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Soudness for LIO
[Stefan, Russo, Mitchell, Mazieres 11]

● Formalizes the non-interference guarantee 
provided by LIO

● For the proof, we consider a core and simple and 
functional language 
● Why not full Haskell?
● λ-calculus extended with boolean values, pairs, 

recursion, monadic operations, references
● We formally prove that the concept of monads 

works to guarantee non-interference

http://www.cse.chalmers.se/~russo/publications_files/haskell11-ext.pdf
http://www.chalmers.se/cse/EN/
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Proof Technique

● Similar technique as the one used by Li and 
Zdancewic [Li, Zdancewic 10]

● Programs are expressions 
● Main idea is simple:

● If a program, that involves secret and 
public information, computes a public 
result, then the same public result can be 
obtained by a program that consists on 
the original one where the secret data 
has been erased!

http://www.cis.upenn.edu/~stevez/papers/LZ10.pdf
http://www.chalmers.se/cse/EN/
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The Language

http://www.chalmers.se/cse/EN/


http://www.chalmers.se/cse/EN/


http://www.chalmers.se/cse/EN/
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http://www.chalmers.se/cse/EN/
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The Semantics

http://www.chalmers.se/cse/EN/
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Operational Semantics

● It describes how a valid program is interpreted as a 
sequence of computational steps [Winskel]

● We describe the steps via evaluation contexts

● Evaluation contexts  
● An evaluation contexts      is just a term with a “hole”
●         is the substitution of     into the hole
● Intuitively, if a term     is being evaluated where

–       is the context
–     is the part of the term being evaluated

http://books.google.com/books?id=JzUNn6uUxm0C
http://www.chalmers.se/cse/EN/
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Evaluation Example

Reduction
rules

Expression to
evaluate

Expressed in terms of 
evaluation contexts

Reduction step

http://www.chalmers.se/cse/EN/
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Operational Semantics for LIO

● LIO computations have state
● Current label, clearance, and an store for references 

Reduction step

State of the
LIO computation

Current label Current clearance Store

http://www.chalmers.se/cse/EN/


Secure Programming via Libraries - ECI 2011 13

Operational Semantics for LIO

It evaluates to the
internal representation

It respects the current 
label and clearance

● The security checks are done in the semantics 
● Dynamic approach

If the security checks are not fulfilled, 
the execution gets “stuck”. 

In practice,  it could be an uncaught 
exception, etc.

http://www.chalmers.se/cse/EN/
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Operational Semantics for LIO

It extracts the value e and
returns itA Labeled value which 

contents is e

It sets a new current label

It is the join of the current label 
and the label that protects e 

Clearance is respected

http://www.chalmers.se/cse/EN/
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Operational Semantics for LIO

It executes the LIO computation e

The label of the result is among 
the current label and clearance

The label of the result of computing e

The current label after executing e
should be below l

Observe that this state has 
(only) the same current label and 
clearance values as when starting

executing e

http://www.chalmers.se/cse/EN/
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Operational Semantics for LIO

It returns a memory location 

The allocated memory location
is “new”

The store in the state gets 
modified

http://www.chalmers.se/cse/EN/
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Operational Semantics for LIO

● You have seen a few rules 

● Check the paper for the rest of them 
[Stefan, Russo, Mitchell, Mazieres 11]

● You should be able to understand them after the 
lecture

http://www.cse.chalmers.se/~russo/publications_files/haskell11-ext.pdf
http://www.chalmers.se/cse/EN/
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The Types

http://www.chalmers.se/cse/EN/


http://www.chalmers.se/cse/EN/
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Typing rules

● They indicate how to perform type-checking
● Rules are usually syntax-directed rules 

● An expression type-checks if we can construct a type 
derivation (application of the typing rules)

Type system
(very simple)

What is the
type?

Here you have the 
type derivation!

http://www.chalmers.se/cse/EN/
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Interesting typing rules

Special syntax node: 
it represents term erasure

Special syntax node: internal 
representation LIO computations

Special syntax node: internal 
representation of Labeled values

● The rest of the typing rules are just like the ones 
implemented in Haskell

http://www.chalmers.se/cse/EN/
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So far

● We have seen
● The language
● Semantics
● Types

● What is coming now?
● Combine all of them (and some other techniques) in 

order to prove non-interference in programs written 
using LIO

http://www.chalmers.se/cse/EN/
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Soundness

http://www.chalmers.se/cse/EN/


http://www.chalmers.se/cse/EN/
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The Erasure Function

● Function
● It is responsible for performing term erasure
● It is often applied homomorphically

● Intuitively, the function removes values and 
expressions that are not below

●      is the attacker level

http://www.chalmers.se/cse/EN/
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The Erasure Function

