
Secure Programming via
Libraries

Escuela de Ciencias Informáticas (ECI) 2011
UBA, Buenos Aires, Argentina

Secure Multi-Execution in Haskell
Alejandro Russo (russo@chalmers.se)

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 2

Enforcement for non-interference

●It is usually given as
●Type-system
 [Volpano Smith Irnive 96]

●Monitor
[Volpano 99][Le Guernic et al. 06]

●Monitors are more permissive than
traditional type-systems
[Sabelfeld, Russo 09]

●Inspection of the code is necessary

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.152.7374&rep=rep1&type=pdf
http://citeseer.ist.psu.edu/viewdoc/download;jsessionid=FF105EAB7B3ECC7D56466F98645257FB?doi=10.1.1.41.3870&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.68.1317&rep=rep1&type=pdf
http://www.cse.chalmers.se/~russo/publications_files/psi09.pdf
http://www.chalmers.se/cse/EN/

https://lirias.kuleuven.be/bitstream/123456789/265429/1/secure-multi-execution-final.pdf
http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 4

Secure Multi-Execution
[Devriese, Piessens 10]

● Execute the program once for each security level.

● Outputs are only produced in the execution linked to their
security level

● Inputs are replaced by default inputs in executions linked to
security levels lower than the security level of the input

● The high execution reuses inputs obtained in the low execution

https://lirias.kuleuven.be/bitstream/123456789/265429/1/secure-multi-execution-final.pdf
http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 5

Guarantees?

● Executed program satisfies non-interference
● No explicit and implicit flows

● The secure multi-execution produces the same results

● Otherwise, the semantics changes to preserve security

http://www.chalmers.se/cse/EN/

http://www.cse.chalmers.se/~russo/publications_files/sme.pdf
http://www.chalmers.se/cse/EN/

http://www.cse.chalmers.se/~russo/publications_files/sme.pdf
http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 8

Monad ME

● It models the IO operations in a pure manner
[Swierstra,Altenkirch 06]

data ME a = Return a
 | Write FilePath String (ME a)
 | Read FilePath (String -> ME a)

writeFile :: FilePath -> String -> ME ()
writeFile file s = Write file s (return ())

readFile :: FilePath -> ME String
readFile file = Read file return

http://www.cs.nott.ac.uk/~txa/talks/cambridge-06.pdf
http://www.chalmers.se/cse/EN/
file:///home/ale/Dropbox/ECI11/Lectures/3/SME.hs
file:///home/ale/Dropbox/ECI11/Lectures/3/SME.hs

http://www.chalmers.se/cse/EN/
file:///home/ale/Dropbox/ECI11/Lectures/3/SME.hs
file:///home/ale/Dropbox/ECI11/Lectures/3/SME.hs

Interpreter for ME
run :: Level -> ChanMatrix -> ME a -> IO a
run l _ (Return a) = return a
run l c (Write file o t)
 | level file == l = do IO.writeFile file o
 run l c t
 | otherwise = run l c t
run l c (Read file f)
 | level file == l = do x <- IO.readFile file
 broadcast c l file x
 run l c (f x)
 | sless (level file) l = do x <- reuseInput c l file
 run l c (f x)
 | otherwise = run l c (f (defvalue file))

defvalue :: FilePath -> String

http://www.chalmers.se/cse/EN/
file:///home/ale/Dropbox/ECI11/Lectures/3/SME.hs

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 12

Example Scenario

● The financial company wants to preserve the
confidentiality of their clients
● Amount of every loan is secret

● The cost of credit is public information
● It can be used for statistics

● Implement a calculator that computes the
interested obtained as well as the costs of
credit
● Be sure that confidentiality is preserved

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 13

Security Policy

level :: FilePath -> Level
level "Client" = H
level "Client-Terms" = L
level "Client-Interest" = H
level "Client-Statistics" = L
level file = error $ "File " ++ file ++
 " has no security level"

defvalue :: FilePath -> String
defvalue "Client" = "0 % 1"
defvalue "Client-Interest" = "0 % 1"
defvalue f = error "No default value for " ++ f

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 14

Example: Code
data CreditTerms = CT { discount :: Rational,
 ddays :: Rational,
 net :: Rational }
 deriving Read

calculator :: ME ()
calculator =
 do loanStr <- readFile "Client"
 termsStr <- readFile "Client-Terms"
 let loan = read loanStr
 terms = read termsStr
 interest = loan - loan * (1 - discount terms / 100)
 disct = discount terms / (100 - discount terms)
 ccost = disct * 360/(net terms - ddays terms)
 writeFile "Client-Interest" (show interest)
 writeFile "Client-Statistics" (show ccost)

● It looks like if it was implemented using IO

● However, it uses the monad ME

● Does it work?

http://www.chalmers.se/cse/EN/
file:///home/ale/Dropbox/ECI11/Lectures/3/SME.hs

Secure Programming via Libraries - ECI 2011 15

Example: Malicious Code
data CreditTerms = CT { discount :: Rational,
 ddays :: Rational,
 net :: Rational }
 deriving Read

calculator :: ME ()
calculator =
 do loanStr <- readFile "Client"
 termsStr <- readFile "Client-Terms"
 let loan = read loanStr
 terms = read termsStr
 interest = loan - loan * (1 - discount terms / 100)
 disct = discount terms / (100 - discount terms)
 ccost = disct * 360/(net terms - ddays terms)
 writeFile "Client-Interest" (show interest)
 writeFile "Client-Statistics" (show loan)

● Secure Multi-Execution avoids the leak!

● Does it work?

http://www.chalmers.se/cse/EN/
file:///home/ale/Dropbox/ECI11/Lectures/3/SME.hs

Secure Programming via Libraries - ECI 2011 16

Future Work

● Take Secure Multi-Execution in Haskell to a library
● Easy map different IO actions into monad ME
● Not only IO actions related to file operations

– References
– Sockets
– Etc

● Declassification
● Challenging subject
● Difficult to enforce without braking the black-box

approach
● Open question

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 17

Final Remarks

● The first approach to consider secure multi-
execution in Functional Programming

● Core part of Secure Multi-Execution
(interpreter) fits in one slide

● Implementation is available on request
● Approximately 130 lines of code

● Challenges
● Secure Multi-Execution as a library
● Declassification

http://www.chalmers.se/cse/EN/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

