Current label, clearance, and an store for references

Reduction step

State of the
LIO computation

Current label Current clearance Store

Secure Programming via Libraries - ECI 2011 13

Operational Semantics for LIO

It evaluates to the
internal representation

It respects the current
label and clearance

● The security checks are done in the semantics
● Dynamic approach

If the security checks are not fulfilled,
the execution gets “stuck”.

In practice, it could be an uncaught
exception, etc.

Secure Programming via Libraries - ECI 2011 14

Operational Semantics for LIO

It extracts the value e and
returns itA Labeled value which

contents is e

It sets a new current label

It is the join of the current label
and the label that protects e

Clearance is respected

Secure Programming via Libraries - ECI 2011 15

Operational Semantics for LIO

It executes the LIO computation e

The label of the result is among
the current label and clearance

The label of the result of computing e

The current label after executing e
should be below l

Observe that this state has
(only) the same current label and
clearance values as when starting

executing e

Secure Programming via Libraries - ECI 2011 16

Operational Semantics for LIO

It returns a memory location

The allocated memory location
is “new”

The store in the state gets
modified

Secure Programming via Libraries - ECI 2011 17

Operational Semantics for LIO

● You have seen a few rules

● Check the paper for the rest of them
[Stefan, Russo, Mitchell, Mazieres 11]

● You should be able to understand them after the
lecture

Secure Programming via Libraries - ECI 2011 18

The Types

Secure Programming via Libraries - ECI 2011 20

Typing rules

● They indicate how to perform type-checking
● Rules are usually syntax-directed rules

● An expression type-checks if we can construct a type
derivation (application of the typing rules)

Type system
(very simple)

What is the
type?

Here you have the
type derivation!

Secure Programming via Libraries - ECI 2011 21

Interesting typing rules

Special syntax node:
it represents term erasure

Special syntax node: internal
representation LIO computations

Special syntax node: internal
representation of Labeled values

● The rest of the typing rules are just like the ones
implemented in Haskell

Secure Programming via Libraries - ECI 2011 22

So far

● We have seen
● The language
● Semantics
● Types

● What is coming now?
● Combine all of them (and some other techniques) in

order to prove non-interference in programs written
using LIO

Secure Programming via Libraries - ECI 2011 23

Soundness

Secure Programming via Libraries - ECI 2011 25

The Erasure Function

● Function
● It is responsible for performing term erasure
● It is often applied homomorphically

● Intuitively, the function removes values and
expressions that are not below

● is the attacker level

Secure Programming via Libraries - ECI 2011 26

The Erasure Function

It removes labeled
values where the

label Is not below L

Idempotent

It propagates the
application of the

erasure function to
the labeled values

stored by references

Erasure in
configurations

(technical reasons)

Secure Programming via Libraries - ECI 2011 28

A new evaluation relationship

● Expressions under this evaluation relationship are
evaluated as before

● It guarantees that confidential data (above L) is erased
as soon as it is created

Secure Programming via Libraries - ECI 2011 29

Simulation

● This is the main idea behind the proof

Secure Programming via Libraries - ECI 2011 30

Preliminaries

● In order to prove the simulation, it is necessary to
show several auxiliary results
● You can read it from the paper

● The proof consists on establishing the simulation in
two phases
● For expressions that do not execute any toLabeled

● For expressions that execute n-toLabeled

● Why is that?
● The semantics for toLabeled uses big-step semantics

Secure Programming via Libraries - ECI 2011 31

Establishing the simulation

Subject reductoin

Subject reductoin

Secure Programming via Libraries - ECI 2011 32

Establishing the simulation

● The proof going on case analysis on the expression
being evaluated
● Recall that evaluation is performed using evaluation

contexts

Secure Programming via Libraries - ECI 2011 33

Establishing the simulation

It applies the definition
in a left-to-right manner

It just applies
the definition

Idempotent
erasure function

It applies the
definition in a

right-to-left manner

Secure Programming via Libraries - ECI 2011 34

Establishing the simulation

It applies the definition
in a left-to-right manner

It just applies
the definition

Idempotent
erasure function

It applies the
definition in a

right-to-left manner

Secure Programming via Libraries - ECI 2011 35

Establishing the simulation

● The proof is on induction on

● The base case is Lemma 1

Secure Programming via Libraries - ECI 2011 36

Establishing the simulation

● The proof is on induction on the number of
toLabeled being executed

● Base case is Lemma 2

● For the inductive case, we rewrite the big-step
semantics into no toLabeled k toLabeled

 k toLabeled

Secure Programming via Libraries - ECI 2011 37

Non-interference

● Having the simulation established

● We proceed with a formulation of the theorem that
proves non-interference

● The formulation is “standard”

