
Secure Programming via
Libraries

Escuela de Ciencias Informáticas (ECI) 2011
UBA, Buenos Aires, Argentina

LIO: a monad for dynamically tracking
information-flow

Alejandro Russo (russo@chalmers.se)

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries 2

Motivation

● Mass used systems often
present dynamic features
● Facebook

– Users come and go
– People make (and get rid

of) “friends”
– New applications are

created everyday
● Android

– New applications are
installed in your phone

– New features are added
with updates

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries 3

Motivation

● One of the main motivations is permissiveness
● To secure as many programs as possible

● Therefore, we need technology that is able to
● provide confidentiality and integrity guarantees
● adapt security policies at run-time
● express the interest of different parties involved in a

computer system

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries 4

LIO
[Stefan, Russo, Mitchell, Mazieres 11]

● It is a monad that provides:
● Information-flow control dynamically

– It is know that dynamic method are more permissive
[Sabelfeld, Russo 09] but equally secure as traditional static
ones

● Some for of discretionary access control

– It helps to deal with covert channels
– Information-flow control is not perfect!

● It is implemented as a library in Haskell

● It has recently accepted for the Haskell Symposium
2011, Tokyo, Japan.

http://www.cse.chalmers.se/~russo/publications_files/haskell11.pdf
http://www.cse.chalmers.se/~russo/publications_files/psi09.pdf
http://www.chalmers.se/cse/EN/

Secure Programming via Libraries 5

SecIO vs LIO

● They share the concepts about how to use monads in order to
provide information-flow security

● SecIO provides information-flow security statically, while LIO
does it dynamically

● LIO is more permissive than SecIO

● SecIO is simpler than LIO

● LIO provides information-flow control and a form of discretionary
access control, while SecIO only provides the former

● SecIO provides an specific monad for pure values (Sec), while
LIO does not

● LIO can still manipulate pure values

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries 6

Tracking information-flow dynamically

● LIO can perform side-effects or just compute with pure
values

● LIO takes ideas from the operating systems into
language-based security

● LIO protects every value in lexical scope by a single, and
mutable, current label

● Part of the state of the LIO monad

● It implements a notion of floating label for the current label
● The current label “floats” above the label of the data

observed so far

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries 7

Floating Current Label

program
 = do xs <- code1
 ys <- code2
 let z = [(e1,e2)| e1 <- xs, e2 <- ys]
 return z

Program written
using LIO There is a current label

at any point of the computation

lbl

We assume that
it is initially low

It is low

It is high

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries 8

Floating Current Label

program
 = do xs <- code1
 ys <- code2
 let z = [(e1,e2)| e1 <- xs, e2 <- ys]
 return z

Program written
using LIO There is a current label

at any point of the computation

lbl

It continues low

It is low

It is high

xs

 ys

After this line, no public
data can be affected

(no write-down)

program' =
 do result <- program

It cannot write
to public data

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries 9

Discretionary Access Control

● LIO also provides a form of discretionary access
control

● LIO has a notion of current clearance

● Part of the state of LIO

● It imposes an upper bound in the current floating-label

● Therefore, it restricts data access and manipulation
● One manner to deal with covert channels (time, energy

consumption, etc)
● One manner to assure that some confidential data is not

copied to be accessed in the future

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries 10

Clearance

program
 = do xs <- code1
 ys <- code2
 let z = [(e1,e2)| e1 <- xs, e2 <- ys]
 return z

Program written
using LIO There is a current clearance

at any point of the computation

lbl

It is low, i.e.
the piece of code

cannot access
secret data

It is low

It is high

xs

 ys

clr The label must float
above the level ys,

but clr does not allowed

The program finishes its
execution here!

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries 11

Architecture

● Similar to the one for SecIO

● We have trustworthy and untrustworthy modules

● Depending on the type of the module, we import
different modules from the library LIO

Untrustworthy moduleTrustworthy module

Trustworthy module
It requests some service from

the untrusted module and
provides the data for that

It export some services
that required security

policies

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries 12

API: label and unlabel

● Given a label l (between the current label and the clearance)
and a value of type a, it returns a value protected by l

● In other words, it assigns the security level described by l to the
value of type a

label :: (Label l) => l -> a -> LIO l s (Labeled l a)

We ignore this parameter

public :: LIO DCLabel () (Labeled DCLabel String)
public = label lbot "PublicData"

secret :: LIO DCLabel () (Labeled DCLabel String)
secret = label ltop "SecretData"

bob :: LIO DCLabel () (Labeled DCLabel String)
bob = label (newDC ("Alice" .\/. "Bob") "Bob") "BobData"

lbot is bottom in DCLabels

ltop is top in DCLabels

Using DCLabels!

