Secure Programming via
Libraries

Disjunction Category Labels

Alejandro Russo (russo@chalmers.se)

Escuela de Ciencias Informaticas (ECI) 2011
UBA, Buenos Aires, Argentina

CHALMERS

http://www.chalmers.se/cse/EN/

Motivation

 |tis usually common to consider the simple two-point
lattice to represent confidential and public information

* |[nformation flows from public to secret

* |n scenarios of mutual distrust, things are a little bit
more complicated

e | et us see a concrete scenario

CHALMERS Secure Programming via Libraries 2

http://www.chalmers.se/cse/EN/

Motivaton

Alice

CHALMERS

Charlie

Secure Programming via Libraries

http://www.chalmers.se/cse/EN/

Motivaton: Confidentiality

(private data-leak)

What is Charlie
up to?

Alice

Charlie

CHALMERS Secure Programming via Libraries 4

http://www.chalmers.se/cse/EN/

Motivaton: Confidentiality

(private data-leak)

Bob

Alice

Charlie is the owner of that information, D

therefore he decides where it goes.
The system should respect that decision.

Charlie

CHALMERS Secure Programming via Libraries

http://www.chalmers.se/cse/EN/

Motivaton: Confidentiality

(private data-leak)

Bob

Alice

Alice and Bob collaborate in creating
aggregated data

The system must not
send that data to Charlie unless Alice
and Bob agree on that!

Charlie

CHALMERS Secure Programming via Libraries

http://www.chalmers.se/cse/EN/

Motivaton: Integrity

(user-forged write)

Let's involve the
mayor in something
illegal.

| -

Bob should be the only one
modifying its own information
(unless indicated otherwise)

Charlie

What is this?

Bob

CHALMERS Secure Programming via Libraries

http://www.chalmers.se/cse/EN/

Motivaton: Integrity

(application-forged write)

Let write this data
into the mayor inbox

Thanks for the info

The system cannot write information
in the wrong places

| didn't get any
email

Charlie

Bob

CHALMERS Secure Programming via Libraries

http://www.chalmers.se/cse/EN/

Disjunction Category Labels

[Stefan, Russo, Mazieres] (work-in-progress)

e For short: DCLabels

|t is alabel system to express restrictions on data
which allows to reflect the concern of multiple parties

* Principal
e Source or authority (e.g., Alice, Bob, and Charly)
» Disjunction Category (just category)

« Set of principals
 Each principal is said to own the category

» Categories are associated to data

CHALMERS Secure Programming via Libraries 9

http://www.chalmers.se/cse/EN/

Disjunction Category

« Set of principals
« {Alice, Bob}

 \We write it as a disjunction
e [Alice V Bob]

 What is the meaning?

 They are restrictions

* |t depends if we are considering confidentiality or
integrity

CHALMERS Secure Programming via Libraries

10

http://www.chalmers.se/cse/EN/

Disjunction Category

» Confidentiality
[Alice V Bob]

@ Either principal can read the
data

 [ntegrity
[Alice V Bob]

@ Either principal can modify the

data

CHALMERS Secure Programming via Libraries

11

http://www.chalmers.se/cse/EN/

Set of Disjunction Categories

 Data can be associated with several categories

|t represents data with different restrictions (perhaps
imposed by different parties in the system)

e {{Alice, Bob}, {Charlie}}
* \We write it as a conjunction

e [Alice V Bob| A [Charlie]
 What is the meaning?

|t depends if we are considering confidentiality or
integrity

CHALMERS Secure Programming via Libraries

12

http://www.chalmers.se/cse/EN/

Conjunctions of Disjunctions

» Confidentiality

[Alice V Bob| A [Charlie]
To read the data, it is required to be
Alice and Charlie, or Bob and Charlie,
at the same time!

The categories represents the secrecy
o |nteg rity of the data! (confidentiality)

[Alice V Bob] A [Charlie]
To write the data, it is required to be
Alice and Charlie, or Bob and Charlie,
at the same time!

The categories represents who can vouch for
the data! (trustworthiness)

CHALMERS Secure Programming via Libraries

13

http://www.chalmers.se/cse/EN/

Conjunctions of Disjunctions

» Confidentiality

[Alice V Bob] A [Charlie] A--- A - -

@ The more conjunctions,
the more secret the data

 [ntegrity

[Alice V Bob] A [Charlie] A --- A ---

@ The more conjunctions,

the more trustworthy the data

AN

CHALMERS Secure Programming via Libraries

14

http://www.chalmers.se/cse/EN/

DCLabels

« What is a DCLabel?