It removes labeled
values where the

label Is not below L

Idempotent

It propagates the 
application of the

erasure function to
the labeled values

stored by references

Erasure in 
configurations

(technical reasons)

http://www.chalmers.se/cse/EN/


http://www.chalmers.se/cse/EN/
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A new evaluation relationship

● Expressions under this evaluation relationship are 
evaluated as before 

● It guarantees that confidential data (above L) is erased 
as soon as it is created

http://www.chalmers.se/cse/EN/
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Simulation

● This is the main idea behind the proof

http://www.chalmers.se/cse/EN/
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Preliminaries

● In order to prove the simulation, it is necessary to 
show several auxiliary results
● You can read it from the paper

● The proof consists on establishing the simulation in 
two phases 
● For expressions that do not execute any toLabeled

● For expressions that execute n-toLabeled 

●   Why is that?
● The semantics for toLabeled uses big-step semantics

http://www.chalmers.se/cse/EN/
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Establishing the simulation

Subject reductoin

Subject reductoin

http://www.chalmers.se/cse/EN/
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Establishing the simulation

● The proof going on case analysis on the expression 
being evaluated
● Recall that evaluation is performed using evaluation 

contexts

http://www.chalmers.se/cse/EN/
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Establishing the simulation

It applies the definition 
in a left-to-right manner 

It just applies
the definition

Idempotent 
erasure function

It applies the 
definition in a 

right-to-left manner

http://www.chalmers.se/cse/EN/
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Establishing the simulation

It applies the definition 
in a left-to-right manner 

It just applies
the definition

Idempotent 
erasure function

It applies the 
definition in a 

right-to-left manner

http://www.chalmers.se/cse/EN/
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Establishing the simulation

● The proof is on induction on 

● The base case is Lemma 1

http://www.chalmers.se/cse/EN/
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Establishing the simulation

● The proof is on induction on the number of 
toLabeled being executed

● Base case is Lemma 2

● For the inductive case, we rewrite the big-step 
semantics into no toLabeled  k toLabeled

 k toLabeled

http://www.chalmers.se/cse/EN/
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Non-interference

● Having the simulation established

● We proceed with a formulation of the theorem that 
proves non-interference

● The formulation is “standard”

● It requires a notion of low-equivalence

● It captures the observational power of the attacker

● If we run the program twice but with the same public 
input, the same public output must be observed

http://www.chalmers.se/cse/EN/
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Low-equivalence

The public
data is the same

The public
output is the same

http://www.chalmers.se/cse/EN/
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Low-equivalence

● We considered labeled values as the input and output 
of programs

● Intuitively, two expressions are low-equivalent if the 
are equal, modulo labeled values whose labels are 
above L

If the label is not below L, then 
the content of labeled values it is 

not important

http://www.chalmers.se/cse/EN/
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Low-equivalence

● We define low-equivalence between stores as well

● Intuitively, two stores are low-equivalent if the stored 
labeled values below L are the same 

Both stores contains the 
same public labeled values

The public labeled values
are low-equivalent

http://www.chalmers.se/cse/EN/
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Low-equivalence

● We now define low-equivalence for configurations
● It essentially means to have low-equivalence in the 

store and the expression to be evaluated when the 
current label is below L

http://www.chalmers.se/cse/EN/
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Non-interference

http://www.chalmers.se/cse/EN/


http://www.chalmers.se/cse/EN/
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Proof Sketch

● We will use our simulation

● We asumme (you can prove it) that 

http://www.chalmers.se/cse/EN/
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Proof Sketch II

● By our simulation, we know that 
By the simulation

http://www.chalmers.se/cse/EN/
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Proof Sketch III

● We expand it

● A little bit more  

Erase function
goes inside the
configuration

http://www.chalmers.se/cse/EN/
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Proof Sketch IV

● We know that           is deterministic

● Then, 

● Which means,

These are the same 
configurations

By equality and
definition of 

erasure function

By definition of 
erasure function

Remember
what we 

assume in the
begining

http://www.chalmers.se/cse/EN/
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Proof Sketch VI

● Now, we have that

● We still need to prove 

● From the simulation, we had

● Which implies that  

http://www.chalmers.se/cse/EN/
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Proof Sketch VII

● So, having 

● We can prove

● by just case analysis if                       and applying the 
definition of low-equivalence for configurations

http://www.chalmers.se/cse/EN/
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Final Remarks

● We formalize the ideas behind LIO
● Language: simple call-by-name lambda-calculus

● Semantics
● Security checks

● Types (not very interesting)

● Simulation

● Low-equivalence

● Non-interference theorem

http://www.chalmers.se/cse/EN/
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