● It requires a notion of low-equivalence

● It captures the observational power of the attacker

● If we run the program twice but with the same public
input, the same public output must be observed

Secure Programming via Libraries - ECI 2011 38

Low-equivalence

The public
data is the same

The public
output is the same

Secure Programming via Libraries - ECI 2011 39

Low-equivalence

● We considered labeled values as the input and output
of programs

● Intuitively, two expressions are low-equivalent if the
are equal, modulo labeled values whose labels are
above L

If the label is not below L, then
the content of labeled values it is

not important

Secure Programming via Libraries - ECI 2011 40

Low-equivalence

● We define low-equivalence between stores as well

● Intuitively, two stores are low-equivalent if the stored
labeled values below L are the same

Both stores contains the
same public labeled values

The public labeled values
are low-equivalent

Secure Programming via Libraries - ECI 2011 41

Low-equivalence

● We now define low-equivalence for configurations
● It essentially means to have low-equivalence in the

store and the expression to be evaluated when the
current label is below L

Secure Programming via Libraries - ECI 2011 42

Non-interference

Secure Programming via Libraries - ECI 2011 44

Proof Sketch

● We will use our simulation

● We asumme (you can prove it) that

Secure Programming via Libraries - ECI 2011 45

Proof Sketch II

● By our simulation, we know that
By the simulation

Secure Programming via Libraries - ECI 2011 46

Proof Sketch III

● We expand it

● A little bit more

Erase function
goes inside the
configuration

Secure Programming via Libraries - ECI 2011 47

Proof Sketch IV

● We know that is deterministic

● Then,

● Which means,

These are the same
configurations

By equality and
definition of

erasure function

By definition of
erasure function

Remember
what we

assume in the
begining

Secure Programming via Libraries - ECI 2011 49

Proof Sketch VI

● Now, we have that

● We still need to prove

● From the simulation, we had

● Which implies that

Secure Programming via Libraries - ECI 2011 50

Proof Sketch VII

● So, having

● We can prove

● by just case analysis if and applying the
definition of low-equivalence for configurations

Secure Programming via Libraries - ECI 2011 51

Final Remarks

● We formalize the ideas behind LIO
● Language: simple call-by-name lambda-calculus

● Semantics
● Security checks

● Types (not very interesting)

● Simulation

● Low-equivalence

● Non-interference theorem

Secure Programming via
Libraries

Escuela de Ciencias Informáticas (ECI) 2011
UBA, Buenos Aires, Argentina

Secure Multi-Execution in Haskell
Alejandro Russo (russo@chalmers.se)

Secure Programming via Libraries - ECI 2011 2

Enforcement for non-interference

●It is usually given as
●Type-system
 [Volpano Smith Irnive 96]

●Monitor
[Volpano 99][Le Guernic et al. 06]

●Monitors are more permissive than
traditional type-systems
[Sabelfeld, Russo 09]

●Inspection of the code is necessary

Secure Programming via Libraries - ECI 2011 4

Secure Multi-Execution
[Devriese, Piessens 10]

● Execute the program once for each security level.

● Outputs are only produced in the execution linked to their
security level

● Inputs are replaced by default inputs in executions linked to
security levels lower than the security level of the input

● The high execution reuses inputs obtained in the low execution

Secure Programming via Libraries - ECI 2011 5

Guarantees?

● Executed program satisfies non-interference
● No explicit and implicit flows

● The secure multi-execution produces the same results

● Otherwise, the semantics changes to preserve security

Secure Programming via Libraries - ECI 2011 8

Monad ME

● It models the IO operations in a pure manner
[Swierstra,Altenkirch 06]

data ME a = Return a
 | Write FilePath String (ME a)
 | Read FilePath (String -> ME a)

writeFile :: FilePath -> String -> ME ()
writeFile file s = Write file s (return ())

readFile :: FilePath -> ME String
readFile file = Read file return

Interpreter for ME
run :: Level -> ChanMatrix -> ME a -> IO a
run l _ (Return a) = return a
run l c (Write file o t)
 | level file == l = do IO.writeFile file o
 run l c t
 | otherwise = run l c t
run l c (Read file f)
 | level file == l = do x <- IO.readFile file
 broadcast c l file x
 run l c (f x)
 | sless (level file) l = do x <- reuseInput c l file
 run l c (f x)
 | otherwise = run l c (f (defvalue file))

defvalue :: FilePath -> String

Secure Programming via Libraries - ECI 2011 12

Example Scenario

● The financial company wants to preserve the
confidentiality of their clients
● Amount of every loan is secret

● The cost of credit is public information
● It can be used for statistics

● Implement a calculator that computes the
interested obtained as well as the costs of
credit
● Be sure that confidentiality is preserved

