Secure Programming via Libraries

Disjunction Category Labels

Alejandro Russo (russo@chalmers.se)

Escuela de Ciencias Informáticas (ECI) 2011 UBA, Buenos Aires, Argentina

Motivation

- It is usually common to consider the simple two-point lattice to represent confidential and public information
 - Information flows from public to secret
- In scenarios of mutual distrust, things are a little bit more complicated
- Let us see a concrete scenario

Motivaton

Bob

Charlie

Motivaton: Confidentiality

(private data-leak)

Motivaton: Confidentiality

(private data-leak)

Bob

Charlie is the owner of that information, therefore he decides where it goes. The system should respect that decision.

Charlie

Motivaton: Confidentiality

(private data-leak)

Bob

Alice and Bob collaborate in creating aggregated data

The system must not send that data to Charlie unless Alice and Bob **agree** on that!

Charlie

Motivaton: Integrity

What is this?

(user-forged write)

Let's involve the mayor in something illegal.

► Application

Bob

Bob should be the only one **modifying** its own information (unless indicated otherwise)

Charlie

Motivaton: Integrity

(application-forged write)

Disjunction Category Labels

[Stefan, Russo, Mazieres] (work-in-progress)

- For short: DCLabels
- It is a label system to express restrictions on data which allows to reflect the concern of multiple parties
- Principal
 - Source or authority (e.g., Alice, Bob, and Charly)
- Disjunction Category (just category)
 - Set of principals
 - Each principal is said to own the category
- Categories are associated to data

Disjunction Category

- Set of principals
 - {Alice, Bob}
- We write it as a disjunction
 - $[Alice \lor Bob]$
- What is the meaning?
 - They are restrictions
 - It depends if we are considering confidentiality or integrity

Disjunction Category

Confidentiality

Integrity

Set of Disjunction Categories

- Data can be associated with several categories
 - It represents data with different restrictions (perhaps imposed by different parties in the system)
 - {{Alice, Bob}, {Charlie}}
- We write it as a conjunction
 - $[Alice \lor Bob] \land [Charlie]$
- What is the meaning?
 - It depends if we are considering confidentiality or integrity

Conjunctions of Disjunctions

Confidentiality

 $[Alice \lor Bob] \land [Charlie]$

The categories represents the secrecy of the data! (confidentiality)

Integrity

 $[Alice \lor Bob] \land [Charlie]$

To write the data, it is required to be Alice and Charlie, or Bob and Charlie, at the same time!

The categories represents who can vouch for the data! (trustworthiness)

Conjunctions of Disjunctions

Confidentiality

 $[Alice \lor Bob] \land [Charlie] \land \cdots \land \cdots \land \ldots$

The more conjunctions, the more secret the data

Integrity

 $[Alice \lor Bob] \land [Charlie] \land \cdots \land \cdots \land \ldots$

The more conjunctions, the more trustworthy the data

DCLabels

What is a DCLabel?

A DC label $L = \langle S, I \rangle$ is a set S of secrecy categories and a set I of integrity categories.

- The secrecy categories restrict who can read, receive, or propagate information
- The integrity categories restrict who can modify the data

Information-flow

- Information can flow if all categories are respected
- Confidentiality

$$\langle [Alice \vee Bob], [] \rangle \quad \bullet \quad \langle [Alice \vee Bob \vee Charlie], [] \rangle$$

$$\langle [Alice \vee Bob], [] \rangle \quad \bullet \quad \langle [Alice], [] \rangle$$

$$\langle [Alice \vee Bob], [] \rangle \quad \bullet \quad \langle [Charlie] \wedge [Deian], [] \rangle$$

$$\langle [Alice] \wedge [Bob], [] \rangle \quad \bullet \quad \langle [Alice \vee Bob], [] \rangle$$

$$\langle [Alice] \wedge [Bob], [] \rangle \quad \bullet \quad \langle [Alice], [] \rangle$$