It does not modify the current label and clearance!

http://www.chalmers.se/cse/EN/
file:///home/ale/Dropbox/ECI11/Lectures/4/ExampleLabel.hs

Secure Programming via Libraries 13

API: label and unlabel

● Given a labeled value of type a with security level l, it returns
the value of type a and raises the current label (clearance
permitting) to the join of the current label (lbl) and l

● Observe that after executing unlabel, the value of type a can
be involved in computations and therefore the current label
should float about it!

unlabel :: (Label l) => Labeled l a -> LIO l s a

We ignore this parameter

computation = do l_sec_str <- secret
 sec_str <- unlabel l_sec_str
 return sec_str ++ sec_str

:: Labeled DCLabel String
We cannot compute with the string!

lbl

clr

We want to
compute with the

string

sec_str

http://www.chalmers.se/cse/EN/
file:///home/ale/Dropbox/ECI11/Lectures/4/ExampleUnLabelU.hs

Secure Programming via Libraries 14

Example (trustworthy code)

module ExampleUnLabelT where

import DCLabel.PrettyShow
import LIO.DCLabel
import LIO.TCB

import ExampleUnLabelU (computation)

public :: LIO DCLabel () (Labeled DCLabel String)
public = label lbot "PublicData"

secret :: LIO DCLabel () (Labeled DCLabel String)
secret = label ltop "SecretData"

execute = do (result, label) <- evalLIO (computation public secret) ()
 putStrLn $ "The result is: " ++ result
 putStrLn $ "With the label: " ++ prettyShow label

Only to be imported
by trustworthy code!

It imports the service
from the untrustworthy

code

It provides some data
to the service and

executes it!

http://www.chalmers.se/cse/EN/
file:///home/ale/Dropbox/ECI11/Lectures/4/ExampleUnLabelT.hs

Secure Programming via Libraries 15

Example (untrustworthy code)

module ExampleUnLabelU where

import LIO.DCLabel
import LIO.LIO

computation p s = do l_public_string <- p
 l _secret_string <- s
 public _string <- unlabel l_public_string
 secret _string <- unlabel l_secret_string
 return $ public_string ++ secret_string

To be imported by
untrustworthy code!

After this point, any
subsequent computation
cannot write to public files

http://www.chalmers.se/cse/EN/
file:///home/ale/Dropbox/ECI11/Lectures/4/ExampleUnLabelT.hs

Secure Programming via Libraries 16

API: toLabeled

● This primitive avoids creeping of the current label

● Otherwise, after we read a secret, we cannot do any
other computation that involves writing to public data

● It is similar to the primitive plug (from SecIO)

● Given a label l (between the current label and the
clearance) , and a computation m, it executes m and
returns its result in a value protected by Labeled
without raising the current label

● Computation m cannot read data about level l

toLabeled :: (Label l) => l -> LIO l s a -> LIO l s (Labeled l a)

We ignore this parameter

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries 17

Example (trustworthy code)

module ExampleToLabeledT where

import DCLabel.PrettyShow
import LIO.DCLabel
import LIO.TCB

import ExampleToLabeledU (computation')

public :: LIO DCLabel () (Labeled DCLabel String)
public = label lbot "PublicData"

secret :: LIO DCLabel () (Labeled DCLabel String)
secret = label ltop "SecretData"

execute = do (result, label) <- evalLIO (computation' public secret) ()
 putStrLn $ "The result is: " ++ show result
 putStrLn $ "With the label: " ++ prettyShow label

The same as before
but using a service

provided by computation'

