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Enforcement for non-interference

oIt is usually given as
« [Ype-system
[Volpano Smith Irnive 96]

«Monitor
[Volpano 99][Le Guernic et al. 06]

.Monitors are more permissive than

traditional type-systems
[Sabelfeld, Russo 09]

.Inspection of the code is necessary
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Secure Multi-Execution

[Devriese, Piessens 10]

» Black box approach to enforce non-interference

 No need to inspect the code
* Manipulate input and output (IO) operations
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Secure Multi-Execution

[Devriese, Piessens 10]

« EXxecute the program once for each security level.

* Qutputs are only produced in the execution linked to their
security level

* Inputs are replaced by default inputs in executions linked to
security levels lower than the security level of the input

* The high execution reuses inputs obtained in the low execution
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Guarantees?

» Executed program satisfies non-interference
* No explicit and implicit flows
* The secure multi-execution produces the same results

» Otherwise, the semantics changes to preserve security
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Secure Multi-Execution in Haskell
[Jaskelioff, Russo 11]

« Clear separation of pure computations with those with
side-effects

* Every computation with side-effects is encapsulated
10 Int

into the monad /0O 10 ()
* |dentify where 10 is performed

10 Bool

10 ()
10 String
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Secure Multi-Execution in Haskell
[Jaskelioff, Russo 11]

» For simplicity, consider |O operations on files
» Reading produces a visible side-effect for the attacker

 Actualization of access time

Input > 10 a

run L
Input >MEal ~ 10 a

>
W
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Monad ME

|t models the IO operations in a pure manner
[Swierstra,Altenkirch 06]

data ME a = Return a

| Write FilePath (ME a)

| FilePath ( -> ME a)
writeFile :: FilePath -> -> ME ()
writeFile file s = Write file s (return ())
readFile :: FilePath =-> ME
readFile file = file return
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Monad ME

data ME a = Return a
| Write FilePath (ME a)
| FilePath ( -> ME a)
instance ME where
return Xx = Return x
(Return x) >>= f = f x
(Write fi1le s p) >>= £ = Write file s (p >>= f)
( file g) >>= f = file (\i -> g i >>= f)
) run L
4 >
Input > MFE a _ 10 a
\ run H
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Interpreter for ME :

run :: Level -> ChanMatrix -> ME a -> a S
run 1 (Return a) = return a
run 1 E'(Write file o t) mus
| level file == = do .writeFile file o
run 1 ¢ t
| otherwise = run 1 c t
run 1 c ( file f)
| level file == 1 = do x <- .readFile file

broadcast ¢ 1 file x
run 1 ¢ (f x)

do x <- reuselnput c 1 file
run 1 ¢ (£ x)

| sless (level file) 1

| otherwise = run 1 ¢ (f (defvalue file))
defvalue :: FilePath ->
run L _
Input > MFE a _ 10 a
run H
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Example Scenario

o Credit terms discount /discount period net/credit period
e Invoice 1000 can have the term 2/10 net /30

« 2% discount if you cancel the credit before 10 days

* The total credit should be paid in 30 days
 Financial company wants to compute

« Total interest paid by the customer

- loan — loan x (1 — discount /100)
- $1000 — $1000 x (1 — .2) = $20

o Cost of credit

~ discount y 360
100 — discount  credit period — discount period
2 360

T — x — = .3673
08 " 20
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Example Scenario

* The financial company wants to preserve the
confidentiality of their clients

 Amount of every loan is secret
* The cost of credit is public information
* It can be used for statistics

* Implement a calculator that computes the
interested obtained as well as the costs of
credit

* Be sure that confidentiality is preserved
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Security Policy

level :: FilePath

level "Client"
level "Client-Terms"

level "Client-Interest"
level "Client-Statistics"

level file

defvalue
defvalue
defvalue
defvalue

CHALMERS

FilePath
"Client"

"Client-Interest"

f

-> Level

LI | I | I |
(o S

error $ "File " 4+ file ++

" has no security level"

->

"O % 1"
"O 1"

o

= error "No default wvalue for

++ f
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Example: Code

data CreditTerms = CT { discount :: ,

ddays - ,
net - }
deriving
calculator :: ME ()
calculator =
do loanStr <- readFile "Client"
termsStr <- readFile "Client-Terms"
let 1loan = loanStr
terms = termsStr
interest = loan - loan * (1 - discount terms / 100)
disct = discount terms / (100 - discount terms)
ccost = disct * 360/ (net terms - ddays terms)
writeFile "Client-Interest" ( interest)
writeFile "Client-Statistics" ( ccost)

« It looks like if it was implemented using IO
« However, it uses the monad ME
e Does it work?
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Example: Malicious Code

data CreditTerms = CT { discount :: ,

ddays - ,
net - }
deriving
calculator :: ME ()
calculator =
do loanStr <- readFile "Client"
termsStr <- readFile "Client-Terms"
let 1loan = loanStr
terms = termsStr
interest = loan - loan * (1 - discount terms / 100)
disct = discount terms / (100 - discount terms)
ccost = disct * 360/ (net terms - ddays terms)
writeFile "Client-Interest" ( interest)
writeFile "Client-Statistics" ( loan)

 Secure Multi-Execution avoids the leak!
e Does it work?
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Future Work

» Take Secure Multi-Execution in Haskell to a library

« Easy map different |O actions into monad ME

* Not only IO actions related to file operations

- References
- Sockets
- Etc

 Declassification
» Challenging subject

o Difficult to enforce without braking the black-box
approach

« Open question

CHALMERS Secure Programming via Libraries - ECI 2011
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Final Remarks

e The first approach to consider secure multi-
execution in Functional Programming

e Core part of Secure Multi-Execution
(interpreter) fits in one slide

e Implementation is available on request

« Approximately 130 lines of code

» Challenges
« Secure Multi-Execution as a library
» Declassification
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