
Secure Programming via
Libraries

Escuela de Ciencias Informáticas (ECI) 2011
UBA, Buenos Aires, Argentina

Soundness of LIO

Alejandro Russo (russo@chalmers.se)

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 2

Soudness for LIO
[Stefan, Russo, Mitchell, Mazieres 11]

● Formalizes the non-interference guarantee
provided by LIO

● For the proof, we consider a core and simple and
functional language
● Why not full Haskell?
● λ-calculus extended with boolean values, pairs,

recursion, monadic operations, references
● We formally prove that the concept of monads

works to guarantee non-interference

http://www.cse.chalmers.se/~russo/publications_files/haskell11-ext.pdf
http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 3

Proof Technique

● Similar technique as the one used by Li and
Zdancewic [Li, Zdancewic 10]

● Programs are expressions
● Main idea is simple:

● If a program, that involves secret and
public information, computes a public
result, then the same public result can be
obtained by a program that consists on
the original one where the secret data
has been erased!

http://www.cis.upenn.edu/~stevez/papers/LZ10.pdf
http://www.chalmers.se/cse/EN/

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 5

The Language

http://www.chalmers.se/cse/EN/

http://www.chalmers.se/cse/EN/

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 8

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 9

The Semantics

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 10

Operational Semantics

● It describes how a valid program is interpreted as a
sequence of computational steps [Winskel]

● We describe the steps via evaluation contexts

● Evaluation contexts
● An evaluation contexts is just a term with a “hole”
● is the substitution of into the hole
● Intuitively, if a term is being evaluated where

– is the context
– is the part of the term being evaluated

http://books.google.com/books?id=JzUNn6uUxm0C
http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 11

Evaluation Example

Reduction
rules

Expression to
evaluate

Expressed in terms of
evaluation contexts

Reduction step

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 12

Operational Semantics for LIO

● LIO computations have state
● Current label, clearance, and an store for references

Reduction step

State of the
LIO computation

Current label Current clearance Store

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 13

Operational Semantics for LIO

It evaluates to the
internal representation

It respects the current
label and clearance

● The security checks are done in the semantics
● Dynamic approach

If the security checks are not fulfilled,
the execution gets “stuck”.

In practice, it could be an uncaught
exception, etc.

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 14

Operational Semantics for LIO

It extracts the value e and
returns itA Labeled value which

contents is e

It sets a new current label

It is the join of the current label
and the label that protects e

Clearance is respected

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 15

Operational Semantics for LIO

It executes the LIO computation e

The label of the result is among
the current label and clearance

The label of the result of computing e

The current label after executing e
should be below l

Observe that this state has
(only) the same current label and
clearance values as when starting

executing e

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 16

Operational Semantics for LIO

It returns a memory location

The allocated memory location
is “new”

The store in the state gets
modified

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 17

Operational Semantics for LIO

● You have seen a few rules

● Check the paper for the rest of them
[Stefan, Russo, Mitchell, Mazieres 11]

● You should be able to understand them after the
lecture

http://www.cse.chalmers.se/~russo/publications_files/haskell11-ext.pdf
http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 18

The Types

http://www.chalmers.se/cse/EN/

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 20

Typing rules

● They indicate how to perform type-checking
● Rules are usually syntax-directed rules

● An expression type-checks if we can construct a type
derivation (application of the typing rules)

Type system
(very simple)

What is the
type?

Here you have the
type derivation!