A DC label L = (S, I) is a set .S of secrecy categories
and a set / of integrity categories.

* The secrecy categories restrict who can read, receive,
or propagate information

* The integrity categories restrict who can modify the
data

CHALMERS Secure Programming via Libraries 15

http://www.chalmers.se/cse/EN/

Information-flow

* [nformation can flow if all categories are respected

* Confidentiality

(|Alice]
(|Alice]

CHALMERS

A
A

([Alice V Bob|, |

) L

([Alice V Bob|, |

7 L

([Alice V Bob|, |
Bob|, |
Bob|, |

([Alice V Bob Vv Charliel, [|)
([Alice], [])

([Charlie] A\ [Deian), [|)
([Alice V Bobl, [])

([Alice],])

L

Secure Programming via Libraries 16

http://www.chalmers.se/cse/EN/

Information-flow

* [nformation can flow if all categories are respected

* Integrity
(], [Alice V Bob]
(], [Alice]

(], [Alice V Bob)
(], |Alice] N | Bob]
(], [Alice]

], [Alice V Bob Vv Charlie])
|, [Alice VV Bob))

|, [C'harlie] A\ [Deian))

|, [Alicel])
|, [Alice| A |Bob))

CHALMERS

Secure Programming via Libraries 17

http://www.chalmers.se/cse/EN/

Partial Order Between DCLabels

 We formalize a can-flow-to relationship, i.e. a partial
order relationship C

Given any two DC labels Ly = (S1, 1) and Ly = (S5, I5),
and 1nterpreting any principal as a boolean variable, we have

Ver € S1.dcs € S 1o = ¢ Veo € I5.dcqp € 11 1 ¢ = ¢
<517[1> E <527[2>

CHALMERS Secure Programming via Libraries 18

http://www.chalmers.se/cse/EN/

Partial Order Between DCLabels

Given any two DC labels Ly = (51, I1) and Ly = (S5, I5),
and interpreting any principal as a boolean variable, we have

Ve € S1.dce € So i co = ¢ Veo € In.dcp € 11 : ¢ = ¢9

(S1,11) E (59, I2)
PN

So = S NI = [
(S1,11) E (So, I2)

CHALMERS Secure Programming via Libraries 19

http://www.chalmers.se/cse/EN/

Lattice

 DCLabels represent pointsg\ a lattice

Top: the most
confidential and
untrustworthy data

[
o
® <827 IZ>
® <837 13>
L
(S1,11) @ o
@
Bottom: the most
® public and
® ® trustworthy data
‘,

Secure Programming via Libraries

CHALMERS

20

http://www.chalmers.se/cse/EN/

Dynamic Lattice .
* ® (52 1) ® (S3,13)
. _ (S1,1,) @ - °
* Principals and DCLabels can be o
generated at run-time * y
« This lattice might be modified on run-time °

* |n a system with several principals (e.g., users), it is difficult to
fit the lattice in one picture

+ Gmail? Hotmail? Facebook? ey S
« Top element: ([Pi| A [P A--- A [P,],]])
» Bottom element: ([|, [P1] A [Pa] A -+ A [Py])
e Problem?

(AL])
(L, All)

 We do not always know all the principals in the system
— Principals can come and go

CHALMERS Secure Programming via Libraries 21

http://www.chalmers.se/cse/EN/

Join and Meet Operations

* |t is possible to define the join and meet operations
and proof their correctness

* The authors of DLM [Myers, Liskov 98] have not proved
this formally

The formula for meet is sound, but unlike the formula for

join, it does not always produce the most restrictive label
for all possible extensions P"”

The result is that label inference must be conservative in

some cases, which does not seem to be a significant
problem”

CHALMERS

Secure Programming via Libraries 22

http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.9924
http://www.chalmers.se/cse/EN/

Join and Meet for DCLabels

* They are simply defined as

The join and meet for any two labels L, = (S1, I1) and
Lo = (S5, I5) are respectively defined as:

LU Ly = <Sl A Sso, I \/[2>
Ly Ly = (81 V So, I A L)