Information-flow

- Information can flow if all categories are respected
- Integrity

$$\langle [], [Alice \lor Bob] \rangle \bullet \longrightarrow \bullet \langle [], [Alice \lor Bob \lor Charlie] \rangle$$

$$\langle [], [Alice] \rangle \bullet \longrightarrow \bullet \langle [], [Alice \lor Bob] \rangle$$

$$\langle [], [Alice \lor Bob] \rangle \bullet \longrightarrow \bullet \langle [], [Charlie] \land [Deian] \rangle$$

$$\langle [], [Alice] \land [Bob] \rangle \bullet \longrightarrow \bullet \langle [], [Alice] \rangle$$

$$\langle [], [Alice] \rangle \bullet \longrightarrow \bullet \langle [], [Alice] \land [Bob] \rangle$$

Partial Order Between DCLabels

 We formalize a can-flow-to relationship, i.e. a partial order relationship <u>□</u>

Given any two DC labels $L_1 = \langle S_1, I_1 \rangle$ and $L_2 = \langle S_2, I_2 \rangle$, and interpreting any principal as a boolean variable, we have

$$\frac{\forall c_1 \in S_1. \exists c_2 \in S_2 : c_2 \Rightarrow c_1 \quad \forall c_2 \in I_2. \exists c_1 \in I_1 : c_1 \Rightarrow c_2}{\langle S_1, I_1 \rangle \sqsubseteq \langle S_2, I_2 \rangle}$$

Partial Order Between DCLabels

Given any two DC labels $L_1 = \langle S_1, I_1 \rangle$ and $L_2 = \langle S_2, I_2 \rangle$, and interpreting any principal as a boolean variable, we have

$$\frac{\forall c_1 \in S_1. \exists c_2 \in S_2 : c_2 \Rightarrow c_1 \quad \forall c_2 \in I_2. \exists c_1 \in I_1 : c_1 \Rightarrow c_2}{\langle S_1, I_1 \rangle \sqsubseteq \langle S_2, I_2 \rangle}$$

$$\frac{S_2 \Rightarrow S_1 \land I_1 \Rightarrow I_2}{\langle S_1, I_1 \rangle \sqsubseteq \langle S_2, I_2 \rangle}$$

Lattice

Top: the most confidential and untrustworthy data

DCLabels represent points in a lattice

Dynamic Lattice

- Principals and DCLabels can be generated at run-time
 - This lattice might be modified on run-time

- Gmail? Hotmail? Facebook?
- Top element: $\langle [P_1] \wedge [P_2] \wedge \cdots \wedge [P_n], [] \rangle$
- Bottom element: $\langle [], [P_1] \wedge [P_2] \wedge \cdots \wedge [P_n] \rangle$
- Problem?
 - We do not always know all the principals in the system
 - Principals can come and go

Join and Meet Operations

- It is possible to define the join and meet operations and proof their correctness
 - The authors of DLM [Myers, Liskov 98] have not proved this formally
 - "The formula for meet is sound, but unlike the formula for join, it does not always produce the most restrictive label for all possible extensions P"
 - "The result is that label inference must be conservative in some cases, which does not seem to be a significant problem"

Join and Meet for DCLabels

They are simply defined as

The join and meet for any two labels $L_1 = \langle S_1, I_1 \rangle$ and $L_2 = \langle S_2, I_2 \rangle$ are respectively defined as:

$$L_1 \sqcup L_2 = \langle S_1 \wedge S_2, I_1 \vee I_2 \rangle$$

$$L_1 \sqcap L_2 = \langle S_1 \vee S_2, I_1 \wedge I_2 \rangle$$

- We proved that this is actually the join and meet (exercise)
- These operations might introduce categories which are redundant

Declassification/Endorsement

- Any system have some sort of intended release of information
- In a mutual distrust environment, it is necessary to declassify data after some collaborative effort

$$\langle [Alice] \wedge [Bob], [] \rangle \longrightarrow \langle [Alice], [] \rangle$$

 We describe a motivating example based on confidentiality but it also holds for integrity

 Alice is carrying out an investigation and she needs the tax history of the suspect

Bob

- The code that Alice is running has the privilege "Alice"
 - It allows to ignore the principal "Alice" in the DCLabels