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 21

Interesting typing rules

Special syntax node:
it represents term erasure

Special syntax node: internal
representation LIO computations

Special syntax node: internal
representation of Labeled values

● The rest of the typing rules are just like the ones
implemented in Haskell

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 22

So far

● We have seen
● The language
● Semantics
● Types

● What is coming now?
● Combine all of them (and some other techniques) in

order to prove non-interference in programs written
using LIO

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 23

Soundness

http://www.chalmers.se/cse/EN/

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 25

The Erasure Function

● Function
● It is responsible for performing term erasure
● It is often applied homomorphically

● Intuitively, the function removes values and
expressions that are not below

● is the attacker level

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 26

The Erasure Function

It removes labeled
values where the

label Is not below L

Idempotent

It propagates the
application of the

erasure function to
the labeled values

stored by references

Erasure in
configurations

(technical reasons)

http://www.chalmers.se/cse/EN/

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 28

A new evaluation relationship

● Expressions under this evaluation relationship are
evaluated as before

● It guarantees that confidential data (above L) is erased
as soon as it is created

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 29

Simulation

● This is the main idea behind the proof

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 30

Preliminaries

● In order to prove the simulation, it is necessary to
show several auxiliary results
● You can read it from the paper

● The proof consists on establishing the simulation in
two phases
● For expressions that do not execute any toLabeled

● For expressions that execute n-toLabeled

● Why is that?
● The semantics for toLabeled uses big-step semantics

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 31

Establishing the simulation

Subject reductoin

Subject reductoin

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 32

Establishing the simulation

● The proof going on case analysis on the expression
being evaluated
● Recall that evaluation is performed using evaluation

contexts

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 33

Establishing the simulation

It applies the definition
in a left-to-right manner

It just applies
the definition

Idempotent
erasure function

It applies the
definition in a

right-to-left manner

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 34

Establishing the simulation

It applies the definition
in a left-to-right manner

It just applies
the definition

Idempotent
erasure function

It applies the
definition in a

right-to-left manner

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 35

Establishing the simulation

● The proof is on induction on

● The base case is Lemma 1

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 36

Establishing the simulation

● The proof is on induction on the number of
toLabeled being executed

● Base case is Lemma 2

● For the inductive case, we rewrite the big-step
semantics into no toLabeled  k toLabeled

 k toLabeled

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 37

Non-interference

● Having the simulation established

● We proceed with a formulation of the theorem that
proves non-interference

● The formulation is “standard”

● It requires a notion of low-equivalence

● It captures the observational power of the attacker

● If we run the program twice but with the same public
input, the same public output must be observed

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 38

Low-equivalence

The public
data is the same

The public
output is the same

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 39

Low-equivalence

● We considered labeled values as the input and output
of programs

● Intuitively, two expressions are low-equivalent if the
are equal, modulo labeled values whose labels are
above L

If the label is not below L, then
the content of labeled values it is

not important

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 40

Low-equivalence

● We define low-equivalence between stores as well

● Intuitively, two stores are low-equivalent if the stored
labeled values below L are the same

Both stores contains the
same public labeled values

The public labeled values
are low-equivalent

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 41

Low-equivalence

● We now define low-equivalence for configurations
● It essentially means to have low-equivalence in the

store and the expression to be evaluated when the
current label is below L

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 42

Non-interference

http://www.chalmers.se/cse/EN/

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 44

Proof Sketch

● We will use our simulation

● We asumme (you can prove it) that

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 45

Proof Sketch II

● By our simulation, we know that
By the simulation

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 46

Proof Sketch III

● We expand it

● A little bit more

Erase function
goes inside the
configuration

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 47

Proof Sketch IV

● We know that is deterministic

● Then,

● Which means,

These are the same
configurations

By equality and
definition of

erasure function

By definition of
erasure function

Remember
what we

assume in the
begining

http://www.chalmers.se/cse/EN/

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 49

Proof Sketch VI

● Now, we have that

● We still need to prove

● From the simulation, we had

● Which implies that

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 50

Proof Sketch VII

● So, having

● We can prove

● by just case analysis if and applying the
definition of low-equivalence for configurations

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 51

Final Remarks

● We formalize the ideas behind LIO
● Language: simple call-by-name lambda-calculus

● Semantics
● Security checks

● Types (not very interesting)

● Simulation

● Low-equivalence

● Non-interference theorem

http://www.chalmers.se/cse/EN/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