* We proved that this is actually the join and meet
(exercise)

* These operations might introduce categories which are

redundant

CHALMERS Secure Programming via Libraries

23

http://www.chalmers.se/cse/EN/

Declassification/Endorsement

* Any system have some sort of intended release of
information

* |In a mutual distrust environment, it is necessary to
declassify data after some collaborative effort

([Alice] A [Bob),|]) @—=<»@ ([Alice],][])

* \We describe a motivating example based on
confidentiality but it also holds for integrity

CHALMERS

Secure Programming via Libraries

http://www.chalmers.se/cse/EN/

Declassification

 Alice is carrying out an investigation and she needs
the tax history of the suspect

Name:
Surname:
Birth:
Sex:

Causes of investigation

Alice Tax history

The mayor should

provide the tax history Conclusions

CHALMERS Secure Programming via Libraries 25

http://www.chalmers.se/cse/EN/

Declassification

* The code that Alice is running has the privilege “Alice”
|t allows to ignore the principal “Alice” in the DCLabels
* Privileges help to bypass L

Name:
Surname:
Birth:
Sex:

Causes of investigation

Alice Tax history

Conclusions

CHALMERS Secure Programming via Libraries

http://www.chalmers.se/cse/EN/

Declassification

([Alice], []) ([Alicel, []) @—==>@ ([Bob], [])

| cannot read

the document | have privilege
Bob
| have privilege
Alice

Name:

Surname:

Birth:

Sex:

Causes of investigation
Alice Tax history

Conclusions

CHALMERS Secure Programming via Libraries 27

http://www.chalmers.se/cse/EN/

Privileges

Given any two DC labels Ly = (S1, 1) and Ly = (55, I5),
and a privilege set PP, we can alternatively define the
“can-flow-to given P’ relation as follows:

(S1. I, A PYC (Sy A P, I)
(S1,11) Ep (9, I2)

([Alice] A [Bob], []) ——>@® ([Alicel,[]) Bob declassifies
L his data

([Alice] A [Bobl, [|) @—s-@ ([Alice], [|)
EBob

(I [Alice]) @—<>@ (], [Alice] A [Bob]) Bk endorses

the data
(], [Alice]) @——>@ (], [Alice] A\ [Bob])
EBob

CHALMERS Secure Programming via Libraries

28

http://www.chalmers.se/cse/EN/

Declassification

([Alice], []) ([Alicel, []) @—==>@ ([Bob], [])

| cannot read

the document | have privilege
Bob

| have privilege
Alice

Name:
Surname:
Birth:
Sex:

Causes of investigation

Alice Tax history

Conclusions

CHALMERS Secure Programming via Libraries 29

http://www.chalmers.se/cse/EN/

Declassification

([Alice], []) ([Alice], [|) @——>@ ([Bob], [])
— Alice
<[B Ob]v []> :h%agggarr:::t | have privilege

| have privilege
Alice

Name:
Surname:
Birth:
Sex:

Causes of investigation

Tax history

Alice

Conclusions

CHALMERS Secure Programming via Libraries 30

http://www.chalmers.se/cse/EN/

Endorsement

([], [Alice]) (I, [Atice]) @——s@ ([], [Bob])

| cannot write

the document | have privilege
Bob

| have privilege
Alice

Name:
Surname:
Birth:
Sex:

Causes of investigation

Tax hist
Alice axhistory

Conclusions

CHALMERS Secure Programming via Libraries 31

http://www.chalmers.se/cse/EN/

Endorsement

(I], [Alice]) &——> ([|. [Bob])

(ll; [Alice])

| cannot write

the document | have privilege
Bob

| have privilege
Alice

Name:
Surname:
Birth:
Sex:

Causes of investigation

Tax hist
Alice ax history

Conclusions

CHALMERS Secure Programming via Libraries 32

http://www.chalmers.se/cse/EN/

Endorsement

(I, [Alice]) @—@ ([, [Bob])

(I], [Alice]) CBob
| cannot write
the document | have privilege
Bob

| have privilege
Alice

Surname;
Birth:
Sex:

