Secure Programming via
Libraries

Secure Multi-Execution in Haskell

Alejandro Russo (russo@chalmers.se)

Escuela de Ciencias Informaticas (ECI) 2011
UBA, Buenos Aires, Argentina

CHALMERS

http://www.chalmers.se/cse/EN/

Enforcement for non-interference

oIt is usually given as
« [Ype-system
[Volpano Smith Irnive 96]

«Monitor
[Volpano 99][Le Guernic et al. 06]

.Monitors are more permissive than

traditional type-systems
[Sabelfeld, Russo 09]

.Inspection of the code is necessary

CHALMERS Secure Programming via Libraries - ECI 2011

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.152.7374&rep=rep1&type=pdf
http://citeseer.ist.psu.edu/viewdoc/download;jsessionid=FF105EAB7B3ECC7D56466F98645257FB?doi=10.1.1.41.3870&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.68.1317&rep=rep1&type=pdf
http://www.cse.chalmers.se/~russo/publications_files/psi09.pdf
http://www.chalmers.se/cse/EN/

Secure Multi-Execution

[Devriese, Piessens 10]

» Black box approach to enforce non-interference

 No need to inspect the code
* Manipulate input and output (IO) operations

L
Q. ’
-4
| //

-*
| AN

N
S

CHALMERS Secure Programming via Libraries - ECI 2011

https://lirias.kuleuven.be/bitstream/123456789/265429/1/secure-multi-execution-final.pdf
http://www.chalmers.se/cse/EN/

Secure Multi-Execution

[Devriese, Piessens 10]

« EXxecute the program once for each security level.

* Qutputs are only produced in the execution linked to their
security level

* Inputs are replaced by default inputs in executions linked to
security levels lower than the security level of the input

* The high execution reuses inputs obtained in the low execution

EEE - 0 B |

CHALMERS Secure Programming via Libraries - ECI 2011

https://lirias.kuleuven.be/bitstream/123456789/265429/1/secure-multi-execution-final.pdf
http://www.chalmers.se/cse/EN/

Guarantees?

» Executed program satisfies non-interference
* No explicit and implicit flows
* The secure multi-execution produces the same results

» Otherwise, the semantics changes to preserve security

HEE - 0 B

CHALMERS Secure Programming via Libraries - ECI 2011 5

http://www.chalmers.se/cse/EN/

Secure Multi-Execution in Haskell
[Jaskelioff, Russo 11]

« Clear separation of pure computations with those with
side-effects

* Every computation with side-effects is encapsulated
10 Int

into the monad /0O 10 ()
* |dentify where 10 is performed

10 Bool

10 ()
10 String

CHALMERS Secure Programming via Libraries - ECI 2011 6

http://www.cse.chalmers.se/~russo/publications_files/sme.pdf
http://www.chalmers.se/cse/EN/

Secure Multi-Execution in Haskell
[Jaskelioff, Russo 11]

» For simplicity, consider |O operations on files
» Reading produces a visible side-effect for the attacker

 Actualization of access time

Input > 10 a

run L
Input >MEal ~ 10 a

>
W

CHALMERS Secure Programming via Libraries - ECI 2011 7

http://www.cse.chalmers.se/~russo/publications_files/sme.pdf
http://www.chalmers.se/cse/EN/

Monad ME

|t models the IO operations in a pure manner
[Swierstra,Altenkirch 06]

data ME a = Return a

| Write FilePath (ME a)

| FilePath (-> ME a)
writeFile :: FilePath -> -> ME ()
writeFile file s = Write file s (return ())
readFile :: FilePath =-> ME
readFile file = file return

CHALMERS Secure Programming via Libraries - ECI 2011

http://www.cs.nott.ac.uk/~txa/talks/cambridge-06.pdf
http://www.chalmers.se/cse/EN/
file:///home/ale/Dropbox/ECI11/Lectures/3/SME.hs
file:///home/ale/Dropbox/ECI11/Lectures/3/SME.hs

Monad ME

data ME a = Return a
| Write FilePath (ME a)
| FilePath (-> ME a)
instance ME where
return Xx = Return x
(Return x) >>= f = f x
(Write fi1le s p) >>= £ = Write file s (p >>= f)
(file g) >>= f = file (\i -> g i >>= f)
) run L
4 >
Input > MFE a _ 10 a
\ run H

CHALMERS Secure Programming via Libraries - ECI 2011 9

http://www.chalmers.se/cse/EN/
file:///home/ale/Dropbox/ECI11/Lectures/3/SME.hs
file:///home/ale/Dropbox/ECI11/Lectures/3/SME.hs