Secure Programming via Libraries - ECI 2011 13

Security Policy

level :: FilePath -> Level
level "Client" = H
level "Client-Terms" = L
level "Client-Interest" = H
level "Client-Statistics" = L
level file = error $ "File " ++ file ++
 " has no security level"

defvalue :: FilePath -> String
defvalue "Client" = "0 % 1"
defvalue "Client-Interest" = "0 % 1"
defvalue f = error "No default value for " ++ f

Secure Programming via Libraries - ECI 2011 14

Example: Code
data CreditTerms = CT { discount :: Rational,
 ddays :: Rational,
 net :: Rational }
 deriving Read

calculator :: ME ()
calculator =
 do loanStr <- readFile "Client"
 termsStr <- readFile "Client-Terms"
 let loan = read loanStr
 terms = read termsStr
 interest = loan - loan * (1 - discount terms / 100)
 disct = discount terms / (100 - discount terms)
 ccost = disct * 360/(net terms - ddays terms)
 writeFile "Client-Interest" (show interest)
 writeFile "Client-Statistics" (show ccost)

● It looks like if it was implemented using IO

● However, it uses the monad ME

● Does it work?

Secure Programming via Libraries - ECI 2011 15

Example: Malicious Code
data CreditTerms = CT { discount :: Rational,
 ddays :: Rational,
 net :: Rational }
 deriving Read

calculator :: ME ()
calculator =
 do loanStr <- readFile "Client"
 termsStr <- readFile "Client-Terms"
 let loan = read loanStr
 terms = read termsStr
 interest = loan - loan * (1 - discount terms / 100)
 disct = discount terms / (100 - discount terms)
 ccost = disct * 360/(net terms - ddays terms)
 writeFile "Client-Interest" (show interest)
 writeFile "Client-Statistics" (show loan)

● Secure Multi-Execution avoids the leak!

● Does it work?

Secure Programming via Libraries - ECI 2011 16

Future Work

● Take Secure Multi-Execution in Haskell to a library
● Easy map different IO actions into monad ME
● Not only IO actions related to file operations

– References
– Sockets
– Etc

● Declassification
● Challenging subject
● Difficult to enforce without braking the black-box

approach
● Open question

Secure Programming via Libraries - ECI 2011 17

Final Remarks

● The first approach to consider secure multi-
execution in Functional Programming

● Core part of Secure Multi-Execution
(interpreter) fits in one slide

● Implementation is available on request
● Approximately 130 lines of code

● Challenges
● Secure Multi-Execution as a library
● Declassification

Secure Multi-Execution in Haskell

Mauro Jaskelioff and Alejandro Russo

1 CIFASIS-CONICET/Universidad Nacional de Rosario.
2 Dept. of Computer Science and Engineering, Chalmers University of Technology

Abstract. Language-based information-flow security has emerged as a promis-
ing technology to guarantee confidentiality in on-line systems, where enforce-
ment mechanisms are typically presented as run-time monitors, code transfor-
mations, or type-systems. Recently, an alternative technique, called secure multi-
execution, has been proposed. The main idea behind this novel approach consists
on running a program multiple times, once for each security level, using special
rules for I/O operations. Compared to run-time monitors and type-systems, se-
cure multi-execution does not require to inspect the full code of the application
(only its I/O actions). In this paper, we propose the core of a library to provide
non-interference through secure-multi execution. We present the code of the li-
brary as well as a running example for Haskell. To the best of our knowledge, this
paper is the first work to consider secure-multi execution in a functional setting
and provide this technology as a library.

1 Introduction

Over the past years, there has been a significant increase in the number of online activi-
ties. Users can do almost everything using a web browser. Even though web applications
are probably among the most used pieces of software, they suffer from vulnerabilities
that permit attackers to steal confidential data, break the integrity of systems, and affect
the availability of services. Web-based vulnerabilities have already outplaced those of
all other platforms [1] and there are no reasons to think that this situation is going to
change [9].

In this work, we focus on preserving confidentiality of data through the security
policy known as non-interference [3, 10] (i.e. not leaking secrets into public channels).
Confidentiality policies are getting more and more relevant for widely open connected
systems as the web, where compromised confidential data can be used to impersonate
users in Facebook, Twitter, Flickr, and other social networks.

Language-based information-flow security [27] has developed approaches to ana-
lyze applications’ code, leading to special-purpose languages, interpreters or compil-
ers [19, 24] that guarantee security policies like non-interference. Rather than produc-
ing new languages from scratch, security can also be provided by libraries [14]. The
potential of this approach has been shown across a range of programming languages
and security policies [32, 25, 23, 4, 15, 6].