Causes of investigation

Alice Tax history

Conclusions

CHALMERS Secure Programming via Libraries 33

http://www.chalmers.se/cse/EN/

A Library for DCLabels in Haskell

* |tisin a experimental phase
« Remember that it is work-in-progress!
* | adapted the library for this course

 |n the future, you might refer to the official release

» Check the webpage of the course to get the installation
Instructions

CHALMERS Secure Programming via Libraries 34

http://www.chalmers.se/cse/EN/

Creating DCLabels

module lLabels where

import DCLabel.Safe
import DCLabel.PrettyShow

cl = "Alice" .\/. "Bob"
11 = "Alice" .\/. "Bob" ./\.
12 = "Alice" ./\. "Carla"

dcl = newDC 11 12

dc?2 = newDC "Deain" "Alice"

"Carla"

It can use DCLabels
without the capability
to create privileges

Categories
(disjunctions)

Labels
(conjunctions of
disjunctions)

DCLabels

CHALMERS

Secure Programming via Libraries

35

http://www.chalmers.se/cse/EN/
file:///home/ale/Dropbox/ECI11/Lectures/4/ExamplesDCLabels.hs

Join, Meet, and L

*ExamplesDCLabels> pShow dcl

<{["Alice" \/ "Bob"] /\ ["Carla"]l} , {["Alice"] /\ ["Carla"]}>

*ExamplesDCLabels> pShow dc2

<{["Deain"1]} , {["Alice"]}>

*ExamplesDCLabels> pShow $ join dcl dc2

<{["Alice" \/ "Bob"] /\ ["Carla"] /\ ["Deain"]} , {["Alice"]}>

*ExamplesDCLabels> pShow $ meet dcl dc2

<{["Alice"™ \/ "Bob" \/ "Deain"] /\ ["Carla" \/ "Deain"]} ,
{["Alice"] /\ ["Carla"]}>

*ExamplesDCLabels> pShow dcl

<{["Alice" \/ "Bob"] /\ ["Carla"]} , {["Alice"] /\ ["Carla"]l}>

*ExamplesDCLabels> pShow $ join dcl top

<{ALL} , {}>

*ExamplesDCLabels> pShow $ join dcl bottom

<{["Alice" \/ "Bob"] /\ ["Carla"]} , {["Alice"] /\ ["Carla"]l}>

*ExamplesDCLabels> canflowto dcl top
True

*ExamplesDCLabels> canflowto bottom dcl
True

CHALMERS Secure Programming via Libraries

36

http://www.chalmers.se/cse/EN/
file:///home/ale/Dropbox/ECI11/Lectures/4/ExamplesDCLabels.hs

Privileges

Only trusted code
import DCLabel.Core can create privileges
import DCLabel.PrettyShow
import DCLabel .NanoEDSL
11 = "Alice" .\/. "Bob" ./\. "Carla"

12 = "Alice" ./\. "Carla"
dcl = newDC 11 12

dc?2 = newDC "Deain" "Alice"

pr = createPrivTCB (newDC ("Alice" ./\. "Carla"))

Creation

CHALMERS Secure Programming via Libraries

37

http://www.chalmers.se/cse/EN/
file:///home/ale/Dropbox/ECI11/Lectures/4/ExamplesDCLabels2.hs

Privileges

*ExamplesDCLabels> pShow dcl
<{["Alice" \/ "Bob"] /\ ["Carla"]} , {["Alice"] /\ ["Carla"]l}>
*ExamplesDCLabels> pShow dc2
<{["Deain"1} , {["Alice"]}>
*ExamplesDCLabels> canflowto dcl dc?2

Secrecy category
False

of dc1 cannot be
fullfiled by dc2

*ExamplesDCLabels> pShow $ priv pr
{["Alice"] /\ ["Carla"]}
*ExamplesDCLabels> canflowto p pr dcl dcZ
True

Now it is possible
given privileges

CHALMERS Secure Programming via Libraries 38

http://www.chalmers.se/cse/EN/
file:///home/ale/Dropbox/ECI11/Lectures/4/ExamplesDCLabels2.hs

Final Remarks

» Label system for mutual distrust scenarios (DCLabels)
e Conjunction of categories
» Categories are disjunction of principals

* |t allows to express the interest of different parties

* Precisely compute join and meet

* \Work-in-progress
e Comparison with DLM (we have a precise meet)

* More systems need to be built using DCLabels

CHALMERS Secure Programming via Libraries 39

http://www.chalmers.se/cse/EN/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