Interpreter for ME :

run :: Level -> ChanMatrix -> ME a -> a S
run 1 (Return a) = return a
run 1 E'(Write file o t) mus
| level file == = do .writeFile file o
run 1 ¢ t
| otherwise = run 1 c t
run 1 c (file f)
| level file == 1 = do x <- .readFile file

broadcast ¢ 1 file x
run 1 ¢ (f x)

do x <- reuselnput c 1 file
run 1 ¢ (£ x)

| sless (level file) 1

| otherwise = run 1 ¢ (f (defvalue file))
defvalue :: FilePath ->
run L _
Input > MFE a _ 10 a
run H
CHALMERS Secure Programming via Libraries - ECI 2011 10

http://www.chalmers.se/cse/EN/
file:///home/ale/Dropbox/ECI11/Lectures/3/SME.hs

Example Scenario

o Credit terms discount /discount period net/credit period
e Invoice 1000 can have the term 2/10 net /30

« 2% discount if you cancel the credit before 10 days

* The total credit should be paid in 30 days
 Financial company wants to compute

« Total interest paid by the customer

- loan — loan x (1 — discount /100)
- $1000 — $1000 x (1 — .2) = $20

o Cost of credit

~ discount y 360
100 — discount credit period — discount period
2 360

T — x — = .3673
08 " 20

CHALMERS Secure Programming via Libraries - ECI 2011

11

http://www.chalmers.se/cse/EN/

Example Scenario

* The financial company wants to preserve the
confidentiality of their clients

 Amount of every loan is secret
* The cost of credit is public information
* It can be used for statistics

* Implement a calculator that computes the
interested obtained as well as the costs of
credit

* Be sure that confidentiality is preserved

CHALMERS Secure Programming via Libraries - ECI 2011

12

http://www.chalmers.se/cse/EN/

Security Policy

level :: FilePath

level "Client"
level "Client-Terms"

level "Client-Interest"
level "Client-Statistics"

level file

defvalue
defvalue
defvalue
defvalue

CHALMERS

FilePath
"Client"

"Client-Interest"

f

-> Level

LI | I | I |
(o S

error $ "File " 4+ file ++

" has no security level"

->

"O % 1"
"O 1"

o

= error "No default wvalue for

++ f

Secure Programming via Libraries - ECI 2011

13

http://www.chalmers.se/cse/EN/

Example: Code

data CreditTerms = CT { discount :: ,

ddays - ,
net - }
deriving
calculator :: ME ()
calculator =
do loanStr <- readFile "Client"
termsStr <- readFile "Client-Terms"
let 1loan = loanStr
terms = termsStr
interest = loan - loan * (1 - discount terms / 100)
disct = discount terms / (100 - discount terms)
ccost = disct * 360/ (net terms - ddays terms)
writeFile "Client-Interest" (interest)
writeFile "Client-Statistics" (ccost)

« It looks like if it was implemented using IO
« However, it uses the monad ME
e Does it work?

CHALMERS Secure Programming via Libraries - ECI 2011

14

http://www.chalmers.se/cse/EN/
file:///home/ale/Dropbox/ECI11/Lectures/3/SME.hs

Example: Malicious Code

data CreditTerms = CT { discount :: ,

ddays - ,
net - }
deriving
calculator :: ME ()
calculator =
do loanStr <- readFile "Client"
termsStr <- readFile "Client-Terms"
let 1loan = loanStr
terms = termsStr
interest = loan - loan * (1 - discount terms / 100)
disct = discount terms / (100 - discount terms)
ccost = disct * 360/ (net terms - ddays terms)
writeFile "Client-Interest" (interest)
writeFile "Client-Statistics" (loan)

 Secure Multi-Execution avoids the leak!
e Does it work?

CHALMERS Secure Programming via Libraries - ECI 2011

15

http://www.chalmers.se/cse/EN/
file:///home/ale/Dropbox/ECI11/Lectures/3/SME.hs

Future Work

» Take Secure Multi-Execution in Haskell to a library

« Easy map different |O actions into monad ME

* Not only IO actions related to file operations

- References
- Sockets
- Etc

 Declassification
» Challenging subject

o Difficult to enforce without braking the black-box
approach

« Open question

CHALMERS Secure Programming via Libraries - ECI 2011

16

http://www.chalmers.se/cse/EN/

Final Remarks

e The first approach to consider secure multi-
execution in Functional Programming

e Core part of Secure Multi-Execution
(interpreter) fits in one slide

e Implementation is available on request

« Approximately 130 lines of code

» Challenges
« Secure Multi-Execution as a library
» Declassification

CHALMERS Secure Programming via Libraries - ECI 2011

17

http://www.chalmers.se/cse/EN/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