Traditionally, information-flow analysis on a program is done statically (e.g. using
a type-system), dynamically (e.g. using an execution monitor), or with a combination
of both. Recently, authors in [7] devised an alternative approach, called secure multi-
execution, based on the idea of executing the same program several times, once for

1

each security level. As opposed to previous enforcement mechanisms, this novel ap-
proach does not demand to design type-systems or deploy heavy-weight monitoring of
programs; it only requires modifying the semantics of I/O operations.

In this paper, we present the main ideas of a library based on monads [17, 16] to pro-
vide non-interference through secure-multi execution. The ideas can be easily applied
to any pure language and are illustrated with an implementation for the programming
language Haskell. To the best of our knowledge, this paper is the first one to consider
secure-multi execution as library in a pure functional setting.

2 Secure multi-execution

Devriese and Piessens [7] propose the novel approach of secure multi-execution to en-
force non-interference. We organize security levels in a security lattice L, where se-
curity levels are ordered by a partial order v, with the intention to only allow leaks
from data at level `1 to data at level `2 when `1 v `2. Secure multi-execution runs a
program multiple times, once for each security level. In order to enforce security, the
I/O operations of those multiple copies of the program are interpreted differently. Out-
puts on a given channel at security level ` is performed only in the execution of the
program linked to that security level. Inputs coming from a channel at security level `
are replaced by a default value if the execution of the program is linked to a security
level `e such that ` 6v `e. In that manner, the execution of the program linked to level
`e never obtains information higher than its security level. In the case that `e = `, the
input operation is performed normally. Finally, if ` v `e, the execution of the program
linked to level `e reuses the inputs obtained by the execution linked to level `.

Devriese and Piessens show that secure multi-execution is sound and precise. Sound-
ness states that each execution linked to a given level cannot get any information from
higher levels and consequently, all of its output will have to be generated from infor-
mation at its level or below, guaranteeing non-interference. Precision establishes that
if a program satisfies non-interference under normal execution, then its behavior is the
same as the one obtained by secure multi-execution on terminating runs.

3 Secure multi-execution in Haskell

In most pure functional programming languages, computations with side-effects such as
inputs and outputs can be distinguished by its type. For instance, in Haskell every com-
putation performing side-effects must be encoded as a value of the monad (or abstract
data type) IO [22]. Specifically, a value of type IO a is an action (i.e., a computa-
tion which may have side-effects) which produces a value of type a when executed.
This manner in which monads identify computations with side-effects fits particularly
well with the idea of secure multi-execution of giving different interpretations to I/O
operations as specified by the execution level.

For simplicity, we consider a two-point security lattice with elements L and H ,
where L v H and H 6v L. Levels L and H represent public and secret confidentiality
levels, respectively. The implementation shown here, however, works for an arbitrary

2

finite security lattice. In Fig. 1 we show the implementation of the lattice as elements
of the datatype Level and define the order relationship v and the non-reflexive @.

data Level = L | H deriving (Eq ,Enum)

· v ·, · @ · :: Level → Level → Bool

H v L = False

v = True

p @ q = p v q ∧ p 6≡ q

Fig. 1. Security lattice

We propose a library that works by
replacing I/O actions (i.e., values of the
IO monad) by a pure description of
them [31]. Haskell programs which per-
form some I/O actions have type a →
IO b. That is, given some argument of
type a , the program performs some I/O
actions and then returns a value of type
b as the result. In secure multi-execution,
the I/O actions performed by such pro-

gram must be interpreted differently depending on the security level linked to a given
execution (see Section 2). Hence, programs to be run under secure multi-execution do
not return I/O actions, but rather a pure description of them. With this in mind, secure
programs have the type a → ME b, where monad ME describes the side-effects pro-
duced during the computation. When the program is executed, those I/O descriptions
are interpreted according to the specification of secure multi-execution. For security
levels L and H , the program is run twice, where the I/O actions are interpreted dif-
ferently on the execution linked at level L, and on the one linked at level H . Figure 2
summarizes the ideas behind our library. Function run executes and links the program
to the security level given as argument. Observe that function run is also responsible
for the interpretation of the I/O actions described in the monad ME .

a) a // IO b

b) a // ME b
run L //

run H
// IO b

c) data ME a = Return a
|Write FilePath String (ME a)
| Read FilePath (String → ME a)

Fig. 2. Type for a typical program with side-effects (a) and a
secure multi-execution program (b), and definition of ME (c).

For simplicity, we only
consider reading and writ-
ing files as the possible I/O
actions. It is easy to general-
ize our approach to consider
other I/O operations. Func-
tion level :: FilePath →
Level assigns security lev-
els to files indicating the
confidentiality of their con-
tents. We assume that, when
a file is read, its access time gets updated as a side-effect of the operation. An attacker,
or public observer, is able to learn the content of public files as well as their access time.