Privileges help to bypass ⊑

Bob

Privileges

Given any two DC labels $L_1 = \langle S_1, I_1 \rangle$ and $L_2 = \langle S_2, I_2 \rangle$, and a privilege set P, we can alternatively define the "can-flow-to given P" relation as follows:

$$\frac{\langle S_1, I_1 \wedge P \rangle \sqsubseteq \langle S_2 \wedge P, I_2 \rangle}{\langle S_1, I_1 \rangle \sqsubseteq_P \langle S_2, I_2 \rangle}$$

$$\langle [Alice] \wedge [Bob], [] \rangle$$
 \subseteq $\langle [Alice], [] \rangle$ \subseteq $\langle [Alice], [] \rangle$ \subseteq \subseteq \subseteq Bob

Bob declassifies his data

Bob endorses the data

Endorsement

Endorsement

Endorsement

A Library for DCLabels in Haskell

- It is in a experimental phase
 - Remember that it is work-in-progress!
- I adapted the library for this course
- In the future, you might refer to the official release
- Check the webpage of the course to get the installation instructions

Creating DCLabels

```
It can use DCLabels
module Labels where
                                               without the capability
                                                to create privileges
import DCLabel.Safe
import DCLabel.PrettyShow
                                                 Categories
c1 = "Alice" . / . "Bob"
                                                 (disjunctions)
                                                            Labels
                                                        (conjunctions of
11 = "Alice" .\/. "Bob" ./\. "Carla"
                                                         disjunctions)
12 = "Alice" ./\. "Carla"
dc1 = newDC 11 12
                                            DCLabels
dc2 = newDC "Deain" "Alice"
```

Join, Meet, and □

```
*ExamplesDCLabels> pShow dc1
<{["Alice" \/ "Bob"] /\ ["Carla"]} , {["Alice"] /\ ["Carla"]}>
*ExamplesDCLabels> pShow dc2
<{["Deain"]} , {["Alice"]}>
*ExamplesDCLabels> pShow $ join dc1 dc2
<{["Alice" \/ "Bob"] /\ ["Carla"] /\ ["Deain"]} , {["Alice"]}>
*ExamplesDCLabels> pShow $ meet dc1 dc2
<{["Alice" \/ "Bob" \/ "Deain"] /\ ["Carla" \/ "Deain"]} ,
{["Alice"] /\ ["Carla"]}>
*ExamplesDCLabels> pShow dc1
<{["Alice" \/ "Bob"] /\ ["Carla"]} , {["Alice"] /\ ["Carla"]}>
*ExamplesDCLabels> pShow $ join dc1 top
<{ALL} , {}>
*ExamplesDCLabels> pShow $ join dc1 bottom
<{["Alice" \/ "Bob"] /\ ["Carla"]} , {["Alice"] /\ ["Carla"]}>
*ExamplesDCLabels> canflowto dc1 top
True
*ExamplesDCLabels> canflowto bottom dc1
True
```

Privileges

```
import DCLabel.Core
import DCLabel.PrettyShow
import DCLabel.NanoEDSL

11 = "Alice" .\/. "Bob" ./\. "Carla"

12 = "Alice" ./\. "Carla"

dc1 = newDC 11 12
```

pr = createPrivTCB (newDC ("Alice" ./\. "Carla"))

can create privileges

Only trusted code

Creation

dc2 = newDC "Deain" "Alice"

Privileges

```
*ExamplesDCLabels> pShow dc1
<{["Alice" \/ "Bob"] /\ ["Carla"]} , {["Alice"] /\ ["Carla"]}>
*ExamplesDCLabels> pShow dc2
<{["Deain"]} , {["Alice"]}>
*ExamplesDCLabels> canflowto dc1 dc2
False

*ExamplesDCLabels> pShow $ priv pr
{["Alice"] /\ ["Carla"]}
*ExamplesDCLabels> canflowto_p pr dc1 dc2
True
```

Now it is possible given privileges

Final Remarks

- Label system for mutual distrust scenarios (DCLabels)
 - Conjunction of categories
 - Categories are disjunction of principals
- It allows to express the interest of different parties
- Precisely compute join and meet
- Work-in-progress
 - Comparison with DLM (we have a precise meet)
- More systems need to be built using DCLabels