Remember that
this executes label

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries 18

Example (untrustworthy code)

module ExampleToLabeledU where

import LIO.DCLabel
import LIO.LIO

computation p s = do l_public_string <- p
 l_secret_string <- s
 public_string <- unlabel l_public_string
 secret_string <- unlabel l_secret_string
 return $ public_string ++ secret_string

computation' p s = do _ <- computation p s
 l_public_string <- p
 public_string <- unlabel l_public_string
 return public_string

lbl

clr

At this point, computatoin p
wants to create a Labeled value

with label lbot.However,
it cannot do it due to

the current label

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries 19

Example (untrustworthy code)

module ExampleToLabeledU where

import LIO.DCLabel
import LIO.LIO

computation p s = do l_public_string <- p
 l_secret_string <- s
 public_string <- unlabel l_public_string
 secret_string <- unlabel l_secret_string
 return $ public_string ++ secret_string

computation' p s = do _ <- toLabeled ltop (computation p s)
 l_public_string <- p
 public_string <- unlabel l_public_string
 return public_string

lbl

clr

It is not raised when
executing toLabeled

The current label is
raised when computing
computation as before

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries 20

API: labelOf

● It just returns the label of a Labeled value

● The labels are public information in the sense that they
can be examined any time

labelOf :: (Label l) => Labeled l a -> l

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries 21

Example (trustworthy code)

import DCLabel.PrettyShow
import LIO.DCLabel
import LIO.TCB

import ExampleLabelOfU (computation)

public :: LIO DCLabel () (Labeled DCLabel String)
public = label lbot "PublicData"

secret :: LIO DCLabel () (Labeled DCLabel String)
secret = label ltop "SecretData"

execute = do (result, label) <- evalLIO (computation secret) ()
 putStrLn $ "The result is: " ++ show result
 putStrLn $ "With the label: " ++ prettyShow label

It will return
0 if the argument
receive is secret
and 1 otherwise

It will return
0 if the argument
receive is secret
and 1 otherwise

http://www.chalmers.se/cse/EN/
file:///home/ale/Dropbox/ECI11/Lectures/4/ExampleLabelOfT.hs

Secure Programming via Libraries 22

Example (untrustworthy code)

module ExampleLabelOfU where

import LIO.DCLabel
import LIO.LIO

computation c = do labeled <- c
 l <- return $ labelOf labeled
 if l == lbot then return 1
 else return 0

http://www.chalmers.se/cse/EN/
file:///home/ale/Dropbox/ECI11/Lectures/4/ExampleLabelOfU.hs

Secure Programming via Libraries 23

API: References

● Given a label l (between the current label and the
clearance) , it creates a reference to a value of type a
protected by l

newLIORef :: (Label l) => l -> a -> LIO l s (LIORef l a)

We ignore this parameter

readLIORef :: (Label l) => LIORef l a -> LIO l s a

● It reads the content of the reference and, similar to
unlabeled, raises the current label (clearance
permitting) to the join of the current label (lbl) and l

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries 24

API: References

● It writes a value of type a into a given reference as
long as, similar to label, the label of the reference is
between the current label and the clearance.

writeLIORef :: (Label l) => LIORef l a -> a -> LIO l s ()

We ignore this parameter

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries 25

Example (trustworthy code)

module ExampleRefsT where

import LIO.LIORef
import DCLabel.PrettyShow
import LIO.DCLabel
import LIO.TCB

import ExampleRefsU (computation)

public :: LIO DCLabel () (LIORef DCLabel String)
public = newLIORef lbot "PublicData"

secret :: LIO DCLabel () (LIORef DCLabel String)
secret = newLIORef ltop "SecretData"

execute = do (result, label) <- evalLIO (computation public secret) ()
 putStrLn $ "The result is: " ++ show result
 putStrLn $ "With the label: " ++ prettyShow label

It is almost the same code as
module ExampleToLabeledT

References

We use references
instead of Labeled

values

http://www.chalmers.se/cse/EN/
file:///home/ale/Dropbox/ECI11/Lectures/4/ExampleRefsT.hs

Secure Programming via Libraries 26

Example (untrustworthy code)

module ExampleRefsU where

import LIO.LIORef
import LIO.DCLabel
import LIO.LIO

computation p s = do ref_l <- p
 ref_s <- s
 s <- readLIORef ref_s
 writeLIORef ref_l s
 return ()

It reads the content,
then the current

label is set to ltop

It fails to perform
the writing!

http://www.chalmers.se/cse/EN/
file:///home/ale/Dropbox/ECI11/Lectures/4/ExampleRefsU.hs

Secure Programming via Libraries 27

Final Remarks

● We present a library for dynamically tracking information-flow
● More permissive than previous static approaches
● It also provides some form of discretionary access control

● Covert channels
● Simple to use and parametric on the label system being used

● You can use DCLabels!
● As SecIO, the correcness of the library relies on type safety
and module abstraction

● SafeHaskell is coming for GHC 7.2

http://hackage.haskell.org/trac/ghc/wiki/SafeHaskell
http://www.chalmers.se/cse/EN/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