Monad ME describes the I/O actions performed by programs and is defined in
Fig. 2(c). Constructors Return , Write , and Read model programs performing different
actions. Program Return x simply returns value x without performing any I/O opera-
tions. Program Write file x p models a program that writes string x into file file and
then behaves as program p. Program Read file g models a program that reads the con-
tents x of file file and then behaves as program g x . Technically, ME is an intermediate
monad that provides a pure model of the reading and writing of files in the IO monad.

Users of the library do not write programs using the constructors of ME directly.
Instead, they use the interface provided by the monad: return :: a → ME a and

3

(>>=) :: ME a → (a → ME b) → ME b. The return function lifts a pure value
into the ME monad. The operator >>=, called bind, is used to sequence computations.
A bind expression (m>>=f) takes a computation m and function f which will be applied
to the value produced by m and yields the resulting computation. These are the only
primitive operations for monad ME , and consequently, programmers must sequence
individual computations explicitly using the bind operator. Fig. 3 shows the implemen-
tation of return and >>=. The expression return x builds a trivial computation, i.e.,
a computation which does not perform any Write/Read actions and just returns x .

instance Monad ME where

return x = Return x

(Return x) >>= f = f x

(Write file s p)>>= f = Write file s (p >>= f)

(Read file g)>>= f = Read file (λi → g i >>= f)

Fig. 3. Definitions for return and >>=

Values in ME are introduced
with Return , so this is the
only case where f is applied.
In the other two cases, the
Write/Read operations are pre-
served and bind with f (>>=f)
is recursively applied. Besides
return and (>>=), the monad
ME has operations to denote
I/O actions on files. These oper-
ations model the equivalent operations on the IO monad and are given by the following
functions.

writeFile :: FilePath → String → ME ()
writeFile file s = Write file s (return ())

readFile :: FilePath → ME String
readFile file = Read file return

4 An interpreter for the monad ME

run :: Level → ChanMatrix → ME a → IO a
run l (Return a) = return a
run l c (Write file o t)
| level file ≡ l = do IO .writeFile file o

run l c t
| otherwise = run l c t

run l c (Read file f)
| level file ≡ l = do x ← IO .readFile file

broadcast c l file x
run l c (f x)

| level file @ l = do x ← reuseInput c l file
run l c (f x)

| otherwise = run l c (f (defvalue file))

Fig. 4. Interpreter for monad ME

Fig. 4 shows the interpreter for
programs of type ME a . Intu-
itively, run l c p executes p and
links the execution to security
level l . Argument c is used when
inputs from executions linked to
lower levels need to be reused
(explained below). The imple-
mentation is pleasantly close
to the informal description of
secure multi-execution in Sec-
tion 2. Outputs are only per-
formed (IO .writeFile file o)
when the confidentiality level of
the output file is the same as

the security level linked to the execution (level file ≡ l). Inputs are obtained
(IO .readFile file) when files’ confidentiality level is the same as the security level
linked to the execution (level file ≡ l). Data from those inputs is broadcasted to ex-
ecutions linked to higher security levels in order to be properly reused when needed
(broadcast c l file x). If the current execution level is higher than the file’s confiden-

4

tiality level (level file @ l)), the content of the file is obtained from the execution linked
to the same security level as the file (reuseInput c l file). Otherwise, the input data
is replaced by a default value. Function defvalue :: FilePath → String sets default
values for different files. Unlike [7], and to avoid introducing runtime errors, we adopt
a default value for each file (i.e., input point) in the program. Observe that inputs can
be used differently inside programs. For instance, the contents of some files could be
parsed as numbers, while others as plain strings. Therefore, choosing a constant default
value, e.g. the empty string, could trigger runtime errors when trying to parse a number
out of it.

An execution linked to security level ` reuses inputs obtained in executions linked to
lower levels. Hence, we implement communication channels between executions, from
a security level `′ to a security level `, if `′ @ `. In the interpreter, the argument of
type ChanMatrix consists of a matrix of communication channels indexed by security
levels. An element c`′,` of the matrix denotes a communication channel from security
level `′ to ` where `′ @ `; otherwise c`′,` is undefined. In this manner, execution linked
at level `′ can send its inputs to the execution linked at level `, where `′ @ `. Messages
transmitted on these channels have type (FilePath,String), i.e., pairs of a filename and
its contents. Function broadcast c l file x broadcasts the pair (file, x) on the channels
linked to executions at higher security levels, i.e., channels cl,` such that l @ `. Function
reuseInput c l file matches the filename file as the first component of the pairs in
channel clevel file,l and returns the second component, i.e., the contents of the file.

sme :: ME a → IO ()
sme t = do

c ← newChanMatrix
l ← newEmptyMVar
h ← newEmptyMVar

forkIO (do run L c t ; putMVar l ())
forkIO (do run H c t ; putMVar h ())

takeMVar l ; takeMVar h

Fig. 5. Secure multi-execution

Multithreaded secure multi-execution
is orchestrated by the function sme . This
function is responsible for creating com-
munication channels to implement the
reuse of inputs, creating synchronization
variables to wait for the different threads
to finish, and, for each security level,
forking a new thread that runs the in-
terpreter at that level. Fig. 5 shows a
specialized version of sme for the two-
point security lattice. However, in the li-

brary implementation, the function sme works for an arbitrary finite lattice. Function
newChanMatrix creates the communication channels. Synchronization variables are
just simple empty MVars. When a thread tries to read (takeMVar) from an empty
MVar it will block until another thread writes to it (putMVar) [21]. Function forkIO
spawns threads that respectively execute the interpreter run at levels L and H , and then
signal termination by writing (putMVar l (); putMVar h ()) to the thread’s synchro-
nization variable. The main thread locks on these variables by trying to read from them
(takeMVar l ; takeMVar h).

Unlike [7], function sme does not require the scheduler to keep the execution at
level L ahead of the execution at level H . In [7], this requirement helps to avoid timing
leaks at the price of probably modifying the runtime system (i.e, the scheduler). As
mainstream information-flow compilers, monad ME also ignores timing leaks.

5

data CreditTerms = CT {discount :: Rational , ddays :: Rational ,net :: Rational }
calculator :: ME ()
calculator = do loanStr ← readFile "Client"

termsStr ← readFile "Client-Terms"
let loan = read loanStr

terms = read termsStr
interest = loan − loan ∗ (1− discount terms / 100)
disct = discount terms / (100− discount terms)
ccost = disct ∗ 360 / (net terms − ddays terms)

writeFile "Client-Interest" (show interest)
writeFile "Client-Statistics" (show ccost)

-- writeFile "Client-Statistics" (show ccost ++ loanStr)

Fig. 6. Financial calculator

5 A motivating example

We present a small example of how to build programs using monad ME . We con-
sider the scenario of a financial company who wants to preserve the confidentiality
of their clients but, at the same time, compute statistics by hiring a third-party con-
sultant company. Given certain loan, the company wants to write code to compute
the cost of credit [5] and the total amount of interest that it will receive as income.
When taking a loan, credit terms usually indicate a due date as well as a cash dis-
count if the credit is canceled before an expiration date. We consider credit terms of the
form “discount / discount period net / credit period”, which indicates that if payment
is made within discount period days, a discount percent cash discount is allowed.
Otherwise, the entire amount is due in credit period days. Given a credit term, the
amount of money paid when the credit is due is loan − loan × (1 − discount/100).
The yearly cost of credit, i.e., the cost of borrowing money under certain terms is

discount
100−discount × 360

credit period−discount period . For instance, in an invoice of $1000 with
terms 2 /10 net 30, the total interest payed at the due date is $1000−$1000×(1− .2) =
$20, and the cost of credit becomes 2

98 × 360
20 = .3673, i.e., 37%.

In this setting, we consider the amount of every loan to be confidential (secret)
information, while cost of credit is public and thus available for statistics. By writ-
ing our program using monad ME , we can be certain that confidential information is
never given for statistics. In other words, the third-party consultant company does not
learn anything about the amount in the loans provided by the financial company. Fig-
ure 6 shows one possible implementation of the program to compute interests and cost
of credit. Files "Client" and "Client-Interest" are considered secret (level
H), while "Client-Terms" and "Client-Statistics" are considered public
(level L). The code is self-explanatory.

If a programmer writes, by mistake or malice, show ccost++loanStr as the informa-
tion to be written into the public file (see commented line), then secure multi-execution
avoids leaking the sensitive information in loanStr by given the empty string to the
execution linked to security level L.

6

6 Related work

Previous work addresses non-interference and functional languages [11, 33, 24, 29].
The seminal work by Li and Zdancewic [14] shows that information-flow security can
also be provided as a library for real programming languages. Morgenstern et al. [18]
encode a programming language aware of authorization and information-flow policies
in Agda. Devriese and Piessens [8] enforce non-interference, either dynamically or stat-
ically, using monad transformers in Haskell. Different from that work, the monad ME
does not encode static checks in the Haskell’s type-system or monitor every step of pro-
grams’ executions. Moreover, Devriese and Piessens’ work requires to encode programs
as values of a certain data type, while our approach only models I/O operations.

Russo et al. [26] outline the ground idea for secure multi-execution as a naive trans-
formation. A transformed program runs twice: one execution computes the public re-
sults, where secret inputs were removed, and the second execution computes the secret
outputs of the program. Devriese and Piessens [7] propose secure multi-execution as
a novel approach to enforce non-interference. Devriese and Piessens implement se-
cure multi-execution for the Spider-monkey JavaScript engine. The implementation
presented in this work is clean and short (approximately 130 lines of code), and thus
making it easy to understand how multi-execution works concretely. Unlike [7], our
approach does not consider termination and timing covert channels. We argue that deal-
ing with termination and timing covert channels in a complex language, without be-
ing too conservative, is a difficult task. In this light, it is not surprising that the main
information-flow compilers (Jif [20] –based on Java–, and FlowCaml [30] –based on
Caml–) ignore those channels.

Close to the notion of secure multi-execution, Jif/split [34] automatically partitions
a program to run securely on heterogenously trusted hosts. Different from secure multi-
execution, the partition of the code is done to guarantee that if host h is subverted, hosts
trusting h are the only ones being compromised. Swift [2] uses Jif/split technology to
partition the program into JavaScript code running on the browser, and JavaScript code
running on the web server.

7 Concluding remarks

We propose a monad and an interpreter for secure multi-execution. To the best of our
knowledge, we are the first ones to describe secure multi-execution in a functional lan-
guage. We implement our core ideas in a small Haskell library of around 130 lines of
code and present a running example. The implementation is compact and clear, which
makes it easy to understand how secure multi-execution works concretely. Broadcasting
input values to executions at higher levels is a novelty of our implementation if com-
pared with Devriese and Piessens’ work. This design decision is not tied to the Haskell
implementation, and the idea can be used to implement the reuse of inputs in any secure
multi-execution approach for any given language. The library is publicly available [13].

Future work Our long-term goal is to provide a fully-fledged library for secure multi-
execution in Haskell. The IO monad can perform a wide range of input and output

7

operations. It is then interesting to design a mechanism capable to lift, as automatically
as possible, IO operations into the monad ME [12]. Another direction for future work
is related with declassification, or deliberate release of confidential information [28].
Declassification in secure multi-execution is still an open challenge. Due to the struc-
ture of monadic programs, we believe that it is possible to identify, and restrict, possible
synchronization points where declassification might occur. Then, declassification can-
not happen arbitrarily inside programs but only on those places where we can give some
guarantees about the security of programs. To evaluate the capabilities of our library, we
plan to use it to implement a medium-size web application. Web applications are good
candidates for case studies due to their demand on confidentiality as well as frequent
input and output operations (i.e. server requests and responses). It is also our intention
to perform benchmarks to determine the overhead introduced by our library. The library
seems to multiply execution time by the number of levels, but since file operations are
only done once, the reality could be better if the broadcast mechanism is not expensive.

Acknowledgments Alejandro Russo was partially funded by the Swedish research agency VR.
We would like to thank Arnar Birgisson, Andrei Sabelfeld, Dante Zanarini and the anonymous
reviewers for their helpful comments.

References

[1] M. Andrews. Guest Editor’s Introduction: The State of Web Security. IEEE Security and
Privacy, 4(4):14–15, 2006.

[2] S. Chong, J. Liu, A. C. Myers, X. Qi, K. Vikram, L. Zheng, and X. Zheng. Secure web ap-
plications via automatic partitioning. In Proc. ACM Symp. on Operating System Principles,
pages 31–44, Oct. 2007.

[3] E. S. Cohen. Information transmission in computational systems. ACM SIGOPS Operating
Systems Review, 11(5):133–139, 1977.

[4] J. J. Conti and A. Russo. A taint mode for Python via a library. NordSec 2010. Selected
paper by OWASP AppSec Research 2010, 2010.

[5] Credit Research Foundation. Ratios and formulas in customer financial analysis. http:
//www.crfonline.org/orc/cro/cro-16.html, 1999.

[6] F. Del Tedesco, A. Russo, and D. Sands. Implementing erasure policies using taint analysis.
In T. Aura, editor, The 15th Nordic Conf. in Secure IT Systems. Springer Verlag, 2010.

[7] D. Devriese and F. Piessens. Noninterference through secure multi-execution. In Proc. of
the 2010 IEEE Symposium on Security and Privacy, SP ’10, pages 109–124, Washington,
DC, USA, 2010. IEEE Computer Society.

[8] D. Devriese and F. Piessens. Information flow enforcement in monadic libraries. In Proc. of
the 7th ACM SIGPLAN workshop on Types in language design and implementation, TLDI
’11, pages 59–72, New York, NY, USA, 2011. ACM.

[9] Federal Aviation Administration (US). Review of Web Applications Security and Intru-
sion Detection in Air Traffic Control Systems. http://www.oig.dot.gov/sites/
dot/files/pdfdocs/ATC_Web_Report.pdf, June 2009. Note: thousands of vul-
nerabilities were discovered.

[10] J. A. Goguen and J. Meseguer. Security policies and security models. In Proc. IEEE Symp.
on Security and Privacy, pages 11–20, Apr. 1982.

[11] N. Heintze and J. G. Riecke. The SLam calculus: programming with secrecy and integrity.
In Proc. ACM Symp. on Principles of Programming Languages, pages 365–377, Jan. 1998.

8

[12] M. Jaskelioff. Lifting of Operations in Modular Monadic Semantics. PhD thesis, University
of Nottingham, 2009.

[13] M. Jaskelioff and A. Russo. Secure multi-execution in Haskell. software release. http:
//www.cse.chalmers.se/˜russo/sme/, 2011.

[14] P. Li and S. Zdancewic. Encoding Information Flow in Haskell. In CSFW ’06: Proc. of the
19th IEEE Workshop on Computer Security Foundations. IEEE Computer Society, 2006.

[15] J. Magazinius, P. H. Phung, and D. Sands. Safe wrappers and sane policies for self protect-
ing JavaScript. In T. Aura, editor, The 15th Nordic Conf. in Secure IT Systems. Springer
Verlag, 2010.

[16] E. Moggi. An abstract view of programming languages. Technical Report ECS-LFCS-90-
113, Edinburgh University, Edinburgh, Scotland, 1989.

[17] E. Moggi. Computational lambda-calculus and monads. In Proc., Fourth Annual Sympo-
sium on Logic in Computer Science, pages 14–23. IEEE Computer Society, 1989.

[18] J. Morgenstern and D. R. Licata. Security-typed programming within dependently typed
programming. In Proc. of the 15th ACM SIGPLAN Int. Conf. on Funct. Prog., ICFP ’10,
pages 169–180, New York, NY, USA, 2010. ACM.

[19] A. C. Myers. JFlow: Practical mostly-static information flow control. In Proc. ACM Symp.
on Principles of Programming Languages, pages 228–241, Jan. 1999.

[20] A. C. Myers, L. Zheng, S. Zdancewic, S. Chong, and N. Nystrom. Jif: Java information
flow. Software release. Located at http://www.cs.cornell.edu/jif, July 2001.

[21] S. Peyton Jones, A. Gordon, and S. Finne. Concurrent haskell. In POPL ’96: Proc. of the
23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
295–308, New York, NY, USA, 1996. ACM.

[22] S. L. Peyton Jones and P. Wadler. Imperative functional programming. In Proc. of the ACM
Conf. on Principles of Programming, pages 71–84, 1993.

[23] P. H. Phung, D. Sands, and A. Chudnov. Lightweight self-protecting javascript. In R. Safavi-
Naini and V. Varadharajan, editors, ACM Symposium on Information, Computer and Com-
munications Security (ASIACCS 2009), Sydney, Australia, March 2009. ACM Press.

[24] F. Pottier and V. Simonet. Information flow inference for ML. In Proc. ACM Symp. on
Principles of Programming Languages, pages 319–330, Jan. 2002.

[25] A. Russo, K. Claessen, and J. Hughes. A library for light-weight information-flow security
in Haskell. In Haskell’08: Proc. of the 1st ACM SIGPLAN Symp. on Haskell. ACM, 2008.

[26] A. Russo, J. Hughes, D. Naumann, and A. Sabelfeld. Closing internal timing channels by
transformation. In Asian Comp. Science Conf. (ASIAN’06), LNCS. Springer-Verlag, 2007.

[27] A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE J. Selected
Areas in Communications, 21(1):5–19, Jan. 2003.

[28] A. Sabelfeld and D. Sands. Dimensions and principles of declassification. In Proc. IEEE
Computer Security Foundations Workshop, pages 255–269, June 2005.

[29] V. Simonet. Flow caml in a nutshell. In Graham Hutton, editor, Proc. of the first APPSEM-II
workshop, pages 152–165, Mar. 2003.

[30] V. Simonet. The Flow Caml system. Software release. Located at http://cristal.
inria.fr/˜simonet/soft/flowcaml, July 2003.

[31] W. Swierstra and T. Altenkirch. Beauty in the beast. In Proc. of the ACM SIGPLAN work-
shop on Haskell, Haskell ’07, pages 25–36, New York, NY, USA, 2007. ACM.

[32] T. C. Tsai, A. Russo, and J. Hughes. A library for secure multi-threaded information flow in
Haskell. In Proc. of the 20th IEEE Computer Security Foundations Symposium, July 2007.

[33] S. Zdancewic. Programming Languages for Information Security. PhD thesis, Cornell
University, July 2002.

[34] S. Zdancewic, L. Zheng, N. Nystrom, and A. C. Myers. Untrusted hosts and confidentiality:
Secure program partitioning. In Proc. ACM Symp. on Operating System Principles, 2001.

9

